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利用時間序列之微陣列基因表現資料來比較人類和

老鼠在心臟胚胎發育的關係 

學生：任冠樺 

 

         指導教授：黃憲達 
 

國立交通大學 生物資訊研究所碩士班 

 

中文摘要 

心臟的發育是非常複雜的一個生理機制，有非常多的基因在心臟胚胎發育過程參與其細

胞調控並決定了心臟的形成。微陣列（基因晶片）的實驗能夠一次大量產生許多基因表

現的數據，在此研究中，想利用此一技術產生關於心臟發育時期的基因表現值。由於相

關法令的問題，人類心臟胚胎的檢體獲取非常不易。為了更了解關於心臟發育的機制，

故也利用老鼠心臟發育的胚胎來建立一個人類和老鼠的在心臟發育方面時間序列的平

台。目前大部分的研究人員都使用一種物種來研究發育時期基因的變化，我們特別利用

人類與老鼠心臟發育胚胎的時間序列檢體，並且使用兩物種間的同源基因和 dynamic 

time warping 演算法將此兩種物種作同源基因的分析，找出人類和老鼠中同源基因有相

似變化的基因。而後再利用這些基因，做進一步的系統化分析，探討其功能和交互關係。

此研究目的就是希望能利用基因表現的數據來更了解心臟發育過程中基因表現的模式

與變化，並希望能發掘尚未被先前研究所探討的發育調控基因。 
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Abstract 

Heart development is a complex process involving many genes which control cell behavior in 

the embryo and determine its pattern, its form, and much of its behavior. Microarray 

experiments can generate an enormous amount of data at one time, so we use this technology 

to obtain gene expression profiles in heart embryonic development. But it is usually very 

difficult to obtain human heart fetus sample because of the issues of ethical, legal, and social 

consideration. In order to help us get more understanding of human heart development, we 

can use the mouse model system that is most often used. Therefore, we must establish a 

mapping system to make a cross bridge between these two species on developmental stages. 

To date, the vast majority of researches have focused their study on one species. Specially, we 

utilize orthologous genes and incorporate the dynamic time warping algorithm in order to map 

the time points that human and mouse gene expression profiles having highly correlated 

pattern. Firstly, we apply the algorithm to select the best time-warped orthologous genes 

having similar pattern. Then, these genes are clustered into groups. Each group has its unique 

mapping pattern and different biological meaning. The following task is to find relationship 

and pattern in distinct groups of genes, and to get close understanding into molecular process 

and gene function, mechanisms of embryogenesis of the heart, and comparative genomics. 

Ultimately, our aim is to achieve new insights into the heart developmental biology. 
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Chpater 1 Introduction 

1.1 Affymetrix Gene Chip Microarray 

In oligonucleotide microarrays (or single-channel microarrays), the probes are designed to 

match parts of the sequence of known or predicted mRNAs (see in Figure 1.1). There are 

commercially available designs that cover complete genomes from companies such as GE 

Healthcare 1, Affymetrix 2, Ocimum Biosolutions 3, or Agilent 4. These microarrays give 

estimations of the absolute value of gene expression and therefore the comparison of two 

conditions requires the use of two separate microarrays. Oligonucleotide Arrays can be either 

produced by piezoelectric deposition with full length oligonucleotides or in-situ synthesis. 

Oligonucleotide Arrays are composed of 25-mer or 30-mer and are produced by 

photolithographic synthesis (Affymetrix) on a silica substrate or piezoelectric deposition (GE 

Healthcare) on an acrylamide matrix. Oligonucleotide microarrays often contain control 

probes designed to hybridize with RNA spike-ins. The degree of hybridization between the 

spike-ins and the control probes is used to normalize the hybridization measurements for the 

target probes.  
                                                 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 GE Healthcare: http://www.gehealthcare.com/worldwide.html   
2 Affymetrix: http://www.affymetrix.com/index.affx   
3 Ocimum Biosolutions: http://www.ocimumbio.com/web/default.asp  
4 Agilent: http://www.home.agilent.com/agilent/home.jspx?cc=US&lc=eng&cmpid=4533   
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    There are a lot of researches that use the microarray technology to the study of 

mammalian organogenesis. It can provide great insights into the steps necessary to elicit a 

functionally competent tissue. Previous researches often focused on maybe one species 

embryo differentiation [1-3], sex determination of the mammalian gonad [4], gene expression 

patterns in one organ’s development [5, 6], or analyzing expression profiles during the period 

from fertilization to implantation [7]. These studies that just mentioned never compare one 

organ between two species in embryonic development time. Our approach is to synchronize 

heart development stage between human and mouse and provide an opportunity to identify 

those functional genes that might be important for controlling embryogenesis and 

organogenesis.

 
Figure 1.1 Affymetrix GeneChip Array.      

1.2 Heart Development 

The heart is the first organ to form during embryogenesis and its function is imperative and 

intricate from early on for the viability of the mammalian embryos. And it is the one of the 

few organs that has to function almost it is formed [8]. The developmental mechanisms that 

control the formation and morphogenesis of this organ have received much attention among 

classical and molecular embryologists. Due to the evolutionary conservation of many of these 
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processes, major insights have been gained from the studies of vertebrate model. Heart 

development in all vertebrates follows the same general pattern: fusion of myocardium and 

endocardium in the ventral midline to form a simple tubular heart, onset of function, looping 

to the right side, chamber specification and formation, and at last, development of specialized 

conduction tissue, coronary circulation, innervation, and mature valves [9] (see in Figure 

1.2). 

    Although, many genes important for heart development or organogenesis have been 

studied for a long time, global analysis of gene expression will provide more information 

about how the genes work and their interaction networks. In recent years, microarray 

technology has widely used for researchers to learn how genes’ expression levels in different 

developmental stages, and to identify the cellular processes in which they participate. 
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Figure 1.2 Formation of the heart. 

1.3 Experimental Objectives 

It is not practical to use multiple fetuses at the same gestational age to obtain statistical 

significances in gene expression level, because of the scarcity of useable fetal specimens at 

same gestational age. On the other hand, the change in gene expression along various fetal 

gestational weeks using the expression profiles derived from one fetus at a gestational age 

may be misleading, considering the existing variations among individual fetus even at the 

same age. Therefore, mouse has been adopted as a model system for studies of vertebrate 
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development because of its similar features with human and favorable for genetic studies 

compared with other vertebrate systems. Using the mouse model will allow us to evaluate the 

changes in gene expression along various developmental stages, because we can use as many 

mice as necessary for each time point of a gestational age to eliminate the potential variations, 

which the result only from individual biological variations. 

    After mapping the gene expression profiles with the two species, we choose the best 250 

match orthologous genes and cluster these genes into groups. As a preliminary analysis, each 

group of genes has its unique biological meaning after doing time warping. Moreover, 

specific characteristics were found to be associated with some features of the gene expression 

patterns. We employed an integrated analytical approach that encompasses Gene Ontology, 

biological pathway, and some previous research validations to provide more information for 

identifying the development-specific genes and get more understanding of their function in 

cardiogenesis. Our works presents a good example in which the combination of microarray 

technology with human and mouse model will not only consolidate our existing knowledge, 

but will also help us to identify novel factors that might be important for organogenesis. It 

also provides us with a global view on how genes are coordinated to form a genetic network 

to control heart embryogenesis. 

    The aims of this research are shown as below: 

1. Constructing the mapping system between human and mouse 

2. Aligning two different time series profiles by using microarray data 

3. Identification of heart development-related genes 

4. Understanding developmental related genes’ function, pathway, regulation, and how 

they are coordinated to form a genetic network to control heart embryogenesis  

5. Achieve new insights into the heart developmental biology   
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Chpater 2 Materials and Methods 

2.1 Materials 

2.1.1 Microarray Datasets 

Affymetrix Human U133A and mouse 430A GeneChips have been successfully processed at 

the Genomic Medicine Research Core Laboratory (GMRCL) of Chang Gung Memorial 

Hospital.  

    Table 2.1 shows the detailed information of the dataset and platform of microarray data 

we used. There are no clearly defined development equivalences between the human and 

mouse fetus, in terms of gestational weeks for humans and post conception (p.c.) days or 

neonatal days (N) for mice. In this study we will analyze mouse at the following 16 time 

points (12, 13, 14, 15, 16, 17, 18, N1, N2, N3, N4, N5, N6, N7, N8, N9) and Human at 10 

time points (6, 7, 8, 9, 12, 13, 16, 21, 23, 24). Almost each time point has performed one 

microarray experiment, but in mouse pc-14 day and pc-15 day, two replicates had done in this 

research. 

Table 2.1 Microarray datasets using in the research. 

Species Platform Number of time 
points Time points Unit 

Human Affymetrix Human 
U133A 10 

6x1, 7x1, 8x1, 9x1, 12x1, 
13x1, 16x1, 21x1, 23x1, 

24x1 
gestational  weeks

Mouse Affymetrix Mouse 
430A 16 

12x1, 13x1, 14x2, 15x2, 
16x1, 17x1, 18x1, N1x1, 

N2x1, N3x1, N4x1, N5x1, 
N6x1, N7x1, N8x1, N9x1 

post conception 
(p.c.) days and 

neonatal days (N)

2.1.2 Datasets from GEO Database 

There are several public repositories for gene expression data, which, in time, are likely to 

serve a role for gene expression data similar to that of DDBJ/ EMBL/GenBank for sequence 

data. We found a dataset from Gene Expression Omnibus (GEO; 

http://www.ncbi.nlm.nih.gov/geo/) is also performed in the mouse heart embryonic 
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development, and used it to validate our own data. The dataset in GEO is GDS627 (see in 

Table 2.2). 

Table 2.2 Microarray datasets from GEO using in the research. 

Species Platform Number of time 
points Time points Unit 

Mouse Affymetrix Mouse 
430A (GDS627) 7 

10.5x3, 11.5x3, 12.5x6, 
13.5x6, 14.5x6, 16.5x6, 

18.5x6 

post conception 
(p.c.) days 

2.2 Methods 

2.2.1 Microarray Experiment 

2.2.1.1 Collection of Human Specimens 

Total RNA specimens of human heart from 6th to 12th week of gestational weeks were   

obtained from ViroGen Inc. (Watertown, MA, USA). Human abortuses of gestational weeks 

at 13, 16, 20, 21, 23 and 24 were donated by pregnant women with either cervical 

incompetence or premature preterm rupture of membrane, resulting in inevitable delivery of 

otherwise normal fetuses. Fetal organs were immediately kept in RNAlater reagent (Ambion, 

TX. USA) at 4oC for 24-48 h before transferred to –80oC for long term storage. All pregnant 

women in this study signed an informed consent. This study was approved by the Internal 

Review Board (IRB) of Chang Gung Memorial Hospital. 

2.2.1.2 Animal Experiment 

Female C57/BL6 mice at 8 to 10 weeks of were used in this study. In the afternoon, four 

female mice were transferred to each cage containing one male mouse at 12 to 14 weeks old. 

On the next morning, each group of 4 female mice were transferred to a new cage and labeled 

as potentially post conception (PC) day 0. Pregnancy in female mice became visually 

detectable on PC day 10, and the fetuses were collected on the noon of PC day 12 through PC 

day 18. For this group of C57/BL6 mice, spontaneous delivery occurred on PC day 19, when 

the neonates were labeled as the neonate (N) day 0. Neonatal mice were collected from N day 

1 to N day 9.  

    Collected through hysterectomy, fetal mice from PC day 12 to 15 were immediately 

immersed in RNAlater at 4oC for 48 h before organs were collected by dissection under 
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microscopy. Mice at age from PC day 16 through N day 9 were sacrificed by cervical 

dislocation, and the dissected organs were immersed in RNAlater at 4oC for 48 h before RNA 

was extracted. Hearts from 4 to 8 fetal mice were pooled at each time point. The use of animal 

in this study had complied with the guidelines of Experimental Animal Committee and this 

study was approved by the Internal Review Board (IRB) of Chang Gung Memorial Hospital. 

2.2.1.3 RNA Extraction and Microarray Analysis 

The procedures of RNA extraction using TRIZOL (Invitrogen, Carlsbad, CA, USA) and 

RNAeasy purification kit (Qiagen Inc., Valencia, CA,USA), and confirmation of RNA quality 

and quantity with Agilent Bioanalyzer 2100 (CA, USA) were similar to previous reports 

[10-13]. Gene expression profiles in human fetal heart and murine heart were analyzed 

Affymetrix U133A GeneChip and 430A GeneChip, respectively. 

2.2.2 Data Preprocessing 

2.2.2.1 Normalization 

There are a variety of reasons why the raw measurements of gene expression for two samples 

may not be directly comparable: the quantity of starting RNA may not be equal for each of the 

samples, there may be differences in labeling and detection efficiencies for the fluorescent 

labels, and there may be additional systematic effects that can skew the measured expression 

levels and the derived expression ratios. Normalization is any data transformation that adjusts 

for these effects and allows the data from two samples to be appropriately compared.  

    Robust Normalization accounts for probe set characteristics resulting from 

sequence-related factors, such as affinity of the probe set to the RNA and linearity of the 

hybridization of each probe pair. More specifically, this factor corrects for the inevitable error 

of using an average intensity of all the probes on the array as a normalization factor for every 

probe set. Robust Multi-array Analysis (RMA) was adopted due to its sensitivity and 

specificity in detecting differential expression and is a useful improvement to other kinds of 

normalization method for researchers using the GeneChip technology [14, 15]. The 

normalization results are presented in Figure 2.1 and Figure 2.2. 
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Human : 10
RMA: Quantile Normalization

Human 10 time points (Before) Human 10 time points (After)

 
Figure 2.1 Normalization result of human data. 
 

Mouse 16 time points with 
replicates (Before)

Mouse 16 time points with 
replicates (After)

Mouse : 18
RMA: Quantile Normalization

 
Figure 2.2 Normalization result of mouse data. 

2.2.2.2 Use of replicate data 

Replication is essential for identifying and reducing the effect of variability in any 

experimental assay, and microarray analysis is no exception. Biological replicated use 

independently derived RNA from distinct biological sources to provide an assessment of both 

the variability in the assay and the inherent biological variability in the system under study. 
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Biological replicates allow commonly expressed genes to be identified, as well as those that 

are distinct to the particular biological sample. In the research, we did average the replicated 

to produce a single consensus measurement and thereby reduce the complexity of the final 

data. 

2.2.2.3 Data Filtering 

The goal of most other transformations is to filter the dataset to reduce its complexity and 

increase its overall quality. Many are designed to flag questionable and low quality data, 

while others are used to identify differentially expressed genes or to enhance particular feature 

of the data. Below is our method. If more than one probe sets represented the same gene, their 

intensities were averaged. Then, all hybridization intensity values ﹤20, including negative 

intensity values, were raised to a value of 20, in order to prevent the too small and negative 

intensities in these datasets. If the continuous time-points expression profile of one single 

gene is too flat, we called it “smooth pattern”, that gene would be filtered out. We hope that 

each gene we use for the latter dynamic time warping algorithm has a specific expression 

pattern; it means that the gene has variable expression intensities at different developmental 

ages, and we guess maybe this gene control the embryogenesis and has an important role in 

heart development. We made the calculation for genes with all the time-point intensities 

smaller its mean ± 0.3*mean were excluded from the latter use of mapping. As a result, we 

collected only undulated genes with any intensity of variation of greater than mean ± 

0.3*mean, and transformed the data to z-score. Finally, z-score values at transcriptome level 

were calculated to represent expression data of each gene. 

2.2.2.4 Standardization 

If a distribution is normal but not standard, we can convert a value to the Standard normal 

distribution table by first by finding how many standard deviations away the number is from 

the mean. 

The number of standard deviations from the mean is called the z-score and can be found by 

the formula: x  -   Z  =  μ
σ

. Consider the gene expression matrices in Table 2.3 and Table 

2.4. They all represent the expression levels of genes G1-G9 for experimental conditions C1, 

C2, C3 and C4. Table 2.3 is the original data and Table 2.4 is the original data transformed 

into z-score (standardization). 
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Table 2.3 Gene expression data matrixⅠ. 

Gene expression data matrix of absolute expression measurements after normalization for 

samples C1, C2, C3 and C4. 
Gene C1 C2 C3 C4 Mean Std 

G1 211.5703 168.1379 175.8446 180.5085 184.0153 19.06502 

G2 199.3421 370.9393 450.259 413.8647 358.6013 111.0119 

G3 292.1011 384.8857 330.9426 277.6322 321.3904 47.94283 

G4 58.30043 57.17114 59.13815 57.66531 58.06876 0.849661 

G5 289.157 362.7946 335.4638 346.5588 333.4935 31.61678 

G6 126.1376 120.9111 140.856 126.5952 128.625 8.551966 

G7 658.9924 686.8183 809.7875 701.4234 714.2554 66.07527 

G8 46.54035 48.21487 51.91154 47.12361 48.44759 2.411336 

G9 219.3456 253.1414 285.1363 243.8249 250.362 27.21356 

 

Table 2.4 Gene expression data matrixⅡ. 

Gene expression data matrix of expression measurements after standardization for samples C1, 

C2, C3 and C4 

Gene C1 C2 C3 C4 

G1 1.445314 -0.8328 -0.42857 -0.18394

G2 -1.43461 0.111142 0.825657 0.497815

G3 -0.61092 1.324397 0.199241 -0.91272

G4 0.272665 -1.05644 1.258615 -0.47484

G5 -1.40231 0.926756 0.062316 0.413238

G6 -0.29085 -0.902 1.430197 -0.23734

G7 -0.83636 -0.41524 1.445807 -0.1942 

G8 -0.79095 -0.09651 1.436528 -0.54907

G9 -1.13974 0.10213 1.27783 -0.24022

2.2.2.5 Identification of Orthologous Genes 

Orthologs are genes that are related by direct evolutionary descent. The identification of 

orthologs is particularly important because these genes should play similar developmental or 

physiological roles, and consequently, their study in rodent or other models can provide 

insight into their functions in humans. We use orthologous genes to establish relations 

between human and mouse and then analysis their gene expression profiles with microarray 

data. 

    HomoloGene is a system for automated detection of homologs among the annotated 
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genes of several completely sequenced eukaryotic genomes. The genomes represented in the 

recent Build 52 of HomoloGene include Homo sapiens, Mus musculus, Rattus norvegicus, 

Drosophila melanogaster, and so on [16]. This database contains 19157 orthologous genes 

between human and mouse.  

    Table 3.1 presents the preprocessing steps and detailed information of the microarray 

data we used. We have performed a novel bioinformatics study and use the orthologous genes 

to be the cross-bridge between human and mouse. At last, we concluded the number of 

orthologs (probe sets) included in U133A and 430A is around 15530. Therefore, we have a 

large set of common genes covered by both sets to do the comparative functional genomics 

study. Figure 2.3 reveals the overview of our analysis of microarray data between human and 

mouse. 

 
Figure 2.3 The overview of the microarray data analysis between human and mouse on the 
developmental stages. 

2.2.3 Analysis of Gene Expression Data  

The goal of microarray data analysis is to find relationships and patterns in the data and 

ultimately achieve new insights into the underlying biology. For instance, one could look for 

groups of genes having similar expression under similar conditions and try to find whether 

their products share similar functional roles in the cell, or for genes whose expression depends 
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on the particular state of the system and see if the functions of their products can help to 

explain the particular phenotype. 

2.2.3.1 Distance Similarity Measurements 

Most of the gene expression data analysis methods are based on comparisons between the 

gene or sample expression profiles. In order to make these comparisons first we need a way to 

measure similarity or dissimilarity between these objects, i.e. between vectors representing 

genes or samples.  

2.2.3.1.1 Euclidean Distance 

Euclidean distance is the most common distance measure, and the one we use in everyday 

situations. Euclidean distance between points A = (a1, a2) and B = (b1, b2) in two dimensions 

can be expressed using Pythagoras’s theorem: 

2 2

EuclD  (A,B) =   +    1 1 2 2(a -b ) (a -b )  

 

In n-dimensional space for vectors A = (ai,…,an) and B = (bi,…,bn), Euclidean distance can be 

expressed as : 

2

EuclD  (A,B) =   i i(a -b )  

2.2.3.1.2 Pearson Correlation Distance 

We assume that the arithmetic mean of each gene expression profile is zero. We will see that 

under this assumption the angle distance is closely related to the Pearson correlation 

coefficient. The two expression profiles A and B for four samples are given. These are 

represented by vectors in four-dimensional space: A = (a1, a2, a3, a4) and B = (b1, b2, b3, b4). 

We can calculate the mean value for each profile as: 

1 2 3 4 1 2 3 4a = (a +a +a +a )/4  and  b = (b +b +b +b )/4  

 

And shift each profile “down” by its mean, i.e. obtain new vectors: 
0 0

1 2 3 4 1 2 3 4A  = (a - a, a - a, a - a, a - a) and B  = (b - b, b - b, b - b, b - b)  

 

Their dot product equals: 
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0 0
1 1 2 2 3 3 4 4A  B = (a - a)(b - b) + (a - a)(b - b) + (a - a)(b - b) + (a - a)(b - b) ⋅  

 

In general, in n-dimensional space: 
n

0 0
i i

i = 1
A  B = (a - a)(b - b)  ⋅ ∑  

 

If we divide this by n-1, we obtain the well=known expression for covariance, which is used 

to establish the degree of association between two or more distributions. Covariance is 

calculated in the same way as variance, except that there are multiple distributions. The 

variance can be thought of as a measure of the distance from the mean, or the “spread” of the 

data. Covariance is the generalization of variance for two distributions and can be expressed 

as: 
0 0A  BCov(A, B) =  

( n - 1)
⋅  

 

The normalized covariance gives the expression for linear correlation, also known as the 

Pearson correlation coefficient (PCC): 
0 0

0 0

A  BCor(A, B) =  
A  B

⋅  

 

In this way we see that the PCC between vectors A and B is the same as the angle distance 

between these vectors in normalized and mean centered space. For unrelated distributions the 

PCC is near 1 for a strong correlation and near zero for a weak correlation. 

2.2.3.2 Clustering 

The goal of gene expression data clustering is to group together genes or samples that have 

similar expression profiles. Clustering is currently the most popular method of gene 

expression matrix analysis. It can be useful for discovering “type” of behavior, for reducing 

the dimensionality of the data (allowing tens of thousands of genes to be represented by a few 

groups each containing genes that behave similarly), as well as for the detection of outliers in 

the data. Clustering is one of the unsupervised approaches to data analysis, which can be used 

in the absence of a priori information, or when annotations are not considered in the analysis. 



15 

2.2.3.2.1 Hierarchical Clustering 

Hierarchical agglomerative clustering is a process in which the data are successively fused, 

typically until all the data points are included. For hierarchical agglomerative clustering 

usually all the pair-wise distances between objectives need to be defined. An agglomerative 

process typically starts by considering each object/data point as a separate, or singleton, 

cluster. Starting with n objects, the result of the first iteration of clustering is that the two 

objects that are most similar are grouped together to form a single cluster, leaving (n-1) 

clusters. The distance between the objects and the newly formed cluster containing two 

objects is then updated and the next most similar objects and clusters are grouped together as 

a single cluster[17]. The results of hierarchical clustering are frequently represented in a 

hierarchical tree, also known as a dendrogram (see in Figure 2.4). 

 
Figure 2.4 Hierarchical tree. 

2.2.3.2.2 K-means Clustering  

K-means is the most common method of partition-based clustering. It starts with the given 

number of cluster centers, chosen either randomly or by applying some heuristics. Next the 

distance from the centroids to every object is calculated, and each object is assigned to the 

cluster defined by the closest centroid; then, for each cluster the new centroid is found. The 

distance from each object to each of the new centroids is calculated and in this way the 
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boundaries of the partitioning are revised. This is repeated either until the centroids stabilize 

or until an a priori defined maximum number of iterations has been reached (see in Figure 

2.5). 

 

1. Guess k centers

3. Move to gravity       
centers

2. Assign to clusters

1. Guess k centers

3. Move to gravity       
centers

2. Assign to clusters

 
Figure 2.5 K-means clustering. 
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2.2.3.3 Software and Tool 

2.2.3.3.1 Genesis 

 

2.2.3.3.2 R 
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2.2.3.3.3 RMAExpress 

 

2.2.3.3.4 MetaCore 

 

2.2.4 Time Series Data Analysis 

Time series experiments provide a particular type of gene expression profile, revealing 

information about the order and the time scale of the expression events. In our research, we 

wish to compare gene expression time series data from different experiments corresponding to 

two similar species. An example of such an approach is comparing gene expression during the 

cell cycle for cell cultures synchronized using time warping [18]. If some of the genes 
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involved in the process under study are known, we can “synchronize” the periods, by 

comparing the expression level of these known genes. 

    Suppose the gene expression profiles of these two species is subject to variation, so that a 

function may be traced out more slowly during one portion and more quickly during another, 

and suppose these variations differ from one occasion to another. To allow for such variations 

when comparing functions, it is necessary to distort or “warp” the time axis appropriately, i.e., 

compressing it at some places and expanding it at others. The process of inferring the 

necessary compressions and expansions is often called time-warping [19]. Figure 2.6 

demonstrates the concept of time warping. 

 
Figure 2.6 The concept of time warping.  

The two time series have different rate of their expression level. In general, we need to use a 

distance measure, for which the time points of one series can match to the other. 

2.2.4.1 The Concept of Time-Warping 

Biological processes have the property that multiple instances of a single process may unfold 

at different and possibly non-uniform rates in different organisms, strains individuals, or 

conditions. For instances, different individuals affected by a common disease may progress at 

different and varying rates. This presents an issue for analysis of biological processes using 

time series of RNA expression levels: To find the time point of one series that corresponds 

best to that of another, it is insufficient to simply pair off points taken at equal measurement 

times. Analysis of such time series may therefore benefit from the use of alignment 
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procedures that map corresponding time points in different series to one another. 

    An important area of application of these techniques is the study of biological processes 

that develop over time by collecting RNA expression data at selected time points and 

analyzing them to identify distinct cycles or waves of expression. 

2.2.4.2 Time-Warping Programs 

In our research, we have the datasets of the same biological condition which are human and 

mouse heart on developmental stages. In order to compare these two heart developmental 

time series in different species, we apply two time warping programs genewarp and grphwarp 

[18]. genewarp performs a simple time warping and grphwarp is a graphics generation 

program that take a file produced by genewarp. 

    While genewarp can be used on any set of genes regardless of whether their individual 

time course expression profiles are similar, we first applied it to all orthologous genes 

respectively so that they could be aligned. But these orthologous genes maybe don’t have 

similar profiles; we have to choose the best 250 “mapping genes”. These “250 mapping 

genes” have two characteristics. Firstly, they are all orthologous gene pairs. Secondly, each 

pair of them have similar expression pattern after doing “time-warping”. It had been known 

that genes maybe have different expression patterns during the same biological process. We 

cluster these 250 genes into distinct groups according to their expression profiles. Therefore, 

genes in the same cluster have similar expression pattern and maybe the same biological 

function. 
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Chpater 3 Results  

3.1 Large-scale transcriptional analysis of the developing 

heart 

Approaches using DNA microarray have been successful in studying genome-wild 

transcriptional regulation during animal development, but suffer from several limitations. On 

multicellular organisms, cell division and differentiation leads to an increase in tissue 

complexity throughout development, but whole-animal microarray analysis cannot document 

this spatial information. We attempt to isolate mRNA form single tissue (Heart) at different 

developmental stages, measure gene expression, and assign expression to every gene at every 

time, in order to recreate the entire developmental expression pattern. Affymetrix 

oligonucleotide microarray platform has been used worldwide more than 1618 reports 

compiled in the NCBI PubMed Medline, till Jun 2007. The Affymetrix GeneChip system has 

been requires user to follow a strict manufacture’s protocol. Therefore, Affymetrix system has 

been considered as a relatively stable platform and proved to be acceptable by the worldwide 

research community. According to its consistency and comparability of Affymetrix platform, 

we use U133A for human and 430A for mouse to do this research. 

    Affymetrix Human U133A and mouse 430A GeneChips have been successfully 

processed at the Genomic Medicine Research Core Laboratory (GMRCL) of Chang Gung 

Memorial Hospital. Furthermore, we have performed a pilot bioinformatics study and 

concluded the number of orthologous gene (transform to gene symbol ID) included in these 

two kinds of commercial GeneChips is around 8578. These orthologous genes are very 

prominent material to establish a cross-bridge between Human and Mouse. Therefore, we 

have a large set of orthologous genes covered by both chips to do the comparative functional 

genomics study. 

    After preprocessing the array data, there has 3490 orthologous genes between human and 

mouse chip (see in Table 3.1 (b) ). We used these genes for further analysis.         

 
Table 3.1 Preprocessing of the microarray data and the number of genes after many steps of 
processing. 

Gene Chip Human Genome U133A Mouse Genome 430A Description 
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Probe sets 22283 22690 Number of probe sets on the chip

Total genes 13477 14218 Probe set ID transform to gene 
symbol 

Orthologous 
genes 8578 (a) Overlapped orthologous genes 

between human and mouse 

Non-smooth 
genes 7919 7934 Filtering flat expression genes 

Orthologous 
genes 3490 (b) Overlapped orthologous genes 

between human and mouse 

Time Warping 3490 Single orthologous gene pair time 
warping 

Time Warping 250 Select 250 genes which distance 
scores are the least 

3.2 Construction the Mapping System of Human and 

Mouse Microarrays 

There are no clearly defined development equivalences between the human and mouse fetus, 

in terms of gestational weeks for humans and post conception (p.c.) days or neonatal days (N) 

for mice. Thus, in this study we will analyze mouse at the following 16 time points (12, 13, 14, 

15, 16, 17, 18, N1, N2, N3, N4, N5, N6, N7, N8, N9) and Human at 10 time points (6, 7, 8, 9, 

12, 13, 16, 21, 23, 24). Table 2.1 shows the detailed information of the dataset and platform 

of microarray data we used. We use computational methods to provide a novel approach 

utilizing the gene expression profiles to match these two species with orthologous genes and 

select the best matching time-points which the expression patterns are highly correlated. 

Results from this study we propose here will provide the first-in-the-world complete data, at 

the transcriptome level, about the fetal development equivalence between the human and 

mouse. 

3.2.1 Time-Warping for the Orthologous Genes 

Orthologs are genes in different species that have evolved from a common ancestral gene by 

speciation and generally retain a similar function in the course of evolution. When mapping 

the expression profiles of human and mouse, using orthologous genes is a good way. In this 

approach, we use orthologous genes covered by human and mouse affymetrix microarray 

platform. We do the time-warping for each pair of orthologous gene in order to find their 

similarity of time series expression data. Time warping considers the similarity of pairs of 
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vectors (orthologous gene) taken from a common k-dimensional space (feature space) taken 

one from each time series. Figure 3.1 illustrates the time warping result of one orthologous 

gene between human and mouse. 

Human CBX5 Mouse cbx5

Alignment

 
Figure 3.1 Time warping results of CBX5 and cbx5. 

CBX5 is a chromobox homolog 5 gene, and its orthologous gene in mouse is cbx5. We got 

their gene expression profiles by the order of developmental time points. Top-left is the gene 

expression values of CBX5 in 10 time points; Top-right is the gene expression values of cbx5 
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in 16 time points. After applying the dynamic time warping program, genewarp, their 

expression profiles can map to each other like global alignment. Bottom-left is an alignment 

grid for CBX5 and cbx5. Every alignment corresponds to a path in the alignment grid from (0, 

0) to (n, m). The entire alignment is simply a path (0, 0) →(1, 0) →(1, 1) →(1, 2) →(2, 3) 

→(3, 4) →(4, 5) →(4, 6) →(5, 6) →(6, 7) →(7, 8) →(7, 9) →(7,10) →(8, 11) →(8, 12) →(8, 

13) →(8, 14) →(8, 15) →(9, 15) from (0, 0) to (n, m) in the grid. The score means the 

similarity of these two time series, the lower the score evaluates; the more similar the two 

time series are. In this case, the score of these two profiles is 2.51184. Bottom-right is the 

time alignment of these two profiles. 

3.2.2 K-means Clustering of Time-Warped Genes into Distinct 

Groups  

After “warping” for each single orthologous gene, we choose the best similar 250 genes for 

further analysis. Figure 3.2 demonstrates the distance scores of 3490 othologous gene from 

minimum to maximum. The fewer the distance score, the more similar the orthologous gene 

pairs. Figure 3.3 displays the distribution of 3490 orthologous genes. The selected 250 gene 

pairs have very similar expression pattern after time warping. It means that these genes are 

co-expressed in human and mouse heart development. These genes have three characteristics: 

(1) They are all orthologous gene pairs. (2) They are developmental related genes, especially 

expressed on embryonic stages. (3) After time warping, they have similar expression patterns. 

We called that “co-expressed gene pairs”. Each “co-expressed gene pairs” have its unique 

matching time points. In order to know these genes more systematic, we use k-means 

clustering to divide these 250 genes into 12 groups. In order to make our data more authentic, 

we combined mouse and human expression data to do the clustering in order to make the 

human and mouse data more correspondent with each other. After clustering, each group of 

genes has very similar pattern. Figure 3.4 shows k-means clustering result of the 250 

orthologous genes. The annotations of the 250 genes are listed in Appendix A. 
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Figure 3.2 The distance score of 3490 orthologous genes pairs from the minimum to the 

maximum. 

The minimum score of gene (FZD2) is 2.35004; and the maximum score of gene (FLJ10847) 

is 12.8224. We select the most similar 250 genes which distance scores are less than about 4.2, 

and use these genes for further analysis. 

 



26 

0

200

400

600

800

1000

1200

1400

2 3 4 5 6 7 8 9 10 11 12
Distance score

# of genes

 
Figure 3.3 The distribution of distance scores of the 3490 orthologous gene pairs.  

Most genes’ scores are less than 6 and more than 5. There are just two gene’s distance scores 

more than 12. 
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Figure 3.4 K-means clustering of Human and Mouse 250 genes. 

(a) K-means clustering of combining human and mouse 250 genes expression values. First 16 

time points are the mouse values; Last 10 time points are the human values. Each box 

illustrates the expression values (log2 ratio) of genes in this group and how many genes 

clustering into this group. (K=12 and the distance measurement is Pearson correlation 

coefficient). 

(b) The 12 groups of human 250 genes.  

(c) The 12 groups of mouse 250 genes correspondent to their human orthologous genes. Each 

group of genes has the similar expression trend with their correspondent human group so it is 

very appropriate for the next step---time-warping within the same group of genes between 

human and mouse. 

3.3 Time Warping for Each Cluster  

Each cluster contains many genes, which have similar expression patterns. Figure 3.4 show 

the expression profiles of 250 genes in 12 clusters between human and mouse. We therefore 

implemented time warping algorithm for each group of genes between human and mouse, and 
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hypothesize that genes in the same cluster group have the same biological functions. Table 

3.2 clarifies the distance score and gene number of each cluster. At last, each cluster has its 

unique time points mapping pattern. In this approach, we want to find many different gene 

expression patterns on heart developmental stages and make a pilot study for the research of 

human and mouse heart development. Detailed information of each group after time-warping 

is provided in Appendix B. Figure 3.5 clarifies the system flow of our approach using 

dynamic time-warping. Figure 3.6 exhibits gene expression profiles and time-warping results 

in the 12 distinct clusters. 

Table 3.2 12 clusters of genes and their numbers and scores in each distinct group. 
Mouse Cluster Human Cluster Number of Genes Score 

M 1 H 1 11 30.2521 

M 2 H 2 14 35.6842 

M 3 H 3 16 34.3911 

M 4 H 4 37 55.5629 

M 5 H 5 3 11.5195 

M 6 H 6 22 43.2182 

M 7 H 7 35 50.6715 

M 8 H 8 49 68.406 

M 9 H 9 9 25.9278 

M 10 H 10 38 53.0934 

M 11 H 11 9 30.3447 

M 12 H 12 7 26.919 
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Figure 3.5 Flowchart of applying dynamic time-warping as a step.  

Firstly, single orthologous gene pair is applied the time warping step. After that, we selected 

the best genes which are warped great. Next step, the k-means clustering is used to clustering 

the best warped genes. The last step is to time-warp each cluster of genes individually. 
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Figure 3.6 Grouped time warping results and gene networks in the individual group. 

After k-means clustering of the 250 genes, 12 clusters of genes, their expression and 

time-warping results are illustrated in each individual chart. Each chart displays the human 

and mouse expression profiles in the gene group on the top left. The expression value of each 

time point is the mean of all the genes in the cluster and standard deviation is also showed in 
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the plot. Every value is estimated by the log ratio and each gene’s expression is also showed 

on the bottom left. The time-warping result of the cluster is on the right side. The gene 

network chart is below each time warping result chart. We used gene list in each individual 

cluster to make the network by applying MetaCore™ (a systematic software for analyzing 

microarray data) with shortest paths (Dijkstra’s shortest paths algorithm) to find the shortest 

directed paths between the grouped genes.  

3.4 Functional Distribution of the Best 250 Time-Warped 

Genes  

The gene-ontology database (GO: http://www.geneontology.org) is a useful tool for 

annotating and analyzing the function of large numbers of genes. Genes in GO are classified 

based on their annotated role in biological process, molecular functions, and cellular 

components. To determine which GO terms are more populated among the mapping genes, 

FatiGO[20]—a web-based application that facilitates GO terms querying—was used. Figure 

6a shows GO biological process categories level-3 distribution of the best 250 time-warped 

genes. The most populated functional categories in humans and mice are cellular metabolic 

process, primary metabolic process, macromolecule metabolic process, regulation of 

biological process, cell communication, multicellular organismal development, anatomical 

structure development, and cellular developmental process. These populated categories are 

developmental-associated terms. Obviously, the 250 genes have large populations in the 

process of development. 



44 

12%

11%

9%

7%

6%

6%

5%

4%
4% 4%

2%
2%

2%

2%

2%

2%

2%

1%

1%

1%

1%

12%

cellular metabolic process

primary metabolic process

macromolecule metabolic process

regulation of biological process

cell communication

multicellular organismal development

anatomical structure development

cellular developmental process

cell organization and biogenesis

establishment of localization

response to stress

biosynthetic process

cell cycle

immune system process

cell proliferation

death

catabolic process

response to external stimulus

regulation of a molecular function

cell adhesion

defense response

others

 
Figure 3.7 FatiGO result for the 250 genes in Level-3 Gene Ontology distribution.  

The most populated GO categories are cellular metabolic process, primary metabolic process, 

macromolecule metabolic process, regulation of biological process, cell communication, 

multicellular organismal development, anatomical structure development, and cellular 

developmental process, etc. The distribution of the mapping functional categories is clearly 

shown, as some important categories associated with development. 

3.5 Finding Statistically Overrepresented GO terms 

To investigate the biological functions involved in human and mouse time-warping genes, the 

GO categories were analyzed using the GeneGO web-based program. GeneGO calculates 

statistical significance of nonrandom representations, that is, enrichment of a GO category 

among the gene under investigation. The nonrandom enrichment of a variety of biological 

process categories were identified, including organ development, cell differentiation, cellular 

developmental process, system development, developmental process, cell development, etc. 

These GO categories were statistically significant (p <0.005) with genes in the microarray 

chip for humans and mice. Interestingly, the significant GO terms are highly correlated with 

embryo development. Unequivocally, this overrepresented GO analysis validates the 

orthologous time-warping system and the microarray gene expression profiles are useful for 
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studying vertebrate embryonic development. Additionally, selected time-warped genes also 

demonstrated enriched annotations related to cellular components, including extracellular 

matrix and molecular functions such as hydrolase activity and growth factor activity. These 

biological gene categories enriched in 250 genes can provide direction for future 

investigations into the molecular mechanisms of heart development. Table 3.3 presents the 

significant GO terms in total 250 time-warped genes and individual cluster. We selected 12 

GO categories that are the most significant in each dataset. As shown in Table 3.3, genes in 

cluster 4 are overrepresented most in transcription and metabolic process. Genes in cluster 6 

are overrepresented most in immune system process, lymphocyte differentiation, T cell 

differentiation. Genes in cluster 7 are overrepresented most in cell cycle process. Genes in 

cluster 10 are overrepresented most in signaling pathway and system development. 

3.5.1 P-value Function  

The P-value Function: 

 

The P-value is calculated using the same basic formula: a hypergeometric distribution where 

the P-value essentially represents the probability of particular mapping arising by chance, 

given the numbers of genes in the set of all genes on processes, genes on a particular process 

and genes in datasets. This function uses the same variables as the Z-Score.  

Variables: 

N - total number of nodes in MetaCore database  

R - number of the network's objects corresponding to the genes and proteins in user’s list  

n - total number of nodes in each small network generated from user’s list  

r - number of nodes with data in each small network generated from user’s list  

 

Table 3.3 Biological process that Gene Ontology categories non-randomly enrich in 250 
time-warping genes and individual clusters.  

Cluster Process  Percentage P-values 
positive regulation of biological process 36.34 1.79E-25 

biological regulation 63.87 2.77E-25 

250 genes      
(Cluster1-Cluster12) 

regulation of cellular process 55.04 3.03E-25 
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regulation of biological process 61.34 3.11E-25 

organ development 36.34 9.58E-24 

positive regulation of cellular process 31.3 8.50E-23 

cell differentiation 43.28 1.20E-22 

cellular developmental process 43.28 1.20E-22 

signal transduction 49.58 6.84E-22 

system development 41.18 1.49E-20 

developmental process 58.19 2.33E-20 

cell development 36.76 1.10E-19 

regulation of Rho protein signal 
transduction 

13.64 5.15E-06 

negative regulation of receptor mediated 
endocytosis 

9.09 6.21E-06 

positive regulation of metabolic process 40.91 6.94E-06 

transcription from RNA polymerase II 
promoter 

45.45 1.09E-05 

paraxial mesoderm morphogenesis 9.09 1.86E-05 

regulation of Ras protein signal 
transduction 

13.64 2.82E-05 

positive regulation of transcription, 
DNA-dependent 

31.82 3.13E-05 

paraxial mesoderm development 9.09 3.72E-05 

ruffle organization and biogenesis 9.09 3.72E-05 

positive regulation of transcription from 
RNA polymerase II promoter 

27.27 5.55E-05 

regulation of small GTPase mediated 
signal transduction 

13.64 5.59E-05 

Cluster1 

regulation of transcription from RNA 
polymerase II promoter 

36.36 7.41E-05 

anatomical structure morphogenesis 59.38 2.51E-09 

anatomical structure development 75 1.01E-08 

regulation of transcription, 
DNA-dependent 

53.12 1.12E-08 

regulation of transcription 56.25 1.57E-08 

organ development 62.5 2.03E-08 

positive regulation of transcription 37.5 3.13E-08 

regulation of nucleobase, nucleoside, 
nucleotide and nucleic acid metabolic 
process 

56.25 4.41E-08 

positive regulation of nucleobase, 
nucleoside, nucleotide and nucleic acid 
metabolic process 

37.5 4.51E-08 

positive regulation of transcription, 
DNA-dependent 

34.38 6.55E-08 

regulation of cellular metabolic process 59.38 7.69E-08 

transcription, DNA-dependent 53.12 1.29E-07 

Cluster2 

RNA biosynthetic process 53.12 1.35E-07 
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base-excision repair 12.5 8.70E-04 

positive regulation of transcription from 
RNA polymerase II promoter 

25 1.49E-03 

regulation of helicase activity 6.25 1.86E-03 

negative regulation of helicase activity 6.25 1.86E-03 

protein import into nucleus, 
translocation 

12.5 2.54E-03 

intracellular protein transport across a 
membrane 

12.5 2.54E-03 

regulation of mitochondrial membrane 
permeability 

6.25 3.71E-03 

positive regulation of transcription, 
DNA-dependent 

25 4.60E-03 

response to hypoxia 12.5 7.04E-03 

positive regulation of global 
transcription from RNA polymerase II 
promoter 

6.25 7.40E-03 

response to X-ray 6.25 7.40E-03 

Cluster3 

response to stress 37.5 7.71E-03 

regulation of transcription 50 6.61E-11 

regulation of cellular metabolic process 55.36 6.97E-11 
regulation of nucleobase, nucleoside, 
nucleotide and nucleic acid metabolic 
process 

50 3.09E-10 

regulation of metabolic process 55.36 3.81E-10 

transcription 50 1.96E-09 
regulation of transcription, 
DNA-dependent 41.07 1.71E-08 

transcription from RNA polymerase II 
promoter 35.71 6.22E-08 

transcription, DNA-dependent 42.86 7.36E-08 

RNA biosynthetic process 42.86 7.86E-08 

positive regulation of transcription 26.79 1.06E-07 
positive regulation of nucleobase, 
nucleoside, nucleotide and nucleic acid 
metabolic process 

26.79 1.63E-07 

Cluster4 

positive regulation of cellular metabolic 
process 28.57 2.94E-07 

positive regulation of cellular metabolic 
process 48.15 2.74E-09 

positive regulation of metabolic process 48.15 5.29E-09 

positive regulation of transcription 40.74 4.31E-08 
positive regulation of nucleobase, 
nucleoside, nucleotide and nucleic acid 
metabolic process 

40.74 6.04E-08 

positive regulation of cellular process 59.26 7.35E-08 

positive regulation of transcription from 
RNA polymerase II promoter 33.33 1.05E-07 

Cluster5 

positive regulation of transcription, 37.04 1.17E-07 
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DNA-dependent 

positive regulation of biological process 59.26 9.61E-07 

regulation of cellular metabolic process 55.56 5.88E-06 
regulation of transcription from RNA 
polymerase II promoter 37.04 7.57E-06 

regulation of cell proliferation 37.04 8.27E-06 

regulation of cellular process 74.07 1.20E-05 

immune response 63.16 2.35E-10 

immune system process 68.42 1.09E-09 

T cell differentiation 26.32 1.90E-07 

T cell activation 31.58 2.53E-07 

cell activation 36.84 6.41E-07 

lymphocyte differentiation 26.32 2.04E-06 

lymphocyte activation 31.58 2.96E-06 

T cell selection 15.79 4.99E-06 

response to stimulus 73.68 6.49E-06 

leukocyte activation 31.58 7.01E-06 

leukocyte differentiation 26.32 1.42E-05 

Cluster6 

multicellular organismal process 89.47 1.52E-05 
regulation of progression through cell 
cycle 40.91 9.43E-18 

regulation of cell cycle 40.91 1.18E-17 

cell cycle process 43.94 3.50E-16 

cell cycle 43.94 1.38E-15 

mitotic cell cycle 30.3 2.33E-14 

G1 phase of mitotic cell cycle 13.64 3.84E-14 

G1 phase 13.64 6.10E-14 

interphase 22.73 7.97E-14 

interphase of mitotic cell cycle 22.73 7.97E-14 

cell cycle phase 30.3 1.66E-13 

biological regulation 81.82 9.82E-12 

Cluster7 

regulation of biological process 75.76 7.22E-10 
regulation of progression through cell 
cycle 30.99 8.12E-12 

regulation of cell cycle 30.99 9.62E-12 

regulation of mitosis 14.08 3.38E-11 

cell cycle 35.21 4.76E-11 

cell cycle process 32.39 6.90E-10 

mitosis 16.9 1.28E-09 

M phase of mitotic cell cycle 16.9 1.39E-09 

Cluster8 

mitotic checkpoint 8.45 1.24E-08 
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cyclin catabolic process 5.63 2.10E-08 

M phase 16.9 1.21E-07 

regulation of exit from mitosis 7.04 1.33E-07 

mitotic sister chromatid segregation 8.45 1.57E-07 

intracellular signaling cascade 52.08 4.98E-11 

protein amino acid phosphorylation 35.42 1.11E-10 

cell differentiation 66.67 2.58E-10 

cellular developmental process 66.67 2.58E-10 

cell development 60.42 5.03E-10 

nucleosome assembly 14.58 7.75E-10 

biopolymer metabolic process 75 8.20E-10 

phosphorylation 35.42 2.04E-09 

chromatin assembly 14.58 7.55E-09 

phosphate metabolic process 35.42 3.07E-08 

phosphorus metabolic process 35.42 3.07E-08 

Cluster9 

developmental process 77.08 3.41E-08 

positive regulation of biological process 42.22 6.34E-05 

positive regulation of cellular process 37.78 7.87E-05 

integrin-mediated signaling pathway 8.89 1.25E-04 

signal transduction 55.56 1.97E-04 

protein amino acid autophosphorylation 8.89 2.39E-04 

cell communication 60 2.53E-04 

regulation of biological quality 24.44 2.65E-04 

protein autoprocessing 8.89 2.89E-04 

system development 46.67 3.29E-04 

organ development 40 3.47E-04 

protein amino acid phosphorylation 20 4.36E-04 

Cluster10 

immune response-activating cell surface 
receptor signaling pathway 6.67 4.41E-04 

transcription from RNA polymerase II 
promoter 77.78 7.47E-12 

regulation of transcription, 
DNA-dependent 77.78 1.43E-10 

regulation of transcription from RNA 
polymerase II promoter 66.67 1.60E-10 

positive regulation of transcription, 
DNA-dependent 55.56 8.67E-10 

regulation of transcription 77.78 1.23E-09 

transcription, DNA-dependent 77.78 1.27E-09 

RNA biosynthetic process 77.78 1.33E-09 

Cluster11 

positive regulation of transcription from 
RNA polymerase II promoter 50 1.41E-09 
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regulation of nucleobase, nucleoside, 
nucleotide and nucleic acid metabolic 
process 

77.78 2.92E-09 

positive regulation of transcription 55.56 4.15E-09 
positive regulation of nucleobase, 
nucleoside, nucleotide and nucleic acid 
metabolic process 

55.56 5.71E-09 

transcription 77.78 8.36E-09 
mitotic chromosome movement towards 
spindle pole 20 1.16E-03 

positive regulation of mitotic 
metaphase/anaphase transition 20 1.16E-03 

chromosome movement towards spindle 
pole 20 1.16E-03 

clathrin cage assembly 20 1.74E-03 

positive regulation of mitosis 20 2.90E-03 

membrane budding 20 3.47E-03 

vesicle coating 20 3.47E-03 
regulation of transcription from RNA 
polymerase I promoter 20 4.05E-03 

regulation of mitotic 
metaphase/anaphase transition 20 4.63E-03 

establishment of chromosome 
localization 20 5.21E-03 

chromosome localization 20 5.21E-03 

Cluster12 

mitotic metaphase/anaphase transition 20 5.79E-03 

3.6 Analysis of Transcriptional Regulations 

3.6.1 Transcription Factors in Clusters 

There are 14 genes act as transcription factors in selected 250 time-warped genes, the detailed 

information is listed in Table 3.4. It is obvious that these transcription factors are 

co-expressed with their corresponding cluster genes. For example, APEX1 is a TF in cluster 3. 

That means APEX1 are highly correlated with 15 genes in cluster 3. Genes which expressions 

are similar clustered into the same cluster. If there has any TF in each cluster, we may 

hypothesize that maybe the TF regulates the genes in the same cluster. 

Table 3.4 Transcription factors in each cluster. 
Cluster Human Mouse Genes TF 

KLF9 Klf9 
2 

EPAS1 Epas1 
14 2 

3 APEX1 Apex1 16 1 

DIP BC021523 
4 

TCF4 Tcf4 
37 2 
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ESRRG Esrrg 
6 

TCF7 Tcf7 
22 2 

FOXC2 Foxc2 
7 

GATA1 Gata1 
35 2 

NR2F1 Nr2f1 

RCN1 Rcn1 8 

CITED1 Cited1 

49 3 

10 STAT3 Stat3 38 1 

11 TBX5 Tbx5 9 1 

3.6.2 Transcription Factors Regulations 

In cluster 4, DIP and TCF4 are two transcription factors in total 37 genes. Their expression 

was shown in Figure 3.8. The expression profiles of these two genes are very similar in 

mouse heart development, but in human, DIP is dramatically degraded in latter time points 

and up-regulated in the latest time point. This condition is contrary to TCF4. These two TFs 

have similar pattern after time-warping between human and mouse. It is suggested that DIP 

and TCF4 maybe regulate the genes of the cluster. We can see the same condition in Figure 

3.9 (cluster 7), Figure 3.10 (cluster 8), Figure 3.11 (cluster 10). In mouse cluster 7, the two 

TFs, Foxc2 and Gata1, are dramatically down-regulated in the first two time points and 

smoothly expressed in latter points. In human cluster 7, FOXC2 and GATA1 mostly degraded 

in latter points. In the case, there is an interesting finding that the development rate or 

biological mechanism is different between human and mouse. In cluster 7 and cluster 8, the 

gene expression degraded through the time series, but in their networks, the regulation 

mechanisms are different. From the result, these two clusters have different regulators control 

their expressions. In cluster 10, STAT3 in an important factor in signaling transduction and 

regulated many genes in this cluster. We may suggest that STAT3 regulated other genes in 

this cluster not yet validated in public. 



52 

Cluster 4

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10

DIP

TCF4

Cluster 4

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

BC021523

Tcf4

Human Mouse

 

 
Figure 3.8 Transcription factors in cluster 4. 
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Figure 3.9 Transcription factors in cluster 7. 
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Figure 3.10 Transcription factors in cluster 8. 
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Figure 3.11 Transcription factors in cluster 10 

3.7 Promoter Analysis of the Gene Groups 

Based on the analysis of MetaCore, the regulatory network are built in each gene clusters. For 

example, two transcription factors, FOXC2 and GATA1, whose expression patterns are 

similar to other genes of cluster 7, regulate several target genes in cluster 7. However, there 

are several genes not regulated by FOXC2 and GATA1 based on the analysis of MetaCore. 

The genes which are not annotated that they are regulated by FOXC2 and GATA1 may be the 
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targets of FOXC2 and GATA1. Therefore, the promoter sequences of genes which are not 

regulated by FOXC2 and GATA1 are used to scan whether the potential FOXC2 and GATA1 

binding site on their promoter region or not. Four gene clusters which contain transcription 

factors are selected to analyze the transcription factor binding site by using the binding profile 

of TRANSFAC. 

The analyzing flowchart of promoter analysis are illustrated in Figure 3.12, which containing 

gene clustering, promoter extraction, and TF binding site scanning. The genes which have 

similar expression patterns are clustering together by K-mean cluster method. The clustered 

genes are firstly analyzed by MetaCore for observing the transcription factor and regulatory 

network. On one hand, all genes other than transcription factor are selected to map the 

Ensembl gene ID and extract the promoter sequence which is defined as the region from 

upstream 2000 to downstream 200 of transcription start site (TSS). On the other hand, the 

transcription factor is mapped to TRANSFAC [21] factor ID and extracted the TF binding 

matrix. The TF binding matrix can be used by MATCH program to scan the TF binding sites 

on user input sequences with two important parameters, core similarity and matrix similarity. 

We set the core similarity to 100%, and the predicted binding sites on promoter sequences are 

graphically visualized, as shown in Figure 3.13. 

 
Figure 3.12 The analyzing flowchart of extracting promoter sequences and scanning TF 
binding site. 
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Figure 3.13 The detected targets of STAT3 transcription factor. 
 

3.8 Validation of the discovery by referring to previous 

works 

3.8.1 TGF and Wnt family 

Activin/TGF- β and BMP-2/BMP-4 have distinct and reciprocal heart field 

mesoderm-inducing capacities that mimic the tissues in which they are expressed, the 

pregastrula hypoblast and anterior lateral endoderm, respectively[22]. Activin, TGF-β, and 

certain BMPs, which are members of the TGF-βsuperfamily, can mimic aspects of 

cardiogenesis, but none of these signaling peptides can induce the full range of activities 

elicited by the inducing tissues, nor do they show the capacity to convert noncardiogenic 

mesoderm toward a myocardial phenotype. The BMP type IA receptor called ALK3, along 

with TAK1 (mitogen-activated protein kinase kinase kinase) and Smad1, which are activated 

by BMP signaling, are coexpressed in the cardiogenic mesoderm [23, 24]. 

    The biological pathway TGF, WNT and cytoskeletal remodeling and WNT signaling 

pathway are very significant in our 250 time-warped genes (see in Table 3.5). It is the 

validation of our results that these genes play key roles in heart development. 

Table 3.5 Significant biological pathway of 250 Time-warped genes. 
Map Cell process P-value Genes 
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Propionate metabolism    3.93E-05 5 22 
TGF, WNT and cytoskeletal
remodeling  cell adhesion  9.33E-05 13 204 

Chemokines and adhesion  cytokine and chemokine mediated
signaling pathway, cell adhesion 3.45E-04 11 174 

TCA    4.13E-04 4 20 

Urea cycle    1.35E-03 4 27 

Tryptophan metabolism    2.29E-03 4 31 

Role of VDR in regulation of genes
involved in osteoporosis  transcription  3.72E-03 5 57 

WNT signaling pathway response to extracellular stimulus 3.79E-03 6 82 

Cytoskeleton remodeling  cell adhesion  4.96E-03 9 176 

Prolactin receptor signaling  
response to hormone stimulus, 
intracellular receptor-mediated 
signaling pathway  

5.34E-03 5 62 

3.8.2 GATA-4 

The GATA gene family encodes transcription factors characterized by zinc-finger motifs 

required for DNA recognition, DNA binding, and transcription transcription activation [25]. 

Three members of the GATA family of transcription factors, GATA4, 5, and 6, are expressed 

in the developing heart. GATA5 is restricted to the endocardium while GATA4 and 6 are 

expressed in the myocardium. The expression pattern of GATA4 in the putative heart field 

encompasses that of Nkx2.5, but extends to a larger portion of the lateral plate mesoderm [26]. 

It has been proposed that combinatorial interaction among GATA factors or between GATA 

factors and other cofactors may differentially control various stages of cardiogenesis [27]. 

    In cluster 7, there is a gene, GATA1, belong to the GATA gene family. GATA 

transcription factors play an important role in regulating the expression of many of the genes 

encoding myocardial contractile proteins, including cardiac troponin I, a gene that is 

expressed exclusively in cardiac myocytes [28, 29]; cardiac troponin C [30]; slow myosin 

heavy chain 3 [31]; and cardiac alpha actin[32, 33]. In addition, a number of other genes are 

responsive to GATA factors. These include early expression of Nkx2.5 [34]; the atrial 

natriuretic factor [32, 35, 36]; a cardiac subtype of the muscarinic aceytcholine receptor [37]; 

and the sodium-calcium exchanger [38, 39]. In many cases, up-regulation of these genes 

requires the presence of other transcriptional partners such as serum response factor, MEF2C, 

or Nkx2.5. 
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3.9 Comparison to GEO Data 

3.9.1 Human Data vs. GEO Mouse data 

Our human data has 10 time points on heart embryo developmental stage; the GEO mouse 

data has 7 time points on the same condition. We applied the same time-warping method to 

these two datasets, and also selected 250 best time-warped genes. Finally, 62 genes were 

overlapped between the previous result and this result. In this analysis, the GEO data could be 

used to validate whether our human data is stable or not. For example, these 62 genes are very 

stable genes just because they are selected in two analyses. The cutoff value (250) can be 

adjust to bigger if we want to get more stable genes for further analysis. Using GEO data is a 

validation step and it makes the result more reliable. The expression profiles of these 63 genes 

are shown in Figure 3.14. 

Human Data Mouse GEO Data

 
Figure 3.14 Expressions of 62 overlapped genes. 

3.9.2 Mouse Data vs. GEO Mouse data 

Our mouse data has 16 time points on heart developmental stage, among the 16 time points, 7 
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time points are on the embryonic development and 9 time points are on the fetal development. 

According to the GEO data is all from the embryonic development stage. We used our mouse 

data on the same condition, it means just seven time points was used in our mouse data. We 

applied the same time-warping method to these two datasets, and also selected 250 best 

time-warped genes. Finally, 37 genes were overlapped between our original result and this 

result. In this analysis, the GEO data could be used to validate whether our mouse data is 

stable or not. For example, these 65 genes are very stable genes just because they are selected 

in two analyses. The cutoff value (250) can be adjust to bigger if we want to get more stable 

genes for further analysis. Using GEO data is a validation step and it makes the result more 

reliable. The expression profiles of these 37 genes are shown in Figure 3.15. 

Mouse Data Mouse GEO Data

 
Figure 3.15 Expressions of 37 overlapped genes. 
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Chpater 4 Discussions 

4.1 Study limitations 

In most of our experimental procedures, however, we have to grind the tissue, extract RNA, 

and analyze the changes of each gene along with development age. As a consequence, the 

acute limitation of the results derived from this study is the lack of spatial patterning of each 

gene, for instance, in two dimensions or three dimensions. Nevertheless, results of this study 

will provide an ontogeny map of gene expression profiles, from which we can identify groups 

of temporal and spatial information to facilitate our understanding of the human 

developmental biology. 

    Furthermore, since the gene expression profiles in heart of the fetus have been identified 

to be similar to those in corresponding types of cancer[40, 41] and those of failing heart [42, 

43] or dysfunctional heart, knowledge advances in the human early development, at the 

transcriptional level, will cast insights not only into the molecular mechanisms of human 

chromosomal anomalies but also into that of dysfunction and regenerative diseases. 

4.2 Prospective works 

4.2.1 Analyzing Gene Expression Profiles of Human and 

Mouse among Different Tissues during Embryonic 

Development 

In this study, we only focus on the fetal age-specific gene expression profiles in one tissue 

(heart). In order to get more understanding of gene expressions of other tissues, we have to 

produce more microarray data in other tissues such as brain, lung, liver, kidney, and 

muscle-----etc. We expect that results from the study we propose here will provide the 

complete data, at the transcriptional level in different tissues, about the fetal developmental 

equivalence between the human and the mouse. 

    As soon as we verify the temporal changes using multiple mice specimens at each time 

point through the aforementioned comparative genomic study, we can depict the 

development-specific gene expression profiles of each tissue among human and mouse fetuses. 

This information will provide an invaluable developmental biology database of these tissues. 
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The database will serve as an indispensable reference for analyzing the changes of gene 

expression in the age-matched abnormal fetuses, such as in various types of trisomy and 

contiguous chromosomal syndromes. 

4.2.2 Determination of Abnormal Genes in Development 

Upon the confirmation of the human age-specific development gene expression profiles, we 

can perform DNA chips to analyze the gene expression profiles in different tissues to detect 

possible disease-related changes in gene expression profiles. Specifically, we will focus on 

those genes that have been mapped to corresponding abnormal chromosomes. In order to gain 

a better understanding on the abnormal fetuses, we may produce the following steps：(1) 

identification of dysfunctional expression profiles in target tissues of aneuploid fetuses, (2) 

determination of tissue-specificity of gene expression in contiguous chromosomal 

deletion/amplification syndrome, (3) validation of the role of candidate genes during 

development using gene knock-out mouse models, and (4) cellular and molecular functional 

analysis of the genes, which exhibit tissue-specific importance during fetal development, in 

the corresponding cancer cell lines. 

4.2.3 Validation of the role of candidate genes during 

development using conditional gene knock-out mouse model 

The ultimate confirmation of the role for a gene in fetal development is to create a mouse 

model with knocking-out (KO) of the orthologous gene, and follow the embryogenesis of 

fetal mice. If KO the gene of interest gene causes fetal lethality, we should pay more attention 

to the earlier embryonic age when the fetal demise occurs and to the detection of any 

associated developmental disorder. If the gene KO does not cause fetal lethality, we will 

carefully follow the change in litter size, the ratio between both sexes in the littermates, the 

growth pattern in terms of body weight gain in every week, sexual maturity, fertility, and 

whether the KO mice develop any natural diseases that may be common in C57Bl/6J mice 

earlier than normal controls, etc. In this scenario, it is still worthwhile to perform the 

systematic analyses of gene expression profiles in developing KO fetuses, and to compare 

those profiles with the temporal change of gene expression profiles in normal controls. 
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4.2.4 Multiple Alignment and Local Alignment 

Because the limitation of the program, genewarp, only two datasets could be used to do 

time-warping. For this reason, only two species or two groups of genes can map together with 

this algorithm. We want to develop a tool which can provide user to do more than two 

datasets dynamic time-warping. Then, we can apply this method to do more comprehensive 

analyses between more species and more tissues….etc. For example, we can implement our 

method in human, mouse and rat.  

    In our research, global alignment is used with all of the data. As we know, time series 

data has a problem. How to sample the time points in the development stage? Is it enough? or 

too much? Global alignment utilizes all the time points given in the dataset. But some 

important genes just expressed in some period of time in embryogenesis. At this time, local 

alignment becomes more suitable for the analysis. In the further, we hope to find some 

important developmental genes between human and mouse, and see how they map in the 

period among the time points be given by using local alignment. 

4.3 Conclusion 

In conclusion, after working on the high-throughput functional genomics using DNA 

microarray technology, the most important thing is：Whatever gene that is discovered by the 

high-throughput screening or profiling methods should be carefully followed up with solid 

and thorough verification using conventional cell and molecular biological techniques. 
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Appendix A 

Cluster Human gene Mouse gene Score Chromosome Ensembl Gene ID Description  

FZD2 Fzd2 2.35004 chr17q21.1 ENSG00000180340 frizzled homolog 2 (Drosophila) 

MB Mb 2.37105 chr22q13.1 ENSG00000198125 myoglobin 

FHL2 Fhl2 2.49196 chr2q12-q14 ENSG00000115641 four and a half LIM domains 2 

CBX5 Cbx5 2.51184 chr12q13.13 ENSG00000094916 chromobox homolog 5 (HP1 alpha homolog, 
Drosophila) 

CKMT2 Ckmt2 2.62403 chr5q13.3 ENSG00000131730 creatine kinase, mitochondrial 2 (sarcomeric) 

LPL Lpl 2.64993 chr8p22 --- lipoprotein lipase 

TGOLN2 Tgoln1 2.65776 chr2p11.2 ENSG00000152291 trans-golgi network protein 2 

PAFAH1B3 Pafah1b3 2.73228 chr19q13.1 ENSG00000079462 platelet-activating factor acetylhydrolase, isoform Ib, 
gamma subunit 29kDa 

B2M B2m 2.75425 chr15q21-q22.2 ENSG00000166710 beta-2-microglobulin 

COL15A1 Col15a1 2.76479 chr9q21-q22 ENSG00000204291 collagen, type XV, alpha 1 

1 (11 genes) 

RHAG Rhag 2.77558 chr6p21.1-p11 ENSG00000112077 Rh-associated glycoprotein 

MAGED1 Maged1 2.78243 chrXp11.23 ENSG00000179222 melanoma antigen family D, 1 

NIPSNAP1 Nipsnap1 2.89711 chr22q12.2 ENSG00000184117 nipsnap homolog 1 (C. elegans) 

JAM2 Jam2 2.92219 chr21q21.2 ENSG00000154721 junctional adhesion molecule 2 

SMTN Smtn 2.95343 chr22q12.2 ENSG00000183963 smoothelin 

HLA-DRA H2-Ea 3.03231 chr6p21.3 
ENSG00000204287 ///
ENSG00000206243 /// 
ENSG00000206308 

major histocompatibility complex, class II, DR alpha 

SRM Srm 3.03747 chr1p36-p22 ENSG00000116649 spermidine synthase 

CSRP2 Csrp2 3.11019 chr12q21.1 ENSG00000175183 cysteine and glycine-rich protein 2 

2 (14 genes) 

ABAT Abat 3.12856 chr16p13.2 ENSG00000183044 4-aminobutyrate aminotransferase 
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APRT Aprt 3.14577 chr16q24 ENSG00000198931 adenine phosphoribosyltransferase 

AHCY Ahcy 3.17586 chr20cen-q13.1 ENSG00000101444 S-adenosylhomocysteine hydrolase 

CAV2 Cav2 3.17918 chr7q31.1 --- Caveolin 2 

HBE1 Hbb-y 3.18354 chr11p15.5 ENSG00000196565 hemoglobin, epsilon 1 /// hemoglobin, epsilon 1 

C6orf108 BC048355 3.20422 chr6p21.1 ENSG00000112667 chromosome 6 open reading frame 108 

SYNE1 Syne1 3.21439 chr6q25 --- spectrin repeat containing, nuclear envelope 1 

NR2F1 Nr2f1 3.23716 chr5q14 ENSG00000175745 nuclear receptor subfamily 2, group F, member 1 

VSNL1 Vsnl1 3.23832 chr2p24.3 ENSG00000163032 visinin-like 1 

KIF20A Kif20a 3.24549 chr5q31 ENSG00000112984 kinesin family member 20A 

DUSP1 Dusp1 3.25684 chr5q34 ENSG00000120129 dual specificity phosphatase 1 

ELTD1 Eltd1 3.26212 chr1p33-p32 ENSG00000162618 EGF, latrophilin and seven transmembrane domain 
containing 1 

ITPKB Itpkb 3.2697 chr1q42.13 ENSG00000143772 inositol 1,4,5-trisphosphate 3-kinase B 

RNF8 Rnf8 3.27455 chr6p21.3 ENSG00000112130 ring finger protein 8 

AKAP1 Akap1 3.28084 chr17q21-q23 ENSG00000121057 A kinase (PRKA) anchor protein 1 

CHCHD3 Chchd3 3.2875 chr7q32.3-q33 ENSG00000106554 coiled-coil-helix-coiled-coil-helix domain containing 
3 

CDKN1C Cdkn1c 3.31253 chr11p15.5 ENSG00000129757 cyclin-dependent kinase inhibitor 1C (p57, Kip2) 

TCF4 Tcf4 3.32639 chr18q21.1 ENSG00000196628 transcription factor 4 

PEG3 Peg3 3.32742 chr19q13.4 ENSG00000198300 paternally expressed 3 

EFNA1 Efna1 3.33508 chr1q21-q22 ENSG00000169242 ephrin-A1 

IL7R Il7r 3.34235 chr5p13 ENSG00000168685 interleukin 7 receptor /// interleukin 7 receptor 

LMOD1 Lmod1 3.3425 chr1q32 ENSG00000163431 leiomodin 1 (smooth muscle) 

3 (16 genes) 

NNT Nnt 3.34296 chr5p13.1-5cen --- Nicotinamide nucleotide transhydrogenase 
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PIP5K1B Pip5k1a 3.34681 chr9q13 --- phosphatidylinositol-4-phosphate 5-kinase, type I, 
beta 

CA5B Car5b 3.34887 chrXp21.1 --- carbonic anhydrase VB, mitochondrial 

BAG2 Bag2 3.37544 chr6p12.3-p11.2 ENSG00000112208 BCL2-associated athanogene 2 

EBI2 Ebi2 3.37733 chr13q32.3 ENSG00000169508 Epstein-Barr virus induced gene 2 
(lymphocyte-specific G protein-coupled receptor) 

NUP93 Nup93 3.38446 chr16q13 ENSG00000102900 nucleoporin 93kDa 

CCNF Ccnf 3.39695 chr16p13.3 ENSG00000162063 cyclin F 

TMEM59 Tmem59 3.40408 chr1p36-p31 ENSG00000116209 transmembrane protein 59 

PTHR1 Pthr1 3.40624 chr3p22-p21.1 ENSG00000160801 parathyroid hormone receptor 1 

TACC3 Tacc3 3.40738 chr4p16.3 ENSG00000013810 transforming, acidic coiled-coil containing protein 3 

SH3GL3 Sh3gl3 3.40802 chr15q24 --- SH3-domain GRB2-like 3 

EPAS1 Epas1 3.41156 chr2p21-p16 ENSG00000116016 endothelial PAS domain protein 1 

REC8L1 Rec8L1 3.41256 chr14q11.2-q12 ENSG00000100918 REC8-like 1 (yeast) 

KCNJ8 Kcnj8 3.41825 chr12p11.23 ENSG00000121361 potassium inwardly-rectifying channel, subfamily J, 
member 8 

FABP4 Fabp4 3.42139 chr8q21 ENSG00000170323 fatty acid binding protein 4, adipocyte 

GPM6B Gpm6b 3.42442 chrXp22.2 ENSG00000046653 glycoprotein M6B 

HBZ Hba-x 3.45424 chr16p13.3 ENSG00000101442 Hemoglobin, zeta 

CD36 Cd36 3.45645 chr7q11.2 --- CD36 molecule (thrombospondin receptor) 

NR3C1 Nr3c1 3.46739 chr5q31.3 ENSG00000113580 nuclear receptor subfamily 3, group C, member 1 
(glucocorticoid receptor) 

PPP1R14B Ppp1r14b 3.48588 chr11q13 ENSG00000173457 protein phosphatase 1, regulatory (inhibitor) subunit 
14B 

4 (37 genes) 

FLJ22662 1100001H23Rik 3.48925 chr12p13.1 ENSG00000121316 hypothetical protein FLJ22662 
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PDE4B Pde4b 3.50097 chr1p31 --- Phosphodiesterase 4B, cAMP-specific 
(phosphodiesterase E4 dunce homolog, Drosophila) 

KIAA0141 0610009O20Rik 3.51167 chr5q31.3 ENSG00000081791 KIAA0141 

PACSIN3 Pacsin3 3.52113 chr11p12-p11.12 ENSG00000165912 protein kinase C and casein kinase substrate in 
neurons 3 

PPARGC1A Ppargc1a 3.52844 chr4p15.1 ENSG00000109819 peroxisome proliferator-activated receptor gamma, 
coactivator 1 alpha 

DHCR24 Dhcr24 3.53595 chr1p33-p31.1 ENSG00000116133 24-dehydrocholesterol reductase 

CYSLTR2 Cysltr2 3.54782 chr13q14.12-q21.1 ENSG00000152207 cysteinyl leukotriene receptor 2 

BZRPL1 Bzrpl1 3.56339 chr6p21.1 ENSG00000112212 benzodiazapine receptor (peripheral)-like 1 

ZWINT Zwint 3.5696 chr10q21-q22 ENSG00000122952 ZW10 interactor 

ZBTB20 Zbtb20 3.57055 chr3q13.2 --- zinc finger and BTB domain containing 20 

S100B S100b 3.57258 chr21q22.3 ENSG00000160307 S100 calcium binding protein B 

DYSF Dysf 3.57496 chr2p13.3-p13.1 ENSG00000135636 dysferlin, limb girdle muscular dystrophy 2B 
(autosomal recessive) 

SDC1 Sdc1 3.5805 chr2p24.1 ENSG00000115884 syndecan 1 

HIST1H2BD Hist1h2bp 3.58233 chr6p21.3 ENSG00000158373 histone cluster 1, H2bd 

CYP1B1 Cyp1b1 3.58453 chr2p21 ENSG00000138061 cytochrome P450, family 1, subfamily B, polypeptide 
1 

TAPBP Tapbp 3.5885 chr6p21.3 ENSG00000112493 TAP binding protein (tapasin) 

MYL1 Myl1 3.59016 chr2q33-q34 ENSG00000168530 myosin, light chain 1, alkali; skeletal, fast 

MELK Melk 3.59676 chr9p13.2 ENSG00000165304 maternal embryonic leucine zipper kinase 

ORMDL2 Ormdl2 3.60337 chr12q13.2 ENSG00000123353 ORM1-like 2 (S. cerevisiae) 

ITGB2 Itgb2 3.60614 chr21q22.3 ENSG00000160255 integrin, beta 2 (complement component 3 receptor 3 
and 4 subunit) 5 (3 genes) 

BRP44 Brp44 3.60802 chr1q24 ENSG00000143158 brain protein 44 
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RASL11B Rasl11b 3.61041 chr4q12 ENSG00000128045 RAS-like, family 11, member B 

ROBO1 Robo1 3.61483 chr3p12 ENSG00000169855 roundabout, axon guidance receptor, homolog 1 
(Drosophila) 

FYN Fyn 3.61523 chr6q21 --- FYN oncogene related to SRC, FGR, YES 

MDK Mdk 3.61841 chr11p11.2 ENSG00000110492 midkine (neurite growth-promoting factor 2) 

FZD7 Fzd7 3.62471 chr2q33 ENSG00000155760 frizzled homolog 7 (Drosophila) 

DARS Dars 3.62581 chr2q21.3 ENSG00000115866 aspartyl-tRNA synthetase 

ATP6V1D Atp6v1d 3.63456 chr14q23-q24.2 --- ATPase, H+ transporting, lysosomal 34kDa, V1 
subunit D 

H2AFX H2afx 3.6369 chr11q23.2-q23.3 --- H2A histone family, member X 

SASH1 Sash1 3.63903 chr6q24.3 ENSG00000111961 SAM and SH3 domain containing 1 

ACVR2B Acvr2b 3.65439 chr3p22 ENSG00000114739 activin A receptor, type IIB 

HSPB8 Hspb8 3.65606 chr12q24.23 ENSG00000152137 heat shock 22kDa protein 8 

FXYD6 Fxyd6 3.6581 chr11q23.3 ENSG00000137726 FXYD domain containing ion transport regulator 6 

FADS2 Fads2 3.66594 chr11q12-q13.1 ENSG00000134824 fatty acid desaturase 2 

CD47 Cd47 3.66923 chr3q13.1-q13.2 ENSG00000196776 CD47 molecule 

HIGD1A Higd1a 3.66961 chr3p22.1 ENSG00000181061 HIG1 domain family, member 1A 

DIP BC021523 3.68572 chr22q13.31 ENSG00000075240 death-inducing-protein 

SNRPE Snrpe 3.68966 chr1q32 ENSG00000182004 small nuclear ribonucleoprotein polypeptide E 

AHNAK Ahnak 3.70083 chr11q12.2 --- AHNAK nucleoprotein (desmoyokin) 

CLEC3B Clec3b 3.70897 chr3p22-p21.3 ENSG00000163815 C-type lectin domain family 3, member B 

UNC84A Unc84a 3.71529 chr7p22.3 ENSG00000164828 unc-84 homolog A (C. elegans) 

TNIP2 Tnip2 3.71928 chr4p16.3 ENSG00000168884 TNFAIP3 interacting protein 2 

6 (22 genes) 

FOXC2 Foxc2 3.72093 chr16q22-16q24 ENSG00000176692 forkhead box C2 (MFH-1, mesenchyme forkhead 1) 

7 (35 genes) PLAC1 Plac1 3.72157 chrXq26 ENSG00000170965 placenta-specific 1 
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BRP44L Brp44l 3.72977 chr6q27 ENSG00000060762 brain protein 44-like 

COL9A3 Col9a3 3.73265 chr20q13.3 ENSG00000092758 collagen, type IX, alpha 3 

POLR2H Polr2h 3.7444 chr3q28 ENSG00000163882 polymerase (RNA) II (DNA directed) polypeptide H 

PIK3CA Pik3ca 3.74511 chr3q26.3 --- Phosphoinositide-3-kinase, catalytic, alpha 
polypeptide 

AP2S1 Ap2s1 3.74648 chr19q13.2-q13.3 ENSG00000042753 adaptor-related protein complex 2, sigma 1 subunit /// 
adaptor-related protein complex 2, sigma 1 subunit 

UBE2C Ube2c 3.74671       

TRIP13 Trip13 3.74956 chr5p15.33 ENSG00000071539 thyroid hormone receptor interactor 13 

MRLC2 Mylc2b 3.75306 chr18p11.31 --- myosin regulatory light chain MRLC2 

SKP2 Skp2 3.75813 chr5p13 ENSG00000145604 S-phase kinase-associated protein 2 (p45) 

CDC20 Cdc20 3.75973 chr1p34.1 ENSG00000117399 cell division cycle 20 homolog (S. cerevisiae) 

FLJ20152 1810015C04Rik 3.76006 chr5p15.1 ENSG00000154153 hypothetical protein FLJ20152 

PERP Perp 3.76096 chr6q24 ENSG00000112378 PERP, TP53 apoptosis effector 

PSMB8 Psmb8 3.76747 chr6p21.3 
ENSG00000204264 /// 
ENSG00000206234 /// 
ENSG00000206298 

proteasome (prosome, macropain) subunit, beta type, 
8 (large multifunctional peptidase 7) 

RASL12 Rasl12 3.77026 chr15q11.2-q22.33 ENSG00000103710 RAS-like, family 12 

SSB Ssb 3.77204 chr2q31.1 ENSG00000138385 Sjogren syndrome antigen B (autoantigen La) 

ALDOC Aldoc 3.7721 chr17cen-q12 ENSG00000109107 aldolase C, fructose-bisphosphate 

PALMD Palmd 3.77349 chr1p22-p21 ENSG00000099260 palmdelphin 

SQLE Sqle 3.78196 chr8q24.1 ENSG00000104549 squalene epoxidase 

RAG2 Rag2 3.78734 chr11p13 ENSG00000175097 recombination activating gene 2 

AQP1 Aqp1 3.79434 chr7p14 ENSG00000106125 aquaporin 1 (Colton blood group) 
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SMARCA2 Smarca2 3.79632 chr9p22.3 ENSG00000080503 SWI/SNF related, matrix associated, actin dependent 
regulator of chromatin, subfamily a, member 2 

PSAT1 Psat1 3.79808 chr9q21.2 ENSG00000135069 phosphoserine aminotransferase 1 

PTPRK Ptprk 3.7984 chr6q22.2-23.1 ENSG00000152894 protein tyrosine phosphatase, receptor type, K 

TXN2 Txn2 3.80206 chr22q13.1 ENSG00000100348 thioredoxin 2 

TCF7 Tcf7 3.80427 chr5q31.1 ENSG00000081059 transcription factor 7 (T-cell specific, HMG-box) 

NCKAP1L Nckap1l 3.80457 chr12q13.1 ENSG00000123338 NCK-associated protein 1-like 

XRCC1 Xrcc1 3.81405 chr19q13.2 ENSG00000073050 X-ray repair complementing defective repair in 
Chinese hamster cells 1 

NDUFA5 Ndufa5 3.81644 chr7q32 --- NADH dehydrogenase (ubiquinone) 1 alpha 
subcomplex, 5, 13kDa 

CDKN2B Cdkn2b 3.82074 chr9p21 ENSG00000147883 cyclin-dependent kinase inhibitor 2B (p15, inhibits 
CDK4) 

TXNIP Txnip 3.82367 chr1q21.1 ENSG00000117289 thioredoxin interacting protein 

PPP6C Ppp6c 3.82451 chr9q33.3 ENSG00000119414 protein phosphatase 6, catalytic subunit 

PLXDC1 Plxdc1 3.82481 chr17q21.1 ENSG00000161381 plexin domain containing 1 

EHD4 Ehd4 3.82888 chr15q11.1 ENSG00000103966 EH-domain containing 4 

TCAP Tcap 3.83883 chr17q12 ENSG00000173991 titin-cap (telethonin) 

SGK Sgk 3.84073 chr6q23 ENSG00000118515 serum/glucocorticoid regulated kinase 

BLM Blm 3.84131 chr15q26.1 ENSG00000197299 Bloom syndrome 

ZNF423 Zfp423 3.84204 chr16q12 --- Zinc finger protein 423 

NBL1 Nbl1 3.84563 chr1p36.13-p36.11 ENSG00000158747 neuroblastoma, suppression of tumorigenicity 1 

ITGA7 Itga7 3.85159 chr12q13 ENSG00000135424 integrin, alpha 7 

8 (49 genes) 

ENO3 Eno3 3.86052 chr17pter-p11 ENSG00000108515 enolase 3 (beta, muscle) 
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PACSIN2 Pacsin2 3.86178 chr22q13.2-13.33 ENSG00000100266 protein kinase C and casein kinase substrate in 
neurons 2 

CENTD2 Centd2 3.86738 chr11q13.4 ENSG00000186635 centaurin, delta 2 

MGAT1 Mgat1 3.87863 chr5q35 ENSG00000131446 mannosyl (alpha-1,3-)-glycoprotein 
beta-1,2-N-acetylglucosaminyltransferase 

SDHB Sdhb 3.88122 chr1p36.1-p35 ENSG00000117118 succinate dehydrogenase complex, subunit B, iron 
sulfur (Ip) 

SRPX Srpx 3.88385 chrXp21.1 ENSG00000101955 sushi-repeat-containing protein, X-linked 

EGLN3 Egln3 3.88671 chr14q13.1 ENSG00000129521 egl nine homolog 3 (C. elegans) 

POLR2L Polr2l 3.89059 chr11p15 ENSG00000177700 
polymerase (RNA) II (DNA directed) polypeptide L, 
7.6kDa /// polymerase (RNA) II (DNA directed) 
polypeptide L, 7.6kDa 

PMP22 Pmp22 3.89087 chr17p12-p11.2 ENSG00000109099 peripheral myelin protein 22 

LTBP4 Ltbp4 3.89479 chr19q13.1-q13.2 ENSG00000090006 latent transforming growth factor beta binding protein 
4 

ITK Itk 3.89795 chr5q31-q32 ENSG00000113263 IL2-inducible T-cell kinase 

LSM3 Lsm3 3.89848 chr3p25.1 ENSG00000170860 LSM3 homolog, U6 small nuclear RNA associated 
(S. cerevisiae) 

CD38 Cd38 3.90328 chr4p15 ENSG00000004468 CD38 molecule 

CKAP4 Ckap4 3.90394 chr12q23.3 ENSG00000136026 cytoskeleton-associated protein 4 

PHGDH Phgdh 3.91476 chr1p12 ENSG00000092621 phosphoglycerate dehydrogenase 

DLG7 Dlg7 3.9183 chr14q22.3 ENSG00000126787 discs, large homolog 7 (Drosophila) 

EFHD1 Efhd1 3.93142 chr2q37.1 ENSG00000115468 EF-hand domain family, member D1 

PCK2 Pck2 3.93339 chr14q12 ENSG00000100889 phosphoenolpyruvate carboxykinase 2 
(mitochondrial) 
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HADHA Hadha 3.93926 chr2p23 ENSG00000084754 

hydroxyacyl-Coenzyme A 
dehydrogenase/3-ketoacyl-Coenzyme A 
thiolase/enoyl-Coenzyme A hydratase (trifunctional 
protein), alpha subunit 

LOC387680 D6Wsu116e 3.94456       

SCARB2 Scarb2 3.95368 chr4q21.1 --- scavenger receptor class B, member 2 

ACAT1 Acat1 3.95369 chr11q22.3-q23.1 ENSG00000075239 acetyl-Coenzyme A acetyltransferase 1 (acetoacetyl 
Coenzyme A thiolase) 

TXN Txn1 3.95531 chr9q31 --- Thioredoxin 

VRK1 Vrk1 3.95618 chr14q32 ENSG00000100749 vaccinia related kinase 1 

MX1 Mx2 3.96311 chr21q22.3 ENSG00000157601 

myxovirus (influenza virus) resistance 1, 
interferon-inducible protein p78 (mouse) /// 
myxovirus (influenza virus) resistance 1, 
interferon-inducible protein p78 (mouse) 

OGDH Ogdh 3.97278 chr7p14-p13 ENSG00000105953 oxoglutarate (alpha-ketoglutarate) dehydrogenase 
(lipoamide) 

SYPL1 Sypl 3.98562 chr7q22.2 ENSG00000008282 synaptophysin-like 1 

SR140 2610101N10Rik 3.99061 chr3q23 --- U2-associated SR140 protein 

APEX1 Apex1 3.99157 chr14q11.2-q12 ENSG00000100823 APEX nuclease (multifunctional DNA repair 
enzyme) 1 

RABGAP1L Rabgap1l 3.99435 chr1q24 ENSG00000152061 RAB GTPase activating protein 1-like 

LAMB2 Lamb2 4.00081 chr3p21 ENSG00000172037 laminin, beta 2 (laminin S) 

POLD2 Pold2 4.00496 chr7p13 --- Polymerase (DNA directed), delta 2, regulatory 
subunit 50kDa 

RCN1 Rcn1 4.00714 chr11p13 --- reticulocalbin 1, EF-hand calcium binding domain 

PDC Pdc 4.00998 chr1q25.2 ENSG00000116703 phosducin 



75 

VARS Vars2 4.01065 chr6p21.3 ENSG00000204394 /// 
ENSG00000096171 valyl-tRNA synthetase 

GPC3 Gpc3 4.01352 chrXq26.1 ENSG00000147257 glypican 3 

CHPT1 Chpt1 4.01748 chr12q ENSG00000111666 choline phosphotransferase 1 

GATA1 Gata1 4.01886 chrXp11.23 ENSG00000102145 GATA binding protein 1 (globin transcription factor 
1) 

NOTCH3 Notch3 4.01929 chr19p13.2-p13.1 ENSG00000074181 Notch homolog 3 (Drosophila) 

NONO Nono 4.01981 chrXq13.1 ENSG00000147140 non-POU domain containing, octamer-binding 

RTN1 Rtn1 4.02291 chr14q23.1 ENSG00000139970 reticulon 1 

ALOX5AP Alox5ap 4.0268 chr13q12 ENSG00000132965 arachidonate 5-lipoxygenase-activating protein 

MEN1 Men1 4.02722 chr11q13 ENSG00000133895 multiple endocrine neoplasia I 

PRKAR1A Prkar1a 4.03187 chr17q23-q24 ENSG00000108946 protein kinase, cAMP-dependent, regulatory, type I, 
alpha (tissue specific extinguisher 1) 

SPTA1 Spna1 4.03272 chr1q21 ENSG00000163554 spectrin, alpha, erythrocytic 1 (elliptocytosis 2) 

PDE1A Pde1a 4.03709 chr2q32.1 --- phosphodiesterase 1A, calmodulin-dependent 

SLC4A1 Slc4a1 4.04481       

PIGQ Pigq 4.04696 chr16p13.3 ENSG00000007541 phosphatidylinositol glycan anchor biosynthesis, class 
Q 

MYOZ2 Myoz2 4.0483 chr4q26-q27 ENSG00000172399 myozenin 2 

SEC14L1 Sec14l1 4.05721 chr17q25.1-17q25.2 --- SEC14-like 1 (S. cerevisiae) 

MMD Mmd 4.05742 chr17q ENSG00000108960 monocyte to macrophage differentiation-associated 

ZNF160 Zfp26 4.05756 chr19q13.41 --- zinc finger protein 160 

9 (9 genes) 

CD3D Cd3d 4.05909 chr11q23 ENSG00000167286 CD3d molecule, delta (CD3-TCR complex) 

GAP43 Gap43 4.06687 chr3q13.1-q13.2 --- growth associated protein 43 10 (38 genes) 

ODC1 Odc1 4.06765 chr2p25 ENSG00000115758 ornithine decarboxylase 1 
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STAT3 Stat3 4.07063 chr17q21.31 ENSG00000168610 signal transducer and activator of transcription 3 
(acute-phase response factor) 

COL5A3 Col5a3 4.07122 chr19p13.2 ENSG00000080573 collagen, type V, alpha 3 

KTN1 Ktn1 4.07466 chr14q22.1 ENSG00000126777 kinectin 1 (kinesin receptor) 

PRKCD Prkcd 4.0789 chr3p21.31 ENSG00000163932 protein kinase C, delta 

PHLDA1 Phlda1 4.081 chr12q15 ENSG00000139289 pleckstrin homology-like domain, family A, member 
1 

UCHL1 Uchl1 4.08355 chr4p14 ENSG00000154277 ubiquitin carboxyl-terminal esterase L1 (ubiquitin 
thiolesterase) 

GALK1 Galk1 4.08428 chr17q24 ENSG00000108479 galactokinase 1 

MDH1 Mdh1 4.0903 chr2p13.3 ENSG00000014641 malate dehydrogenase 1, NAD (soluble) 

SUCLA2 Sucla2 4.09384 chr13q12.2-q13.3 ENSG00000136143 succinate-CoA ligase, ADP-forming, beta subunit 

MLYCD Mlycd 4.09803 chr16q24 ENSG00000103150 malonyl-CoA decarboxylase 

SLC4A4 Slc4a4 4.10084 chr4q21 ENSG00000080493 solute carrier family 4, sodium bicarbonate 
cotransporter, member 4 

RUFY2 Rufy2 4.10278 chr10q21.3 --- RUN and FYVE domain containing 2 

HRC Hrc 4.10447 chr19q13.3 ENSG00000130528 histidine rich calcium binding protein 

ORC6L Orc6l 4.10543 chr16q12 ENSG00000091651 origin recognition complex, subunit 6 like (yeast) 

CAV1 Cav1 4.10718 chr7q31.1 ENSG00000105974 caveolin 1, caveolae protein, 22kDa 

DNMT1 Dnmt1 4.10873 chr19p13.2 ENSG00000130816 DNA (cytosine-5-)-methyltransferase 1 

NASP Nasp 4.11372 chr1p34.1 ENSG00000132780 nuclear autoantigenic sperm protein (histone-binding) 

RASSF3 Rassf3 4.11601 chr12q14.2 --- Ras association (RalGDS/AF-6) domain family 3 

SNRPA1 Snrpa1 4.11936 chr15q26.3 ENSG00000131876 small nuclear ribonucleoprotein polypeptide A' 
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SEC61B Sec61b 4.12347 chr9q22.32-q31.3 ENSG00000106803 Sec61 beta subunit 

TBX5 Tbx5 4.12454 chr12q24.1 ENSG00000089225 T-box 5 

THBS1 Thbs1 4.12753 chr15q15 --- Thrombospondin 1 

NGFRAP1 Ngfrap1 4.13084 chrXq22.2 ENSG00000166681 nerve growth factor receptor (TNFRSF16) associated 
protein 1 

ARHGEF12 Arhgef12 4.1316 chr11q23.3 ENSG00000196914 Rho guanine nucleotide exchange factor (GEF) 12 

KLF9 Klf9 4.13334 chr9q13 ENSG00000119138 Kruppel-like factor 9 

WNT11 Wnt11 4.13515 chr11q13.5 ENSG00000085741 wingless-type MMTV integration site family, 
member 11 

RAP1A Rap1a 4.13695 chr1p13.3 --- RAP1A, member of RAS oncogene family 

ILKAP Ilkap 4.13996 chr2q37.3 ENSG00000132323 integrin-linked kinase-associated serine/threonine 
phosphatase 2C 

BSDC1 Bsdc1 4.13999 chr1p35.1 ENSG00000160058 BSD domain containing 1 

NPR3 Npr3 4.14203 chr5p14-p13 ENSG00000113389 natriuretic peptide receptor C/guanylate cyclase C 
(atrionatriuretic peptide receptor C) 

ABLIM1 Ablim1 4.14207 chr10q25 ENSG00000099204 actin binding LIM protein 1 

RPL14 Rpl14 4.14492 chr3p22-p21.2 --- ribosomal protein L14 

KLHL7 Klhl7 4.1459 chr7p15.3 ENSG00000122550 kelch-like 7 (Drosophila) 

CITED1 Cited1 4.14591 chrXq13.1 ENSG00000125931 Cbp/p300-interacting transactivator, with 
Glu/Asp-rich carboxy-terminal domain, 1 

SP100 Sp100 4.14747 chr2q37.1 --- SP100 nuclear antigen 

CDC25A Cdc25a 4.15595 chr3p21 ENSG00000164045 cell division cycle 25 homolog A (S. cerevisiae) 

11 (9 genes) CDIPT Cdipt 4.15666 chr16p11.2 ENSG00000103502 
CDP-diacylglycerol--inositol 
3-phosphatidyltransferase (phosphatidylinositol 
synthase) 
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PRKD2 Prkd2 4.15827 chr19q13.3 ENSG00000105287 protein kinase D2 

TALDO1 Taldo1 4.15958 chr11p15.5-p15.4 ENSG00000177156 transaldolase 1 

GENX-3414 D5Ertd593e 4.16432 chr4q24-q25 --- genethonin 1 

LMNB2 Lmnb2 4.16501 chr19p13.3 ENSG00000176619 lamin B2 

SYN1 Syn1 4.16552 chrXp11.23 ENSG00000008056 synapsin I 

ESRRG Esrrg 4.16678 chr1q41 ENSG00000196482 estrogen-related receptor gamma 

CDC6 Cdc6 4.16971 chr17q21.3 ENSG00000094804 cell division cycle 6 homolog (S. cerevisiae) 

TNFRSF4 Tnfrsf4 4.17453 chr1p36 ENSG00000186827 tumor necrosis factor receptor superfamily, member 4 

PDE2A Pde2a 4.1751 chr11q13.4 ENSG00000186642 phosphodiesterase 2A, cGMP-stimulated 

PPOX Ppox 4.17989 chr1q22 ENSG00000143224 protoporphyrinogen oxidase 

HSPA5 Hspa5 4.19148 chr9q33-q34.1 ENSG00000044574 heat shock 70kDa protein 5 (glucose-regulated 
protein, 78kDa) 

CYFIP2 Cyfip2 4.19543 chr5q33.3 ENSG00000055163 cytoplasmic FMR1 interacting protein 2 /// 
cytoplasmic FMR1 interacting protein 2 

HIST1H2BG Hist1h2bm 4.19658 chr6p21.3 ENSG00000187990 histone cluster 1, H2bg 

AP1B1 Ap1b1 4.19898 chr22q12|22q12.2 ENSG00000100280 adaptor-related protein complex 1, beta 1 subunit 

12 (7 genes) 

HNRPM Hnrpm 4.19951 chr19p13.3-p13.2 --- heterogeneous nuclear ribonucleoprotein M 
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