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Abstract 

In this paper we complete the work begun by Mendelsohn and Rosa and by Hartman, finding 
necessary and sufficient conditions for a maximum packing with triples of order m MPT(m) to 
be embedded in an MPT(n). We also characterize when it is possible to embed an MPT(m) 
with leave LI in an MPT(n) with leave L2 in such a way that L1 C L2. 

1. Introduction 

A packin9 with triples of  order n (or a partial Steiner triple system) is an ordered 

triple (S, T,L) where T is a set o f  edge-disjoint copies of /£3 (triples) in K, with 

vertex set S, and L is the set of  edges in Kn belonging to no triple in T. L is known 

as the leave of  the packing. A maximum packin 9 with triples (or simply a maximum 

packin9) of  order n, denoted by MPT(n), is a packing with triples (S, T,L) of  order 

n such that for any other packing with triples (S ' ,T ' ,U)  of  order n, ITI >~]T'I (or, 
if you prefer, IL[~<IL'I). m maximum packing (S,T,L) of order n with L = 0 is, 

o f  course, a Steiner triple system, STS(n). It has been known since 1847 [6] that 

an STS(n) exists if and only if n ~- 1 or 3 (mod6) .  It is also well known that for 

the other possible values o f  n, the subgraph induced by the leave is: a 1-factor if 

n = 0 or 2 (mod 6); a tripole (that is, a spanning subgraph of  K, in which one vertex 

has degree 3 and the rest have degree 1) if n - 4 (mod 6); and a cycle o f  length 

4 if n - 5 (rood 6). (The 3 adjacent edges in a tripole are called the head of  the 
tripole.) 
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The packing (S1, Ti,L1 ) of order m is said to be embedded in the packing ($2, T2,L2) 
if SI ___ $2 and 7"1 c T2. In 1973, Doyen and Wilson [2] set the standard for embedding 
problems by proving the following result. 

Theorem 1.1 (Doyen and Wilson [2]). Let  m,n = 1 or 3(mod6).  A n y  STS(m) can 

be embedded in a STS(n) i f  n>>.2n + 1. 

This lower bound on n is the best possible. Over the past 25 years much effort has 
been focussed on proving a similar theorem for embedding any part ial  STS(m) in a 
STS(n). The best result to date is that a partial STS(m) can always be embedded in a 
STS(n) for all n>~4m + 1 and n = 1 or 3(mod6)  [1]. The best possible result would 
be n>~2m+ 1 and n - 1 or 3(mod6).  

In 1983, Mendelsohn and Rosa [7] considered the following generalization of 
Theorem 1.1. For which values of m and n can any maximum packing of order m 
be embedded in a maximum packing of order n? It is easy to see that the following 
are necessary conditions. 

Lemma 1.2. Let  n > m. Suppose that any MPT(m) can be embedded in a MPT(n). 
Then 

(1) / f m = 6  then n = 7  o r n > . l O ,  

(2) if  m > 6  and m is even then n = m +  1 or n >/ 2m, and 

(3) / fm > 6 and m is odd then n >>. 2m. 

Remark. There is no restriction on n if m ~< 5. 

Mendelsohn and Rosa obtained a partial answer to this problem with the following 
theorem. 

Theorem 1.3 (Mendelsohn and Rosa [7]). Let  s, t E {0, 1,2, 3, 4, 5} such that s E {4, 5 } 
i f  and only if  tE{4,5}. Then the necessary conditions in L e m m a  1.2 f o r  the 
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embeddin9 o f  an MPT(m) in an MPT(n) are sufficient i f  

(1) m~<5, or 

(2) m = 6  a n d n E  {10,11}, or 

(3) m is even and n = m + l, or 

(4) m -= s (mod 6) and n =- t (mod 6). 

Furthermore, the smallest possible embedding when n/> 2m has been found in many 
cases by Mendelsohn and Rosa [7], by Hartman et al. [5], and in the remaining cases 
by Hartman [4], as the following theorem states. 

Theorem 1.4 (Hartman [4], Hartman et al. [5] and Mendelsohn and Rosa [7]). Let  

2m<<,n<~2m + 5. Any  MPT(m) can be embedded in an MPT(n). 

In this paper, we finish the proof of this problem, showing that the necessary condi- 
tions of Lemma 1.2 are sufficient for the embedding of an MPT(m) into an MPT(n). 
To do so, we need to prove the following. 

Theorem 1.5. Suppose that s E {0, 1,2, 3} and t E {4, 5} or s E {4, 5} and t E {0, 1,2, 3}. 
Suppose also that m =- s (mod 6), n - t (mod 6), and n > 2m. Then any MPT(m) can 

be embedded in an MPT(n). 

This result is proved in Sections 2 and 4. These results are all collected into one 
result in Section 5. 

2. The case s E {4, 5} and t E {0, 1, 2, 3} 

For the purposes of this paper, a difference triple is a 3-element set {x , y , z }  of 
distinct positive integers such that x + y -- z. 

If ix, y} is an edge in K,, with vertex set Zn, then {x, y} is said to have length 

( ( x , y )  = min{y - x(mod n), x - y (mod n)}; so 1 <~((x,y)<<.n/2. For any subset 
L C_ 7/Ln/2j, let Gn(L) be the graph with vertex set Z, and edge set { { x , y } l E ( x , y  ) E 

L}. The following is a special case of an extremely useful lemma of Stern and Lenz. 

Lemma 2.1 (Stern and Lenz [8]). ff n/2 E L then there ex&ts a 1-factorization o f  

G,(L). 

The following lemma was essentially proved by Stern and Lenz [8] see also [3, 
Lemma 6.1]; the additional property that D can be defined so that it contains {1,2,3} 
for the small values of L was proved by Fu et al. (see [3, Lemmas 6.5 and 6.7]). 

Lemma 2.2. (i) For all h>~2, the set {1,2 . . . . .  3h} \ {a ,b , c }  fo r  some {a,b,c}C_ 

{4,5 . . . . .  3h} can be partitioned by a set D o f  difference triples, and i f  h<~ 10 then D 

can be defined so that {1,2,3} E D. 
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(ii) For all h>~3, the set {1,2 . . . . .  3h + 1}\{a,b,c,d} for some {a,b,c,d} C 
{5,6 .. . .  ,3h + 1} can be partitioned by a set D of difference triples, and i f  h~13  
then D can be defined so that {1,2,3} E D. 

The next two lemmas are the crucial ingredients used to prove Theorem 1.5. 

Lemma 2.3. Let h>>.2. The edoes & G6h+2({1,2,3}) can be partitioned into 4 match- 
inos, each of which saturates all vertices except for the vertices 3 and 10, together 
with a set T of  2h + 2 triples. 

Proof. The proof consists of defining T and two cycles cl and c2, each of which 
passes through each vertex except for 3 and 10. Then clearly cl and c: can each be 
partitioned into two matchings as required. 

Let 

T = {{0, 1,3}, {2, 3, 4}, {3, 5, 6}, {7, 8, 10}, {9, 10, 11}, { 10, 12, 13}} 

U{{3i + 2,3i + 3,3i +4}14<~i<~2h- 1}. 

Let Cl --(x0,xl,...,X6h-1) where (x0,xl . . . . .  xj1) = (0,2,5,4,6,7,9,8, 11, 13, 15, 12), and 
for 2 <~i <~h- 1 define (X6i,X6i+ l , . . . ,X6 i+  5 ) = ( 6 i + 2 ,6 i + 5 ,6 i + 4 ,6 i + 7 ,6 i + 9 ,6 i + 6 ) ,  

reducing sums modulo 6h + 2. Let c2 = (YO, Yl , . . . ,Y6h-I)  where (Yo, Y l , . . . ,Y i l )  = 
(0,6h + 1,2, 1,4,7,5,8,6,9, 12, 11), and for 2<~i<~h - 1 define (Y6i, Y6i+l . . . .  , Y 6 i + 5 )  ---- 

( 6 i + 2 , 6 i + 1 , 6 i + 4 , 6 i + 6 , 6 i + 3 , 6 i + 5 ) .  [] 

Lemma 2.4, Let h>~2. The edoes in G6h+4({1,2,3,4}) can be partitioned into 4 
matchings, each of  which saturates all of  the vertices except for vertices 6 and 9, 
together with a set T of  4h + 4 triples. 

Proof. Let 

V = {{0,2,4}, {1,3, 5}, {2, 3,6}, {4,6, 8}, {5, 6, 9), {6,7, 10}, {7, 8,9}, {9, 10, 11}, 

{9, 12, 13}, {1 l, 12, 15}, { 13, 14, 15}, { 14, 16, 17}} U {{6i + 4, 6i + 6, 6i + 7}, 

{ 6 i + 5 , 6 i + 6 , 6 i + 9 } , { 6 i + 7 , 6 i + 8 , 6 i + 9 } , { 6 i + 8 , 6 i +  10,6i + 11}]2 

<~i<~h-1}. 

Let ct be the (6h + 2)-cycle (xo,xl . . . . .  X6h+l ), where (xo,xl,... ,Xl3) = (3,4, 5, 7, 11,8, 
10, 12, 14, 18, 15, 17, 13, 16) and for 3 <~i<~h (X6i+2,X6i+3 . . . . .  x6i+7)----(6i+2, 6i+6,6i+3,  
6i + 5, 6i + 1, 6i + 4), reducing sums modulo 6h + 4. Let c2 be the (6h - 2)-cycle (Y0, Yl, 
• . . , Y 6 h - 3 ) ,  where (Yo, Yl . . . . .  Y9) --- (3,7,4, 1,2,5,8, 12, 16, 15) and for 3 <~i<<.h (Y6i-8, 
6 6 i - 7  . . . .  , Y6i-3 ) = (6i + 1, 6i - 1,6i + 2, 6i, 6i + 4, 6i + 3). Finally, let c3 be the 4-cycle 
(10,13,11,14). Then c2 and c3 provide 2 matchings saturating each vertex except 
vertices 6 and 9, as does cl. [] 
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L e m m a  2.5. Let n = 6h + 2. For any t with 1 <~t < h, where i f  t<~2 then h<<.lO, 

there exists a partition of  the edges of  K, into 
(i) 4 matchings that each saturates all the vertices in K~ except jbr u,v E V(K,); 

(ii) 6t + 1 1-factors of  K,; and 
(iii) a set T of  triples. 

Proof.  Let 1 ~< t < h with h <~ 10 if t ~< 2. By Lemma 2.2(i), { 1,2 . . . . .  3h}\{a,  b, c} with 
{1,2,3} n {a,b,c} = ~ can be partitioned into a set D of  h - 1 difference triples. Let 

D1 be the set of  difference triples in D that contain 1,2 and 3 and let ~ = IDll; then 

clearly 1<~c~<3, and by Lemma 2.2(i) if  t~<2 then D~ = {{1,2,3}}, so ~ = 1. Let 

D2 be a set of  t - e difference triples in D\DI (clearly 0 ~< t - ~ ~< ]D\DL[). Let 

L = {a,b,c,3h + 1} U {x Ix is in a difference triple in D1 UD2}\{1 ,2 ,3} .  

Then [L] = 4 + 3e + 3(t - ct) - 3 = 3t + 1. Since 3h + 1 EL, by Lemma 2.1 the edges 

in G6h+2(L) can be partitioned into (6t + 1)1-factors. By Lemma 2.3 the edges in 

G6h+2({1, 2, 3}) can be partitioned into 4 matchings that each saturates all the vertices 

in K, except for two, together with a set Tl of  triples. Finally, the edges in Kn of  

lengths in the difference triples in D\(D1 U D2) are partitioned by the triples in 

7"2 = { { i , x + i , x +  y + i } l { x , y , x +  y } ED \ (D ,  UD2), iEZn}. 

So setting T = T1 U T2 provides the required partition. [] 

L e m m a  2.6. Let n = 6 h + 4 .  For any t with l <~t < h, where i f  t<<.3 then h~<13, 
there exists a partition of  the edges of  Kn into 

(i) 4 matchings that each saturates all the vertices in Kn except for u, v E V(Kn); 

(ii) 6t + 1 1-factors; and 
(iii) a set T of  triples. 

Proof.  Let 1 ~<t < h with h~<13 if t~<3. If  h = 2 (so t = 1), let L = {5,6,7,8} and 
D- -q~ .  

I f  h>~3 define L, D, D1 and D2 as follows. By Lemma 2.2(ii) {1,2 . . . . .  3h + 1}\ 
{a,b,c,d} with {1,2,3,4} n {a,b,c,d} = 0 can be partitioned into a set D of  h - 1 

difference triples. Let D1 be the set of  difference triples in D that contain 1, 2, 3 and 
4, and let e -- IO~l; then clearly 2~<~<4,  and by Lemma 2.2(ii) if  t~<3 then ~ = 2 
(since {1,2,3} c D). Let D2 be a set of  t - ct difference triples in D\D1 (clearly 
0 ~ < t -  ~<[D\D1] ) .  Let 

L = {a,b,c,d, 3h + 2} U {x I x is in a difference triple in D1 UD2}\{1 ,2 ,3 ,4} .  

Then ILl = 5 + 37 + 3(t - ~) - 4 = 3t ÷ 1. 
In any case, since 3h+2 E L, by Lemma 2.1, the edges in G6h+4(L) c a n  be partitioned 

into (6t + 1)1-factors. By Lemma 2.4 the edges in G6h+4{1,2,3,4} can be partitioned 
into 4 matchings that each saturates all the vertices in Kn except for two, together 
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with a set 7"1 o f  triples. Finally, the edges in K, o f  lengths in the difference triples in 

D\(DI  U D2) are partitioned by the triples in 

T2 = {{i ,x  + i , x  + y + i } [ { x , y , x  + y}  E D \ ( D 1 U D 2 ) ,  i E  7/n}. 

So setting T = TI U T2 provides the required partition. [] 

Proposition 2.7. Let  m -= 5 (mod 6), n = 1 or 3 (mod 6), and n > 2m. Any  maximum 
packing o f  order rn can be embedded in a STS(n). 

Proof.  Let m = 6t + 5 and n - m E {6h + 2,6h + 4}. Let (SI ,T1,LI)  be a maximum 

packing of  order m, and let $2 be a set o f  size n - m  with $1NS2 = 0. By Theorem 1.3 

we can assume that m ~> 11. So, since n > 2m, we have that 1 ~ t < h. 

Suppose first that if t ~< 2 and n - m = 6h + 2 then h ~< 10, and if t ~< 3 and n - m = 

6h + 4 then h~<13. Then by Lemmas 2.5 and 2.6, there exists a partition of  the 

edges of  Kn-m with vertex set $2 into 4 matchings M1, M2, 11,/3 and M4 that each 

saturates all vertices in $2 except for u,v ~ $2; 6t + 1 1-factors F1,F2 . . . . .  F6t+l o f  

Kn_,.; and a set T o f  triples. Let LI = {{at ,a2} ,{a2,a3} ,{a3,a4} ,{al ,a4}}  and let 

O: Sl \{al ,a2,a3,a4}  ---* {1,2 . . . . .  6 t +  1} be a 1-1 mapping. Define 

T2 = TI U r u {{al, a2, u}, {a3, a4, u}, {al, a4,/)}, {a2, a3, v}} 

LJi{ai,x, y}  [ 1 <~ i <. 4, { x, y} E Mi}  U {is,  x, y} I~ ~ SI, { X, Y} E F¢(s)}. 

Then clearly (Sl U $2, T2) is an STS(n), and (Sl, Ti,Ll ) is embedded in this STS(n). 
Now suppose that either l~<t~<2, n - m  = 6 h + 2  and h~>ll  (so n = 6 t + 5 +  

6h +2>~79) ,  or l~<t~<3, n - m  = 6 h + 4  and h~>14 (so n~>99). I f n - m  = 6h 
+ 2 then the previous case shows that (S1, T i ,L l )  can be embedded in a STS(37) 

(that is, 37 = 6t + 5 + 6h r + 2, where h; = 4 or 3 if t = 1 or 2, respectively), and by 

Theorem 1.1 this STS(37) can be embedded in a STS(n) since n~>75. I f  n -  m = 

6h + 4 then we have shown that (Si, T l ,L l )  can be embedded in a STS(49), which 

by Theorem 1.1 can be embedded in a STS(n) since n>~99. 

Thus, in any case (S1,TI,L1) has been embedded in a STS(n). [] 

Proposition 2.8. Let  m ~ 5 (mod 6) and n ~ 0 or 2 (mod 6), or m - 4 (mod 6) and 

n -= 0, 1,2 or 3 (mod6).  Let  n >2m.  Then any maximum packing o f  order m can be 
embedded in a maximum packing o f  order n. 

Proof.  Let (Sl, Tl,Ll ) be a maximum packing of  order m. 

If  m = 5 (mod 6) then by Proposition 2.7, ($1, TI,L1 ) can be embedded in a STS(n+  

1) ($2, T2). For any s C $2\S1, ( S 2 \ { s } , i t l t  E T2 and s ~ t}) is a maximum packing 
of  order n that contains ($1, T1,LI). 

I f  m -= 4 (mod 6) then L i is a tripole, say L l = { {s l, s2 }, {s~, s3 }, {s l, $4 } } [.-J { { S2i- 1, S2i } 
13 <<.i<~m/2}. Then (Sl, T1,LI ) is embedded in the maximum packing (Sl U is}, T2,L2) 
of  order m + 1, where T2 = i is, si,s4} } U { {s, s2i_l,S2i} 13<~i<~m/2} U T1 and L2 = 
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{{S, S2} ,{S2,Sl} ,  {S1,$3},{S, S3} }, Since m + 1 - - - -  5(mod6)  and since n > 2m, by 
Proposition 2.7, (SI U { s } ,T2 ,L2 )  can be embedded in: a STS(n) ($3, T3) if n ~ 1 or 
3 (mod 6), thus providing the required embedding; and in a STS(n + 1 ) ($3, T3) if n = 

0 or 2(mod6) ,  in which case ( S 3 \ { s } , { t l t  E T3 and s f~ t} ,  { { a , b } l { s , a , b }  E T3}) 
provides the required embedding. [] 

3. Another embedding problem 

There is a second generalization of Theorem 1.1 that makes sense to consider, and 

that is to ensure that the leave of the MPT(m) is preserved during the embedding. 

More specifically, the second problem is to find the integers m and n for which any 

MPT(m) (S1,T1,L1)  can be embedded in an MPT(n) (S2, T2,L2) so that L1 CL2. This 

extra requirement that LI C L2 restricts more severely the integers n for which such an 
embedding is possible. It is easy to see that the following conditions are necessary. 

Lemma 3.1. L e t  n > m. Suppose  that  any  MPT(m) (S1 ,TI ,L1)  can be embedded  in 

an MPT(n) (S2, T2,L2) with L 1 C L 2 .  Then 

(1) i f  m - 0 or 2(mod6)  then n is even, 

(2) i f m  _= 4(rood6)  then n =- 4(mod6) ,  

(3) i f m  ~- 5 (mod6)  then n - 5(mod6) ,  and 

(4) n ~ 2 m ,  with s tr ic t  inequali ty  i f  m =_ 0,2,4 or 5(mod6).  

ProoL (1 ) - (3 )  follow directly from the requirement that L1 C L2. The requirement that 

n>~2m follows from (1 ) - (3 )  and Lemma 1.2. 

To see that if m = 0,2,4 or 5 (mod6)  then n ~ 2m, consider the following. If  

n = 2m then (1 ) - (3 )  require m to be even, so the leave of (S1, T j ,L1)  is a spanning 
graph. Therefore, all the edges joining vertices in Si to vertices in S2\S1 (except for at 
most two such edges that could occur in the head of the tripole when n - 4 (mod 6)) 

must occur in triples that contain one vertex in S1 and two vertices in S2\SI .  It is 
easy to check that there are not enough edges joining vertices in S2\St  for this to be 
possible. Hence, in these cases n > 2m. [] 

It turns out that in many cases, the embeddings of Mendelsohn and Rosa have this 
additional property. 

Theorem 3.2 (Mendelsohn and Rosa [7]). L e t  n >~ 2m, with s tr ict  inequal i ty  i f  m - 

0,2,4 or 5(mod6).  Suppose  that  m ,n  =_ 0 or 2(mod6) ,  or m = n =_ 4 or 5(rood6), 

or m =- 1 or 3(rood6) and n =- 0,1,2 or 3(mod6).  Then any  MPT(m) ( S I , T I , L I )  

can be embedded  in an MPT(n) (82, T2,L2) with L~ C L2. 

Therefore, to prove that the necessary conditions of Lemma 3.1 are sufficient, we 
need only consider the case where m = 0 or 2 (mod6)  and n - 4(mod 6), and the 
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case where m = l or 3 ( rood6)  and n - 4 or 5 (mod6) ,  with n > 2m in each case. 

In the next section we will consider these cases as we complete the proof  of  Theorem 

1.5. 

4. The case s E {0, 1, 2, 3} and t E {4, 5} 

Two of  these cases have already been settled with the following result. 

Proposition 4.1 (Fu et al. [3]). Let  m - 0 or 2( rood6)  and n = 4 ( m o d 6 )  with n > 

2m. Then any MPT(m) (S1,TI ,LI)  can be embedded in an MPT(n)  (S2, T2,L2) in 

which L1 C L2, and in which the edges in L2\L1 all join pairs o f  vertices that are both 

in $2\$1. 

We can use Proposition 4.1 to obtain the following result. 

Proposition 4.2. Let  m - 1 or 3 (mod 6) and n -- 4 or 5 (mod 6) with n > 2m. Then 
any MPT(m) (S~, T1,Ll = 0) can be embedded in an MPT(n) ($2, T2,L2) in which 
trivially Ll C_L2, and in which the edges in L2\LI all join vertices in Sz\S1. 

Proof.  Suppose first that n = 6h + 5. Let s c S~. 
the M P T ( m -  1) (S~,T(,L~) = ( S ~ \ { s } , { t l t  ~ T~, 

an M P T ( n -  1) (S~, T~,L~) in which s ~ S~ and L1 C 

{ {s l, s2 }, {s l, s3 }, {s l, s4 } }, where by Proposition 4. I 

By Proposition 4.1 we can embed 

s q~ t}, { { x , y } l { s , x , y }  E 7"1}) in 

L~. Let L~ = {{xi, y i } ] l  <~i<~3h}U 

we can assume that {s l, s2, s3, s4 } c_ 

$2\S1. Then (SI,TI,L1 = 0) is embedded in the MPT(n)  (S2, T2,L2) = (S~ U {s}, 

{ {s, xi, yi } ] l <~ i <~ 3h } t3 { {s, sl,s2 } t3 T~}, { {s, s3 }, {s, s4 }, {sl,s3 }, {Sl,S4}}). Trivially 

L1 C_L2. 

Also, (S1,T1,L1) is embedded in the MPT(6h + 4 )  (82\{S1), { t i t  C T2, sl f~ t}, 

{ { x , y } l { S l , X , y } E T 2  ), so the result is proved. [] 

Proposition 4.3. Let  m - 0 or 2 (mod 6) a n d / e t  n = 5 (mod 6) with n > 2m. Then 

any MPT(m) can be embedded in an MPT(n). 

Proof.  Let n = 6h + 5. Let (S t ,T I ,L I )  be an MPT(m).  Then by Theorem 1.4 if 
n - 1 -- 2m and by Proposition 4.1 otherwise, we can embed this in an MPT(n - 1 ), 
which can itself be embedded in an MPT(n)  in the same way that (S~, T~,L2)' ' was 
embedded in ($2, T2,L2) in the previous proof. [] 

5. Summary 

We now collect together these results. 
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Theorem 5.1. L e t  n > m. A n y  MPT(m) can be embedded  in an MPT(n) i f  and only 

if 
(1) if m = 6  then n = 7  or n>~10, 
(2) if m > 6  and m is even then n = m +  1 or n >~ 2m, and 

(3) i f m > 6 a n d m  is odd then n >~ 2m. 

Proof. The necessity comes from Lemma 1.2. The sufficiency follows from Theorems 
1.3-1.5. Theorem 1.5 is proved by Propositions 2.7, 2.8 and 4,1-4.3. [] 

Theorem 5.2. L e t  n > m. A n y  MPT(m) (Sl, T1,LI) can be embedded  in an MPT(n) 
(S2, T2,L2) such that L1C_L2 i f  and only i f  

(1) i f  m =- 0 or 2(mod6) then n is even, 

(2) ifm -= 4(mod6) then n - 4(mod6), 
(3) ifm =- 5(mod6) then n =- 5(mod6), and 

(4) n>~2m, with strict  inequality i f  m -= 0,2,4 or 5(mod6). 

Proof. The necessity follows from Lemma 3.1. The sufficiency is proved by Theorem 
3.2 and Propositions 4.1 and 4.2. [] 

References 

[1] L.D. Andersen, A.J.W. Hilton and E. Mendelsohn, Embedding partial Steiner triple systems, Proc. London 
Math. Soc. 41 (1980) 557 576. 

[2] J. Doyen and R.M. Wilson, Embeddings of Steiner triple systems, Discrete Math. 5 (1973) 229-239. 
[3] H.L. Fu, C.C. Lindner and C.A. Rodger, The Doyen-Wilson Theorem for minimum coverings of Kn 

with triples, submitted. 
[4] A. Hartman, Partial triple systems and edge colourings, Discrete Math. 62 (1986) 183-196. 
[5] A. Hartman, E. Mendelsohn and A. Rosa, On the strong Lindner conjecture, Ars Combin. 18 (1984) 

139-150. 
[6] T.P. Kirkman, On a problem in combinations, Cambridge and Dublin Math. J. 2 (1847) 191-204. 
[7] E. Mendelsohn and A. Rosa, Embedding maximal packings of triples, Congressus Numerantium 40 

(1983) 235-247. 
[8] G. Stern and H. Lenz, Steiner triple systems with given subspaces; another proof of the Doyen-Wilson 

theorem, Boll. Un. Mat. ltal. (5) 17A (1980) 109-114. 


