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 摘      要 

跨物種的基因表現圖譜分析能提供在天擇的進程中被保留的基因的功能和其參

與機制的訊息，保留在物種間的基因群所扮演的生化功能極可能具有不易被取代

的重要功能。尋找這樣的功能性基因群能加速基因療法中候選基因的發現和藥物

的開發。為此，本研究提出一個新穎的計算處理架構試圖找出保留於人類和小鼠

的基因群，利用奇異值分解（singular value decomposition） 和分群演算法分析

基因表現，並且利用同源連結（ortholog linkage）和時間規整演算法(time warping 

algorithm)使來自不同物種（異質性）的微陣列基因表現圖譜時間序列可以比較

並依此建議同源基因群。同時，我們實作模糊最近聚類（fuzzy nearest-cluster）

方法來預測這些可能在生物過程（bioprocess）扮演極重要的角色的同源

（orthologous）基因群的功能併施行統計檢定找出具有生物意義、保留在物種間

影響細胞週期的基因群。 

簡而言之，這個研究結合序列和時間序列圖譜層級的相似性來建議跨物種的功能

性基因群，提供基因療法實驗的候選基因並希望能貢獻在跨物種基因分析的卓越

進展。 

最後，為了讓整個流程方便應用在未來的相關研究上，整個架構被模組並程式化

成一個獨立的可執行套件並結合視覺化的呈現。 
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ABSTRACT 

Cross-species gene expression analysis provides information of gene functions and 

involving mechanisms, which conserved in evolutionary process. Gene groups 

conserved in species are very likely to play irreplaceable biochemical functions. 

Searching for this kind of functional gene groups can accelerate the discovery of 

candidate genes in gene therapy and development of drug design. For this, our 

research proposes a novel computational scheme to figure out the genes having 

important biochemical functions, especially targets on the genes which are conserved 

in human and mouse. These genes conserved across evolutionary history would be 

most likely to reveal fundamental biochemical functions. This work utilizes singular 

value decomposition (SVD) and clustering techniques to analyze gene expression, and 

exploits orthologous linkage and time warping algorithm making microarray 

time-series gene-expression profiles of different species (heterogeneous profiles) 

comparable to suggest orthologous gene groups. In the meanwhile, in order to make 

the results more promising, we use fuzzy nearest cluster method to predict the 

functions of orthologous genes which might play important roles in the bioprocess 
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and perform statistical test according to our annotation of predicated gene function to 

find the genes having biological significance among these orthologous genes. 

In brief, this research combines sequence- and time-series expression- levels ortholog 

to suggest functional genes among multiple species, provides materials for candidate 

gene therapy experiments and hopes to contribute remarkable advancement in 

cross-species orthologous gene analysis. In the end, in order to let the whole process 

be utilized in further application, the scheme is modeled and programmed in a 

standalone executable package with visualized presentation.
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Chapter 1  Introduction 

1.1  Overview of the scheme 

Since the high-throughput microarray assay has been widely used, gene function 

prediction is shown to be reliable by classifying their gene expression profile 

similarity. In some of frontier research, including experimental drug and gene therapy, 

understandings of orthologous genes can be helpful accelerating the progress of the 

discovery[1]. 

 Research about orthologous gene functional groups searching is not rare but 

limited.  

 This research considers both sequence homology and time-series expression 

profile pattern similarity to search for the orthologous functional gene groups among 

multiple species, and is able to deal with different time point number and interval, and 

it integrates gene functional predication to annotate and suggest their biological 

meanings which make the result more reliable.  

 In sum, this work presents a novel scheme to discover orthologous time-series 

gene expression profiles in multiple species. With this scheme, it is now easier to 

observe and disclose the important functional genes conserved in evolution process by 

time-series microarray profiles. 

 

1.1.1  Gene expression time series 

A gene expression profile is the result of microarray analyses, which give the 

breakdown of the switching on and off of certain genes (Figure 1.1 ). Gene expression 

profile is an important asset, especially for scientifically understanding biological 

processes from the expression of gene. DNA microarrays, oligonucleotide arrays and 
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all other high throughput assays for gene activity give biologists the chance to view 

the global mRNA profile systematically[1]. There are two types of experiments, static 

and time series experiments[2]. In static expression experiments, only a snapshot of 

the expression of genes in different samples is measured[3]. On the other hand, when 

the profile containing the information of time intervals, it reveals the expression of 

genes with cell cycle stage, development stage, or any time related pattern. Gene 

expression time series is a list of expression data for a gene along a number of 

different experimental time intervals and would correspond to a row in the 

representation (Figure 1.2 ). Through the variation of mRNA expression level with 

time, which enables further investigations of the gene regulation networks[4, 5], 

functional groupings of genes, distinction of cell cycles[6], tissue-specific profiling, 

etc, scientists are now unraveling the mechanism of bioprocesses efficiently.  

 

 

Figure 1.1  Gene expression also varies within a certain type of cell at different points in 
time. For example, the gene expression profiles of an organ might differ between normal 
and cancerous states, as shown here.  
[http://www.ncbi.nlm.nih.gov/Class/MLACourse/Modules/MolBioReview/gene_express
ion_prostate.html] 
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Figure 1.2  Different representations of gene expression profiles: (A) pattern, (B) color 
scale  [http://gepas.bioinfo.cipf.es/cgibin/tutoX?c=clustering/clustering.config] 

 

1.1.2  Gene function prediction 

Determining the functions of genes is an essential problem in biology, which is 

fundamental to realize the molecular and biochemical processes, identify and validate 

new drug targets and develop reliable diagnostics. Recent advances in genomic 

sequencing have generated an astounding number of new putative genes and 

hypothetical proteins whose biological function remains a mystery. On average, there 

are 70% of the genes in a genome having poorly known or no known functions. There 

are two typical techniques that can be used on gene expression data for gene function 

annotation or predication. The first technique is clustering, such as hierarchical 

clustering, k-means clustering, SVD, and PCA, while the second is classification, 

such as Hidden Markov Model (HMM), Support Vector Machine (SVM), and Neural 

Networks (NN). 

 

1.1.3  Data clustering 

Data clustering or clustering algorithms is an approach to group data by categories. 
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The primary aim of clustering is to figure out several clusters and centroids or 

prototypes and using these centroids to represent the original enormous data.  

In brief, data clustering is more likely to attempt to group data in smaller set. 

However, some clustering approaches can be used as classifiers as well, and it is 

needless to predefine classes (unsupervised learning). Clustering approaches are 

feasible to be utilized in gene expression analysis, since the genes are numerous and 

the interactions are complex. 

Hierarchical clustering: In hierarchical clustering, a series of partitions takes 

place, which may run from a single cluster containing all objects to n clusters each 

containing a single object[7].  Hierarchical Clustering is subdivided into 

agglomerative methods, which proceed by series of fusions of the n objects into 

groups, and divisive methods, which separate n objects successively into finer 

groupings. One of the simplest agglomerative hierarchical clustering methods is single 

linkage, also known as the nearest neighbor technique. The defining feature of the 

method is that distance between groups is defined as the distance between the closest 

pair of objects, where only pairs consisting of one object from each group are 

considered.   

The minimum value of these distances is said to be the distance between two 

clusters. At each stage of hierarchical clustering, the clusters whose distance is 

minimal are merged. See Figure 1.3  for example. 
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Figure 1.3  Overview of hierarchical clustering of all samples. Genes and blood samples 
are organized by hierarchical clustering based on overall similarity in expression 
patterns. Expression levels are represented by a color key in which bright red represents 
the highest levels and bright green represents the lowest levels, and less saturated shades 
represent intermediate levels of expression.  
[http://www.biomedcentral.com/1471-2164/7/115/figure/F1] 

 

K-means clustering: This nonhierarchical method initially takes the number of 

components of the population equal to the final required number (K) of clusters[8]. In 
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this step itself the final required number of clusters is chosen such that the points are 

mutually farthest apart. Next, it examines each component in the population and 

assigns it to one of the clusters depending on the minimum distance. The centroid's 

position is recalculated every time a component is added to the cluster and this 

continues until all the components are grouped into the final required number of 

clusters. 

K-Means Training starts with a single cluster with its center as the mean of the 

data. This cluster is split into two and the means of the new clusters are iteratively 

trained. These two clusters are again split and the process continues until the specified 

number of clusters is obtained. If the specified number of clusters is not a power of 

two, then the nearest power of two above the number specified is chosen and then the 

least important clusters are removed and the remaining clusters are again iteratively 

trained to get the final clusters. 

 

1.1.4  Distance functions 

There are two main families of distances to measure how closely related are two 

groups of genes: 

Euclidean: this kind of distance strategy calculates the length of two separate points 

in n-directional space by their absolute differences[9]. For example, Euclidean 

distance is measure by following definition: 

For two points A= (a1, a2… an), and B= (b1, b2… bn), Euclidean distance = 

∑
=

n

1i

2
ii )b-(a  

 

Correlation: Contrasting to Euclidean, this type of strategy accounts for the trends 
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within both profiles[9]. For example, Pearson correlation measures the similarity in 

shape between two profiles by the following formula: 

 For two points A= (a1, a2… an), and B= (b1, b2… bn), Pearson correlation distance 

=   b-ba-a
n
1-1

b

i
n

1i a

i
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
= σσ

  

iibaii b and a ofdeviation  standard  theare  , and ,b and a ofmean   theare b ,a where σσ  

 

 These two kinds of distance strategies will lead to different clustering results. 

Please see Figure 1.4  for illustration. 

 

 

Figure 1.4   Different distances will render different classifications because we are 
asking for grouping based on different features (trends in the case of correlation and 
absolute differences in the case of Euclidean distances)  
[http://gepas.bioinfo.cipf.es/cgibin/tutoX?c=clustering/clustering.config] 
 

 

1.1.5  Comparative analysis of different species  

Comparing genomic properties of different organisms is of fundamental importance in 
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the study of biological and evolutionary principles[10]. Although differences among 

organisms are often attributed to differential gene expression, genome-wide 

comparative analysis thus far has been based primarily on genomic sequence 

information. 

 By miscellaneous gene function predication techniques, biologists are now more 

interesting in orthologous gene searching among different species. Since comparative 

analysis of the expression data among two or more model organisms promises to 

enhance fundamental understanding of the universality as well as the specialization of 

molecular biological mechanisms. It also may prove useful in medical diagnosis, 

treatment, and drug design. Comparisons of the DNA sequence of entire genomes 

already give insights into evolutionary, biochemical, and genetic pathways. 

Considering that gene expression profiling gives more information of genes’ 

biochemistry functional roles, comparative analysis based on microarray data is now a 

blossomed area. 

 

1.2  Motivation 

Recently, Microarray expression analysis has become an important technique for 

evaluating gene expression level in genomic scale. In addition, due to the profound 

progress in gene sequencing, considerable number of genes are predicted and found. 

However, there are only 30% of genes are explicitly analyzed and understood the 

functional roles they playing in biological process[1]. It had been shown that using 

microarray gene expression analysis to predict the functions of genes is an important 

and efficient means[5]. However, one of the defects of conventional approaches is 

that the number of sampling points and growth rate of cells (affected by experiment 

conditions) should be unified, which means that each experiment should be carefully 
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designed to provide comparable samplings, and this is not practical in most of the 

cases. Therefore, mostly, searching for functional gene clusters is constrained in 

mono-species model and parallel experiment. 

 Despite so, by compiling the information of gene expression profile from diverse 

organisms, tissues, and conditions, scientists are now capable of dissecting more 

advanced topics. For instance, Grigoryev D. N., who proposed his renowned research 

on Genome Biology, introduced a multi-species model using gene expression profile 

to find orthologous gene-expression genes of lung cells suffered from 

ventilator-associated lung injury among human, mouse, and dog. Grigoryev also 

suggested these genes are potential candidate genes of acute lung injury remedy in the 

future, and inferred these genes are conserved among the evolution process because 

they play crucial protection functions after lung injury. 

 Applying the idea of utilizing cross-species or -tissue orthologous gene-expression 

profile to search important gene groups and their biological functions to other topics 

like cell cycle, is a general concept, which needs further investigation and 

development. 

 Nevertheless, when analyzing microarray time-series gene-expression profile, 

scientists have to face the difficulty of coordinating different growth rate of cells and 

the number and time intervals of sampling in each independent experiment, especially 

of distinct organisms, which is now becoming a pressing issue to let cross-species 

gene-expression profiles comparable.  

 

1.3  Goals 

This dissertation proposes a novel computational scheme to search and analyze the 

orthologous gene-expression profiling genes conserved in evolution process and 
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involved in certain bioprocess. We try to contribute to experiment verifying and 

treatment development, and answer following questions:  

1. How to combine and take advantage of both sequence- and expression- 

level orthologous gene predication? 

2. How to build up the mapping relationships between genes of multi-species?  

3. How to deal with noise or experimental artifacts? 

4. How to let different time-series profile be comparable when the experiment 

conditions, growth rate, sampling time point number are different? 

5. How to make our predication convincing enough? 

This research hopes to propose a novel scheme to solve these related tasks on the 

basis of other research with integration and improvement, and contributes remarkable 

advancement in cross-species orthologous gene analysis.  
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Chapter 2  Related Works 

Some of the existing research had given answers to parts of the questions we devote to 

solve; however, these solutions are still not sufficient to resolve our problems 

completely. Furthermore, most of them avoid the questions that how to let different 

time-series profile be comparable when the experiment conditions, growth rate, and 

especially sampling time point number are different 

 

2.1  Cross species analysis with static profiling 

2.1.1  Genome-wide expression data of six organisms [10] 

S. Bergmann et al. present a comparative study of large datasets of expression profiles 

from sic evolutionarily distant organisms: S. cerevisiae, C. elegans, E. coli, A. 

thaliana, D. melanogaster, and H. sapiens. They use genomic sequence information 

to connect these data and compare global and modular properties of the transcription 

programs. Linking genes whose expression profiles are similar, functionally related 

sets of genes are frequently coexpressed in multiple organisms. Bergmann integrates 

the expression data with genomic sequence information to address three biological 

issues. First, we verify that coexpression is often conserved among organisms and 

propose a method for improving functional gene annotations using this conservation. 

Second, we compare the regulatory relationships between particular functional groups 

in the different organisms using the iterative signature algorithm (ISA), giving initial 

insights into the extent of conservation of the gene regulatory architecture. See Figure 

2.1  
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Figure 2.1  Starting from a set of coexpressed genes associated with a particular function 
in organism A, they first identify the homologues in organism B using BLAST. Only 
some of these homologues are coexpressed while others are not. The signature algorithm 
selects this coexpressed subset and adds further genes that were not identified based on 
sequence. 

 

This approach didn’t consider data with time series. Also, they linked data of different 

species by BLAST, which can provide sequence level homology, but they use ISA to 

extend genes they linked to more genes co-expressed in the same species. In order 

words, genes they found in the end only have ortholog in expression-level. Moreover, 

although they try to tell the functions of genes they found, but not with clear evidence 

and inference. 

 

2.1.2  Orthologous expression profiling in multi-species 

models[11] 

Conventional techniques perform and analyze gene-expression profiling by using 
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species-specific Affymetrix GeneChips to search for candidate genes related VALI 

(ventilator-associated lung injury). The individual analysis of species-specific arrays 

produced large lists of candidate genes and several challenges, with the most notable 

being an excessive number of genes for candidate gene selection. While meta-analysis 

strategies exist for narrowing candidate gene selection from multiple experimental 

systems, this analysis can only be applied to the same species cross-platform array 

comparison, to use this approach for analysis of experiments involving diverse species 

we speculated that multispecies gene0expression profiles could be linked using 

RESOURCERER[12], which is based on EGO database and contains information for 

all commercially available Affymetrix Genechips. 

 D. N. Grigoryev speculated that overlapping responses to mechanical stretch in 

orthologous genes across species might reveal candidate genes involved in an 

evolutionarily conserved defense mechanism to lung injury that might be triggered by 

ventilator-induced lung injury.  

 This research first calculated gene-expression changes for each tested species and 

linked expression values obtained for orthologous genes. Orthologous genes 

exhibiting similar patterns of expression across all species were selected as 

VALI-related candidates under the assumption that gene-expression responses 

conserved across evolutionary history would be most likely to reveal fundamental 

biological responses to VALI. See Figure 2.2 . 
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Figure 2.2  Different distances will render different classifications because we are asking 
for grouping 

 

The basic concept of linking differentially-expressed gene with other species is 

similar to linking co-expressed gene group in our approaches. Even regardless of the 

inability of dealing time-series profiles, their scheme need a common experiment 

condition (in their case VALI) among samples of all species, which means that the 

experiment should be carefully designed and executed. This constraint makes this 

approach unpractical in many situations. Although they did do some experiment to 

prove genes they found is associate with VALI, however, their scheme unable to give 

a global view of gene function in genomic scale. 

 

2.2  Cross species analysis with time series 

2.2.1  GSVD for comparative analysis of expression data 

sets of two different organisms[13] 

GSVD (generalized singular value decomposition) provides a comparative 

mathematical framework for two genome-scale data sets from the two-genes X arrays 

spaces to two reduced and diagonalized “genelets” X “arraylets” spaces. The genelets 
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are shared by both data sets. Each genelet is expressed only in the two corresponding 

arraylets, with a corresponding “angular distance” indicating the relative significance 

of this genelet, i.e. its significance, in one data set relative to that in the other (see 

Figure 2.3).  

 O. Alter shows that mathematical reconstruction of gene expression in a subset of 

genelets may simulate experimental expression in subset of genelets may simulate 

experimental observation of only the process that these genelets are inferred to 

represent. By using GSVD, the framework enables comparative reconstruction and 

classification of the genes and arrays of both data sets and the comparison of yeast 

and human cell-cycle expression data sets are illustrated (see Figure 2.4). 

 

 



 16

Figure 2.3  Illustration of GSVD 
 

GSVD relies on the strong basis of mathematical theory and suggest a general 

approach analyzing two data sets. However, the major improvement can be 

categorized in three points: flexibility of multi-species model, limitation of data 

reduction, and incapableness of heterogeneous data sets.  

First, GSVD provides useful framework to analyzing data set from two species. 

However, it is not suitable for models consisted of more than two species. Also, data 

sets from two species should be in same vector space, i.e. their dimension—the 

number of time points—should be the same, which is unpractical in most of the case. 

GSVD restrict the data to a small subset of similar conditions, such as time points 

along the cell cycle, which drastically reduces the size of the dataset and limits the 

scope of comparison[10].  

Third, data sets from two species should be in same vector space, i.e. their 

dimensions—the number of time points—should be the same, which is unpractical in 

most of the case. 
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Figure 2.4  Yeast and human expression reconstructed in the six-dimensional cell-cycle 
subspaces approximated by two-dimensional subspaces. 

 

2.2.2  Continuous representation of time-series expression 

profiles[2] 

Z. Bar-Joseph et al. present a general algorithm to detect genes differentially 

expressed between two nonhomogeneous time-series data sets. Their algorithm 

overcomes these difficulties by using a continuous representation for time-series data 

and combining a noise model for individual samples with a global difference measure. 

They introduce a corresponding statistical method for computing the significance of 

this differential expression measure. They used their algorithm to compare cell-cycle 

dependent gene expression in wild type and knockout yeast strains. Their experiments 

suggest additional roles for the transcription factors Fkh1 and Fkh2 in controlling 

cellular activity in yeast. 

 They use cubic splines to represent gene expression curves. Cubic splines are a set 
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of piecewise cubic polynomials and are frequently used for fitting time series and 

other noisy data.   

 

 Using splines, we can use a linear warping function to obtain an optimal alignment 

by adjusting shift and stretch parameters to minimize a global error function. See 

Figure 2.5. 

 

Figure 2.5  Alignment of genes for the cdc28DS to cdc15DS. 
 

 In this work, they used B-splines, a type of spline that is mathematically 

convenient for data approximation. B-splines are described as a linear combination of 

a set of basis polynomials. This approach has shown to be useful in many cases. It 

considers heterogeneous data sets and gives the solution by Cubic spline algorithm. 

However, their design is not suitable dealing with data sets need to be mapped by 

semi-global alignment—one of the data sets is in fact only former or later part of 

another. However, the EM algorithm nature they adopted in their approach let their 



 19

fitting process slower. And it is a shame that their statistically analysis did not cover 

function annotation. 

 

2.2.3  Aligning gene expression time series with time 

warping algorithms [1] 

Biological processes have the property that multiple instances of a single process may 

unfold at different and possibly non-uniform rates in different organisms, strains, 

individuals, or conditions. For instance, different individuals affected by a common 

disease may progress at different and varying rates. Increasingly, biological processes 

are being studied through time series of RNA expression data collected for large 

numbers of genes. Because common processes may unfold at varying rates in 

different experiments or individuals, methods are needed that will allow 

corresponding expression states in different time series to be mapped to one another. 

John Aach and George M. Church present implementations of time warping 

algorithms applicable to RNA and protein expression data and demonstrate their 

application to published yeast RNA expression time series. 
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Figure 2.6  Time warping result. 
 

 They show time warping to be superior to simple clustering at mapping 

corresponding time states. Depending on the domain of application, these might 

include cell-specific parameters such as average cell size or physiological parameters 

such as blood pressure or temperature. The relative contributions of such parameters 

to alignment score calculations can be adjusted using feature weight parameters 

already supported by the programs. The alignment programs can also be used not only 

to align RNA and protein expression series individually, but series that combine both 

RNA and protein data. Finally, the programs can also be applied to aligning 

non-temporal series such as expression profiles for cells over a range of 

concentrations of compounds (concentration warping). 
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Chapter 3  Materials and Methods 

3.1  Materials 

3.1.1  Datebases 

GEO: a curated, online resource for gene expression data browsing, query and 

retrieval[14]. GEO contains 141678 sampling data, which provide us enormous 

experimental gene expression profiles. See Figure 3.1. Each dataset is fully annotated 

and completely normalized. But the comprehensive data collection, our gene function 

predication can be supported by adequate experiments under all kinds of conditions 

and treatments, which makes our predication more reliable. 
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Figure 3.1  Web page of GEO.  [http://www.ncbi.nlm.nih.gov/geo/] 
 

GO: provides a controlled vocabulary to describe gene and gene product attributes in 

any organism[15]. See Figure 3.2.  
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Figure 3.2  Web page of GO.  [http://www.geneontology.org/] 
 

HomoloGene: a system for automated detection of homologs among the annotated 

genes of several completely sequenced eukaryotic genomes. See Figure 3.3. 
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Figure 3.3  Web page of homologene.  [http://www.ncbi.nlm.nih.gov/HomoloGene/] 
 

3.1.2  Data set of Experiments and results 

We take three types of data to test the proposed scheme: artificial, homogeneous, and 

heterogeneous data sets. We will discuss this in chapter result. 

 

3.1.3  Date set of gene funcation predication 

The microarray sample was fetched from NCBI GEO in order to be the materials of 

FNC[16] (a predication algorithm, we will discuss it in latter session) training and 
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prediction. GEO stores many precious gene expression profiles. We took advantage of 

GEO’s comprehensive collection of published dataset, and extracted experiments 

which consisted of several time points and are suitable to be compared with the time 

series. Time series samples generated on Affymetrix GeneChip platform was 

considered firstly. The samples of each time point are combined by averaging and 

converting to log2 ratio by the mean of the expression level in all time point. That is, 

for the gene G1 in a profile with 7 time points T1, T2, …, T7 and each time point have 

two samples Et1a, Et1b, Et2a, Et2b, …, Et7a, Et7b. Next, we do the process of averaging, 

converting to log2 ratio, and standardization as shown below. We arranged the 

dataset as a matrix which represented as following Matrix. 
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 Experiment performed on human and mouse using Affymetrix GeneChips were 

extracted from GEO and annotated their functional category by GO. We compiled the 

entire GO (released at Dec. 2006) combining with our prediction and constructed the 
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mapping relation of Gene symbol name between SwissProt ID (because part of the 

data store in GO is specified by SwissProt) from SwissProt. By this, we can then 

annotate the GO term to each gene, and calculate the p-value to suggest biological 

significance of the occurrence of this GO term. 

 

3.2  Methods overview 

The flowchart of the scheme is presented below (Figure 3.4 ): 

 

 

Figure 3.4  system flow of the scheme 
 

 The whole scheme consists of five components: preprocessing, ranking by 

single-gene distance, finding orthologous gene groups, annotation and statistics 

analysis and visualization. 

 The process first takes formatted human and mouse datasets as input. In 
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preprocessing stage, the datasets are normalized, standardized, and filtered out genes 

with flat expressions, which implies these genes are not response dynamically toward 

the perturbation in the experiment along with time and therefore lack of referable 

meanings in our time-series profile analysis.  

 After the preprocessing, the remaining genes in human and mouse datasets are 

cross-species linked by ortholog linkage provide by Homologene database, which 

builds the linkages based on the sequence similarity of genes among species. Each 

linked gene pair is calculated its single-gene distance by dynamic time warping 

algorithm. All gene pairs are ranked according to their distance. The scheme selects 

top T gene pairs for further analysis, since these genes share both sequence and 

expression similarity as responding to experimental perturbation. 

 Next, in order to further infer the functional roles among these genes, we group 

these T genes into smaller clusters. Before doing so, we act singular value 

decomposition to filter out the noise in expression. We don’t do SVD in preprocessing 

stage for several reasons, which will be discussed in following chapters. Then, 

K1-means clustering was performed on one of the dataset (in this research, human), 

and after that, the scheme acts second time K2-means clustering on another dataset 

within each firstly-clustered group into even smaller clusters, which generates K1*K2 

clusters. The scheme acts group-dynamic time warping to suggest unified warping 

path of this group of genes pairs. Now, by above processes, the parallel essence in 

sequence and expression among each group is sufficient to suggest that these groups 

of genes play important roles in certain bioprocess, and conserve in evolution process. 

In the fourth stage of the scheme, we try to suggest the functional roles of these gene 

groups. By the help of GO, GEO and fuzzy nearest clustering algorithm, we can 

annotate the known and predicted GO term of each gene. We use statistical testing to 
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judge and recognize the candidate genes with biological significance and proposed the 

inference that these genes play essential roles in certain bioprocess during the 

evolution process. 

 In the end, to further visualize of result, the scheme which had been carefully 

programmed will generate abundant and useful information of the results. The whole 

scheme is embedded in our web sever TWins, and the output files can be fed in to 

Genesis and grphwarp program for further visualization and analysis. 

 

3.3  Algorithm 

3.3.1  Dynamic Time Warping (DTW) algorithm 

DTW (see figure 3.12), which is similar to the sequence alignment used in 

computational biology, are firstly introduced in speech recognition. By compression 

and expansion operations, multiple time points with calculated weight coefficient can 

be aligned to a single time point. DTW considers the warping distance according to 

the vectors in feature space, and the distance can be evaluated by simple Euclidean 

distance, Pearson correlation coefficient, or more complicated functions in which the 

distance is sensitive to position in the feature space[1].  
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Figure 3.5  An illustration of DTW algorithm. 
 

 The basic idea of time warping is that replications of nominally the same trajectory 

will trace out approximately the same curve (expression profiles pattern), but with 

varying time patterns. To minimize the warping distance between two observed 

profiles, a recursion to find the minimal distance is the main part of the calculation.  

This program adopts conventional DTW, see the equation below, whereτ , μ are time 

points, and a, b are the expression values of two time series: 
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 Relative to the a series, a second time series b for a different instance of the 

process may contain a set of time pointsτ andμ . The sample points may come from a 

trajectory that traces through different regions of k-space or traces through the same 

regions at different rates[1] (Figure 3.6 ). Simple time warping uses dynamic 

programming to find the mapping between two series that minimizes a weighted sum 

of the k-space distances between the corresponding sample points, subject to 

constraints of order preservation and globality. The mapping identifies an optimal 

time alignment of the two series. The task of finding it is set up as a dynamic 

programming problem by placing the time points of each series along the axes of a 

grid, representing alignments as paths through the grid cells, and finding the path with 

minimum accumulated weighted distance score. 

 

Figure 3.6  Two time series in a two-dimensional feature space containing sample points 
from a continuous process, with sample points of each series mapped to each other by 
simple time warping. 

 

The mappings of the optimal path identify places where multiple time points of 

one series correspond to a single time point of the other. Where measurement time 

intervals are comparable between the series, these may represent situations in which 

the instance of the biological process measured by one series moves quickly through a 
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phase of the process relative to the instance measured by the other series. We call 

such situations compression/expressions and they are analogous to the insertion / 

deletions considered in sequence alignment algorithms. Time warping algorithm maps 

two time series in a way that compensates for varying relative rate differences in gene 

expression levels moving along similar expression trajectories[17]. 

 
3.3.2  Singular value decomposition (SVD) and Clustering 

approaches 

SVD is a common technique for analysis of multivariate data, and gene expression 

data are well suited to analysis using SVD. In the literature the number of components 

that results from SVD is sometimes associated with the number of underlying 

biological processes that give rise to the patterns in the data[18]. 

Let X denotes an m x n matrix of real-valued data and rank r. In the case of 

microarray data, xij is the expression level of the ith gene in the jth assay. The 

elements of the ith row of X form the n-dimensional vector gi, which we refer to as 

the transcriptional response of the ith gene. Alternatively, the elements of the jth 

column of X form the m-dimensional vector aj, which we refer to as the expression 

profile of the jth assay. 

The equation for singular value decomposition of X is the following: 

 
TUSVX =  

where U is an m x n matrix, S is an n x n diagonal matrix, and VT is also an n x n 

matrix. The columns of U are called the left singular vectors (eigengenes), {uk}, and 

form an orthonormal basis for the assay expression profiles, so that ui·uj = 1 for i = j, 

and ui·uj = 0 otherwise. The rows of VT contain the elements of the right singular 
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vectors (eigenarrays), {vk}, and form an orthonormal basis for the gene transcriptional 

responses. The elements of S are only nonzero on the diagonal, and are called the 

singular values.  

In systems biology applications, we generally wish to understand relations 

among genes. The signal of interest in this case is the gene transcriptional response gi. 

The SVD equation for gi is 

mivsug
r

k
kkiki ,...,1:  where, 

1
∑
=

=  

which is a linear combination of the eigengenes {vk}.  

SVD is a linear transformation of the expression data from the n-genes x 

m-arrays space to the reduced r-eigenarrays x r-eigengenes space[19]. See Figure 3.7 

for illustration. 

 

 

Figure 3.7  SVD for genome-scale expression data analysis.  
[http://genome-www.stanford.edu/SVD/] 

 

Relation to principal component analysis: There is a direct relation between PCA 

and SVD in the case where principal components are calculated from the covariance 

matrix. The matrix US then contains the principal component scores, which are the 

coordinates of the genes in the space of principal components. 
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 Even though each component on its own may not necessarily be biologically 

meaningful, SVD can aid in the search for biologically meaningful signals[18]. The 

height of each singular value indicates its importance in explaining the data. More 

specifically, the square of each singular value is proportional to the variance explained 

by each singular vector. The relative variances are often plotted (See Figure 3.8). If 

the original variables are linear combinations of a smaller number of underlying 

variables, combined with some low-level noise, the plot will tend to drop sharply for 

the singular values associated with the underlying variables and then much more 

slowly for the remaining singular values. One approach is to ignore components 

beyond where the cumulative relative variance or singular value becomes larger than a 

certain threshold, usually defined upon the dimensionality of the data. Everitt and 

Dunn[20] propose an alternate approach based on comparing the relative variance of 

each component to 0.7/n[18]. By normalizing the data and filtering out those 

eigengens and eigenarrays (i.e. substituting zero for the singular value lower than 

0.7/n) that are inferred to represent noise or experimental artifacts, SVD can 

reconstruct the original data as a matrix which contain only significant signals 
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Figure 3.8  Visualization of the SVD of cell cycle data. (a) Plots of relative variance; (b) 
the first eignegen is shown; (c) the second eignegene is shown. (d) The third eigengen 
lacks the obvious cyclic structure of the first and second.[18] 

 

 K-means clustering takes the matrix as input and genes are grouped according to 

the value in the row they represented. In our experiment we took Pearson correlation 

distance to evaluate how close two genes are.  

 

3.3.3  Guilt-by-association (GBA) principle 

GBA infers uncategorized items by the close similarity to known items which can be 

judged by evaluating the distance[21]. GBA principle is widely applied in biological 

function prediction and candidate gene discovery. In gene expression profile analysis, 

uncategorized genes can be grouped together with known genes by the distance or the 

correlation of their expression pattern. 
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3.3.4  Fuzzy Nearest-Cluster (FNC)[21] 

FNC utilizes the advantages of both clustering and classification. It contains two parts: 

(1) mining by unsupervised approach, hierarchical clustering algorithm; (2) prediction 

category of unclassified items by classification methods using GBA principle. See Fig. 

3.9. 

 

Figure 3.9  The system flow of FNC. 
 

 Figure 3.10 and 3.11 details the clustering algorithm for mining step. In the 

algorithm, the FNC focuses on grouping gene expression profiles, in order to mining 

co-expressed subgroups within a functional class. 
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Figure 3.10  Algorithm of mining co-expressed subgroups within each function. 
 

 

Figure 3.11  Pseudo code of mining co-expressed subgroups. 
 

 When the subgroups of each function are classified, each function-unknown gene 
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would be predicted its function according to fuzzy k-nearest clusters algorithm 

described in figure 3.12 and 3.13.  

 

 

Figure 3.12  Algorithm of fuzzy k-nearest clusters for functional prediction. 
 

  

Figure 3.13  Pseudo code of fuzzy k-nearest clusters for functional prediction. 
 

FNC had shown to be more competent than the existing techniques in ranking the 
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true functional classes in its top-ranked perditions. The classification results in listed 

in Table 3.1. 

 

Table 3.1 Classification result (%) for largest 20 functional classes. Values in bold 
indicate the top performance in each row. 

 

 

3.4  Methods 

In this section we will disclose the proposed scheme in five steps.  

 

3.4.1  Preprocessing 

File format description: The applicable file format consists of three parts: 

experiment name, time periods, and expression data with gene symbol. Experment 

name needs to be notified by a '>' at the beginning of the first line. Time periods 

should start with "Gene" and follow with time points, which are separated by tab. 

Next, each line of the expression data are named by its gene symbol as the beginning 

of the line, and followed by corresponding time-series expression data separated by 

tab. gene symbol name can be substituted by any other ID, however, any other type of 
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gene name will not be able to map to gene ontology category defined by GO. 

 

 

Figure 3.14  Input file format. 
 

Convert data to log2 ratio: When the formatted data set is inputted to the system, it 

will be converted to log2 ratio according to the mean expression of each row. Please 

see 3.1.3 for details.   

Data standardization: Since our algorithm considers Euclidean distance as our 

distance function, each profile should therefore be standardized, or the distance will 

be affected by the expression level of profile, and the trend of pattern will be missing 

or ignore by the algorithm. In statistics, a standard score (also called z-score or normal 

score) is a dimensionless quantity derived by subtracting the population mean from an 

individual (raw) score and then dividing the difference by the population standard 

deviation. The z-score reveals how many units of the standard deviation a case is 

above or below the mean. So, by standardization, the pattern will be substitute to a 

trend according to original mean, which is suitable for our Euclidean distance 

function. 
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Flat expression filtering: A level expression pattern is not helpful throughout our 

analysis, since this kind of pattern reveals no information of differential expression, 

which hinders our time warping algorithm to distinguish the warping path and 

following warping distance. So before entering next stage that performing time 

warping algorithm, flat expression should be filtered.  

We denote a flat expressed gene as the gene of which expression in each time points 

is oscillating in the range of 1.3*(mean of the expression in all samples) and 

0.7*(mean of the expression in all samples). In other word, if there are more than one 

expression of all time points higher than the upper bound or lower than the lower 

bound, this gene will be retained and submitted to next stage. (We do not perform 

noise filtering in this stage for several reasons. We will disclose them in discussion 

chapter.) 

 

3.4.2  Ranking by single-gene distance 

For the reason that we are finding genes that share both sequence- and 

expression-level similarity, we have to select genes linked by sequence homology and 

with relatively low distance which implies their expression pattern is similar to 

achieve our requirement. 

Homologous gene linking: One means of searching orthologous gene-expression 

profile in multi-species models we refer to is proposed by Grigoryev et al. in 2004[11]. 

Although their research is not suitable for time series expression profiling which is 

strongly influenced by cell growth rate, their idea to associate genes of multi-species 

is examined to be very useful. Grigoryev used ortholog links which are identified by 

RESOURCERER[12, 22] between the most commonly used Affymetrix rat, mouse, 

and human GeneChips for multi-species cross-platform gene-expression analysis to 
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build the linkage of different species. NCBI Homologene is also competent providing 

gene linkage between species. 

 

 

Figure 3.15  Build the gene linkage between each gene of groups and the gene of another 
species. 

 

 Since each Affymetrix GeneChip has full annotation, the gene symbol of the probe 

set is indicated. NCBI Homologene provides great mapping information of gene 

symbols of different organisms. Homologene built the mapping relationship according 

to their homology on sequence level. Since genes with similar sequence probably 

share similar role of biochemical functions, combining sequence homology and 

expression profiles to suggest their common functions is intuitionally more reliable. 

After the linkage is constructed, each gene can be mapped with its corresponding gene 
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of another species (see Figure 3.15 ). Next, we perform single gene time warping to 

calculate and rank the warping distance to tell the genes with similar expression 

pattern. 

One-on-one dynamic time warping: When the expression profile are sampled every 

single hour from normal cells of human and mouse, the different growth rate affected 

the profiling which make direct one-on-one mapping unreliable. Aach’s research[1] 

indicated even in the same processes the unfold rates of different experiments or 

individuals are different. Dynamic time warping (DTW) algorithms are proposed to 

make different time series to be comparable by finding their corresponding expression 

states. When two time series expressed in the same pattern however in different rate, 

DTW is able to find the optimal warping path which aligns two time series yielding 

shortest distance.  

 Therefore, we leverage the advantage of the DTW to estimate how close two genes 

are considering their time difference. By doing so, we can rank all genes by their 

warping distance. The top ranking genes show relatively resembling expression, 

which means these genes are both sequence and expression analogical. 

After collecting these genes, we are going further to specify their function. This 

entails the helps of following two stages. 

 

3.4.3  Finding orthologous gene groups 

Orthologous genes are likely to share similar pattern of expression. The co-expressed 

genes can be inferred to be coding for proteins that partake in common biological 

function[21]. We therefore find the gene cluster that share parallel expression pattern 

by unsupervised learning approach, which assumes no prior knowledge about the 

prospective candidate genes.  
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Singular value decomposition (noise filtering): Before been grouped, SVD was 

performed to normalize the data by filtering out the eigengenes and eigenarrays that 

are inferred to represent noise or experimental artifacts enables meaningful 

comparison of the expression of different genes across different arrays in different 

experiments. However, SVD has its mathematical limitation; we will discuss this in 

chapter discussion. SVD filters eigengenes of which relative variance lower than 0.7/n 

(n is the number of time points) and recombines the matrix again. After SVD, we will 

retain only significant information which contains less noise. Expression profile 

without observable noise can lead to better clustering result. See Figure 3.16 .  

 

Figure 3.16  The flow chart of stage Finding Orthougous Gene Groups. 
 

 The challenge we faced next is how to determine which group of genes has the 

common expression among both species. Although each of them has already shown 

good expression resemblance, it is not guarantee that all of the genes share parallel 

pattern. Moreover, we have to cluster genes two times according to both species 
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which can assure the groups we found are conserved in both species. 

1st K-means clustering:  There are numerous techniques can be used for searching 

co-expression gene cluster, for example, hierarchical clustering, k-means clustering, 

diametrical clustering, etc. These unsupervised learning methods are especially useful 

when we try to search candidate genes from huge amounts of genes expression, such 

as genome-wide microarray, since the entire gene reaction toward the conditions, 

treatments, development stages are not yet completely understood. We decide to use 

K-means clustering in our scheme. See Figure 3.17 (a), we groups gene in species A 

(in our case, human). By this, human genes in the same group show great pattern 

homology, however, not in mouse, which can be solved by doing 2nd K-means 

clustering. 

2nd K-means clustering: We perform K-means clustering algorithm again on linked 

genes belongs to another species (in this case, mouse) and therefore divided the 

groups, which were firstly grouped and linked, into more specific and conserved parts 

(see Figure 3.17 (b)).  
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Figure 3.17  (a) Group the genes in species A to find genes share similar expression 
pattern and select the genes in species B by the mappings according to gene linkage. (b) 
For each group of genes found in (a), perform clustering again on species B in order to 
divide the selected genes of species B into smaller groups which share resembling 
pattern. Then follow the gene linkage again to re-construct the relationship. 

 

Group-dynamic time warping: When genes are grouped into k1*k2 clusters by 

clustering technique, the next step is to discover the same expression pattern among 

multi species. After grouping genes, each group of gene is regarded as a pair (see 

Figure 3.18 ). Take all of the pairs as the input of group-DTW algorithm and rank 

each pair with their warping distance. The concept is similar to one-on-one DTW, 

however this time we are doing group-DTW, which align two groups of genes. Two 

groups of genes, each group belong to a species, if there expression profiles are 

followed certain rules or patterns, even though their sampling time points and growth 

rate are different, DTW would consider all the time points alignment possibility and 

let two time series comparable by the best warping path. According to the information 
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provides by DTW, we can figure out which group of genes shows better orthologous 

expression. 

 

Figure 3.18  Pair contains two set of genes associated by gene linkage. Each set belongs to 
a species and builds the corresponding relation by gene linkage. 

 

 Next, we are going to assign functions to these groups of genes. 

 

3.4.4  Annotations and statistics analysis 

Although in some situations, biologists already know a subset of genes involved in 

certain biological pathway of interest; however, as shown in Yi’s research[23], the 

gene annotated with GO terms[15] ranging from 25.1% in Danio rerio to 96.2% in 

Saccharomyces cerevisiae, also, the gene annotations by MIPS[24] or Biomax is 

ranging from 44.3% in Thermoplasma acidophilum to 73.1% in Bacillus subtilis 

168[25], the functional roles of each gene are not thoroughly studied. So, we are not 

supposed to only focus on these annotated genes. Many useful approaches show great 

accuracy when predicting gene functions. Scientists use hierarchical clustering, 

Hidden Markov models, SVM, FNC, and so on, to predict the functions of genes.  

Fuzzy nearest cluster: We chose FNC to be the prediction approach of our scheme, 

since it combines both clustering and classification and display great prediction 

accuracy. We use FNC to predict gene functions on both species. Every GDS 
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Affymatrix gene chip data set of human and mouse is fetched from GEO and 

processed (please see 3.1.3). We search each genes in GO to know their functional 

term. Any gene without GO term will be predicted by FNC throughout thousands of 

experimental data set. The final predication will count on the voting of these 

thousands data set. Top three GO terms will be annotated to this gene. 

By doing functional predication in human and mouse, we are now having the ability 

to annotate and analyze the orthologous gene group found by previous steps. 

Known/predicted GO term annotation: Now, genes in each cluster, which share 

both sequence and expression similarity can be annotated by known GO term and 

predicted GO term by FNC. We have know that the co-expressed genes can be 

inferred to be coding for proteins that partake in common biological function. It is 

important to understand that these genes are not just co-expressed, they also 

conserved in sequence and expression in evolution path. By the annotation, we can 

infer the functions of orthologous gene groups according to the statistical test, which 

makes the inference more reliable and promising. 

Hypergeometric testing: To examine the biological significance of the pairs 

(ortholgous gene groups); the known and predicted GO term annotation is take into 

account. Genes will be calculated the p-value of GO terms by hypergeometric 

distribution: 
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 In this equation, N is the total number of gene product [15] of platform species, 

can be regarded as background. M is the number of genes within the background 

which are annotated to interested GO term. n is the number of genes within the same 
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specified group.  

 A pair with relatively low p-value implies that these genes gathering together 

shows significant biological meanings, which suggest that the function of this group is 

annotated by this specific GO term. 

 

3.4.5  Visualization 

In order to provide better understanding and analysis of the results, we design a web 

sever and implement several useful functions in our program package. We generate 

many kinds of files containing useful information, including warping path, expression 

level plot, p-value, and so on. The package gives many delicate illustrations (Figure 

3.19 ). We also demonstrate great ability leveraging other tools, like Genesis and 

grphwarp by generating files for the software. 



 49

 

Figure 3.19  (a) Warping path display. (b) Another way to understand warping path. (c) An 
overview containing profile patterns and the expression level. 
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Chapter 4  Implementation 

This scheme is developed carefully into a package containing binary and source code, 

which is easy to reconstruct in all platform. This package is available on our website. 

 

4.1  Database  

All of the data retrieved from public domain, are reconstructed and organized in sever 

and manage by MySQL database system. 

 

4.1.1  GEO dataset 

We fetched the whole dataset from GEO, including 1790 human dataset and 1623 

mouse dataset and 5519 dataset for all species. Our GEO database schema is 

described in figure 4.1. 
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Figure 4.1  Database scheme of mirror GEO. 
 
 The program assesses each expression profile by querying mysql database with 

statement that specified its GDS ID storing in attribute sample_id of data_set. By this 

schema, FNC can easily scan through every entry in GEO dataset. Each expression 

profile are formatted and standardized during the process of FNC and Time warping. 

 

4.1.2  GO dataset 

GO had already provided organized database dumping file for users to download and 

import to their servers. In our scheme, we focused on the GO term at the level of four 

including cell-cycle category, since cell-cycle category is also defined in MIPS, which 

let our prediction comparable to other approaches. 
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4.1.3  Homologene dataset 

Homologene database curated mapping information between genes of different 

species. The linkage information of human and mouse is presented in the form of text 

file, which can be easily access by file I/O operation in computer language.  

 

4.2  Implementation of time warping 

4.2.1  DTW core 

The core program of DTW is adapted from BTW (Boltzmann Time Warping) web 

server. We take off the Boltzmann pair probabilities estimation sub-routine and 

maintaining group and one-on-one DTW algorithm in it. DTW is implement like 

sequence alignment considering weight function according to time periods. We also 

implement the semi-global alignment algorithm into the core, which just is a 

modification of normal DTW with different initiation condition. See Figure 4.2. 

 

Figure 4.2  Demonstration of semi-global DTW. 
 

However, because of the dynamic programming nature of the algorithm, the 

distance function should be able to be calculated in this means (dynamic 
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programming). We will discuss this in next section. 

 

4.2.2  Group-Euclidean distance function 

Considering original formula of Euclidean distance function, and there are two 

vectors, A (a1, a2, a3, a4) and B (b1, b2, b3, b4), the distance between A and B 

is ∑ −
i

ii ab 2)( . However, this sort of formula is not suit for dynamic programming 

nature of DTW algorithm. The formula should be modified as∑ −
i

ii ab 2)( . It is 

obvious that the distance is no longer Euclidean distance. However, in single-gene 

warping, this is not a problem, if we do not sparing the distance when calculating 

single gene distance, so∑ −
i

ii ab 2)( =∑ −
i

ii ab 2)( . This problem can be more serious 

when calculating group-Euclidean distance. That is, the distance function design for 

DTW has its limitation; we will discuss this in chapter discussion. 

 

4.3  Implementation of SVD 

4.3.1  SVD core 

The function doing SVD is based on a routine by Forsythe et al., which is in turn 

based on the original routine of Golub and Reinsch[26], found, in various forms, in 

Wilkinson and Reinsch, in LINPACK, and elsewhere. These references include 

extensive discussion of the algorithm used. In our implementation, the parameter of 

the function is adapted to our specific usage.  

 SVD is a series of matrix operations. Here, we take a low-dimension example as 
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our demonstration materials. Consider matrix A = 
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 . The first step doing 

SVD is computing the eigenvalue of matrix ATA. So we implement three matrix 

operations: transpose, multiplex, and Gauss-Jordan elimination (containing 

elementary row operations) to complete this step. In this example, we got three 

eigenvalue of ATA, λ1=3, λ2 = 3, andλ3 = 3. Therefore, matrix A has singular 

value σ 1= 1λ  = 3 , σ 2 = 3 , and σ 3 = 3 . So, we got matrix S = 
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 . With the information of eigenvalue, we can compute 

corresponding eigenvectors V(λ) which are the basis of ker(ATA-λ). In our example, 

V = 
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. Next, the most complicate part is computing matrix U, since ui = 
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A vi, we still only need mutiplex operation to solve this part. Here, u1=
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Because we only have three singular values, but U has four dimension in this case, so 

we need to compute an additional orthonormal basis. In our implementation, a simple 

Gauss-Jordan elimination can help to generate a solution; remember that this basis is 

not unique. By these operations, SVD can be done in polynomial time. 

An expression profile which had been normalized and standardized is taken as input, 
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and the diagonal matrix S is the only thing we concern in following step doing noise 

filtering. 

 

4.3.2  Noise reduction 

The diagonal values of S make up the singular value spectrum. The height of any one 

singular value is indicative of its importance in explaining the data. More specifically, 

the square of each singular value is proportional to the variance explained by each 

singular vector. The relative variances are often plotted. The approach we used is 

proposed by Everitt and Dunn, the approach based on comparing the relative variance 

-1

i

2
i

2
k )S(S ∑  of each component to 0.7/n, where n is the number of time point of the 

expression profile. 

 The S matrix outputted by our SVD function, was calculated the relative variance 

and filter out any eigengene with relative variance lower than 0.7/n. 

 

4.4  Implementation of FNC 

All of the programs are developed under Linux system using C++ with STD library. 

The program automatically fetched human expression profile one at a time, and FNC 

on it. The prediction results were stored and summed up, after thousands of prediction 

on the same genes but different samples, we can get a more reliable result of the 

function predication. 

 

4.4.1  Mining by unsupervised approach 

The algorithm of this part is described in previous chapter. We maintained a class to 
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store entire expression profile, which includes also kind of operations, such as 

standardization and normalization. We leveraged the function in Cluster3[27] to do 

the hierarchical clustering according to known genes’ GO annotations and prune the 

edges between clusters, of which have relatively low correlations to other clusters just 

like the algorithm says.  

 

4.4.2  Predicting category by classification methods 

When each GDS profile has been processed by the approach described in last section, 

the program will maintain a cluster profile to represent the average expression pattern 

of each cluster of each GO term. 

 Expression profiles of unknown-function genes are read and calculate the Pearson 

Correlation with every average expression pattern of each cluster of all functions. 

Correlation coefficient higher than λ will be recorded and summed up after all 1790 

dataset were predicted by FNC. The top 3 predicted functions of each gene will be 

regarded as the final prediction of the FNC. 

 

4.5  Statistical analysis 

4.5.1  Hypergeometric testing 

The routine calculating p-value of hyergeometric testing is implemented based on 

binomial coefficient subroutine and garmma function. Since the factorial function 

used in binomial coefficient subroutine is just a gamma function but offset by one. By 

gamma function, the time complexity computing binomial coefficient is reduced to 

O(n).  
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 In hypergeometric formula shown above, N is now the total number of genes with 

known and predicted function, M is the number of genes including predicted genes 

which are annotated to interested GO term. n is the number of genes within the group.  

By doing so, the p-value can demonstrate the biological significance of this GO term 

in the group. 

 
4.6  Implementation of visualization 

4.6.1  GD library[28] 

GD library is a C language library providing convenient function generating graph 

according to common file formatted, like JPEG and GIF. By the help of GD library, 

our package can directly generate graphs to demonstrate simple clustering and 

warping result. 

 

4.6.2  Genesis and graphwarp 

Genesis and graphwarp provide even more information about the clustering, and 

support more analysis. Our package generate corresponding file format for these two 

programs. The result is shown in Figure 4.3. 
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Figure 4.3  Visualization of (a)Genesis (b) graphwarp. 
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Chapter 5  Results 

In this chapter, we will demonstrate the ability of our scheme by both artificial and 

real data sets and tabulate the predication of FNC in following sections. The real data 

set contains both homogeneous (both yeast) and heterogeneous (human and mouse) 

data set. 

 

5.1   Artificial data set 

Before we perform our scheme on real experiments, we design a series of artificial 

expression data to test the essential functions of our package. In our first experiment, 

we artificially generate three kinds of patterns, see Figure 5.1, the first and second 

pattern is strictly increasing and strictly decreasing pattern respectively. The third one, 

we simulate a cell-cycle-regulation-like pattern including two cell cycles (two peaks, 

in order words). Each of them contains only single pattern and 100 genes. In these 

three cases, all of them display great performance in our algorithm.  

Next, we compare a special case of the third pattern, we eliminate second time 

points in each peak, which demonstrate a phenomenon of early entering each S stage 

(we assume that genes are regulated and highly expressed in this stage), and call it 

pattern mutant-three (Figure 5.2 ). 

Furthermore, pattern mutant-three is compared with pattern three by our scheme, 

you can see the DTW capture this kind of time shift and present their warping path 

suggesting that the sampling time in these two time point should be adjusted or 

modified. 
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Figure 5.1  Results of (a) pattern one (increasing) (b) pattern two (decreasing) (c) pattern 
three (two peaks) 

 

 Also, if we enable the noise reduction by SVD, you can observe easily that the 

deviation of expression is dramatically reduced. Although the deviation is a random 

artifact that we generate on purposed, this demonstration shows how good the SVD 

can do in noise reduction. See Figure 5.2 (b) 
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Figure 5.2  (a) Results show a time shift in the beginning of each peak. (b) SVD filters 
lots of noise. 

 

 Finally, we try more complicate data sets, which are composed by two patterns. 

See Figure 5.3 (a), we denote two data sets, one is data set A, composed by pattern 

three (cell-cycle-like) and pattern one (strictly increasing), another one is data set B, 

consisting of a “V” pattern (pattern four), which is similar to the valley between the 

peaks in pattern three, and pattern one. We set our k=2, and enable semi-global 

alignment, and hope our system can capture all these difference. 

 As we expected, the scheme shows great result again, these two patterns are 

separate automatically (see Figure 5.3 (a)), and semi-global alignment DTW 

successfully map the “V” pattern to the valley. 
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Figure 5.3  (a) Results of mixed patterns. (b) semi-global DTW works well in this case. 
 

 These simple artificial data sets, although not covering every patterns in gene 

expression, has already testified the ability of our core algorithms, DTW, SVD, and 

k-means clustering.  

 In the next section, we will try our scheme on a homogeneous data set and 

considering the whole process we proposed, including the five stages we described in 

former chapter. 

 

5.2  Yeast data set 

The yeast data set is fetch from GDS2318 (yhp1 double mutant across two cell cycles) 

and GDS2347 (wild type). Comparing these two data sets provides insight into the 

role of Yox1 and Yhp1 in early cell cycle box-dependent transcription. We analysis 
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them by our package, we choose top 500 genes in single-gene distance ranking, and 

set K1= K2=4. 

 

Figure 5.4  Gene clustering of (a) normal Yeast cell, and (b) knock-out Yeast. 
 

 Each corresponding cluster shows almost parallel pattern without any time shifting. 

However, although we have discovered the same changes of cell-cycle in gene 

CDC20 described in literature (see Figure 5.5), most of the genes are still unaffected 

toward the knockout of Yox1 and Yhp1. In our analysis, knockout of Yox1 and Yhp1 

do affect and regulate some genes, however do not change general cell cycle. It 

maybe due to other secondary regulation mechanism provoked and worked as rescue 

and therefore the general cell cycle are not changed. 
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Figure 5.5  CDC20 shows time shift in knockout yeast. 
 

 Here, we have show the proposed scheme work well in homogeneous data sets. 

Next, which is our major purpose, we will discuss the performance when analyzing 

heterogeneous data sets such as experiments crossed human and mouse. 

 

5.3  Human and mouse fetal liver data set 

The data sets of human and mouse fetal liver is sampled through the development 

from embryonic to birth stage, contributed by Dr.Wang, Chang Gung memorial 

Hospital.  

 Development stages mapping between human and mouse is crucial in discovering 

the development mechanism conserved in both species. However, the cell growth rate 

is extremely different in this situation, so this is a great material for our scheme. We 

pick top 500 genes in single-gene ranking, and choose K1 = 5, and K2=4. 

We list these fifteen orthologous functional gene groups with their expression profiles, 
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warping path, and GO annotation. 

 

Figure 5.6  Left: Gene clustering of mouse. Right: Gene clustering of human  
 

 We at first examine the grouping result by Genesis. Most of the groups show 

similar expression pattern. Although the results are not as good as previous 

experiments, however, it has demonstrated great ability finding orthologous functional 

gene groups in cross-species model.  
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Figure 5.7  Result of un-SVD(right) genes comparing to genes with SVD(left). 
 

 In Figure 5.7, we demonstrate again the effects of SVD. If we do not enable SVD 

in our system, this cluster will still be gathered together (103 genes overlapped with 

genes in the cluster with SVD), however, you can see the deviation of expression is 

reduced and therefore being easier in interpreting the pattern. 
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Figure 5.8  Case 1: genes highly expressed in early stages. 
 

We will discuss two clusters that display shortest warping distance and good 

statistical significance. Before that, we can observe in twenty clusters that all of the 

warping paths suggest samplings should be extended in the beginning and the end of 

the human data set. In this cluster, containing 78 genes, GO terms (see table 5.1.) that 
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show great biological significance (p-value < 0.001) are focusing on 

cell-generation-related functions. We can infer that these genes which are highly 

expressed in the early stages of development play important role in increasing the 

quantity of cells in liver. Their functions include cell division (11.54%) and cytoplasm 

(12.82%), which show many cells are generated. Also, cell cycle and DNA binding 

and response to DNA damage stimulus are all highly associated with this inference. 

Therefore, by this evidence, this functional gene cluster is highly reliable and 

convincing that it is an orthologous gene cluster. 

 

Table 5.1 GO term with high biological significance in case 1. 

Rank GO term probability p-value 

1 cell cycle 16.03% 6.49E-13 
2 cell division 11.54% 2.09E-12 
3 DNA binding 15.38% 3.66E-06 
4 cytoplasm 12.82% 5.07E-06 
5 response to DNA damage stimulus 3.85% 0.000147 

 

 Then, we try to interpret the information gives in second cluster. Genes in this 

cluster are highly expressed in the late stage of development. What draws one’s 

attention is that GO terms (see table 5.2.) are suggesting differentiation and 

biosynthesis related functions, which implies liver is now activating and more 

specified in these stages. Their functions include endothelial and epithelial cell 

differentiation (around 5.5%), which show blood vassals are now developed. Also, 

biosynthesis (4.63%) means the blood starts to circulate in the liver and the liver start 

to trigger its functions in biosynthesis. 
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Figure 5.9  Case 2: genes highly expressed in later stages. 
 
  
 
Table 5.2 GO term with high biological significance in case 2. 

Rank GO term probability p-value 

1 cell proliferation 12.04% 2.15E-06 
2 cytoplasm 17.59% 5.41E-06 
3 DNA binding 18.52% 2.44E-05 
4 biosynthesis 4.63% 4.89E-05 
5 endothelial cell differentiation 1.85% 0.000147619 
6 epithelial cell differentiation 3.70% 0.000150824 
7 transcription corepressor activity 3.70% 0.000321868 
8 calmodulin binding 4.63% 0.000858941 
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There are another cluster intriguing our notices, Genes in case 3 (see Figure 5.10), 

which are highly expressed latter than genes in case 2 display biological significance 

(see Table 5.3) in extracellular space (23.61%), membrane (41.66%), and immune 

response (13.88%). It can be infer that after liver started to trigger their biosynthesis 

function and bloods began to circulate in liver, the liver are now busy in outer cell 

signal transduction involving membrane proteins and extracellular space and 

developing immune system in liver. 

 

 

Figure 5.10  Case 3: genes highly expressed later than genes in case 2. 
 

 

 



 71

Table 5.3 GO term with high biological significance in case 3. 

Rank GO term probability p-value 

1 extracellular space 0.236111 1.64E-07 
2 proteasome core complex (sensu Eukaryota) 0.055556 1.26E-05 
3 immune response 0.138889 2.31E-05 
4 membrane 0.416667 8.11E-05 
5 collagen 0.055556 0.000281 

6 extracellular matrix structural constituent 
conferring tensile strength 

0.027778 0.000912 

 

By these case studies, it exhibits great performance in analyzing heterogeneous data 

sets and suggesting reliable functions to orthologous gene groups found. 

 

5.4  Gene function prediction 

This section presents the predication result of FNC, and we will discuss the result in 

chapter discussion.  

To verify the prediction accuracy, we design a 10-fold cross-validation on GO term 

cell cycle from 1006 human data sets. The average accuracy is 76.47%. Although it is 

lower than the performance in Yeast, FNC still shows good predication ability. 
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Figure 5.11  Verified the prediction accuracy of FNC in human. 
 
5.4.1  Human gene prediction 

We utilize FNC to predict the functions of each function-unknown gene on 1006 

human data sets fetch from GEO. The predication result is helpful when we annotate 

and infer the function of the cluster we found. Please see table 5.3, 5.4. 

 

Table 5.4 GO term predicted in human. 

Rank GO name (predicted) # of gene 
(predicted)

# of gene  
(known) 

Rank  
(know) 

1 response to drug 2405 26 115 

2 eukaryotic translation initiation factor 3 complex 1790 12 193 

3 translation factor activity, nucleic acid binding 1691 10 218 

4 cholesterol homeostasis 1679 10 218 

5 cytokine binding 1552 9 236 

6 response to oxidative stress 1518 94 48 

7 pregnancy 1371 63 66 

8 oligopeptide transporter activity 1367 6 297 

9 cytoskeletal protein binding 1218 33 101 

10 activin receptor complex 1126 2 428 

 

Table 5.5 Known GO term in human. 
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Rank GO name (known) # of gene 
(known)

# of gene 
(predicted)

Rank  
(predicted) 

1 membrane 4668 75 99 

2 metal ion binding 2217 688 21 

3 signal transduction 2081 6 307 

4 intracellular 1640 873 16 

5 cytoplasm 1548 7 294 

6 DNA binding 1084 341 36 

7 transport 1048 1367 8 

8 cell cycle 1006 1 443 

9 plasma membrane 753 158 62 

10 immune response 733 84 91 

 

5.4.2  Mouse gene prediction 

Since this paper is focusing on human and mouse, we perform FNC on mouse data 

sets (1133) from GDS as well. Please see table 5.5, 5.6. 

 

Table 5.6 GO term predicted in mouse. 

Rank GO name (predicted) # of gene 
(predicted)

# of gene 
(known) 

Rank 
(know) 

1 receptor binding 846 82 52 

2 learning and/or memory 720 9 216 

3 ATPase stimulator activity 641 2 400 

4 biotin binding 630 5 287 

5 GTPase activator activity 562 266 19 

6 oxidoreductase activity, acting on 
CH-OH group of donors 

513 4 315 

7 response to temperature stimulus 458 4 315 

8 outer membrane 454 6 262 

9 protein binding, bridging 442 9 212 

10 positive regulation of enzyme 
activity 

441 12 180 

 
Table 5.7 Known GO term in mouse. 
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Rank GO name (known) # of gene 
(known)

# of gene 
(predicted)

Rank  
(predicted) 

1 membrane 5880 185 43 

2 transport 3202 239 29 

3 intracellular 2280 0 -- 

4 metal ion binding 2203 53 113 

5 DNA binding 2122 53 113 

6 signal transduction 2104 40 147 

7 extracellular space 2062 0 -- 

8 cytoplasm 1151 33 175 

9 cell cycle 742 6 349 

10 RNA binding 576 119 37 

 
 
5.5  Web server 

5.5.1  Twins overview 

TWins aims to give an institutive and useful service for users to make their 

experiments comparable with each others. Twins provides array-wide time warping 

by pre-processing by k-means clustering and gives GO annotations to help infer the 

function of grouped genes. Fig. 5.2 demonstrates the system flow of the system of 

TWins. When users upload their expression profile with time series, specify the 

organism, and submit their request, the system will perform array-wide or 

conventional (depends on user selections) DTW on these two profiles. The results of 

DTW will be presented in a graphical interface (cooperates with grphwarp[1]) and 

TWins will provide grouped gene expression files for downloading. The system 

collected diverse cell-cycle profiles of species under different conditions from NCBI 

GEO, and users can upload their own data to compare with these precious 

experiments. Further, by the helps of mapping table extracted from SwissProt, any 

experiments with gene symbols names can thereby annotated by GO terms. Each GO 
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term will be calculated its P-value by the hypergeometric distribution to suggest its 

biological significance. The web interface is interactive and friendly to users, provides 

useful functions but simple manipulations, the core program, including time warping, 

GO term matching, and p-value calculating procedures are all follow GNU open 

source copyright, the completed program package is available at the website. 

 

 

Figure 5.12  TWins system flow 
 

 

 

 

 

 

 

Table 5.8 A List of cell-cycle profile fetched from NCBI GEO 
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GDS ID Species Condition Time point Platform Feature Reference

GDS39 Saccharomyces cerevisiae 1 14 GPL59 7680 [6] 

GDS124 Saccharomyces cerevisiae 1 24 GPL62 8832 [6] 

GDS400 Homo sapiens 3 4 GPL91 12651 [29] 

GDS449 Homo sapiens 5 4 GPL91 12651 [30] 

GDS586 Mus musculus 1 8 GPL81 12488 [31] 

GDS587 Mus musculus 1 7 GPL83 11934 [31] 

GDS845 Homo sapiens 3 3 GPL550 20163 [32] 

GDS846 Homo sapiens 3 3 GPL550 20163 [32] 

GDS847 Homo sapiens 3 3 GPL550 20163 [32] 

GDS848 Homo sapiens 3 3 GPL550 20163 [32] 

GDS922 Saccharomyces cerevisiae 2 3 GPL90 9335 [33] 

GDS1409 Mus musculus 4 4 GPL339 22690 [34] 

GDS1515 Arabidopsis thaliana 4 3 GPL198 22814 [35] 

GDS1627 Homo sapiens 8 3 GPL550 20163 * 

GDS1710 Homo sapiens+Mus musculus 1 3 GPL2677 5376 [36] 

GDS 1875 Homo sapiens 5 9 GPL1528 22178 [37] 

GDS2053 Mus musculus 2 3 GPL32 12654 [38] 

* Not listed in GEO 
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Table 5.9 Characteristics of TWins. 

Comparing 
features 

TWins genewarp BTW GenTxWarper Descriptions 

Programming 
language C++ C++ Perl & c++ JAVA 

Implement by 
efficient 
language 

Platform All Win32 All All Great 
compatibility 

Web server Yes - Yes - 
Provide 
convenient 
access 

Database 
supported NCBI GEO ExpressDB[39] Cho’s[40, 41] - 

Allow users to 
compare their 
experiments 
with others in 
database 

Species number 

4 (mouse, 
human, 
Arabidopsis, 
and yeast) 

1 (yeast) 2 (yeast and 
human) - 

Supporting 
cell-cycle 
profiles of 
diverse species 

Graphic Web interface 
+ grphwarp grphwarp Web interface Jave application 

Provide 
abundant 
visualization 

GO annotation Yes - - - 

According to 
the given gene 
symbol name 
and organism 
name, Twins 
can provide GO 
term name for 
each gene 

p-value Yes - - - 

Indicate the 
biological 
significance of 
certain GO term 
happened in 
user’s data 

Feature vector Yes Yes - Yes 
Acting DTW on 
more than one 
gene 

Array-wide time 
warping 

Yes (by 
K-mean 
clustering) 

moderate* - moderate* 

By K-means 
clustering, 
efficiently 
improve the 
performance of 
conventional 
DTW 

Time point 
filtering Yes - - - 

Filter the likely 
spurious time 
point 

Open source Yes Yes Yes - 
Give free 
utilization of 
TWins’ code 

* Directly act DTW on whole genome date, which might lead to unreliable alignment 

 

5.5.2  Web interface 

The web interface (see figure 5.12) allows two types of operations: (1) compare two 
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uploaded experiments, and (2) compare an uploaded experiment with database.  

 

 

Figure 5.13  Two type of operations on web interface. (1) compare two uploaded 
experiments, and (2) compare an uploaded experiment with database 

 

The first type of operations needs users upload two formatted files, and input the 

organism name. Organism name is necessary, since the system needs organism and 

gene symbol name to acquire the GO term and evaluates the p-value. The second type 

of operations need only one upload file. However, users must at first specified one 

dataset compiled from NCBI GEO. When the dataset are set, the webpage will present 

the particular experiment conditions of the dataset. For example, if dataset GDS1857 

are selected, the browser will display five conditions and their descriptions, including 

cell-line treated by doxycycline, cell-line transfacted by HIV-1 Vpr protein and so on. 

Users should decide which experiment to compare with. System does not force users 

to input the organism name of their data, but they need to upload the profile of the 
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same species of the dataset they chosen, or the GO term and p-value will go wrong. 

Users then need to decide the grouping strategy: select “All” to directly perform 

conventional DTW on the datasets, or select “K means clustering” for grouping the 

data by this approach before acting DTW. Any big dataset is suggested to use K mean 

clustering in order to get better warping path. If users like the system to help screen 

out spurious time point, they can click on the radio button and submit their task. 

 After submission and waiting for system to complete users’ requests, the results 

page will be shown and provide detail information of your request. See figure 5.13. 

System will show you the warping path and p-value of GO term, every GO term 

having p-value lower than 0.05 will be written in red color. TWins also provides 

detailed warping path and output the pdf file generated by grphwarp[1] program to 

give more delicate graphics. 

 

 

Figure 5.14  The result of users’ request. The graph in blue square is drawn by grphwarp. 
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5.6  Software package 

The package contains every executable routine and other utility tool. This program is 

free software; you can redistribute it and/or modify it under the terms of the GNU 

General Public License as published by the Free Software Foundation; either version 

2 of the License, or (at your option) any later version. This program is distributed in 

the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the 

implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 

PURPOSE. See the GNU General Public License for more details. You should have 

received a copy of the GNU General Public License along with this program; if not, 

write to the Insitute of Bioifnormatics, NCTU. Further to the terms mentioned you 

should leave the copyright footers and copyright notice in the HTML headers intact, 

stating me as the original author. 
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Chapter 6  Discussion 

 
6.1  The limitation of the distance function 

calculation by dynamic programming 

In previous Chapter, we have mentioned that the distance function used in DTW is not 

exactly original Euclidean distance function but∑ −
i

ii ab 2)( . The group-distance 

version in DTW is∑ ∑
= =

−
T

i

N

k
kiki ab

1 1

2)( , comparing with original one∑ ∑
= =

−
N

k

T

i
kiki ab

1 1

2)( , 

where N is the number of genes in this group, and T is the number of time points. The 

problem of the distance function used in our algorithm is that they are not real 

Euclidean distance functions; they are more like functions calculating the degree of 

sparseness in each time points. That is, this function only works like original 

Euclidean distance function when the degree of sparseness in each time points is low, 

since ∑ ∑
= =

−
T

i

N

k
kiki ab

1 1

2)(  will approximately equal to ∑
=

−
T

i
mimi abN

1

2)(* , where ami 

and bmi represent the mean of aki and bki. This also supports our scheme which 

performs K-means clustering making the degree of sparseness in each time points 

lower before calculating the distance in groups, and therefore leading to result more 

close to real Euclidean distance. 

 

6.2  The limitation of SVD 

When we look at the algorithm of SVD closely, we will find that the rank of 

eigen-genes is limited to the number of time points. This is its mathematical limitation, 
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which implies that our data in matrix A should not mix with too many kinds of 

patterns or the noise reduction will either not-working or filter out important 

information. That is why the approach proposed by O. Alter, GSVD, is said to only 

focus on cell-cycle regulated genes and limit genes numbers.  

In our scheme, since we realized the limitation of SVD, we do SVD after the 

gene number is reduced by our single-gene distance ranking. In general case, we pick 

top hundreds of genes for SVD to process, which avoid lost of information. 

 

6.3  Future work 

We can extend our scheme to multi-species model by replace of pair-wise profile 

alignment by multiple-profile alignment algorithm. And therefore can analyze 

orthologous gene groups cross more tissue and more species. The FNC can be 

improved by filtering out data sets which is not well sampled or replaced with 

advanced technique with higher prediction accuracy. Since the verification of gene 

functions in always proceeding, we should update the database frequently in order to 

provide précised annotation and p-value analysis. The presentation support by Genesis 

is not very satisfying since it does not considering the warping path. This can be 

solved to generate this kind of clustering result by our program. We hope to keep 

reinforcing our package with time. 
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Chapter 7  Conclusions 

This work proposed a scheme which at first ranks the single-gene warping distance 

between genes in human and genes in mouse linked by gene linkage based on their 

similarity on sequence, and reduced their noise by SVD, and clusters genes of a 

species by computing the distance between each according to their expression profiles 

(k-mean clustering). However, these linked genes in another species are needed to be 

divided into smaller groups sharing parallel expression pattern, so the clustering is 

acted again on each group. These small groups of genes linking with other small 

groups of genes are called pairs. Each pair is computed its warping distance by 

group-DTW algorithm. Pair with small warping distance is regarded as having similar 

expression pattern and sequence homology. In addition, genes are annotated with GO 

term and suggested with its p-value. Pairs illustrating both small warping distance and 

p-value are highly recommended to have similar and basic functions within multiple 

species. 

We perform our scheme in artificial, homogeneous (yeast), and heterogeneous 

(human and mouse). All of them shows great outcome and demonstrate by accessible 

visualization program. 

Although our experiment only examine two species, the scheme is reasonable to 

be feasible into multiple species. The genes found by this scheme are highly 

conserved in their sequence and expression, which suggests these genes play basic 

role in the functions and therefore are preserved in the evolutionary process. 

This dissertation not only answer the questions listed in previous chapter, but 

also propose a novel scheme to solve these relevant tasks with integration and 

improvement, and contributes remarkable advancement in cross-species orthologous 

gene analysis. 
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Appendix 1 Pseudo code of SVD algorithm 
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