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ABSTRACT

Cross-species gene expression analysis provides information of gene functions and
involving mechanisms, which conserved in evolutionary process. Gene groups
conserved in species are very likely to play irreplaceable biochemical functions.
Searching for this kind of functional gene groups can accelerate the discovery of
candidate genes in gene therapy and development of drug design. For this, our
research proposes a novel computational scheme to figure out the genes having
important biochemical functions, especially targets on the genes which are conserved
in human and mouse. These genes conserved across evolutionary history would be
most likely to reveal fundamental biochemical functions. This work utilizes singular
value decomposition (SVD) and clustering techniques to analyze gene expression, and
exploits orthologous linkage and time warping algorithm making microarray
time-series gene-expression profiles of different species (heterogeneous profiles)
comparable to suggest orthologous gene groups. In the meanwhile, in order to make
the results more promising, we use fuzzy nearest cluster method to predict the
functions of orthologous genes which might play important roles in the bioprocess



and perform statistical test according to our annotation of predicated gene function to
find the genes having biological significance among these orthologous genes.

In brief, this research combines sequence- and time-series expression- levels ortholog
to suggest functional genes among multiple species, provides materials for candidate
gene therapy experiments and hopes to contribute remarkable advancement in
cross-species orthologous gene analysis. In the end, in order to let the whole process
be utilized in further application, the scheme is modeled and programmed in a

standalone executable package with visualized presentation.
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Chapter 1 Introduction

1.1  Overview of the scheme

Since the high-throughput microarray assay has been widely used, gene function
prediction is shown to be reliable by classifying their gene expression profile
similarity. In some of frontier research, including experimental drug and gene therapy,
understandings of orthologous genes can be helpful accelerating the progress of the
discovery[1].

Research about orthologous gene functional groups searching is not rare but
limited.

This research considers both sequence homology and time-series expression
profile pattern similarity to search for the orthologous functional gene groups among
multiple species, and is able to deal with different time point number and interval, and
it integrates gene functional predication to annotate and suggest their biological
meanings which make the result more reliable.

In sum, this work presents a novel scheme to discover orthologous time-series
gene expression profiles in multiple species. With this scheme, it is now easier to
observe and disclose the important functional genes conserved in evolution process by

time-series microarray profiles.

1.1.1 Gene expression time series

A gene expression profile is the result of microarray analyses, which give the
breakdown of the switching on and off of certain genes (Figure 1.1 ). Gene expression
profile is an important asset, especially for scientifically understanding biological

processes from the expression of gene. DNA microarrays, oligonucleotide arrays and

1



all other high throughput assays for gene activity give biologists the chance to view
the global MRNA profile systematically[1]. There are two types of experiments, static
and time series experiments[2]. In static expression experiments, only a snapshot of
the expression of genes in different samples is measured[3]. On the other hand, when
the profile containing the information of time intervals, it reveals the expression of
genes with cell cycle stage, development stage, or any time related pattern. Gene
expression time series is a list of expression data for a gene along a number of
different experimental time intervals and would correspond to a row in the
representation (Figure 1.2 ). Through the variation of mMRNA expression level with
time, which enables further investigations of the gene regulation networks[4, 5],
functional groupings of genes, distinction of cell cycles[6], tissue-specific profiling,

etc, scientists are now unraveling the mechanism of bioprocesses efficiently.

Gene Expressiom and Cancexr

o> 2 ‘-pu%‘ o
o) @3

Y
Momnal <l cancer cedl
Genie &, 5’& ;& Gene A
" n £
Gono & ceneu | o o o
Lane L ‘géx Gene OF %"
Figure 1.1 Gene expression also varies within a certain type of cell at different points in

time. For example, the gene expression profiles of an organ might differ between normal
and cancerous states, as shown here.
[http://www.ncbi.nIm.nih.gov/Class/MLACourse/Modules/MolBioReview/gene_express
ion_prostate.html]
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Figure 1.2 Different representations of gene expression profiles: (A) pattern, (B) color
scale [http://gepas.bioinfo.cipf.es/cgibin/tutoX?c=clustering/clustering.config]

1.1.2 Gene function prediction

Determining the functions of genes is an essential problem in biology, which is
fundamental to realize the molecular and biochemical processes, identify and validate
new drug targets and develop reliable diagnostics. Recent advances in genomic
sequencing have generated an astounding number of new putative genes and
hypothetical proteins whose biological function remains a mystery. On average, there
are 70% of the genes in a genome having poorly known or no known functions. There
are two typical techniques that can be used on gene expression data for gene function
annotation or predication. The first technique is clustering, such as hierarchical
clustering, k-means clustering, SVD, and PCA, while the second is classification,
such as Hidden Markov Model (HMM), Support Vector Machine (SVM), and Neural

Networks (NN).

1.1.3 Data clustering

Data clustering or clustering algorithms is an approach to group data by categories.



The primary aim of clustering is to figure out several clusters and centroids or
prototypes and using these centroids to represent the original enormous data.

In brief, data clustering is more likely to attempt to group data in smaller set.
However, some clustering approaches can be used as classifiers as well, and it is
needless to predefine classes (unsupervised learning). Clustering approaches are
feasible to be utilized in gene expression analysis, since the genes are numerous and
the interactions are complex.

Hierarchical clustering: In hierarchical clustering, a series of partitions takes
place, which may run from a single cluster containing all objects to n clusters each
containing a single object[7]. Hierarchical Clustering is subdivided into
agglomerative methods, which proceed by series of fusions of the n objects into
groups, and divisive methods, which separate n objects successively into finer
groupings. One of the simplest agglomerative hierarchical clustering methods is single
linkage, also known as the nearest neighbor technique. The defining feature of the
method is that distance between groups is defined as the distance between the closest
pair of objects, where only pairs consisting of one object from each group are
considered.

The minimum value of these distances is said to be the distance between two
clusters. At each stage of hierarchical clustering, the clusters whose distance is

minimal are merged. See Figure 1.3 for example.
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Figure 1.3 Overview of hierarchical clustering of all samples. Genes and blood samples
are organized by hierarchical clustering based on overall similarity in expression
patterns. Expression levels are represented by a color key in which bright red represents
the highest levels and bright green represents the lowest levels, and less saturated shades

represent intermediate levels of expression.
[http://www.biomedcentral.com/1471-2164/7/115/figure/F1]

K-means clustering: This nonhierarchical method initially takes the number of

components of the population equal to the final required number (K) of clusters[8]. In



this step itself the final required number of clusters is chosen such that the points are
mutually farthest apart. Next, it examines each component in the population and
assigns it to one of the clusters depending on the minimum distance. The centroid's
position is recalculated every time a component is added to the cluster and this
continues until all the components are grouped into the final required number of
clusters.

K-Means Training starts with a single cluster with its center as the mean of the
data. This cluster is split into two and the means of the new clusters are iteratively
trained. These two clusters are again split and the process continues until the specified
number of clusters is obtained. If the specified number of clusters is not a power of
two, then the nearest power of two above the number specified is chosen and then the
least important clusters are removed and the remaining clusters are again iteratively

trained to get the final clusters.

1.1.4 Distance functions

There are two main families of distances to measure how closely related are two
groups of genes:

Euclidean: this kind of distance strategy calculates the length of two separate points
in n-directional space by their absolute differences[9]. For example, Euclidean
distance is measure by following definition:

For two points A= (a;, a2... a,), and B= (b;, b2... b,), Euclidean distance =
]/Z(ai 'bi)2
i=1

Correlation: Contrasting to Euclidean, this type of strategy accounts for the trends



within both profiles[9]. For example, Pearson correlation measures the similarity in
shape between two profiles by the following formula:

For two points A= (a, a,... an), and B= (by, b2... by), Pearson correlation distance

St

wherea, b are the mean of a, and b;, and o, , &, are the standard deviation of a, and b,

These two kinds of distance strategies will lead to different clustering results.

Please see Figure 1.4 for illustration.

A
3 |__|
A B C
correlation
B
| — -
-~ - A B C
euclidean
Figure 1.4 Different distances will render different classifications because we are

asking for grouping based on different features (trends in the case of correlation and
absolute differences in the case of Euclidean distances)
[http://gepas.bioinfo.cipf.es/cgibin/tutoX?c=clustering/clustering.config]

1.1.5 Comparative analysis of different species

Comparing genomic properties of different organisms is of fundamental importance in

7



the study of biological and evolutionary principles[10]. Although differences among
organisms are often attributed to differential gene expression, genome-wide
comparative analysis thus far has been based primarily on genomic sequence
information.

By miscellaneous gene function predication techniques, biologists are now more
interesting in orthologous gene searching among different species. Since comparative
analysis of the expression data among two or more model organisms promises to
enhance fundamental understanding of the universality as well as the specialization of
molecular biological mechanisms. It also may prove useful in medical diagnosis,
treatment, and drug design. Comparisons of the DNA sequence of entire genomes
already give insights into evolutionary, biochemical, and genetic pathways.
Considering that gene expression profiling gives more information of genes’
biochemistry functional roles, comparative analysis based on microarray data is now a

blossomed area.

1.2  Motivation

Recently, Microarray expression analysis has become an important technique for
evaluating gene expression level in genomic scale. In addition, due to the profound
progress in gene sequencing, considerable number of genes are predicted and found.
However, there are only 30% of genes are explicitly analyzed and understood the
functional roles they playing in biological process[1]. It had been shown that using
microarray gene expression analysis to predict the functions of genes is an important
and efficient means[5]. However, one of the defects of conventional approaches is
that the number of sampling points and growth rate of cells (affected by experiment

conditions) should be unified, which means that each experiment should be carefully



designed to provide comparable samplings, and this is not practical in most of the
cases. Therefore, mostly, searching for functional gene clusters is constrained in
mono-species model and parallel experiment.

Despite so, by compiling the information of gene expression profile from diverse
organisms, tissues, and conditions, scientists are now capable of dissecting more
advanced topics. For instance, Grigoryev D. N., who proposed his renowned research
on Genome Biology, introduced a multi-species model using gene expression profile
to find orthologous gene-expression genes of lung cells suffered from
ventilator-associated lung injury among human, mouse, and dog. Grigoryev also
suggested these genes are potential candidate genes of acute lung injury remedy in the
future, and inferred these genes are conserved among the evolution process because
they play crucial protection functions after lung injury.

Applying the idea of utilizing cross-species or -tissue orthologous gene-expression
profile to search important gene groups and their biological functions to other topics
like cell cycle, is a general concept, which needs further investigation and
development.

Nevertheless, when analyzing microarray time-series gene-expression profile,
scientists have to face the difficulty of coordinating different growth rate of cells and
the number and time intervals of sampling in each independent experiment, especially
of distinct organisms, which is now becoming a pressing issue to let cross-species

gene-expression profiles comparable.

1.3 Goals

This dissertation proposes a novel computational scheme to search and analyze the

orthologous gene-expression profiling genes conserved in evolution process and



involved in certain bioprocess. We try to contribute to experiment verifying and
treatment development, and answer following questions:
1. How to combine and take advantage of both sequence- and expression-
level orthologous gene predication?
2. How to build up the mapping relationships between genes of multi-species?
3. How to deal with noise or experimental artifacts?
4.  How to let different time-series profile be comparable when the experiment
conditions, growth rate, sampling time point number are different?
5. How to make our predication convincing enough?
This research hopes to propose a novel scheme to solve these related tasks on the
basis of other research with integration and improvement, and contributes remarkable

advancement in cross-species orthologous gene analysis.
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Chapter 2  Related Works

Some of the existing research had given answers to parts of the questions we devote to
solve; however, these solutions are still not sufficient to resolve our problems
completely. Furthermore, most of them avoid the questions that how to let different
time-series profile be comparable when the experiment conditions, growth rate, and

especially sampling time point number are different

2.1  Cross species analysis with static profiling

2.1.1 Genome-wide expression data of six organisms [10]

S. Bergmann et al. present a comparative study of large datasets of expression profiles
from sic evolutionarily distant organisms: S. cerevisiae, C. elegans, E. coli, A.
thaliana, D. melanogaster, and H. sapiens. They use genomic sequence information
to connect these data and compare global and modular properties of the transcription
programs. Linking genes whose expression profiles are similar, functionally related
sets of genes are frequently coexpressed in multiple organisms. Bergmann integrates
the expression data with genomic sequence information to address three biological
issues. First, we verify that coexpression is often conserved among organisms and
propose a method for improving functional gene annotations using this conservation.
Second, we compare the regulatory relationships between particular functional groups
in the different organisms using the iterative signature algorithm (ISA), giving initial
insights into the extent of conservation of the gene regulatory architecture. See Figure

2.1

11
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Figure 2.1 Starting from a set of coexpressed genes associated with a particular function

in organism A, they first identify the homologues in organism B using BLAST. Only
some of these homologues are coexpressed while others are not. The signature algorithm
selects this coexpressed subset and adds further genes that were not identified based on
sequence.

This approach didn’t consider data with time series. Also, they linked data of different
species by BLAST, which can provide sequence level homology, but they use ISA to
extend genes they linked to more genes co-expressed in the same species. In order
words, genes they found in the end only have ortholog in expression-level. Moreover,
although they try to tell the functions of genes they found, but not with clear evidence

and inference.

2.1.2 Orthologous expression profiling in multi-species

models[11]

Conventional techniques perform and analyze gene-expression profiling by using

12



species-specific Affymetrix GeneChips to search for candidate genes related VALI
(ventilator-associated lung injury). The individual analysis of species-specific arrays
produced large lists of candidate genes and several challenges, with the most notable
being an excessive number of genes for candidate gene selection. While meta-analysis
strategies exist for narrowing candidate gene selection from multiple experimental
systems, this analysis can only be applied to the same species cross-platform array
comparison, to use this approach for analysis of experiments involving diverse species
we speculated that multispecies geneOexpression profiles could be linked using
RESOURCERER([12], which is based on EGO database and contains information for
all commercially available Affymetrix Genechips.

D. N. Grigoryev speculated that overlapping responses to mechanical stretch in
orthologous genes across species might reveal candidate genes involved in an
evolutionarily conserved defense mechanism to lung injury that might be triggered by
ventilator-induced lung injury.

This research first calculated gene-expression changes for each tested species and
linked expression values obtained for orthologous genes. Orthologous genes
exhibiting similar patterns of expression across all species were selected as
VALI-related candidates under the assumption that gene-expression responses
conserved across evolutionary history would be most likely to reveal fundamental

biological responses to VALI. See Figure 2.2 .
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Figure 2.2 Different distances will render different classifications because we are asking

for grouping

The basic concept of linking differentially-expressed gene with other species is
similar to linking co-expressed gene group in our approaches. Even regardless of the
inability of dealing time-series profiles, their scheme need a common experiment
condition (in their case VALI) among samples of all species, which means that the
experiment should be carefully designed and executed. This constraint makes this
approach unpractical in many situations. Although they did do some experiment to
prove genes they found is associate with VALI, however, their scheme unable to give

a global view of gene function in genomic scale.

2.2 Cross species analysis with time series

2.2.1 GSVD for comparative analysis of expression data

sets of two different organisms[13]

GSVD (generalized singular value decomposition) provides a comparative
mathematical framework for two genome-scale data sets from the two-genes X arrays

spaces to two reduced and diagonalized “genelets” X “arraylets” spaces. The genelets
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are shared by both data sets. Each genelet is expressed only in the two corresponding
arraylets, with a corresponding “angular distance” indicating the relative significance
of this genelet, i.e. its significance, in one data set relative to that in the other (see
Figure 2.3).

O. Alter shows that mathematical reconstruction of gene expression in a subset of
genelets may simulate experimental expression in subset of genelets may simulate
experimental observation of only the process that these genelets are inferred to
represent. By using GSVD, the framework enables comparative reconstruction and
classification of the genes and arrays of both data sets and the comparison of yeast

and human cell-cycle expression data sets are illustrated (see Figure 2.4).
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Figure 2.3 [llustration of GSVD

GSVD relies on the strong basis of mathematical theory and suggest a general
approach analyzing two data sets. However, the major improvement can be
categorized in three points: flexibility of multi-species model, limitation of data
reduction, and incapableness of heterogeneous data sets.

First, GSVD provides useful framework to analyzing data set from two species.
However, it is not suitable for models consisted of more than two species. Also, data
sets from two species should be in same vector space, i.e. their dimension—the
number of time points—should be the same, which is unpractical in most of the case.
GSVD restrict the data to a small subset of similar conditions, such as time points
along the cell cycle, which drastically reduces the size of the dataset and limits the
scope of comparison[10].

Third, data sets from two species should be in same vector space, i.e. their
dimensions—the number of time points—should be the same, which is unpractical in

most of the case.
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Figure 2.4 Yeast and human expression reconstructed in the six-dimensional cell-cycle
subspaces approximated by two-dimensional subspaces.

2.2.2 Continuous representation of time-series expression
profiles[2]

Z. Bar-Joseph et al. present a general algorithm to detect genes differentially
expressed between two nonhomogeneous time-series data sets. Their algorithm
overcomes these difficulties by using a continuous representation for time-series data
and combining a noise model for individual samples with a global difference measure.
They introduce a corresponding statistical method for computing the significance of
this differential expression measure. They used their algorithm to compare cell-cycle
dependent gene expression in wild type and knockout yeast strains. Their experiments
suggest additional roles for the transcription factors Fkhl and Fkh2 in controlling
cellular activity in yeast.

They use cubic splines to represent gene expression curves. Cubic splines are a set

17



of piecewise cubic polynomials and are frequently used for fitting time series and

other noisy data.
n
U(f) = Z 'crisi(t) tIfr.'.'r:r‘.'. i t < t:m.ﬂ.:::
i=1

Using splines, we can use a linear warping function to obtain an optimal alignment

by adjusting shift and stretch parameters to minimize a global error function. See

Figure 2.5.
—¥— cdc28 exp. vals
1 -5~ cde15 exp. vals
- cdc28 spline
— cdc15 spline

Figure 2.5 Alignment of genes for the cdc28DS to cdc15DS.

In this work, they used B-splines, a type of spline that is mathematically
convenient for data approximation. B-splines are described as a linear combination of
a set of basis polynomials. This approach has shown to be useful in many cases. It
considers heterogeneous data sets and gives the solution by Cubic spline algorithm.
However, their design is not suitable dealing with data sets need to be mapped by
semi-global alignment—one of the data sets is in fact only former or later part of

another. However, the EM algorithm nature they adopted in their approach let their

18



fitting process slower. And it is a shame that their statistically analysis did not cover

function annotation.

2.2.3 Aligning gene expression time series with time
warping algorithms [1]

Biological processes have the property that multiple instances of a single process may
unfold at different and possibly non-uniform rates in different organisms, strains,
individuals, or conditions. For instance, different individuals affected by a common
disease may progress at different and varying rates. Increasingly, biological processes
are being studied through time series of RNA expression data collected for large
numbers of genes. Because common processes may unfold at varying rates in
different experiments or individuals, methods are needed that will allow
corresponding expression states in different time series to be mapped to one another.
John Aach and George M. Church present implementations of time warping
algorithms applicable to RNA and protein expression data and demonstrate their

application to published yeast RNA expression time series.
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Figure 2.6 Time warping result.

They show time warping to be superior to simple clustering at mapping
corresponding time states. Depending on the domain of application, these might
include cell-specific parameters such as average cell size or physiological parameters
such as blood pressure or temperature. The relative contributions of such parameters
to alignment score calculations can be adjusted using feature weight parameters
already supported by the programs. The alignment programs can also be used not only
to align RNA and protein expression series individually, but series that combine both
RNA and protein data. Finally, the programs can also be applied to aligning
non-temporal series such as expression profiles for cells over a range of

concentrations of compounds (concentration warping).
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Chapter 3  Materials and Methods

3.1 Materials

3.1.1 Datebases

GEO: a curated, online resource for gene expression data browsing, query and
retrieval[14]. GEO contains 141678 sampling data, which provide us enormous
experimental gene expression profiles. See Figure 3.1. Each dataset is fully annotated
and completely normalized. But the comprehensive data collection, our gene function
predication can be supported by adequate experiments under all kinds of conditions

and treatments, which makes our predication more reliable.
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Figure 3.1 Web page of GEO. [http://www.ncbi.nlm.nih.gov/geo/]

GO: provides a controlled vocabulary to describe gene and gene product attributes in

any organism[15]. See Figure 3.2.
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Figure 3.2 Web page of GO. [http://www.geneontology.org/]

HomoloGene: a system for automated detection of homologs among the annotated

genes of several completely sequenced eukaryotic genomes. See Figure 3.3.
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Figure 3.3 Web page of homologene. [http://www.ncbi.nlm.nih.gov/HomoloGene/]

3.1.2 Data set of Experiments and results

We take three types of data to test the proposed scheme: artificial, homogeneous, and

heterogeneous data sets. We will discuss this in chapter result.

3.1.3 Date set of gene funcation predication

The microarray sample was fetched from NCBI GEO in order to be the materials of

FNCI[16] (a predication algorithm, we will discuss it in latter session) training and
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prediction. GEO stores many precious gene expression profiles. We took advantage of
GEQO’s comprehensive collection of published dataset, and extracted experiments
which consisted of several time points and are suitable to be compared with the time
series. Time series samples generated on Affymetrix GeneChip platform was
considered firstly. The samples of each time point are combined by averaging and
converting to log2 ratio by the mean of the expression level in all time point. That is,
for the gene G; in a profile with 7 time points T, Ty, ..., T7 and each time point have
two samples Eua, Eun, Et2a, Etob, ..., Et7a, Et7o. Next, we do the process of averaging,
converting to log2 ratio, and standardization as shown below. We arranged the

dataset as a matrix which represented as following Matrix.

Averaging:
7
A
A1 — (Etla + Etlb) — (EtZa + Eth) 'A‘1 — (Et7a + Et7b) . 'A‘1 — é “
1 2 112 2 1 U7 2 + M 1mean 7
Log? ratio: N, :Ig( Ay j N, :|9(ij N, = %LJ
Aimean Almean Almean
Standardization: S, _ Ny =N
0,
Tl T2 T7
Gl Sll SlZ S17
Matix: G, |S,, S, S,,
GS S31 SSZ S37
G4 S41 S42 S47

Experiment performed on human and mouse using Affymetrix GeneChips were
extracted from GEO and annotated their functional category by GO. We compiled the

entire GO (released at Dec. 2006) combining with our prediction and constructed the
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mapping relation of Gene symbol name between SwissProt ID (because part of the

data store in GO is specified by SwissProt) from SwissProt. By this, we can then

annotate the GO term to each gene, and calculate the p-value to suggest biological

significance of the occurrence of this GO term.

3.2

Methods overview

The flowchart of the scheme is presented below (Figure 3.4 ):
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|Mouse dataset ‘Human dataset

Preprocessing
Convert data to log2 ratio

Data standardization

Flat expression filtering

v

Ranking by single-gene distance
Use the “orfliolog —— Homologous gene linking

linkage’ provided by
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genes of different
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Figure 3.4

Omne-on-one dynamic time warping

}
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Singular value decomposition
1 K-means clustering
2nd K-means clustering

Group-dynamic time warping

expression profiles of
mouse and human from

GEO

Extract all time series gch

GEO GO

Use the information
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training dataset

system flow of the scheme

v

Annotations and statistics analysis

Fuzzy nearest cluster
Known / predicted GO term annotation
Hypergeometric testing

A 4

Visualization

TWins interface
Genesis output
grplhvarp output

A 4

Orthologous functional gene groups

The whole scheme consists of five components: preprocessing, ranking by

single-gene distance, finding orthologous gene groups, annotation and statistics

analysis and visualization.

The process first takes formatted human and mouse datasets as input. In
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preprocessing stage, the datasets are normalized, standardized, and filtered out genes
with flat expressions, which implies these genes are not response dynamically toward
the perturbation in the experiment along with time and therefore lack of referable
meanings in our time-series profile analysis.

After the preprocessing, the remaining genes in human and mouse datasets are
cross-species linked by ortholog linkage provide by Homologene database, which
builds the linkages based on the sequence similarity of genes among species. Each
linked gene pair is calculated its single-gene distance by dynamic time warping
algorithm. All gene pairs are ranked according to their distance. The scheme selects
top T gene pairs for further analysis, since these genes share both sequence and
expression similarity as responding to experimental perturbation.

Next, in order to further infer the functional roles among these genes, we group
these T genes into smaller clusters. Before doing so, we act singular value
decomposition to filter out the noise in expression. We don’t do SVD in preprocessing
stage for several reasons, which will be discussed in following chapters. Then,
Ki-means clustering was performed on one of the dataset (in this research, human),
and after that, the scheme acts second time K,-means clustering on another dataset
within each firstly-clustered group into even smaller clusters, which generates K;*K,
clusters. The scheme acts group-dynamic time warping to suggest unified warping
path of this group of genes pairs. Now, by above processes, the parallel essence in
sequence and expression among each group is sufficient to suggest that these groups
of genes play important roles in certain bioprocess, and conserve in evolution process.
In the fourth stage of the scheme, we try to suggest the functional roles of these gene
groups. By the help of GO, GEO and fuzzy nearest clustering algorithm, we can

annotate the known and predicted GO term of each gene. We use statistical testing to
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judge and recognize the candidate genes with biological significance and proposed the
inference that these genes play essential roles in certain bioprocess during the
evolution process.

In the end, to further visualize of result, the scheme which had been carefully
programmed will generate abundant and useful information of the results. The whole
scheme is embedded in our web sever TWins, and the output files can be fed in to

Genesis and grphwarp program for further visualization and analysis.

3.3 Algorithm

3.3.1 Dynamic Time Warping (DTW) algorithm

DTW (see figure 3.12), which is similar to the sequence alignment used in
computational biology, are firstly introduced in speech recognition. By compression
and expansion operations, multiple time points with calculated weight coefficient can
be aligned to a single time point. DTW considers the warping distance according to
the vectors in feature space, and the distance can be evaluated by simple Euclidean
distance, Pearson correlation coefficient, or more complicated functions in which the

distance is sensitive to position in the feature space[1].
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Figure 3.5 An illustration of DTW algorithm.

The basic idea of time warping is that replications of nominally the same trajectory

will trace out approximately the same curve (expression profiles pattern), but with

varying time patterns. To minimize the warping distance between two observed

profiles, a recursion to find the minimal distance is the main part of the calculation.

This program adopts conventional DTW, see the equation below, wherez , s are time

points, and a, b are the expression values of two time series:

ij

Diyia +T+T’u-‘ai —bj‘

Dil,j+%~‘ai—bj‘

Di,j_l+§-‘ai—bj‘
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Relative to the a series, a second time series b for a different instance of the

process may contain a set of time pointsz and x . The sample points may come from a

trajectory that traces through different regions of k-space or traces through the same
regions at different rates[1] (Figure 3.6 ). Simple time warping uses dynamic
programming to find the mapping between two series that minimizes a weighted sum
of the k-space distances between the corresponding sample points, subject to
constraints of order preservation and globality. The mapping identifies an optimal
time alignment of the two series. The task of finding it is set up as a dynamic
programming problem by placing the time points of each series along the axes of a
grid, representing alignments as paths through the grid cells, and finding the path with

minimum accumulated weighted distance score.

series b
]

series b

- 1 - . ./

0 1 2 3 4 5 ...
series a

Figure 3.6 Two time series in a two-dimensional feature space containing sample points
from a continuous process, with sample points of each series mapped to each other by
simple time warping.

The mappings of the optimal path identify places where multiple time points of
one series correspond to a single time point of the other. Where measurement time
intervals are comparable between the series, these may represent situations in which

the instance of the biological process measured by one series moves quickly through a
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phase of the process relative to the instance measured by the other series. We call
such situations compression/expressions and they are analogous to the insertion /
deletions considered in sequence alignment algorithms. Time warping algorithm maps
two time series in a way that compensates for varying relative rate differences in gene

expression levels moving along similar expression trajectories[17].

3.3.2 Singular value decomposition (SVD) and Clustering

approaches

SVD is a common technique for analysis of multivariate data, and gene expression
data are well suited to analysis using SVD. In the literature the number of components
that results from SVD is sometimes associated with the number of underlying
biological processes that give rise to the patterns in the data[18].

Let X denotes an mxn matrix of real-valued data and rank r. In the case of
microarray data, x;j is the expression level of the ith gene in the jth assay. The
elements of the ith row of X form the n-dimensional vector g;, which we refer to as
the transcriptional response of the ith gene. Alternatively, the elements of the jth
column of X form the m-dimensional vector a;, which we refer to as the expression
profile of the jth assay.

The equation for singular value decomposition of X is the following:

X =UsSV'
where U is an m x n matrix, S is an n x n diagonal matrix, and V' is also an nx n
matrix. The columns of U are called the left singular vectors (eigengenes), {ux}, and
form an orthonormal basis for the assay expression profiles, so that uj-u; = 1 for i = j,

and u;-u; = 0 otherwise. The rows of V' contain the elements of the right singular

31



vectors (eigenarrays), {vi}, and form an orthonormal basis for the gene transcriptional
responses. The elements of S are only nonzero on the diagonal, and are called the
singular values.

In systems biology applications, we generally wish to understand relations
among genes. The signal of interest in this case is the gene transcriptional response g;.

The SVD equation for g; is

r
k=1

which is a linear combination of the eigengenes {vk}.
SVD is a linear transformation of the expression data from the n-genes x
m-arrays space to the reduced r-eigenarrays X r-eigengenes space[19]. See Figure 3.7

for illustration.
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Figure 3.7 SVD for genome-scale expression data analysis.
[http://genome-www.stanford.edu/SVD/]

Relation to principal component analysis: There is a direct relation between PCA
and SVD in the case where principal components are calculated from the covariance
matrix. The matrix US then contains the principal component scores, which are the

coordinates of the genes in the space of principal components.
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Even though each component on its own may not necessarily be biologically
meaningful, SVD can aid in the search for biologically meaningful signals[18]. The
height of each singular value indicates its importance in explaining the data. More
specifically, the square of each singular value is proportional to the variance explained
by each singular vector. The relative variances are often plotted (See Figure 3.8). If
the original variables are linear combinations of a smaller number of underlying
variables, combined with some low-level noise, the plot will tend to drop sharply for
the singular values associated with the underlying variables and then much more
slowly for the remaining singular values. One approach is to ignore components
beyond where the cumulative relative variance or singular value becomes larger than a
certain threshold, usually defined upon the dimensionality of the data. Everitt and
Dunn[20] propose an alternate approach based on comparing the relative variance of
each component to 0.7/n[18]. By normalizing the data and filtering out those
eigengens and eigenarrays (i.e. substituting zero for the singular value lower than
0.7/n) that are inferred to represent noise or experimental artifacts, SVD can

reconstruct the original data as a matrix which contain only significant signals
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Figure 3.8 Visualization of the SVD of cell cycle data. (a) Plots of relative variance; (b)
the first eignegen is shown; (c) the second eignegene is shown. (d) The third eigengen
lacks the obvious cyclic structure of the first and second.[18]

K-means clustering takes the matrix as input and genes are grouped according to
the value in the row they represented. In our experiment we took Pearson correlation

distance to evaluate how close two genes are.

3.3.3 Guilt-by-association (GBA) principle

GBA infers uncategorized items by the close similarity to known items which can be
judged by evaluating the distance[21]. GBA principle is widely applied in biological
function prediction and candidate gene discovery. In gene expression profile analysis,
uncategorized genes can be grouped together with known genes by the distance or the

correlation of their expression pattern.
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3.3.4 Fuzzy Nearest-Cluster (FNC)[21]

FNC utilizes the advantages of both clustering and classification. It contains two parts:
(1) mining by unsupervised approach, hierarchical clustering algorithm; (2) prediction
category of unclassified items by classification methods using GBA principle. See Fig.

3.9.

Gene a
Cell cyele
: ]
°
Gene b
(Unknown)
® o i
® ® y A ;
® » Hierarchical clustering
Gene n SR o i3 S
) Intracellnlar GBA principle classification

Every gene are annotated with GO term

Figure 3.9 The system flow of FNC.

Figure 3.10 and 3.11 details the clustering algorithm for mining step. In the
algorithm, the FNC focuses on grouping gene expression profiles, in order to mining

co-expressed subgroups within a functional class.
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Hierarchical clustering

Fuse gene clusters until (1-C.C.) > A
where A 18 generated by EM algorithm

Function 1

Cluster 1A Cluster 1B Cluster 1C

Figure 3.10  Algorithm of mining co-expressed subgroups within each function.

Input: Training gene set G and function set F

Qutput: Cluster set C; for each function f;

1: BEGIN

9: while (sim(C,,, C,) = 1) do

fin!
2:for each function fe F do 10: Combine C,,, and C,, into a bigger cluster C,;

3: Construct gene set G, = {g | fun(g) = f;, ge G} 11: Calculate the expression profile for C,, by averaging
the gene profiles of C,,, and C,

i m;
4: for each pair of gene (g, g,). 8,€G;, g€ G, a=b, do 12:C,= C,U {Cy:

5: Compute the similarity sim(g, g,); 13:C,= G- {Cyn} - {Co i

6: end for 14: Find the two new clusters C,, and C,, with maximal
7: Initialize cluster set C;= {Cy| C; = {g},8€Csj=1,2,. similarity in updated cluster set C;, C,,,, Ci e Cy

|Gl . i
15: end while

8: Find the two clusters C;,, and C;, with maximal similar-

. " 16: end for
ity,

) 17: END
(Cim Ci) =arg max sim(Cy, Cy), G Cpe G

Cm 'Cib ]

Figure 3.11  Pseudo code of mining co-expressed subgroups.

When the subgroups of each function are classified, each function-unknown gene
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would be predicted its function according to fuzzy k-nearest clusters algorithm

described in figure 3.12 and 3.13.

Function 3

Cluster 3A  Cluster 3B Cluster 3C

\)/

|

Function 2

Cluster 2A  Cluster 2B Cluster 2C

Function 1

Cluster 1A Cluster 1B Cluster 1C

Unknown-function gene — >  GBA principle classification

Assign the function with top similarity

Figure 3.12  Algorithm of fuzzy k-nearest clusters for functional prediction.

Input: Test gene set T, Cluster set C; for each function f;

Output: gene's predicted functions
k

1: BEGIN 7: fs; =, 5(8¢,Cim)/ k.Cim € Cigp;
m=1
2: for each test gene g, T do
8: end for

3: for each function fie Fdo

9:Rankfs,i=1,2,...,|F;
4: Compute the cluster similarity ss(g, C;) between the
test gene g, and each cluster C; in cluster set Gy 10: Assign the functions with the top fs; to gene g;;
5: Suppose cluster Cy is the cluster whose cluster similarity

is k-th largest in cluster set C; 11: end for

. 12: END
6: Gy = {Gy| s5(g, Cy) 2 ss(gt, Cy), Cye G j=1,2,..,

|Gil}:

Figure 3.13  Pseudo code of fuzzy k-nearest clusters for functional prediction.

FNC had shown to be more competent than the existing techniques in ranking the
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true functional classes in its top-ranked perditions. The classification results in listed

in Table 3.1.

Table 3.1 Classification result (%) for largest 20 functional classes. Values in bold
indicate the top performance in each row.

Functional Class FNC KNN L-SYM RBF-SYM

Mitochondrion 739 783 57.2 78.7
Cytoskeleton 69.7 74.7 46.7 61.3
Nucleotide metabolism 39.4 333 259 381
Protein targeting, sorting and translocation 58.6 48.6 40.0 477
Protein degradation 542 54.6 386 542
Cell growth/morphogenesis 67.5 68.7 44.4 59.7
Lipid, facty acid and isoprenoid metabolism 31.5 29.9 29.3 34.4
Stress response 57.2 58.7 36.9 55.0
Amine acid metabolism 53.1 436 41.0 57.3
Cellular sensing and response 63.1 627 47.8 56.8
Protein modification 44.1 395 353 47.3
Ribosome biogenesis 90.0 94.5 84.8 94.1
RNA processing 50.7 48.4 3.6 477
DNA processing 71.0 63.1 395 647
Transported compounds 73.8 60.4 368 687
Fungal/microorganismic cell type differentiation 735 76.2 45.6 66.0
C-compound and carbohydrate metabolism 76.3 63.9 41.2 69.7
Cell cycle 86.5 79.1 44.3 76.0
RMNA synthesis 83.1 64.3 33.7 66.5
Transport routes 88.3 721 41.4 66.1

Average 65.27 60.72 42.10 60.51

3.4 Methods

In this section we will disclose the proposed scheme in five steps.

3.4.1 Preprocessing

File format description: The applicable file format consists of three parts:
experiment name, time periods, and expression data with gene symbol. Experment
name needs to be notified by a ">" at the beginning of the first line. Time periods
should start with "Gene" and follow with time points, which are separated by tab.
Next, each line of the expression data are named by its gene symbol as the beginning
of the line, and followed by corresponding time-series expression data separated by
tab. gene symbol name can be substituted by any other 1D, however, any other type of
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gene name will not be able to map to gene ontology category defined by GO.

Experiment name — »mous
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LA WL e L e e h P - I e - | e F Py Wb P Ty
. . HEAC] LAlIA4ARGZ .1 00493383 .L0OS031540 .1 MTHIA8  J03E5690048

TI.IL'I.E pﬁ‘lﬂd ME 0 A0 5653 048006777 0335060
AHCY 1716578670 1023960128 70
RASLL? 0 AS005266T
IEYNAL 147 i 05784313 [ 34THMEST
HEE] 2054804584 1K 506 | A20031686 | 2M4MA0A2
CAV] 13236144285 0991109646 0313603058 0445580607

Gene symbaol CAVZ 20404259 1138139006 0916330985  L0.7IS669
|AME 1.1 754 1851 LoARPOG0ET .|, G0SE1 204 03] 3784
KTNL LBZ764 1095 DATHSIETT  0.5M0EES4 Y
LPL 2000023085 .8 255 | 229060665 0,]64360060
DH 1540446613 | FASEHEADE. 0361900297
= il 1100328618 1310215515 QuUSTSSLSER
FAFAHIE3 [ BGEN44] 35 -I_r-'r.|l'||l'.‘.‘-f. QEIITISA48 e LR
MYLI 0541491973 1142756457 i
FTEF] 0419103805 LOISE43LTT 01,1301 0454
PYGL 0.£54743775 L.TI5027549
FHODH i 1091272913 0 59060
ITFER T ] e U S e s

Figure 3.14  Input file format.

Convert data to log2 ratio: When the formatted data set is inputted to the system, it
will be converted to log2 ratio according to the mean expression of each row. Please
see 3.1.3 for details.

Data standardization: Since our algorithm considers Euclidean distance as our
distance function, each profile should therefore be standardized, or the distance will
be affected by the expression level of profile, and the trend of pattern will be missing
or ignore by the algorithm. In statistics, a standard score (also called z-score or normal
score) is a dimensionless quantity derived by subtracting the population mean from an
individual (raw) score and then dividing the difference by the population standard
deviation. The z-score reveals how many units of the standard deviation a case is
above or below the mean. So, by standardization, the pattern will be substitute to a
trend according to original mean, which is suitable for our Euclidean distance

function.
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Flat expression filtering: A level expression pattern is not helpful throughout our
analysis, since this kind of pattern reveals no information of differential expression,
which hinders our time warping algorithm to distinguish the warping path and
following warping distance. So before entering next stage that performing time
warping algorithm, flat expression should be filtered.

We denote a flat expressed gene as the gene of which expression in each time points
is oscillating in the range of 1.3*(mean of the expression in all samples) and
0.7*(mean of the expression in all samples). In other word, if there are more than one
expression of all time points higher than the upper bound or lower than the lower
bound, this gene will be retained and submitted to next stage. (We do not perform
noise filtering in this stage for several reasons. We will disclose them in discussion

chapter.)

3.4.2 Ranking by single-gene distance

For the reason that we are finding genes that share both sequence- and
expression-level similarity, we have to select genes linked by sequence homology and
with relatively low distance which implies their expression pattern is similar to
achieve our requirement.

Homologous gene linking: One means of searching orthologous gene-expression
profile in multi-species models we refer to is proposed by Grigoryev et al. in 2004[11].
Although their research is not suitable for time series expression profiling which is
strongly influenced by cell growth rate, their idea to associate genes of multi-species
Is examined to be very useful. Grigoryev used ortholog links which are identified by
RESOURCERER[12, 22] between the most commonly used Affymetrix rat, mouse,

and human GeneChips for multi-species cross-platform gene-expression analysis to
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build the linkage of different species. NCBI Homologene is also competent providing

gene linkage between species.

Species A Species B

Group 1

Group 2

Group 3 _Gene linkage:

Group 4

Group 5

Figure 3.15  Build the gene linkage between each gene of groups and the gene of another
species.

Since each Affymetrix GeneChip has full annotation, the gene symbol of the probe
set is indicated. NCBI Homologene provides great mapping information of gene
symbols of different organisms. Homologene built the mapping relationship according
to their homology on sequence level. Since genes with similar sequence probably
share similar role of biochemical functions, combining sequence homology and
expression profiles to suggest their common functions is intuitionally more reliable.

After the linkage is constructed, each gene can be mapped with its corresponding gene
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of another species (see Figure 3.15 ). Next, we perform single gene time warping to
calculate and rank the warping distance to tell the genes with similar expression
pattern.

One-on-one dynamic time warping: When the expression profile are sampled every
single hour from normal cells of human and mouse, the different growth rate affected
the profiling which make direct one-on-one mapping unreliable. Aach’s research[1]
indicated even in the same processes the unfold rates of different experiments or
individuals are different. Dynamic time warping (DTW) algorithms are proposed to
make different time series to be comparable by finding their corresponding expression
states. When two time series expressed in the same pattern however in different rate,
DTW is able to find the optimal warping path which aligns two time series yielding
shortest distance.

Therefore, we leverage the advantage of the DTW to estimate how close two genes
are considering their time difference. By doing so, we can rank all genes by their
warping distance. The top ranking genes show relatively resembling expression,
which means these genes are both sequence and expression analogical.

After collecting these genes, we are going further to specify their function. This

entails the helps of following two stages.

3.4.3 Finding orthologous gene groups

Orthologous genes are likely to share similar pattern of expression. The co-expressed
genes can be inferred to be coding for proteins that partake in common biological
function[21]. We therefore find the gene cluster that share parallel expression pattern
by unsupervised learning approach, which assumes no prior knowledge about the

prospective candidate genes.
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Singular value decomposition (noise filtering): Before been grouped, SVD was
performed to normalize the data by filtering out the eigengenes and eigenarrays that
are inferred to represent noise or experimental artifacts enables meaningful
comparison of the expression of different genes across different arrays in different
experiments. However, SVD has its mathematical limitation; we will discuss this in
chapter discussion. SVD filters eigengenes of which relative variance lower than 0.7/n
(n is the number of time points) and recombines the matrix again. After SVD, we will
retain only significant information which contains less noise. Expression profile

without observable noise can lead to better clustering result. See Figure 3.16 .
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Figure 3.16  The flow chart of stage Finding Orthougous Gene Groups.

The challenge we faced next is how to determine which group of genes has the
common expression among both species. Although each of them has already shown
good expression resemblance, it is not guarantee that all of the genes share parallel

pattern. Moreover, we have to cluster genes two times according to both species
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which can assure the groups we found are conserved in both species.

1% K-means clustering: There are numerous techniques can be used for searching
co-expression gene cluster, for example, hierarchical clustering, k-means clustering,
diametrical clustering, etc. These unsupervised learning methods are especially useful
when we try to search candidate genes from huge amounts of genes expression, such
as genome-wide microarray, since the entire gene reaction toward the conditions,
treatments, development stages are not yet completely understood. We decide to use
K-means clustering in our scheme. See Figure 3.17 (a), we groups gene in species A
(in our case, human). By this, human genes in the same group show great pattern
homology, however, not in mouse, which can be solved by doing 2" K-means
clustering.

2" K-means clustering: We perform K-means clustering algorithm again on linked
genes belongs to another species (in this case, mouse) and therefore divided the
groups, which were firstly grouped and linked, into more specific and conserved parts

(see Figure 3.17 (b)).
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a. Species A Species B

. . Gene Iinkage , .
Grouped by clustering Selected by gene linkage

Species A Species B

Figure 3.17  (a) Group the genes in species A to find genes share similar expression
pattern and select the genes in species B by the mappings according to gene linkage. (b)
For each group of genes found in (a), perform clustering again on species B in order to
divide the selected genes of species B into smaller groups which share resembling
pattern. Then follow the gene linkage again to re-construct the relationship.

Group-dynamic time warping: When genes are grouped into ki;*k, clusters by
clustering technique, the next step is to discover the same expression pattern among
multi species. After grouping genes, each group of gene is regarded as a pair (see
Figure 3.18 ). Take all of the pairs as the input of group-DTW algorithm and rank
each pair with their warping distance. The concept is similar to one-on-one DTW,
however this time we are doing group-DTW, which align two groups of genes. Two
groups of genes, each group belong to a species, if there expression profiles are
followed certain rules or patterns, even though their sampling time points and growth
rate are different, DTW would consider all the time points alignment possibility and

let two time series comparable by the best warping path. According to the information
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provides by DTW, we can figure out which group of genes shows better orthologous

expression.

Gene linkage

Pair

Figure 3.18  Pair contains two set of genes associated by gene linkage. Each set belongs to
a species and builds the corresponding relation by gene linkage.

Next, we are going to assign functions to these groups of genes.

3.4.4 Annotations and statistics analysis

Although in some situations, biologists already know a subset of genes involved in
certain biological pathway of interest; however, as shown in Yi’s research[23], the
gene annotated with GO terms[15] ranging from 25.1% in Danio rerio to 96.2% in
Saccharomyces cerevisiae, also, the gene annotations by MIPS[24] or Biomax is
ranging from 44.3% in Thermoplasma acidophilum to 73.1% in Bacillus subtilis
168[25], the functional roles of each gene are not thoroughly studied. So, we are not
supposed to only focus on these annotated genes. Many useful approaches show great
accuracy when predicting gene functions. Scientists use hierarchical clustering,
Hidden Markov models, SVM, FNC, and so on, to predict the functions of genes.

Fuzzy nearest cluster: We chose FNC to be the prediction approach of our scheme,
since it combines both clustering and classification and display great prediction

accuracy. We use FNC to predict gene functions on both species. Every GDS
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Affymatrix gene chip data set of human and mouse is fetched from GEO and
processed (please see 3.1.3). We search each genes in GO to know their functional
term. Any gene without GO term will be predicted by FNC throughout thousands of
experimental data set. The final predication will count on the voting of these
thousands data set. Top three GO terms will be annotated to this gene.

By doing functional predication in human and mouse, we are now having the ability
to annotate and analyze the orthologous gene group found by previous steps.
Known/predicted GO term annotation: Now, genes in each cluster, which share
both sequence and expression similarity can be annotated by known GO term and
predicted GO term by FNC. We have know that the co-expressed genes can be
inferred to be coding for proteins that partake in common biological function. It is
important to understand that these genes are not just co-expressed, they also
conserved in sequence and expression in evolution path. By the annotation, we can
infer the functions of orthologous gene groups according to the statistical test, which
makes the inference more reliable and promising.

Hypergeometric testing: To examine the biological significance of the pairs
(ortholgous gene groups); the known and predicted GO term annotation is take into

account. Genes will be calculated the p-value of GO terms by hypergeometric

[0

In this equation, N is the total number of gene product [15] of platform species,

distribution:

1
i=0

can be regarded as background. M is the number of genes within the background

which are annotated to interested GO term. n is the number of genes within the same

47



specified group.
A pair with relatively low p-value implies that these genes gathering together
shows significant biological meanings, which suggest that the function of this group is

annotated by this specific GO term.

3.4.5 Visualization

In order to provide better understanding and analysis of the results, we design a web
sever and implement several useful functions in our program package. We generate
many kinds of files containing useful information, including warping path, expression
level plot, p-value, and so on. The package gives many delicate illustrations (Figure
3.19 ). We also demonstrate great ability leveraging other tools, like Genesis and

grphwarp by generating files for the software.
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Figure 3.19  (a) Warping path display. (b) Another way to understand warping path. (¢) An
overview containing profile patterns and the expression level.
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Chapter4  Implementation

This scheme is developed carefully into a package containing binary and source code,

which is easy to reconstruct in all platform. This package is available on our website.

4.1 Database

All of the data retrieved from public domain, are reconstructed and organized in sever

and manage by MySQL database system.

4.1.1 GEO dataset

We fetched the whole dataset from GEO, including 1790 human dataset and 1623
mouse dataset and 5519 dataset for all species. Our GEO database schema is

described in figure 4.1.
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Figure 4.1 Database scheme of mirror GEO.

The program assesses each expression profile by querying mysql database with
statement that specified its GDS ID storing in attribute sample_id of data_set. By this
schema, FNC can easily scan through every entry in GEO dataset. Each expression

profile are formatted and standardized during the process of FNC and Time warping.

4.1.2 GO dataset

GO had already provided organized database dumping file for users to download and
import to their servers. In our scheme, we focused on the GO term at the level of four
including cell-cycle category, since cell-cycle category is also defined in MIPS, which

let our prediction comparable to other approaches.
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4.1.3 Homologene dataset

Homologene database curated mapping information between genes of different
species. The linkage information of human and mouse is presented in the form of text

file, which can be easily access by file 1/0 operation in computer language.

4.2  Implementation of time warping

421 DTW core

The core program of DTW is adapted from BTW (Boltzmann Time Warping) web
server. We take off the Boltzmann pair probabilities estimation sub-routine and
maintaining group and one-on-one DTW algorithm in it. DTW is implement like
sequence alignment considering weight function according to time periods. We also
implement the semi-global alignment algorithm into the core, which just is a

modification of normal DTW with different initiation condition. See Figure 4.2.

WM A H%\/{\{ AT

GDS2577_reg GDS2577_dev \

Mus+musculus Mus+musculus

15 genes 153 genes

Figure 4.2 Demonstration of semi-global DTW.

However, because of the dynamic programming nature of the algorithm, the
distance function should be able to be calculated in this means (dynamic
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programming). We will discuss this in next section.

4.2.2 Group-Euclidean distance function

Considering original formula of Euclidean distance function, and there are two

vectors, A (ai, a,, as, az) and B (by, by, bs, by), the distance between A and B

IS /Z(bi —a,)° . However, this sort of formula is not suit for dynamic programming

nature of DTW algorithm. The formula should be modified aszw/(bi —a)%. Itis

obvious that the distance is no longer Euclidean distance. However, in single-gene

warping, this is not a problem, if we do not sparing the distance when calculating

single gene distance, soZ(bi -a,)* :Z(bi —a;)*. This problem can be more serious

when calculating group-Euclidean distance. That is, the distance function design for

DTW has its limitation; we will discuss this in chapter discussion.

4.3 Implementation of SVD

4.3.1 SVD core

The function doing SVD is based on a routine by Forsythe et al., which is in turn
based on the original routine of Golub and Reinsch[26], found, in various forms, in
Wilkinson and Reinsch, in LINPACK, and elsewhere. These references include
extensive discussion of the algorithm used. In our implementation, the parameter of
the function is adapted to our specific usage.

SVD is a series of matrix operations. Here, we take a low-dimension example as
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our demonstration materials. Consider matrix A = . The first step doing

0

=)
1
=

SVD is computing the eigenvalue of matrix ATA. So we implement three matrix
operations: transpose, multiplex, and Gauss-Jordan elimination (containing
elementary row operations) to complete this step. In this example, we got three

eigenvalue of ATA, 1:=3, 1, = 3, and 13 = 3. Therefore, matrix A has singular

value o 1= = , 02 = ,ando 3 = . S0, we got matrix S =
! V3 V3, and V3. s ix S

J3 0 0
3 0
0 3 . With the information of eigenvalue, we can compute
0 0 3
o 0 O

corresponding eigenvectors V( 1) which are the basis of ker(ATA- 1.). In our example,

<
I
o o -

00
1 0]. Next, the most complicate part is computing matrix U, since u; =
01

1 . . . .
— A v;, we still only need mutiplex operation to solve this part. Here, u;=
0y

ot 55l o -

Because we only have three singular values, but U has four dimension in this case, so
we need to compute an additional orthonormal basis. In our implementation, a simple
Gauss-Jordan elimination can help to generate a solution; remember that this basis is
not unique. By these operations, SVD can be done in polynomial time.

An expression profile which had been normalized and standardized is taken as input,
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and the diagonal matrix S is the only thing we concern in following step doing noise

filtering.

4.3.2 Noise reduction

The diagonal values of S make up the singular value spectrum. The height of any one
singular value is indicative of its importance in explaining the data. More specifically,
the square of each singular value is proportional to the variance explained by each
singular vector. The relative variances are often plotted. The approach we used is

proposed by Everitt and Dunn, the approach based on comparing the relative variance

Skz(ZSiz)'1 of each component to 0.7/n, where n is the number of time point of the

expression profile.
The S matrix outputted by our SVD function, was calculated the relative variance

and filter out any eigengene with relative variance lower than 0.7/n.

4.4  Implementation of FNC

All of the programs are developed under Linux system using C++ with STD library.
The program automatically fetched human expression profile one at a time, and FNC
on it. The prediction results were stored and summed up, after thousands of prediction
on the same genes but different samples, we can get a more reliable result of the

function predication.

4.4.1 Mining by unsupervised approach

The algorithm of this part is described in previous chapter. We maintained a class to
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store entire expression profile, which includes also kind of operations, such as
standardization and normalization. We leveraged the function in Cluster3[27] to do
the hierarchical clustering according to known genes’ GO annotations and prune the
edges between clusters, of which have relatively low correlations to other clusters just

like the algorithm says.

4.4.2 Predicting category by classification methods

When each GDS profile has been processed by the approach described in last section,
the program will maintain a cluster profile to represent the average expression pattern
of each cluster of each GO term.

Expression profiles of unknown-function genes are read and calculate the Pearson
Correlation with every average expression pattern of each cluster of all functions.

Correlation coefficient higher than A will be recorded and summed up after all 1790

dataset were predicted by FNC. The top 3 predicted functions of each gene will be

regarded as the final prediction of the FNC.

4.5  Statistical analysis

4.5.1 Hypergeometric testing

The routine calculating p-value of hyergeometric testing is implemented based on
binomial coefficient subroutine and garmma function. Since the factorial function
used in binomial coefficient subroutine is just a gamma function but offset by one. By
gamma function, the time complexity computing binomial coefficient is reduced to

O(n).
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In hypergeometric formula shown above, N is now the total number of genes with
known and predicted function, M is the number of genes including predicted genes
which are annotated to interested GO term. n is the number of genes within the group.
By doing so, the p-value can demonstrate the biological significance of this GO term

in the group.

4.6  Implementation of visualization

4.6.1 GD library[28]

GD library is a C language library providing convenient function generating graph
according to common file formatted, like JPEG and GIF. By the help of GD library,
our package can directly generate graphs to demonstrate simple clustering and

warping result.

4.6.2 Genesis and graphwarp

Genesis and graphwarp provide even more information about the clustering, and
support more analysis. Our package generate corresponding file format for these two

programs. The result is shown in Figure 4.3.
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Chapter5  Results

In this chapter, we will demonstrate the ability of our scheme by both artificial and
real data sets and tabulate the predication of FNC in following sections. The real data
set contains both homogeneous (both yeast) and heterogeneous (human and mouse)

data set.

5.1 Artificial data set

Before we perform our scheme on real experiments, we design a series of artificial
expression data to test the essential functions of our package. In our first experiment,
we artificially generate three kinds of patterns, see Figure 5.1, the first and second
pattern is strictly increasing and strictly decreasing pattern respectively. The third one,
we simulate a cell-cycle-regulation-like pattern including two cell cycles (two peaks,
in order words). Each of them contains only single pattern and 100 genes. In these
three cases, all of them display great performance in our algorithm.

Next, we compare a special case of the third pattern, we eliminate second time
points in each peak, which demonstrate a phenomenon of early entering each S stage
(we assume that genes are regulated and highly expressed in this stage), and call it
pattern mutant-three (Figure 5.2).

Furthermore, pattern mutant-three is compared with pattern three by our scheme,
you can see the DTW capture this kind of time shift and present their warping path
suggesting that the sampling time in these two time point should be adjusted or

modified.
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Figure 5.1 Results of (a) pattern one (increasing) (b) pattern two (decreasing) (c) pattern
three (two peaks)

Also, if we enable the noise reduction by SVD, you can observe easily that the
deviation of expression is dramatically reduced. Although the deviation is a random
artifact that we generate on purposed, this demonstration shows how good the SVD

can do in noise reduction. See Figure 5.2 (b)
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Figure 5.2 (a) Results show a time shift in the beginning of each peak. (b) SVD filters
lots of noise.

Finally, we try more complicate data sets, which are composed by two patterns.
See Figure 5.3 (a), we denote two data sets, one is data set A, composed by pattern
three (cell-cycle-like) and pattern one (strictly increasing), another one is data set B,
consisting of a “V” pattern (pattern four), which is similar to the valley between the
peaks in pattern three, and pattern one. We set our k=2, and enable semi-global
alignment, and hope our system can capture all these difference.

As we expected, the scheme shows great result again, these two patterns are
separate automatically (see Figure 5.3 (a)), and semi-global alignment DTW

successfully map the “V” pattern to the valley.
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Figure 5.3 (a) Results of mixed patterns. (b) semi-global DTW works well in this case.

These simple artificial data sets, although not covering every patterns in gene
expression, has already testified the ability of our core algorithms, DTW, SVD, and
k-means clustering.

In the next section, we will try our scheme on a homogeneous data set and
considering the whole process we proposed, including the five stages we described in

former chapter.

5.2 Yeast data set

The yeast data set is fetch from GDS2318 (yhpl double mutant across two cell cycles)
and GDS2347 (wild type). Comparing these two data sets provides insight into the

role of Yox1 and Yhpl in early cell cycle box-dependent transcription. We analysis
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them by our package, we choose top 500 genes in single-gene distance ranking, and

set K1= K2=4.
(a) (b)
i
e | A i _/ Y. 10 0N | . T . o 7'/ THaN v/ Ry wa
Figure 5.4 Gene clustering of (a) normal Yeast cell, and (b) knock-out Yeast.

Each corresponding cluster shows almost parallel pattern without any time shifting.
However, although we have discovered the same changes of cell-cycle in gene
CDC20 described in literature (see Figure 5.5), most of the genes are still unaffected
toward the knockout of Yox1 and Yhp1l. In our analysis, knockout of Yox1 and Yhpl
do affect and regulate some genes, however do not change general cell cycle. It
maybe due to other secondary regulation mechanism provoked and worked as rescue

and therefore the general cell cycle are not changed.
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Figure 5.5 CDC20 shows time shift in knockout yeast.

Here, we have show the proposed scheme work well in homogeneous data sets.
Next, which is our major purpose, we will discuss the performance when analyzing

heterogeneous data sets such as experiments crossed human and mouse.

5.3 Human and mouse fetal liver data set

The data sets of human and mouse fetal liver is sampled through the development
from embryonic to birth stage, contributed by Dr.Wang, Chang Gung memorial
Hospital.

Development stages mapping between human and mouse is crucial in discovering
the development mechanism conserved in both species. However, the cell growth rate
is extremely different in this situation, so this is a great material for our scheme. We
pick top 500 genes in single-gene ranking, and choose K1 =5, and K2=4.

We list these fifteen orthologous functional gene groups with their expression profiles,
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warping path, and GO annotation.

Figure 5.6 Left: Gene clustering of mouse. Right: Gene clustering of human

We at first examine the grouping result by Genesis. Most of the groups show
similar expression pattern. Although the results are not as good as previous

experiments, however, it has demonstrated great ability finding orthologous functional

gene groups in cross-species model.
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Figure 5.7 Result of un-SVD(right) genes comparing to genes with SVD(left).

In Figure 5.7, we demonstrate again the effects of SVD. If we do not enable SVD
in our system, this cluster will still be gathered together (103 genes overlapped with
genes in the cluster with SVD), however, you can see the deviation of expression is

reduced and therefore being easier in interpreting the pattern.
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Figure 5.8 Case 1: genes highly expressed in early stages.

UBADC

We will discuss two clusters that display shortest warping distance and good
statistical significance. Before that, we can observe in twenty clusters that all of the
warping paths suggest samplings should be extended in the beginning and the end of

the human data set. In this cluster, containing 78 genes, GO terms (see table 5.1.) that
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show great biological significance (p-value < 0.001) are focusing on
cell-generation-related functions. We can infer that these genes which are highly
expressed in the early stages of development play important role in increasing the
quantity of cells in liver. Their functions include cell division (11.54%) and cytoplasm
(12.82%), which show many cells are generated. Also, cell cycle and DNA binding
and response to DNA damage stimulus are all highly associated with this inference.
Therefore, by this evidence, this functional gene cluster is highly reliable and

convincing that it is an orthologous gene cluster.

Table 5.1 GO term with high biological significance in case 1.

Rank GO term probability p-value

1 cellcycle 16.03% 6.49E-13
2 cell division 11.54% 2.09E-12
®  DNAbinding 15.38% 3.66E-06
4 cytoplasm 12.82% 5.07E-06
5

response to DNA damage stimulus 3.85% 0.000147

Then, we try to interpret the information gives in second cluster. Genes in this
cluster are highly expressed in the late stage of development. What draws one’s
attention is that GO terms (see table 5.2.) are suggesting differentiation and
biosynthesis related functions, which implies liver is now activating and more
specified in these stages. Their functions include endothelial and epithelial cell

differentiation (around 5.5%), which show blood vassals are now developed. Also,

biosynthesis (4.63%) means the blood starts to circulate in the liver and the liver start

to trigger its functions in biosynthesis.
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Figure 5.9 Case 2: genes highly expressed in later stages.

Table 5.2 GO term with high biological significance in case 2.

TENGL
GALNAC4S-BST
PP

TNFAIPL
PROXL

VEGF

SPTENL

UNC 136
TLEL
RABZ0
LRPS
CTEE
BHLHBZ
RABGIPL
NCALD
SREHL

coo1
CziorFill

Rank GO term

probability

p-value

L cell proliferation

12.04%

2.15E-06

cytoplasm

17.59%

5.41E-06

DNA binding

18.52%

2.44E-05

biosynthesis

4.63%

4.89E-05

endothelial cell differentiation

1.85%

0.000147619

epithelial cell differentiation

3.70%

0.000150824

transcription corepressor activity 3.70%

0.000321868

calmodulin binding

4.63%

0.000858941
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There are another cluster intriguing our notices, Genes in case 3 (see Figure 5.10),
which are highly expressed latter than genes in case 2 display biological significance
(see Table 5.3) in extracellular space (23.61%), membrane (41.66%), and immune
response (13.88%). It can be infer that after liver started to trigger their biosynthesis
function and bloods began to circulate in liver, the liver are now busy in outer cell
signal transduction involving membrane proteins and extracellular space and

developing immune system in liver.
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Figure 5.10  Case 3: genes highly expressed later than genes in case 2.

36 genes 36 genes
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Table 5.3 GO term with high biological significance in case 3.

Rank GO term probability p-value
1 extracellular space 0.236111 1.64E-07
2 proteasome core complex (sensu Eukaryota) 0.055556 1.26E-05
*  immune response 0.138889 2.31E-05
* membrane 0.416667 8.11E-05
> collagen 0.055556 0.000281
6  extracellular matrix structural constituent 0.027778 0.000912

conferring tensile strength

By these case studies, it exhibits great performance in analyzing heterogeneous data

sets and suggesting reliable functions to orthologous gene groups found.

5.4

Gene function prediction

This section presents the predication result of FNC, and we will discuss the result in

chapter discussion.

To verify the prediction accuracy, we design a 10-fold cross-validation on GO term

cell cycle from 1006 human data sets. The average accuracy is 76.47%. Although it is

lower than the performance in Yeast, FNC still shows good predication ability.
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Yeast data set Functional Class FNC KNN L-SVYM RBF-SYM

Micochondrion 739 783 572 78.7
Cytoskeleton 69.7 74.7 46.7 61.3
Nucleotide metabolism 39.4 333 259 38.1
Protein targeting, sorting and translocation 58.6 486 40.0 477
Protein degradation 54.2 54.6 38.6 54.2
Cell growth/morphogenesis 675 68.7 44.4 597
Lipid, fatty acid and isoprenoid metabolism 315 299 293 344
Stress response 57.2 58.7 36.9 55.0
Amine acid metabelism 53.1 436 41.0 57.3
Cellular sensing and response 63.1 627 47.8 56.8
Protein medification 44.1 39.5 353 47.3
Ribosome biogenesis 90.0 94.5 848 94.1
RNA processing 50.7 48.4 3.6 477
DNA processing 71.0 63.1 395 647
Transported compounds 73.8 60.4 368 687
Fungal/microorganismic cell type differentiation 735 76.2 45.6 66.0
C-compound and carbohydrate matabolism 76.3 639 41.2 697
[Corgce 86.5 | 79.1 443 76.0
RMNA synthesis 83.1 64.3 337 66.5
Transport routes 88.3 721 41.4 66.1
Average 65.27 60.72 42.10 60.31

Figure 5.11  \rified the prediction accuracy of FNC in human.

5.4.1 Human gene prediction

We utilize FNC to predict the functions of each function-unknown gene on 1006
human data sets fetch from GEO. The predication result is helpful when we annotate

and infer the function of the cluster we found. Please see table 5.3, 5.4.

Table 5.4 GO term predicted in human.

#ofgene #ofgene Rank

Rank GO name (predicted) (predicted) (known)  (know)
1 response to drug 2405 26 115
2 eukaryotic translation initiation factor 3 complex 1790 12 193
3 translation factor activity, nucleic acid binding 1691 10 218
4 cholesterol homeostasis 1679 10 218
5 cytokine binding 1552 9 236
6 response to oxidative stress 1518 94 48
7 pregnancy 1371 63 66
8 oligopeptide transporter activity 1367 6 297
9 cytoskeletal protein binding 1218 33 101
10 activin receptor complex 1126 2 428

Table 5.5 Known GO term in human.
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#of gene  # of gene Rank

RES (IO MENS () (known) (predicted) (predicted)

1 membrane 4668 75 99
2 metal ion binding 2217 688 21
3 signal transduction 2081 6 307
4 intracellular 1640 873 16
5 cytoplasm 1548 7 294
6 DNA binding 1084 341 36
7 transport 1048 1367 8

8 cell cycle 1006 1 443
9 plasma membrane 753 158 62
10 immune response 733 84 91

5.4.2 Mouse gene prediction

Since this paper is focusing on human and mouse, we perform FNC on mouse data

sets (1133) from GDS as well. Please see table 5.5, 5.6.

Table 5.6 GO term predicted in mouse.

. # of gene # of gene Rank
Rank GO name (predicted) (predicted)  (known) (know)
1 . 846 82 52
receptor binding
2 . 720 9 216
learning and/or memory
3 ATPase stimulator activity 641 2 400
4 piotin binding 630 5 281
5 GTPase activator activity 562 266 19
6 oxidoreductase activity, acting on 513 4 315
CH-OH group of donors
7 . 458 4 315
response to temperature stimulus
) 454 6 262
outer membrane
9 protein binding, bridging 442 9 212
10 positive regulation of enzyme 441 12 180

activity

Table 5.7 Known GO term in mouse.
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#of gene  # of gene Rank

RES (IO MENS () (known) (predicted) (predicted)

1 membrane 5880 185 43
2 transport 3202 239 29
3 intracellular 2280 0 --
4 metal ion binding 2203 53 113
5 DNA binding 2122 53 113
6 signal transduction 2104 40 147
7 extracellular space 2062 0

8 cytoplasm 1151 33 175
9 cell cycle 742 6 349
10 RNA binding 576 119 37

5,5 Web server

5.5.1 Twins overview

TWins aims to give an institutive and useful service for users to make their
experiments comparable with each others. Twins provides array-wide time warping
by pre-processing by k-means clustering and gives GO annotations to help infer the
function of grouped genes. Fig. 5.2 demonstrates the system flow of the system of
TWins. When users upload their expression profile with time series, specify the
organism, and submit their request, the system will perform array-wide or
conventional (depends on user selections) DTW on these two profiles. The results of
DTW will be presented in a graphical interface (cooperates with grphwarp[1]) and
TWins will provide grouped gene expression files for downloading. The system
collected diverse cell-cycle profiles of species under different conditions from NCBI
GEO, and users can upload their own data to compare with these precious
experiments. Further, by the helps of mapping table extracted from SwissProt, any

experiments with gene symbols names can thereby annotated by GO terms. Each GO
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term will be calculated its P-value by the hypergeometric distribution to suggest its
biological significance. The web interface is interactive and friendly to users, provides
useful functions but simple manipulations, the core program, including time warping,
GO term matching, and p-value calculating procedures are all follow GNU open

source copyright, the completed program package is available at the website.
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Figure5.12  TWins system flow

Table 5.8 A List of cell-cycle profile fetched from NCBI GEO
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GDS ID Species Condition Time point Platform Feature Reference
GDS39 Saccharomyces cerevisiae 1 14 GPL59 7680 [6]
GDS124 Saccharomyces cerevisiae 1 24 GPL62 8832 [6]
GDS400 Homo sapiens 3 4 GPL91 12651 [29]
GDS449 Homo sapiens 5 4 GPL91 12651 [30]
GDS586 Mus musculus 1 8 GPL81 12488 [31]
GDS587 Mus musculus 1 7 GPL83 11934 [31]
GDS845 Homo sapiens 3 3 GPL550 20163 [32]
GDS846 Homo sapiens 3 3 GPL550 20163 [32]
GDS847 Homo sapiens 3 3 GPL550 20163 [32]
GDS848 Homo sapiens 3 3 GPL550 20163 [32]
GDS922 Saccharomyces cerevisiae 2 3 GPL90 9335 [33]
GDS1409  Mus musculus 4 4 GPL339 22690 [34]
GDS1515  Arabidopsis thaliana 4 3 GPL198 22814 [35]
GDS1627  Homo sapiens 8 3 GPL550 20163 *
GDS1710  Homo sapiens+Mus musculus 1 3 GPL2677 5376 [36]
GDS 1875 Homo sapiens 5 9 GPL1528 22178 [37]
GDS2053  Mus musculus 2 3 GPL32 12654 [38]

* Not listed in GEO
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Table 5.9 Characteristics of TWins.

Comparing TWins genewarp BTW GenTxWarper  Descriptions
features
Programming Impl_ement by
C++ C++ Perl & c++ JAVA efficient
language |
anguage
Platform Al Win32 Al Al Great =
compatibility
Provide
Web server Yes - Yes - convenient
access
Allow users to
Database compare their
NCBI GEO ExpressDB[39]  Cho’s[40, 41] - experiments
supported . .
with others in
database
4 (mouse, Supporting
. human, 2 (yeast and cell-cycle
Species number Arabidopsis, 1 (yeast) human) ) profiles of
and yeast) diverse species
. Web interface - —— Provide
Graphic grphwarp Web interface Jave application  abundant
+ grphwarp isualizati
visualization
According  to
the given gene
symbol  name
. and  organism
GO annotation Yes - - - name, Twins
can provide GO
term name for
each gene
Indicate the
biological
p-value Yes ) ) . signi_ficance of
certain GO term
happened in
user’s data
Acting DTW on
Feature vector Yes Yes - Yes more than one
gene
By K-means
clustering,
— Yes b efficiently
Arra;_/-W|de time K-mean ®Y moderate* - moderate* improve the
warping p
clustering) performance of
conventional
DTW
Time point Filte_r the Iilfely
e Yes - - - spurious  time
filtering -
point
Give free
Open source Yes Yes Yes - utilization  of
TWins’ code

* Directly act DTW on whole genome date, which might lead to unreliable alignment

5.5.2 Web interface

The web interface (see figure 5.12) allows two types of operations: (1) compare two
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uploaded experiments, and (2) compare an uploaded experiment with database.

E'Z' Compare two uploaded experiments:

Please input the genus+species name: Homo+sapiens
Please upload the first experiment (A):

Please upload the second experiment (B):

@ Click here for example files: 12

Grouping: ® All O k3 means clustering
Time pointfiteron: O A O B ® none
[ Subralt your request ]

EE’ Compare an uploaded experiment with database:

Please select one dataset: | pleasechoose... v
Please choose a condition:

@ ---------------- Select dataset first.. ------mmnmm-
Please upload the experiment:

Grouping: @ All O k|3 means clustering
Time pointfilter on: © database O uploaded data ® none
[ Subrait your request ]

Figure 5.13  Two type of operations on web interface. (1) compare two uploaded
experiments, and (2) compare an uploaded experiment with database

The first type of operations needs users upload two formatted files, and input the
organism name. Organism name is necessary, since the system needs organism and
gene symbol name to acquire the GO term and evaluates the p-value. The second type
of operations need only one upload file. However, users must at first specified one
dataset compiled from NCBI GEO. When the dataset are set, the webpage will present
the particular experiment conditions of the dataset. For example, if dataset GDS1857
are selected, the browser will display five conditions and their descriptions, including
cell-line treated by doxycycline, cell-line transfacted by HIVV-1 Vpr protein and so on.
Users should decide which experiment to compare with. System does not force users

to input the organism name of their data, but they need to upload the profile of the
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same species of the dataset they chosen, or the GO term and p-value will go wrong.
Users then need to decide the grouping strategy: select “All” to directly perform
conventional DTW on the datasets, or select “K means clustering” for grouping the
data by this approach before acting DTW. Any big dataset is suggested to use K mean
clustering in order to get better warping path. If users like the system to help screen
out spurious time point, they can click on the radio button and submit their task.

After submission and waiting for system to complete users’ requests, the results
page will be shown and provide detail information of your request. See figure 5.13.
System will show you the warping path and p-value of GO term, every GO term
having p-value lower than 0.05 will be written in red color. TWins also provides
detailed warping path and output the pdf file generated by grphwarp[1] program to

give more delicate graphics.

CLUSTER 1
Experiment A
Time point count
Time point list
Gene number
Time warping path
Experiment B

Time point count

human

9

010203040 506070 80

59
111112345555678889
mouse

15

Gene profile

123488789

Gene profile

11711 ; I EEEEREEEEE

Time point list 010203040 506070 8060 100 110120 130 140
Gene number 59 etailed view
Time Warping path 1234555567891011 12131415
peotein binding (16%) membrane (13%)  cell adbesion (7%)
G0 teon pvele: 0.13 pvahe 09 puahe0osp | 2evalGOem
@ﬂ generated by arphwarp

s 1 2 3 ¢ s & 1 4

Figure 5.14

The result of users’ request. The graph in blue square is drawn by grphwarp.
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5.6  Software package

The package contains every executable routine and other utility tool. This program is
free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version. This program is distributed in
the hope that it will be useful, but WITHOUT ANY WARRANTY;; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details. You should have
received a copy of the GNU General Public License along with this program; if not,
write to the Insitute of Bioifnormatics, NCTU. Further to the terms mentioned you
should leave the copyright footers and copyright notice in the HTML headers intact,

stating me as the original author.
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Chapter 6  Discussion

6.1 The Ilimitation of the distance function

calculation by dynamic programming

In previous Chapter, we have mentioned that the distance function used in DTW is not

exactly original Euclidean distance function butZ,/(bi —a,)*. The group-distance

T N N T
version in DTW is>_ > (b, —a,)? , comparing with original one " > (b, —a,)*,

i=1 k=1 k=1 i=1
where N is the number of genes in this group, and T is the number of time points. The
problem of the distance function used in our algorithm is that they are not real
Euclidean distance functions; they are more like functions calculating the degree of
sparseness in each time points. That is, this function only works like original

Euclidean distance function when the degree of sparseness in each time points is low,

T N T
since > [ (b —a,)? will approximately equal toN* | (b, —a,;)? , where am
i=1 ¥ k=1 i=1

and by, represent the mean of ay and by. This also supports our scheme which
performs K-means clustering making the degree of sparseness in each time points
lower before calculating the distance in groups, and therefore leading to result more

close to real Euclidean distance.

6.2 The limitation of SVVD

When we look at the algorithm of SVD closely, we will find that the rank of

eigen-genes is limited to the number of time points. This is its mathematical limitation,
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which implies that our data in matrix A should not mix with too many kinds of
patterns or the noise reduction will either not-working or filter out important
information. That is why the approach proposed by O. Alter, GSVD, is said to only
focus on cell-cycle regulated genes and limit genes numbers.

In our scheme, since we realized the limitation of SVD, we do SVD after the
gene number is reduced by our single-gene distance ranking. In general case, we pick

top hundreds of genes for SVD to process, which avoid lost of information.

6.3 Future work

We can extend our scheme to multi-species model by replace of pair-wise profile
alignment by multiple-profile alignment algorithm. And therefore can analyze
orthologous gene groups cross more tissue and more species. The FNC can be
improved by filtering out data sets which is not well sampled or replaced with
advanced technique with higher prediction accuracy. Since the verification of gene
functions in always proceeding, we should update the database frequently in order to
provide précised annotation and p-value analysis. The presentation support by Genesis
Is not very satisfying since it does not considering the warping path. This can be
solved to generate this kind of clustering result by our program. We hope to keep

reinforcing our package with time.
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Chapter 7  Conclusions

This work proposed a scheme which at first ranks the single-gene warping distance
between genes in human and genes in mouse linked by gene linkage based on their
similarity on sequence, and reduced their noise by SVD, and clusters genes of a
species by computing the distance between each according to their expression profiles
(k-mean clustering). However, these linked genes in another species are needed to be
divided into smaller groups sharing parallel expression pattern, so the clustering is
acted again on each group. These small groups of genes linking with other small
groups of genes are called pairs. Each pair is computed its warping distance by
group-DTW algorithm. Pair with small warping distance is regarded as having similar
expression pattern and sequence homology. In addition, genes are annotated with GO
term and suggested with its p-value. Pairs illustrating both small warping distance and
p-value are highly recommended to have similar and basic functions within multiple
species.

We perform our scheme in artificial, homogeneous (yeast), and heterogeneous
(human and mouse). All of them shows great outcome and demonstrate by accessible
visualization program.

Although our experiment only examine two species, the scheme is reasonable to
be feasible into multiple species. The genes found by this scheme are highly
conserved in their sequence and expression, which suggests these genes play basic
role in the functions and therefore are preserved in the evolutionary process.

This dissertation not only answer the questions listed in previous chapter, but
also propose a novel scheme to solve these relevant tasks with integration and
improvement, and contributes remarkable advancement in cross-species orthologous

gene analysis.
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Appendix 1 Pseudo code of SVD algorithm

SVD Algorithm

#include <math.h>

static float at,bt,ct;

#define PYTHAG(a,b) ((at=fabs(a)) > (bt=fabs(b)) ? \
(ct=bt/at,at*sqrt(1.0+ct*ct)) : (bt 7 (ct=at/bt,bt*sqrt(1.0+ct*ct)): 0.0))
PYTHAG computes /a2 + b2 without destructive overflow or underflow.

static float maxargil,maxarg2;

#define MAX(a,b) (maxargi=(a),maxarg2=(b),(maxargi) > (maxarg2) 7\
) (maxargl) : (maxarg2))

‘#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))

void svdcmp(a,m,n,w,v)
float **a, *w, **v;
int m,n;
Given a matrix a[1..m] [1. .n], this routine computes its singular value decomposition, A =
U-W- VT, The matrix U replaces a on output. The diagonal matrix of singular values
W is output as a vector w[i..n]. The matrix V (not the transpose V7) is output as
v[1..n][1..n]. m must be greater or equal to n; if it is smaller, then a should be filled
up to square with zero rows.
{

int flag,i,its,j,jj,k,1,nm;

float c¢,f,h,s,x,y,2;

float anorm=0.0,g=0.0,s8cale=0.0;

float *rvi,*vector();

void nrerror(),free_vector();

if (m < n) nrerror("SVDCMP: You must augment A with extra zero rows");
rvi=vector(i,n);
Householder reduction to bidiagonal form,
for (i=1;i<=n;i++) {
1=i+1;
rvi[i]l=scale*g;
g=s=scale=0.0;
it (1 <= m) {
for (k=i;k<=m;k++) scale += fabs(a[k][i]):
if (scale) {
for (k=i;k<=m;k++) {
a[k] [i] /= scale;
8 += a[k] [i]*a[k] [i];
}
f=a[i] [i];
g = -SIGN(sqrt(s),f);



h=f*g-s;
a[i][i]=f-g;
it (1 1=1) {
for (j=1;j<=n;j++) {
for (8=0.0,k=i;k<=m;k++) 8 += a[k][i]*a[k] [§];
f=s8/h;
for (k=i;k<=m;k++) al[k][j] += f*alk][i];

5
}
for (k=i;k<=m;k++) a[k][i] #*= scale;
}
}
wlil=scale*g;

g=s=scale=0.0;
it (i <=m && i '=n) {
for (k=1;k<=n;k++) scale += fabs(a[i] [k]):
if (scale) {
for (k=1;k<=n;k++) {
a[i] [k] /= scale;
8 += a[il [k]l*a[i] [k];

}
t=alil [1];
g = -SIGN(sqrt(s),1);
h=f*g-s;
ali]l (1]1=f-g;
for (k=1;k<=n;k++) rvi[kl=a[i] [k]/h;
if (i !'=m) {
for (j=1;j<=m;j++) {
for (8=0.0,k=1;k<=n;k++) 8 += a[j] [k]l*a[i] [k];
for (k=1:;k<=n;k++) a[jl[k] += s*rvi[k];
}
}
for (k=1;k<=n;k++) a[i] [k] #*= scale;
}
}
anorm=MAX (anorm, (fabs(w[i])+fabs(rvi[il))):
}
Accumulation of right-hand transformations.
for (i=n;i>=1;i--) {

12 (1 < n) {
it (g) £
for (j=1;j<=n;j++) Double division to avoid possible underflow:

vljl[il=(ali]l [j1/ali]1[1])/g;
for (j=1;j<=n;j++) {
for (8=0.0,k=1;k<=n;k++) s += a[i] [k]#*v[k][j];
for (k=1;k<=n;k++) v[k][j] += s*v[k][i];
}
}
for (j=1;j<=n;j++) v[il[jl1=v[j]1[i]1=0.0;

v[i][i]=1.0;
g=rvi[il;
1=i;
}
Accumulation of left-hand transformations.
for (i=n;i>=1;i--) {
1=i+1;
g=wlil;
if (i < n)
for (j=1;j<=n;j++) alil[j]=0.0;
it (g) {
g=1.0/g;
it (i !'=n) {
for (j=1;j<=n;j++) {
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for (8=0.0,k=1;k<=m;k++) 8 += a[k][i]*a[k][j];
t=(s/ali] [1])*g;
for (k=i;k<=m;k++) a[k][j] += £*a[k][i];
}
}
for (j=i;j<=m;j++) a[jl[i] *= g;

} else {

for (j=i;j<=m;j++) al[j]1[i]=0.0;

++a[i] [1];

}
Diagonalization of the bidiagonal form.
for (k=n;k>=1;k--) { Loop over singular values.
for (its=1;its<=30;its++) { Loop over allowed Iterations.
flag=1;
for (1=k;1>=1;1--) { Test for splitting:
nm=1-1; Note that rvi[1] Is always zero.
if ((float) (fabs(rvi[l])+anorm) == anorm) {
flag=0; -
break;
}
if ((float) (fabs(w[nm])+anorm) == anorm) break;
}
it (flag) {
c=0.0; Cancellation of rvi[1], If1> 1 :
8=1.0;
for (i=1;i<=k;i++) {
f=a*rvi[i];
rvi[il=c*rvi[i];
if ((float) (fabs(f)+anorm) == anorm) break;
g=w[il;
h=PYTHAG(f,g);
wlil=h;
h=1.0/h;
c=g*h;
s=(-f+h);
tor (j=1;j<=m;j++) {
y=a[j] [om] ;
z=a[j][i];
a[j] [nm]=y*c+z#+s;
alj]l [1)=z*c-y»s;
}
}
}
z=w[k];
it (1 == k) { Convergence.
if (z < 0.0) { Singular value is made nonnegative.
wik] = -z;
for (j=1;j<=n;j++) v[j1[kI=(-v[j]1[k]);
break;
} -
if (its == 30) nrerror("No convergence in 30 SVDCMP iterations");
x=w[1]; Shift from bottom 2-by-2 minor:
nm=k-1;
y=wlnn] ;
g=rvi[nm];
h=rvi[k];

£=((y-z)*(y+z)+(g-h) *(g+h))/(2.0*h*y);
g=PYTHAG(£,1.0);
2=((x-z)*(x+z) +h* ((y/ (£+SIGN(g.1))) -h)) /x;
Next QR transformation:

c=8=1.0;

for (j=1;j<=nm;j++) {
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}

}

}

}

i=j+1;

g=rvi[i];

y=w[il;

h=s*g;

B=c*g;

z=PYTHAG(f,h) ;

rvi[jl=z;

c=1f/z;

s8=h/z;

f=x*c+g+s;

E=g*C-X*B;

h=y=*g;

g o

for (jj=1;jj<=n;jj++) {
x=v[jjl[j];
z=v[jjl[i];
v[ij] [j1=x*c+z*s;
v[jjl[i]=z%c-x*s;

z=PYTHAG(f,h) ;

wlil=z; Rotation can be arbitrary if Z=0.

1z
z=1.0/z;
c=f*z;
a=h*z,;
}
I=(c*g)+(s*y);
x=(c*y) - (s%g) ;
for (jj=1;jj<=m;jj++) {
y=aljjl [§1;
z=a[jj] [i];
aljjl(jl=y*c+z*s;
aljjl[i)=z%c-y*s;
}

rvi[1]=0.0;
rvi[k]=1;
wlk]l=x;

free_vector(rvi,1i,n);
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