List of Figures ## **Chapter 1 Introduction** | Fig. 1.1 Unit cell of α -Ti. | |--| | Fig. 1.2 Unit cell of β-Ti | | Fig. 1.3 Effect of alloying elements on phase diagrams of titanium alloys | | (schematically)15 | | Fig. 1.4 Schematic of a vacuum casting furnace used for making | | titanium castings16 | | Fig. 1.5 Low-yttria portion of proposed ZrO ₂ -Y ₂ O ₃ phase diagram17 | | Chapter 2 | | Ti ₂ ZrO Phases Formed in the Titanium and Zirconia | | Interface after Reaction at 1550°C | | | | Fig. 2.1 (a) The TEM micrograph showing the interface between Cp-Ti | | and $ZrO_2(3Y)$ after reaction at 1550 °C /30min; (b) A magnified | | micrograph of the marked region in (a), indicating elongated β '-Ti and | | the lamellar structure of $\alpha\text{-Ti}$ and Ti_2ZrO in both sides of $\beta\text{'-Ti}$. | | The arrows in the lower right region indicate the spherical ordered | | Ti ₂ ZrO30 | | Fig. 2.2 (a) and (b) SADP's of β '-Ti, Z=[110] $_{\beta'$ -Ti} and Z=[111] $_{\beta'$ -Ti, | | respectively; (c) EDS of β'-Ti31 | | Fig. 2.3 (a) SADP's of the lamellar Ti_2ZrO and α - Ti , $Z=[0001]_{\alpha$ - $Ti}$ | | //[110] $_{Ti2ZrO}$; (b) EDS of α -Ti; (c) EDS of the lamellar Ti_2ZrO ; (d) the standard stereographic projection with [0001] $_{\alpha$ -Ti //[110] $_{Ti2ZrO}$ 32 | |--| | Fig. 2.4 The lattice relation of the orthorhombic Ti ₂ ZrO (dash line) and hexagonal α-Ti (soild line). | | Fig. 2.5 (a) SADP's of the spherical ordered Ti ₂ ZrO and α-Ti, Z=[0001] $_{\alpha\text{-Ti}}$ //[0001] _{Ti2ZrO} ; (b) the hexagonal Ti ₂ ZrO unit cell ¹⁷ ; (c) EDS of the spherical ordered Ti ₂ ZrO; (d) the standard stereographic projection with [0001] _{α-Ti} //[0001] _{Ti2ZrO} . | | Chapter 3 | | Zirconia-Related Phases in the Zirconia/Titanium Diffusion | | Couple after Annealing at 1100° to 1550°C | | ESIN | | Fig. 3.1 (a) TEM micrograph (bright field image, BFI) of zirconia far | | away the ZrO ₂ /Ti interface after reaction at 1100°C/6 h, | | indicating t -ZrO _{2-x} with an average grain size \sim 0.5 μ m; (b) SADP of the | | <i>t</i> -ZrO _{2-x} | | Fig. 3.2 SEM micrograph (backscattered electron image, BEI) of the | | zirconia side in the ZrO ₂ /Ti diffusion couple after reaction at 1300°C/6 h, indicating the apprintment of a 7r (marked as "A") and | | indicating the coexistence of α -Zr (marked as "A") and | | t-ZrO _{2-x} , (marked as "B"). Also shown is the coarsening of α-Zr | | (arrowed) | | Fig. 3.3 (a) TEM micrograph (bright field image, BFI) of α -Zr and | | t-ZrO _{2-x} in the ZrO ₂ /Ti diffusion couple after reaction at 1300°C/6 h; (b) | | SADP of the α -Zr along the [101] zone axis; (c) EDS of the α -Zr shown | | in (b); (d) SADP of the t-ZrO _{2-x} , along the [110] zone axis; (e) EDS of | | the t - TrO_2 shown in (d) | | Fig. 3.4 (a) SEM micrograph (backscattered electron image, BEI) of | |---| | zirconia side in the ZrO_2/Ti diffusion couple after reaction at $1550^{\circ}C/6\ h,$ | | indicating the coarsening of intergranular $\alpha\text{-}Zr$ (marked as "A") and | | t-ZrO _{2-x} (marked as "B") in the c -ZrO _{2-x} matrix (marked as "C"); (b) | | SEM micrograph (secondary electron image, SEI) of as hot-pressed | | zirconia after annealing at 1550°C/6 h in Ar54 | | Fig. 3.5 (a) TEM micrograph (bright field image, BFI) of zirconia in the | | ZrO_2/Ti diffusion couple after reaction at $1550^{\circ}C/6$ h, indicating the | | twined t' -ZrO _{2-x} in t' -ZrO _{2-x} matrix; (b) and (c) are microdiffraction | | patterns from the twined t' -ZrO _{2-x} and the t' -ZrO _{2-x} matrix along the zone | | axes of [111], respectively | | Fig. 3.6 (a) TEM micrograph (bright field image, BFI) of zirconia in the ZrO ₂ /Ti diffusion couple after reaction at 1550°C/6 h, displaying {100} type of variants of the lenticular t -ZrO _{2-x} in c -ZrO _{2-x} matrix; (b) A magnified image of the c -ZrO _{2-x} matrix in (a), showing the ordered structure; (c) EDS of the ordered c -ZrO _{2-x} , (d) and (e) are SADP's of the ordered c -ZrO _{2-x} matrix with zone axis being [110] and [310], respectively. | | Fig. 3.7 Schematic diagrams showing the microstructural evolution of | | the zirconia side in the $ZrO_2/$ Ti diffusion couple annealed at $1300^{\circ}C/6~h.$ | | (a) as hot-pressed; (b) grain growth on heating to 1300°C; (c) exclusion | | of α -Zr from ZrO _{2-x} during cooling57 | | Fig. 3.8 Schematic diagrams showing the microstructural evolution of | | the zirconia side in ZrO ₂ /Ti diffusion couple annealed at 1550°C/6 h. (a) | | as hot-pressed; (b) apparent grain growth on heating to 1550°C; (c) | | exclusion of α -Zr during cooling; (d) formation of twined t' -ZrO ₂ ; (e) the | | formation of lenticular t -ZrO $_2$ and ordered c -ZrO $_{2-x}$ | | cross-sectional between Ti/ZrO ₂ after reaction at 1550°C/6 h; (b) and (c) | |--| | selected area diffraction patterns of the α -Ti and β '-Ti, Z=[2 $\overline{1}$ $\overline{1}$ 0] $_{\alpha$ -Ti // | | $[021]_{\beta'\text{-Ti}}$ and its schematic diagram (Δ : $\alpha\text{-Ti}$, \circ : $\beta'\text{-Ti}$), respectively; (d) | | images taken form the high resolution transmission electron microscopy | | (HRTEM) of acicular α -Ti and β '-Ti; (e) the computer simulation in the | | marked area of Fig. 4.3(d). | | Fig. 4.7 SEM micrograph (backscattered electron image, BEI) of the | | reaction layers "D", "E", and "F" in the interface between Ti/ZrO2 after | | reaction at 1550°C/6 h83 | | Fig. 4.8 (a) SEM micrograph (backscattered electron image, BEI) of the | | reaction layers "F" in the interface between Ti/ZrO ₂ after reaction at | | 1550°C/6 h; (b)~(e) X-ray maps of Y, Ti, Zr, and O, respectively84 | | Fig. 4.9 (a) SEM micrograph (backscattered electron image, BEI) of the | | reaction layer "G" in the zirconia side away from the interface after | | reaction at 1550°C/6 h; (b)~(e) X-ray maps of Y, Ti, Zr, and O, | | respectively85 | | Fig. 4.10 Schematic diagrams showing the microstructural evolution of | | the Ti/ZrO ₂ diffusion couple annealed at 1550°C. (a) as hot-pressed; | | (b) the Ti-Zr-O ternary system at 1450°C ¹⁹ ; (c) the structure of the | | Ti/ZrO ₂ diffusion couple annealed at 1550°C, and (d) the structure on | | cooling | | | ## **Chapter 5** Temperature Dependence of the Interfacial Reaction between Titanium and Zirconia Annealed between 1100° and 1550° C | Fig. 5.1 SEM micrographs (backscattered electron image) showing the | |---| | interface of Ti and ZrO ₂ after reaction for 6 h at (a) 1100°; (b) 1300°; (c) | | 1400°; and (d) 1550°C. The vertical arrows in the upper side indicated | | the original interface. The interface reaction layers were designed as | | the layers "I", "II", "IV", "V", and "VI," respectively108 | | Fig. 5.2 SEM micrographs (secondary electron image) showing the | | variation of the layer "I" after reaction at (a) 1300°; (b) 1400°; and (c) | | 1550°C, respectively | | Fig. 5.3 (a) A TEM micrograph (bright field image, BFI) showing the | | layer "I" with the coexistence of α-Ti and Ti ₂ ZrO after reaction at | | 1100°C/6 h; (b) selected area diffraction patterns of the α-Ti and Ti ₂ ZrO, | | indicating that $[0001]_{\alpha\text{-Ti}}$ // $[110]_{\text{Ti2ZrO}}$ and $(10\overline{1}0)_{\alpha\text{-Ti}}$ // $(1\overline{1}0)_{\text{Ti2ZrO}}$ (A = | | $(01\overline{1}0)_{\alpha\text{-Ti}}, B = (10\overline{1}0)_{\alpha\text{-Ti}}, C = (00\overline{2})_{\text{Ti2ZrO}}, D = (1\overline{1}0)_{\text{Ti2ZrO}}); (c) \text{ the}$ | | energy-dispersive spectrum of Ti ₂ ZrO110 | | Fig. 5.4 TEM micrograph (bright field image, BFI) of the layer "II" | | showing the lamellae α -Ti + Ti ₂ ZrO and β '-Ti after reaction at 1550°C | | for 6 h; the inset selected area diffraction patterns indicate $[0001]_{\alpha\text{-Ti}}$ // | | $[110]_{Ti2ZrO}$ and $(10\overline{1}0)_{\alpha\text{-Ti}}$ // $(1\overline{1}0)_{Ti2ZrO}$ (A = $(01\overline{1}0)_{\alpha\text{-Ti}}$, B = $(10\overline{1}0)_{\alpha\text{-Ti}}$, C | | = $(00\overline{2})_{Ti2ZrO}$, D = $(1\overline{1}0)_{Ti2ZrO}$); (c) the energy-dispersive spectrum of | | Ti ₂ ZrO | | Fig. 5.5 TEM micrograph (bright field image, BFI) of the reaction layer | | "III" showing the coexistence of β '-Ti and α -Ti after reaction at (a) | | $1400^{\circ}\text{C/6} \text{ h } (A = (0001)_{\alpha\text{-Ti}}, \ B = (01\overline{1}0)_{\alpha\text{-Ti}}, \ C = (\overline{1}\overline{1}0)_{\beta'\text{-Ti}}, \ \text{and} \ D = (0001)_{\alpha'$ | | $(\overline{1}10)_{\beta'-T_i})$ in the inset selected area diffraction pattern (SADP) and (b) | | $1550^{\circ}\text{C/6} \text{ h } (A = (0001)_{\alpha\text{-Ti}}, B = (01\overline{1}0)_{\alpha\text{-Ti}}, C = (\overline{1}1\overline{2})_{\beta\text{'-Ti}}, \text{ and } D = (01\overline{1}0)_{\alpha\text{-Ti}}$ | | $(11\overline{2})_{\beta'-T_i}$) in the insert SADP) | | | Fig. 5.6 TEM micrograph (bright field image, BFI) of the reaction layer | "V" consisting of β '-Ti and c -ZrO _{2-x} after reaction at (a) 1400°C/6 h; (b) | |--| | at 1550°C/6 h; (c) a selected area diffraction pattern (SADP) of β '-Ti in | | Fig. 5.6(b) (Zone axis is [021], $A = (\overline{2}00)$, $B = (\overline{2}2\overline{2})$, and $C = (\overline{1}1\overline{1})$; | | (d) a SADP of β '-Ti in Fig. 5.6(b) (Zone axis is $[\overline{1}12]$, $A = (\overline{1}3\overline{2})$, $B =$ | | $(\overline{1} \overline{1} 0)$, and $C = (\overline{1} 1 \overline{1})$ | | Fig. 5.7 TEM micrograph (bright field image, BFI) of the layer "VI" far | | away from the interface after reaction at (a) 1100°C, (b) 1300°C, (c) | | 1400°C, and (d) 1550°C for 6h | | Fig. 5.8 (a) TEM micrograph (bright field image, BFI) of the suboxide | | Ti ₃ O near the reaction layer "I" after reaction at 1550°C for 6 h; (b) the | | energy-dispersive spectrum of Ti ₃ O; (c) the selected area diffraction | | pattern (SADP) along the $[2\overline{1}\overline{1}0]$ zone axis (A = (0002) and B = | | $(0\overline{1}11)$; (d) a SADP of Ti ₃ O along the $[1\overline{1}00]$ zone axis. (A = (0002), B | | = $(11\overline{2}0)$, C = $(\frac{1}{3}\frac{1}{3}\frac{\overline{2}}{3}\frac{1}{2})$, and D = $(\frac{22\overline{4}}{3333}\frac{1}{2})$) | | Fig. 5.9 The crystal structure of Ti ₃ O. The dash line indicates that the | | Ti ₃ O structure is based on the Ti ₂ O structure (solid line). ⊙: oxygen | | position, ●: titanium position, ●: unoccupied oxygen position. 15116 | | Fig. 5.10 Schematic diagrams showing the microstructural evolution of | | the Ti/ZrO_2 diffusion couple annealed at $1550^{\circ}C$. (a) as hot-pressed; (b) | | the relation between the Ti-Zr-O phase diagram. ²⁰ ; (c), (d), and (e) the | | microstructure of Ti/ZrO ₂ diffusion couple on annealing at 1300°, 1400°, | | and 1550°C and their cooling stages, respectively | | |