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Interaction Between Negative and Positive Index
Medium Waveguides

Wei Yan, Linfang Shen, Yu Yuan, and Tzong Jer Yang

Abstract—The coupling between negative and positive index
medium waveguides is investigated theoretically in this paper. A
coupled mode theory is developed for such a waveguide system
and its validity is verified. Interesting phenomena in the coupled
waveguides are demonstrated, which occur in the case when the
negative index medium waveguide in isolation guides its mode
backward. A new type of coupled mode solution that varies
exponentially with the coupling length is found in the special case
when the propagation constants of two individual waveguides are
nearly the same. A coupler operating in this case is insensitive to
the coupling length, and its coupling efficiency can reach 100%
as long as the coupling length is long enough. However, when the
propagation constants of the two individual waveguides differ
greatly, the coupled mode solution is still a periodic function of
the coupling length, but the coupled power is output backward. In
addition, the modes in the composite waveguide system are also
studied using the coupled mode theory, and their fundamental
properties are revealed.

Index Terms—Backward waves, coupled mode theory, negative
index media (NIM), waveguides.

I. INTRODUCTION

N EGATIVE INDEX MEDIA (NIM) that have simulta-
neously negative permittivity and permeability, have

attracted intensive interest recently. These media exhibit sev-
eral extraordinary effects such as negative refraction, backward
waves, and evanescent wave amplification [1]–[3], seeming
to challenge several concepts well established for familiar
positve index media (PIM) in electromagnetism and optics.
NIM materials are not generally found in nature and, thus, need
to be artificially constructed. Though the concept of NIM was
already proposed by Vesalogo in 1968 [1], it was not until 2001
that the first experimental demonstration of negative index
behavior was accomplished by Shelby et al., with a material
made by a 2-D array of repeated unit cells of copper strips and
split-ring resonators [4]. So far, a variety of NIM structures have
been proposed [4]–[8] in the microwave regime. More recently,
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NIM structures operating in the infrared and visible frequency
range have also been reported [9]–[13], e.g., a NIM formed by
an array of pairs of parallel gold rods was demonstrated to have
a negative refraction index at a wavelength of 1.5 m [10].

While the study of various NIM structures has been a sub-
ject of growing interest during the past few years, several re-
search works have involved waveguides with NIM components,
and interesting properties of guidance were reported [14]–[16].
For a NIM slab waveguide, the portion of a guided mode inside
the slab has a Poynting vector contradirectional with the direc-
tion of the phase velocity of the mode, while the portion of the
guided mode outside the slab has a Poynting vector parallel to
the phase velocity. The total energy flow of the guided mode
may be codirectional or contradirectional with the phase flow.
No fundamental mode exists in a NIM slab, but it may still sup-
port a single-mode propagation under certain conditions. More-
over, the interaction between PIM and NIM waveguides was in-
vestigated in [17], and the phenomenon of anti-directional cou-
pling was demonstrated, which offers a new possibility in the
design of future devices and components. The bound modes of
a NIM and PIM composite waveguide were also studied in [18],
[19].

The coupling of waves in planar dielectric waveguides
provides a means of reflectionless signal transfer from one
waveguide to another thus plays an important role in inte-
grated optics. Compared to the conventional waveguide system
[20]–[22], the coupled NIM and PIM waveguide system re-
ceives less attention. In this paper, we will study carefully
the coupling between planar NIM and PIM waveguides. For
this purpose, a coupled mode theory is developed for such
a waveguide system. Our analysis will show that there exist
various possibilities of coupled mode solution for the NIM
and PIM waveguide system, and the interaction of the guided
modes of individual waveguides may even be equivalent to the
interference of evanescent modes in the composite waveguide
for particular cases. In Section II, the coupled mode theory for
parallel NIM and PIM waveguides is formulated, and various
coupled mode solutions are discussed in Section III. In Sec-
tion IV, the guidance properties of a NIM and PIM composite
waveguide are analyzed. Also, the validity of the coupled mode
theory is examined in this section. Section V concludes the
paper.

II. COUPLED MODE EQUATIONS

Consider two parallel planar waveguides as illustrated
in Fig. 1. The upper waveguide layer of width is a PIM
with relative permittivity and permeability ,
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Fig. 1. Schematic of the coupled waveguide structure.

and the lower one of width is a NIM with relative per-
mittivity and permeability . The core layers
are separated by a distance of and they are surrounded by
free space. We assume that the individual PIM waveguide
supports only one guided mode with electric and magnetic
fields ( is the propa-
gation constant of the guided mode), whereas the individual
NIM waveguide may allow multimode propagation. The
modal fields of the individual NIM waveguide are denoted by

( are the propa-
gation constants of the modes), where . We
consider an electromagnetic field which
satisfies Maxwell’s equations plus the boundary conditions of
the entire structure. Its transverse field can be written as

(1)

(2)

where and are the corrections of
the modal field in the other guide due to the induced polariza-
tion. The correction fields are introduced as in [23], and

are treated in a similar manner. The longitudinal compo-
nents of the vectorial field are expressed in the form

(3)

(4)

where , ; , for .
, , and represent the profiles of the

entire structure, and of the individual PIM and NIM waveguides,
respectively.

We utilize a variational principle for the coupled system under
consideration following Haus et al. [21], and obtain the differ-
ential equations in the form

(5)

where , and
. The matrices and have ele-

ments

(6)

(7)

with

(8)

(9)

and

(10)

(11)

(12)

(13)

where and . Note that
for .

The above coupled-mode equations are similar to those de-
rived by Haus et al. in [23], but our formulation considers a more
general case, in which the permeability of the coupled waveg-
uides is allowed to vary with the transverse coordinate . Fur-
thermore, our formulation includes the factor in the
expression for . We let , here

, then (5) can be written as .
In the case if the waveguide system is lossless, can be proved
to be Hermitian in the same manner as in [21]. As the matrix

has off-diagonal elements ;
thus, the matrix is also Hermitian for the lossless case. So the
power conservation holds for our formulation [24].

III. COUPLED MODE SOLUTIONS

Let us consider the wave propagation and coupling along two
lossless planar waveguides over a finite length (see Fig. 1). For
simplicity, we assume that the individual NIM waveguide also
supports a singled mode (i.e., ). The single-mode op-
eration for a certain polarization in the NIM waveguide can be
achieved through suppressing the appearance of surface modes.
We consider an initial power to be injected into the PIM wave-
guide at . The excited mode in the NIM waveguide will
have the same direction of phase flow as the guided mode in the
PIM waveguide, i.e., . As the energy flows of the mode in
the core and cladding of the NIM waveguide are in the opposite
directions, the total energy flow may be codirectional or con-
tradirectional with the phase velocity of the mode, i.e.,
or . The coupled power in the NIM waveguide will be
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output at the waveguide end if . Otherwise, the
coupled power will be output at the other end , if .
Correspondingly, the boundary condition is at for

, and it becomes at for .
We rewrite (5) in the form

(14)

where , with the superscript
“ 1” denoting an inverse matrix. The coefficients
( , 2) in (14) are equivalent to a modification of the
parameters , and our analysis shows that
in general. The coupling coefficients and are es-
pecially interesting. These coupling coefficients are given
by and

, where
and . Since

, , and
we find . Similarly, we obtain

. Note that and
in the lossless case. If and differ negligibly,

i.e., , then and have the same sign for ,
or they have opposite signs for , which never happens
for coupled conventional waveguides. As an example, the
coupling coefficients as a function of the NIM layer thickness
are illustrated in Fig. 2(a), and the value of is shown
in Fig. 2(b). The guided wave is assumed to be TE-polarized,
and the parameters of the two-waveguide system are as fol-
lows: , , and , corresponding
to the waveguide parameter for the PIM waveguide;

, and ; . As seen from Fig. 2(a), in
the region of where , the coupling
coefficients are both positive; but they have opposite signs in
the region of where . The shaded
areas in Fig. 2 indicate the regions where the single-mode
propagation in the individual NIM waveguide is not available
or only the surface mode exists. In what follows, we concen-
trate on the analysis of the coupling between PIM and NIM
waveguides for TE polarization (results for TM polarization
can be obtained from duality). We will consider two cases for
waveguide system: i) ; ii) .

A. Case (i):

The solution satisfying at and at
is shown to be

(15)

(16)

for the case if , or else it becomes

(17)

(18)

where , , and
with ( , 2). Since
at least when (i.e., ), the first

type of solution, i.e., (15) and (16), is possible to occur for the

Fig. 2. (a) Coupling coefficients versus the NIM layer thickness b. (b) Prop-
agation constant difference (� � � ) versus the NIM layer thickness b. The
shaded areas indicate the regions where the single-mode propagation in the in-
dividual NIM waveguide is not available.

case with . Note that (15) and (16) are a new type of the
solution for coupled mode equations, which never happens for
a conventional waveguide system.

The coupling efficiency (or the fraction of the cou-
pled power), which describes the net power transfer
between the two waveguides, is determined by

. In the case of ,
we have ; thus,
the output power by the NIM waveguide increases as
the length increases, and it approaches its maximum of

as . Evidently,
can reach nearly 100% when . In the other case if

, where and differ greatly, the coupling
efficiency becomes .
In this case, we find that varies periodically with , and it
has a maximum of at the lengths of

, here is an integer. Since ,
we have . For this case our numerical
analysis indicates that is always less than 1. To illustrate
the typical coupling behaviors, Fig. 3 shows the fraction of
the coupled power for TE modes as a function of for the
waveguide systems with and . The other
parameters of the waveguide systems are the same as in Fig. 2.
The propagation constant of the individual NIM waveguide has

for and for ,
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Fig. 3. Fraction of coupled power � (%) versus the coupling length L.

corresponding to two typical cases discussed above. Here, we
should point out that a NIM is inherently lossy, i.e., both and

have an imaginary part. Thus, the propagation constant
of a guided mode in the individual NIM waveguide also has an
imaginary part. In the case if the NIM is severely lossy, the new
type of coupled mode solution will not occur even when is
equal to the real part of . But such a NIM with considerable
loss is not suitable for application in devices. By using low loss
materials to structure NIM, it is possible to reduce the loss of a
NIM to very low level at certain frequencies, which is the case
of our interest.

B. Case (ii):

The solution with and at is given
by

(19)

(20)

where , , and are defined above. In this case the coupling
efficiency is determined by , and
it follows that , which is identical
to that for two parallel conventional waveguides. The maximum
of the coupling efficiency is , occurring
at the lengths of , where is an integer, and
it reaches nearly 100% when is equal to .

IV. GUIDANCE OF THE COMPOSITE WAVEGUIDE

It is interesting to analyze the guidance characteristic of the
composite two-core waveguide, as the coupling between guided
modes of two individual waveguides may always be viewed as
the beating of the modes of the composite structure. The prop-
agation constants of the modes in the composite waveguide are
easily derived from (14), and are given by

(21)

where ( 1, 2) are defined in the previous section. It is
known that the exact dispersion relation for the planar composite
waveguide can be derived analytically for both TE and TM po-
larizations. The electric field for TE modes in the five re-
gions of the waveguide structure (see Fig. 1) can be written as

where , ,
, and is the wave number in free space. The

nonzero components of the magnetic field can be obtained
straightforwardly from . The dispersion relation of TE modes
is determined by imposing matching conditions on the parallel
components of and at the interfaces , , 0,
and . Following this procedure yields

(22)

with and . This equation is the
exact dispersion relation for TE modes in the composite wave-
guide. The exact dispersion relation for TM modes can be ob-
tained by substitution of in (22). However, it is very dif-
ficult to solve analytically the transcendental (22). In contrast,
the formula (21) enables one to gain more insight into the char-
acteristic of the waveguide system. In the following we focus on
the analysis of TE modes in the composite waveguide (results
for TM modes can be obtained from duality). We will show that
(21) is a good approximation to (22). Without losing generality,
the interacted modes in the individual PIM and NIM waveg-
uides are assumed to have positive propagation constants; thus,
the real part of the propagation constant of each related mode in
the composite waveguide is also positive. All results calculated
from (21) will be compared with the exact results obtained from
(22). This provides an approach to examine the validity of the
coupled mode theory.

We first consider the waveguide system with . In
the special case with , where , one sees
from (21) that the propagation constants have an imaginary part
and be conjugate for any separation distances . Note that both
the NIM and PIM in the waveguide system are assumed to be
lossless here. So these modes in the composite waveguide are
evanescent waves. The appearance of the evanescent modes is
only a consequence of the special coupling between the PIM
and NIM waveguides, which corresponds to the new type of
coupled mode solution. In the case if and differ substan-
tially, the propagation constants may also have an imaginary
part for small , namely, when the coupling between the in-
dividual waveguides is strong. However, as is so increased
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Fig. 4. Propagation constants � versus the distance d between the core layers
for the composite waveguides with various NIM layer thicknesses. The NIM
waveguide in isolation guides a single mode backward ( �P < 0) for all cases.
(a) Real parts of � ; (b) imaginary parts of � . The lines represent the results
obtained from coupled mode theory, and the marks represent the results calcu-
lated from (22).

that , the propagation constants will be-
come real. In this case both modes in the composite waveguide
are propagating waves. In the case if and differ greatly,
the propagation constants are always real for any . To illus-
trate these behaviors, Fig. 4 shows the propagation constants for
the composite waveguides with different NIM layer thicknesses

, and . The other parameters are the
same as in Fig. 2. The propagation constants of the individual
NIM waveguide are , , and for the
three cases, respectively. In Fig. 4, the exact results (labelled by
“Exact”) for the three cases are also included for comparison
with the results (labelled by “CMT”) obtained from (21), and
the excellent agreement is observed.

Next, we consider the waveguide system with . In this
case, our numerical analysis indicates that , and the
propagation constants of the modes of the composite waveguide
are always real, as illustrated in Fig. 5, where the thicknesses of
the NIM layers are , and , cor-
responding to the propagation constants of the guided modes
in the individual NIM waveguides , , and

, respectively. The other parameters are the same as
in Fig. 2. The exact results of the propagation constants for the

Fig. 5. Propagation constants � versus the distance d between the core layers
for the composite waveguides with various NIM layer thicknesses. The NIM
waveguide in isolation guides a single mode forward ( �P > 0) for all cases.
The lines represent the results obtained from coupled mode theory, and the
marks represent the results calculated from (22).

composite waveguides are also included in Fig. 5 for compar-
ison. One sees that the results obtained from (21) are in good
agreement with the exact results.

Finally we analyze qualitatively the total energy flow of
the modes in the composite waveguide, which is given by

, where the superscript “ ” denotes the conjugated
transpose of matrix. For the waveguide system with ,
is a positive Hermitian matrix, which leads to , indicating
that the modes of the composite waveguide are always forward
modes, i.e., the total energy flows of the modes are codirec-
tional with their phase flows. Therefore, the guided modes
shown in Fig. 5 are all forward modes. This is verified by the
exact calculation of the total energy flows of the modes in the
composite waveguide. On the other hand, for the waveguide
system with , is an indefinite Hermitian matrix,
and it can be written as , where ,
and , with and
( , 2) being the eigenvalues and orthogonal eigenvectors
of , respectively. Let , then the
coupled mode equations are expressed as ,
where is an anti-Hermitian matrix, given by

, with .
We also have .
Solving the coupled mode equations, we find

(23)

and

(24)

where . Note that it is not nec-
essary to take the same sign simultaneously in (23) and (24).
As seen from (23), when , the propagation constants of
two modes in the composite waveguide have an imaginary part.
In this case, we have and then , which in-
dicates that the modes in the composite waveguide are indeed
evanescent waves, though they have a nonzero real part of the
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propagation constants. In the case when , are both
real, i.e., the modes in the composite waveguide are both propa-
gating waves. In this case, one has and then ,
if we take “ ” in (24), while and then , if
choosing “ ” in (24). Thus, one of the two modes in the com-
posite waveguide is a forward mode, and the other must be a
backward mode, whose total energy flow is contradirectional
with its phase flow. Since in gen-
eral cases (i.e., except in the case of super strong coupling),
the matrix ; thus, we have approximately

. Substituting this equation into the
expression of , we find that , . So we infer
that for and for , if , otherwise

for and for , if . Therefore, in
Fig. 4, the guided modes with propagation constant are for-
ward modes, while the ones with propagation constant are
backward modes. This is also verified by the exact numerical
calculation of the total energy flow.

V. DISCUSSION AND CONCLUSIONS

The wave propagation and coupling in parallel planar NIM
and PIM waveguides have been studied theoretically. The cou-
pled mode equations for such a waveguide system has been
developed, which has been verified through calculation of the
propagation constants of the modes in the composite waveguide.
It has been shown that if the NIM waveguide in isolation guides
its mode forward, the properties of the NIM and PIM wave-
guide system are similar to those for a conventional waveguide
system. However, in the case if the NIM waveguide guides its
mode backward, interesting phenomena then appear. When the
propagation constants of the individual waveguides are nearly
equal, there exist only evanescent modes in the composite wave-
guide. The solution of the coupled mode equations for this case
varies exponentially with the coupling length, which never hap-
pens for a conventional waveguide system. A coupler operating
in this case is very easy to fabricate, as its coupling efficiency
is insensitive to the coupling length. When the propagation con-
stants and differs significantly, the modes in the composite
waveguide may change from evanescent waves to propagating
ones as increases. In the latter case the solution of the cou-
pled mode equations is also a periodic function of the coupling
length, but the coupled power is output in a direction opposite
to that of input power. Correspondingly, the modes in the com-
posite waveguide are propagating waves, and one of the modes
is a forward mode while the other is a backward one. Finally
we should indicate that as the NIM medium is strongly disper-
sive, the various phenomena mentioned above may happen in
the same waveguide system at different frequencies.
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