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中文摘要 
 

在生物資訊及計算生物領域中，多重序列比對 (Multiple Sequences Alignment) 在

發掘基因體或蛋白質序列的生物意義上是很有用的工具。通常生物學家對序列的

結構／功能／演化關係已有一些初步的認識，如活化部位的殘基、分子間的雙硫

鍵、受質結合的部位、酵素的活化性及保守性的 Motifs 等等。因此在做多重序

列比對時，生物學家希望有一個工具能讓一些結構性的／功能性的／保留性的核

甘酸或殘基可以排在一起。 

2004年我們的研究團隊已開發出一套限制型多重序列比對  (Multiple 

Sequence Alignment with Constraints) 的工具叫 MuSiC。至目前為止 MuSiC 已

被許多生物學家證實在生物的研究上是相當有用的。然而，MuSiC 中的 

Constraint 只能是允許 Mismatches 但不能允許Gap的簡單序列片段。很多生物

重要的 Patterns 像是 PROSITE database 中的 Motifs 在 MuSiC 中是無法使用

的。因此，在此論文中我們主要的目的為研究並開發出一套能夠使用正規表示式

的限制型多重序列比對 (Multiple Sequence Alignment with Regular Expression 

Constraints) 的演算法與工具。 

我們採用了 Progressive 的方法來解決正規表示式的限制型多重序列比對

的問題。事實上，這個方法的核心在於設計出有效率的演算法來解決正規表示式

的限制型兩條序列比對問題  (Pairwise Sequence Alignment with Regular 

Expression Constraints Problem)。我們是將正規表示式 (Regular Expression) 轉成

有 限 狀 態 機  (Finite Automaton) ， 並 使 用  Dynamic Programming 與 

Divide-and-Conquer 方法來設計一個在時間與空間上都有效率的演算法來求得

最佳化的正規表示式限制型兩條序列比對。然後，我們再跟據此演算法發展出能

夠使用多個正規表示式的限制型多重序列比對工具：RE-MuSiC (Multiple 

Sequence Alignment with Regular Expression Constraints)，其網址在 

http://140.113.239.131/RE-MUSIC
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ABSTRACT 
 
Multiple sequence alignment (MSA) has received much attention in the fields of 

bioinformatics and computational biology because it is very useful for discovering the 

biological meanings of sequences. Usually, biologists may have advanced knowledge 

about the structural, functional, and /or evolutionary relationships about sequences of 

their interest, such as active site residues, intramolecular disulfide bonds, substrate 

binding sites, enzyme activities, conserved motifs (consensuses) and so on. They 

would expect an MSA program that is able to align these sequences such that the 

structural, functional, and/or conserved bases (i.e., nucleotides or residues) are aligned 

together. 

In 2004, our research group has already developed a tool, called MuSiC, for 

multiple sequence alignment with constraint. Since then, it has been proven by many 

biologists to be useful in biological research. Nevertheless, the constraints allowed in 

MuSiC can only be simple substrings allowing mismatches but disallowing gaps in 

the occurrences. Many biologically important patterns such as motifs in the PROSITE 

database cannot be supported by MuSiC, either. Hence, in this thesis, we study and 

develop an algorithm and a tool for the problem of multiple sequence alignment with 

regular expression constraints (RECMSA). 

We used a progressive approach to design an efficient program for solving the 

RECMSA problem. The kernel of this approach is an efficient algorithm for solving 

the problem of pairwise sequence alignment with regular expression constraints 

(RECPSA). We transform the regular expressions into a finite automaton and then use 

dynamic programming and divide-and-conquer approaches to develop a time and 

space efficient algorithm for optimally solving the RECPSA problem, which can be 

implemented effectively on a desktop PC with limited memory. Using this algorithm 

as the kernel, we developed a web-server called RE-MuSiC (Multiple Sequence 

Alignment with Regular Expression Constraints) that is available on-line at 

http://140.113.239.131/RE-MUSIC. 
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Chapter 1 
Introduction 
 
Multiple sequence alignment (MSA) is one of the fundamental problems in 

bioinformatics and computational biology that have been studied extensively, because 

it is a useful tool in the phylogenetic analyses among various organisms, identification 

of conserved motifs and domains in a group of related proteins, secondary and tertiary 

structure prediction of a protein/RNA and so on [8, 9, 19, 36, 37]. The sum-of-pairs 

score is widely used for selecting an optimal MSA. This kind of MSA problem, called 

sum-of-pairs MSA (SPMSA) problem, can be solved by extending the dynamic 

programming algorithm of Needleman and Wunsch for aligning two sequence [38]. In 

the worst case, it needs to take  time to align k sequences of length n. This 

exponential time limits the dynamic programming technique to align only a small 

number of short sequences. Actually, the SPMSA problem has been shown to be 

NP-complete [7, 53], which means that it seems to be impossible to design an 

efficient algorithm to find the mathematically optimal alignment. Hence, some 

approximate and heuristic methods are introduced to overcome this problem. For the 

approximate methods, Gusfield [18] first proposed a polynomial time approximation 

algorithm with performance ratio of 

)2( kk nO

k
22 − . Then Pevzner [40] improved the 
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performance ratio to 
k
32 − . Recently, Bafna, Lawler and Pevzner [6] further 

improved the performance ratio to 
k
l

−2  for any fixed l. It is worth mentioning that 

Li, Ma and Wang [26] have given a polynomial time approximation scheme for 

finding a multiple sequence alignment within a constant band, which is often useful in 

many practical cases. For the heuristic methods, the most widely used heuristic 

methods are so-called progressive strategies [13, 17, 21, 49, 50]. 

Standard multiple sequence alignment is based solely on the information about the 

residues/nucleotides constituting the sequences. In addition to merely the 

residues/nucleotides, however, biologists often possess more knowledge regarding 

function, structure or conserved patterns of the sequences to be analyzed. It is 

generally desirable to have such information incorporated into an alignment procedure, 

so that the alignment result can be more biologically meaningful. For example, 

functionally important sites are generally expected to be aligned together, but a typical 

alignment tool often fails to achieve this if the sequence similarity is low. Imposing 

constraints representing such information turns out to be an effective manner to 

incorporate biological knowledge into an alignment tool. 

Motivated by such demand, Tang et al. [48] formulated the constrained multiple 

sequence alignment problem, where each constraint is a single residue/nucleotide. 

They considered alignment of RNase sequences, which are known to have a sequence 

of conserved residues His (H), Lys (K), and His. Using H, K, H as constraints, in the 

resulting constrained alignment each of these three residues can be found aligned 

together in a column of the alignment, appearing in the order as specified. Chin et al. 

[11] then proposed an improved algorithm for pairwise alignment and an 

approximation algorithm for multiple alignment. It is also noted that there have been 

other formulations regarding alignment with constraints proposed from different 
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perspectives with various approaches [15, 29-35, 44, 45, 51].  

Conserved sites of a protein/RNA/DNA family are often of several 

residues/nucleotides long. For these patterns, the original formulation in [48] is not 

expressive enough. In addition, such patterns may not appear in the exact form in 

general. Consequently, Tsai et al. [52] proposed a generalized formulation and 

algorithm, where each constraint is a (usually short) string pattern allowing 

mismatches. Lu and Huang [28] then proposed a space efficient algorithm for this 

formulation. Web-based systems, MuSiC [52] (available at 

http://genome.life.nctu.edu.tw/MUSIC) and MuSiC-ME [28] (available at 

http://genome.life.nctu.edu.tw/MUSICME), were also developed; from now on these 

two systems will be referred to as MuSiC jointly. With the aid of MuSiC, Tsai et al. 

[52] and Lu and Huang [28] successfully identified a fragment in the 3’ untranslated 

region (3’-UTR) of a SARS (severe acute respiratory syndrome) coronavirus 

sequence that can fold into a pseudoknot, which is potentially responsible for 

self-replication of the virus.  Indeed, since its release, MuSiC has been found useful 

in, e.g., detection of functionally and/or structurally important residues/motifs in 

sequences [10, 48], prediction of RNA pseudoknotted structures [23, 41, 52], 

prediction of protein structures [16], and so on. 

There are, however, formulations of many biologically significant patterns beyond 

the capability of MuSiC. For example, many function-related protein sites as those 

collected in the PROSITE database [24] are expressed in regular expressions, which 

cannot be modeled using the substring-with-mismatch formulation of constraints 

implemented in MuSiC. An example of regular expression patterns is the EGF-like 

domain signature 2 (EGF_2, PS01186 in PROSITE): 

C-x-C-x(2)-[GP]-[FYW]-x(4,8)-C, which is related to the initiation of a signal 

transduction that results in DNA synthesis and cell proliferation. The meaning of this 
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pattern is that, the first residue is Cys, followed by one residue of any kind, then a Cys, 

followed by two residues of any kind, then a Gly or Pro, etc. Regular expressions are 

also convenient in describing variable ranges between patterns or between blocks 

within a pattern, which is necessary for some single patterns themselves, and useful in 

applications where different patterns are expected to exhibit proximity in their 

occurrences. In the above example of EGF_2, the “x(4,8)” symbol preceding the last 

Cys indicates a range of length varying from 4 to 8 between a residue of [F, Y or W] 

(Phe, Tyr or Trp) and that last Cys.  

Due to the usefulness of regular expressions in describing biological patterns, 

Arslan formulated the problem of Regular Expression Constrained Sequence 

Alignment (RECSA for short) [1]. A feasible solution of RECSA is an alignment 

containing a run of contiguous columns such that both of the two substrings 

corresponding to these columns match the regular expression. The following example, 

constructed by Arslan, clearly indicates the difference between RECSA and a standard 

unconstrained alignment:  

 

 
 

where a match of identical symbols is scored 1 and all other cases are scored 0. The 

alignment shown left is an optimal alignment without constraint, while that shown in 

the right is an optimal constrained alignment. The constraint R is [GA]-x-x-x-G-K- 

[ST], the P-loop motif. The starred columns “support” the satisfaction of constraint R: 

both GFPSVGKT and AKDDDGKS match R. Later, Chung et al. [12] proposed more 

time and space efficient algorithms for this problem, which, unlike Arslan’s algorithm, 

is capable of reconstructing the optimal alignment.  
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The above mentioned formulation of RECSA is for pairwise alignment with single 

regular expression constraints. In practice, however, it is more useful to be able to 

support multiple alignment with multiple constraints. In [2] Arslan extended the 

algorithm in [1] to support multiple alignment with multiple constraints. The 

algorithm proposed in [2] computes mathematically optimal constrained alignments.  

Unfortunately, the time complexity is extremely high, involving an exponential 

multiplicative factor in addition to the exponential time complexity for optimal 

(unconstrained) MSA computations. Even for pairwise alignment with multiple 

constraints, its worst case time and space requirements are intensive. In addition, the 

algorithms in [2] cannot find in the resulting alignment the regions responsible for the 

satisfactions of the constraints, either; only the alignment score, without the alignment 

itself, is reported. But being able to report alignments is important for practical 

purposes. It is therefore necessary to propose a solution more suitable for practical 

applications. 

In this thesis, we extend the algorithm in [12] to support multiple constraints and 

multiple sequences. The resulting algorithm is more efficient than the one in [2] for 

pairwise alignment with multiple constraints. To deal with multiple sequences, a 

progressive method is implemented, using our improved pairwise algorithm as the 

kernel. This extended algorithm turns out to be more appropriate for applications than 

the one in [2], and we implemented a web server, RE-MuSiC (Multiple Sequence 

Alignment with Regular Expression Constraints), based on this algorithm. 

Experiments on GST proteins and on coronaviruses with phylogenetically conserved 

pseudoknots demonstrate that, with additional knowledge incorporated, RE-MuSiC is 

able to produce meaningful alignments in which important residues or structural 

elements can be aligned properly, even if the similarity among input sequences is low.  

Such ability is also useful for prediction purposes. 
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The rest of this thesis is organized as follows. In Chapter 2, we give the formal 

definition of the RECMSA (Multiple Sequence Alignment with Regular Expression 

Constraints) problem we study in this thesis, and also introduce weighted finite 

automata. In Chapter 3, we first use the dynamic programming technique to design a 

time-efficient algorithm for optimally solving the RECPSA (Pairwise Sequence 

Alignment with Regular Expression Constraints) problem. In addition, we show how 

to find in the resulting alignment the regions responsible for the satisfactions of the 

constraints, and then reconstruct the constrained sequences alignment in a space 

efficient manner using the divide-and-conquer approach. Based on this algorithm, we 

developed a program able to support multiple constraints and multiple sequences, 

called RE-MuSiC, using the progressive approach. In Chapter 4, we introduce the 

RE-MuSiC implementation and user interface. In Chapter 5, we demonstrate the 

applicability of our developed programs by testing them on a data set of protein and 

RNA sequences. Finally, we make some conclusions in Chapter 6. 
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Chapter 2 
Preliminaries 
 
In this chapter, we shall first formulate the problem of multiple sequence alignment 

with regular expression constraints. We shall then introduce the concept and basics of 

weighted finite automaton we use to design an efficient algorithm for the pairwise 

sequence alignment with regular expression constraints. Finally, we shall describe the 

so-called progressive approach, we use to design a heuristic algorithm for the 

constrained multiple sequence alignment. 

 

2.1 Problem Formulation 

Given σ sequences S1, S2,. . . , Sσ over alphabet Σ and a sequence of m regular 

expression constraints R1, R2 . . . , Rm, is a regular expression, the problem of the 

so-called multiple sequence alignment with regular expression constraints (RECMSA) 

is to find an alignment with the highest possible score such that all the constraints are 

satisfied. An alignment A of S1, S2,. . . , Sσ is said to satisfy all the constraints if in A 

there exist m regions with the following property. Let the jth region, corresponding to 

the jth constraint, be composed of consecutive columns kj, kj+1, . . . , kj′. It is required 

that the jth region precedes the (j+1)st region without overlapping and the substring of 

each Si in the jth region matches the regular expression Rj. For example, suppose we 
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are given two sequences S1=cgacgta, S2=acgcgta, as well as two regular expression 

constraints R1=a and R2=t. Then, Figure 2.1(c) shows an optimal constraint alignment 

in which there are two regions (i.e., 3rd and 8th columns, respectively) whose 

corresponding substrings of S1 and S2 match R1=a and R2=t, respectively. 

 

(a) INPUT
S1 = cgacgta, S2 = acgcgta

R1 = a, R2 = t
(b) OPTIMAL UNCONSTRAINED ALUGNMENT

- c g a c g t a
a c g – c g t a

(c)   OPTIMAL CONSTRAINED ALUGNMENT
c g A c g -- T a
-- A c g c g T a  

Figure 2.1: An illustration of a constrained alignment. Here a match has a score of 1, 
while all other cases are scored 0. Capital letters in the constrained alignment 
represent the columns responsible for the satisfactions of the constraints. 
 

2.2 Constrained Alignment versus Weighted Finite 

Automaton  

Currently, it is still a challenge to design a polynomial-time algorithm for solving the 

RECMSA problem, because the problem of multiple sequence alignment that can be 

considered a special case of RECMSA without any given constraint has been proven 

to be NP-hard [7, 53]. However, the pairwise version of RECMSA, simply denoted by 

RECPSA (Pairwise Sequence Alignment with Regular Expression Constraints), is a 

tractable problem, because Arslan [1] first designed a polynomial-time algorithm 

whose time and space complexities were further improved by Chung et al. [12].  

The basic idea of Arslan’s algorithm is to construct a weighted automaton that 

can be utilized to recognize any pairwise alignment of satisfying a required constraint. 
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For example, the automaton M in Figure 2.2(c) is able to recognize the pairwise 

alignment, as shown in Figure 2.2(b), which satisfies the given regular expression by 

the following steps. Initially, the automaton M is in the state (q0, q0). After reading the 

first two columns of A that are deletion pairs (t, -) and (c, -), M still stays in the state 

(q0, q0). When M reads the third column of A that is a match pair (a, a), it enters the 

state of (q1, q1) that is a final state of M. After reading the last two columns that are 

insertion pairs (-, t) and (-, c), M remains in the final state. In other words, M can enter 

and stay a final state from its initial state if the input pairwise alignment satisfies the 

given regular expression. Moreover, any non-initial state in M implies that the given 

regular expression is partially or completely satisfied by the input alignment. Clearly, 

there should be many satisfied alignments that can be accepted by M. Recall that the 

objective of the RECPSA problem is to find a satisfied alignment with maximum 

alignment score. For this purpose, a weight is assigned to each state in M for 

remembering the alignment that best satisfies the partial or complete constraint of 

regular expression. In the following, we shall formally describe how to reconstruct 

such a weighted automaton for recognizing the best pairwise alignment of satisfying a 

regular expression constraint.  

Give a regular expression R, let N = (Q, Σ, δ, q0, F) be an ε-free NFA 

(nondeterministic finite automaton) equivalent to R, which can be constructed 

manually or by any established algorithm [22]. We also define ),'( aQδ  to be 

, where  and U '
),(

Qp
ap

∈
δ QQ ⊆' Σ∈a . In this thesis we use Q and V 

interchangeably. Following the notations in [23], we define a weighted automaton N 

× N as the finite automaton M = (QM, WM, ΣM, δM, q0
M, FM) which we construct as 

follows: 
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Input

Output

(a)

(b)

(c)

 
Figure 2.2: (a) Input sequences and a regular expression. (b) A is a constrained 
sequence alignment. (c) A simple weighted finite automaton that can accept the 
alignment A. 
 
 

– QM = Q × Q is the set of states. Each state of M corresponds to a pair of states 

in N. M remembers in each state what part of the regular expression has been 

seen in S1 and S2. 

– WM : is a function that assigns real weights to each state in Qℜ→MQ M, and 

initially all weights are -∞. We determine the active set of states of M by 

examining their weights. The active states of M have weights different than -∞. 

– ΣM = (Σ × Σ) － {ε→ε}. The alphabet ΣM for M is the set of edit operations 

which does not include ε→ε. 

– q0
M = (q0, q0) is the start state whose initial weight is 0. 

– FM = F × F is the set of final states. If M is in a final state then M has processed 

an alignment that satisfies the regular expression constraint. That is, there are 

substrings s1 of S1 and s2 of S2 that are aligned together in an alignment, and 
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both s1 and s2 take N to final states. 

– δM is a transition function of M that  

( ) ( )( ) ( ) ( )
( ) ( ) ( ){ }⎩

⎨
⎧

∪×
×

=
qpbqap

bqap
baqpM

,,,
,,

,,,
δδ
δδ

δ    ( ) ({ }
.

,, 00

otherwise
qqFqpif M U∉ )

21

 

 

Function δM can be naturally extended to be defined on the cross product of QM 

and the set of all possible alignments. A state (p,q) of  is active iff there exists 

some alignment A of S

21 ,iiM

1[1..i1] and S2[1..i2] such that . Each state 

(p,q) in  has a score (p,q) assigned to it. If (p,q) is active, then (p,q) 

is the score of an optimal alignment A of S

),(),( 0 Aqqp MMδ∈

21 ,iiM
21 ,iiW

21 ,iiW

1[1..i1] and S2[1..i2] such 

that . Otherwise no such alignment exists and (p, q) = -∞.  ),(),( 0 Aqqp MMδ∈ ,iiW

 

2.3 Progressive Multiple Sequence Alignment 
The progressive approach is one of the widely used heuristics for efficiently finding a 
good MSA of several sequences. The ideas behind it are as follows [13, 17, 21, 49, 
50]. 

1. Compute the distance matrix by aligning all pairs of sequences: Usually, this 

distance matrix is obtained by applying FASTA [27, 39] or the dynamic 

programming algorithm of Needleman and Wunsch [38] to each pair of 

sequences. 

2. Construct the guide tree from the distance matrix: For the existing progressive 

methods, they mainly differ in the method used to build the guide tree for 

directing the order of alignment of sequence. To build the guide tree, for 

example, PILEUP (a program of GCG packages) uses UPGMA (Unweighted 
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Pair-Group Method using Arithmetic mean) method [46] and CLUSTAL W 

[50] uses NJ (Neighbor-Joining) method [43]. 

3. Progressively align the sequences according to the branching order in the 

guide tree: Initially, the closest two sequences in the tree are aligned using the 

normal dynamic programming algorithm. After aligning, this pair of sequences 

is fixed and any introduced gaps cannot be shifted later (i,e., once a gap, 

always a gap). Then the next two closest pre-aligned groups of sequences are 

joined in the same way until all sequences have been aligned. (Here, we may 

consider a sequence as an aligned group of a sequence.) To align two groups 

of the pre-aligned sequences, the score between any two positions in these two 

groups is usually the arithmetic average of the scores for all possible character 

comparisons at those positions. We call this kind of scoring methods as a 

set-to-set scoring. 

In fact, MST has been used as a significant tool for data classification in the fields 

of biological data analysis. In [48], Tang et al. proposed a variant of progressive 

method by using the Kruskal MST to construct the guide tree, called Kruskal merging 

order tree. The Kruskal merging order tree of k sequences is constructed as follows. 

First, we create a complete graph G = (V,E) of k sequences in a way that each vertex 

of V represents a sequence and each edge e of E is associated with a weight d(e) to 

represent the distance between the corresponding sequences of its end-vertices. Then 

we use the Kruskal’s algorithm [25] to construct the Kruskal MST of G, denoted by 

T .For completeness, we describe the Kruskal method for constructing T as follows. 

1. Sort all edges of E in non-decreasing order according to their distances. 
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2. Initially, T is empty. Then we repeatedly add the edges of E in non-decreasing 

order to T in a way that if the currently adding edge e to T dose not create a 

cycle in T , then we add e to T ; otherwise, we discard e. 

Next, according to the Kruskal MST T , we build the Kruskal merging order tree 
TK as follows. 

1. Let V = {v1, v2, . . . , vk} and e1, e2, . . . , ek-1 be the edges of T with d(e1) ≦ 

d(e2) ≦ . . . ≦ d(ek-1). 

2. For each vertex vi∈V , we create a tree Ti such that Ti contains only a node vi. 

For the purpose of merging trees, we consider Ti as a rooted tree by 

designating vi as its root, and define the merge of two tree Ti and Tj 

respectively rooted at vi and vj to be a new tree rooted at a new vertex u such 

that vi and vj become the children of u. 

3. For each ek = (vi, vj), where K increases from 1 to k - 1, we find the trees Ti and 

Tj containing vi and vj respectively and then merge them into a new tree. This 

process is continued until the remaining is only one tree. Then this final tree is 

the so-called Kruskal merging order tree TK. 

The construction of G for k sequences can be done in O(k2) time and the 

computation of the Kruskal’s MST T of G can be done in O(k2 log k) time. Then the 

construction of TK from T can be implemented by the disjoint set union and find 

algorithm proposed by Gabow and Tarjan [33] in O(m + k) time, where m denotes the 

number of union and find operations. It is not hard to see that m = O(k) and hence the 

construction of TK takes O(k) time. Therefore, the total time complexity of 

constructing TK is O(k2log k). 
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Chapter 3 
Algorithm 
 
In this chapter, we shall propose an algorithm to solve the problem of pairwise 

sequence alignment with several regular expression constraints (RECPSA). Then, we 

shall present how to extend this algorithm for dealing with multiple sequences with 

several regular expression constraints (RECMSA). 

 

3.1 Algorithm for RECPSA (Pairwise Sequence Alignment 

with Regular Expression Constraints) 
First consider the case of pairwise alignment. For simplicity let the two input 
sequences have equal lengths of n. Let ),,,,( hhhhh FqQA δΣ=  be an ε-free NFA 
equivalent to Rh (qh is the initial state of Ah), and 

 be the weighted automaton corresponding to 

A

),,,,,( 0
hhhhhh MMMMMM

h FqWQM δΣ=

h, where ,hh
M QQQ h ×= { } { } ( ){ }−−−Σ×−Σ=Σ ,\)()( UUhM , , 

, and, for (p,q)∈ and (a,b) 

( )hh
M qqq h ×=0

( hh
M FFF h ×= ) hMQ ∈ hMΣ , 

( ) ( )( ) ( ) ( )
( ) ( ) ( ){ }⎩

⎨
⎧

∪×
×

=
qpbqap

bqap
baqp

hh

hhM h

,,,
,,

,,,
δδ
δδ

δ   ( ) { }
otherwise

qFqpif hh MM
0, U∉  

On each pair (i1, i2) of indices of the sequences, denote as  the corresponding 

weighted automaton. Also let M be an NFA obtained by “concatenating” M

21,ii
hM

1, . . . , Mm 
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by adding an “empty move” from each final state of Mh to the initial state of Mh+1, 1 ≤ 

h < m. The initial state of M is set to be the initial state of M1, and the final states of M 

are the final states of Mm. Hence M accepts all feasible constrained alignments (see 

Fig. 3.3 for an example). The score held in state (p, q) of (resp. ) is denoted 

as  (resp. ). The score  represents the score of a 

best alignment A of S

21,ii
hM 21,iiM

),(21, qpW ii
h ),(21, qpW ii ),(21, qpW ii

h

1[1..i1] and S2[1..i2] such that all of R1, . . . ,Rh-1 are satisfied and 

that state (p, q) of Mh is reached if A is given to Mh as input. It is equal to , 

the score of optimally aligning S

),(21, qpW ii

1[1..i1] and S2[1..i2] such that the alignment can lead 

us from the initial state of  to state (p,q). The goal of the algorithm is to 

compute , since  is the optimal score of aligning S

),(21, qpM ii

nn
mW , ),(max ,

),( qpW nn
mFFqp mm×∈ 1 and 

S2 with all m regular expression constraints satisfied. 

The algorithm iterates over all pairs (i1, i2) of indices of sequences S1 and S2, row 

by row. It computes for all 1 ≤ i21,ii
hM 1, i2 ≤ n and 1 ≤ h ≤ m throughout its execution. 

Let Vh and Eh be the set of states and set of arcs in automaton Ah, respectively. Denote 

as  a |V21,ii
hL h| × |Vh| table used to hold . On each sequence index pair (i21 ,ii

hW 1, i2), the 

algorithm computes , . . . , , in the order. For all (p, q) 21,ii
hL 21 ,ii

mL ∈  , [p,q] is 

computed using the (first) algorithm Chung et al. proposed in [12]. The same is 

performed for , h > 1, except that [q

1MQ 21,
1

iiL

21,ii
hL 21,ii

hL h,qh] is initialized to the maximum 

of [p, q] rather than -∞ as the other states are, the maximum taken over all final 

states (p, q) of M

21,
1

ii
hL −

h-1. 

The above procedure takes ⎟
⎠

⎞
⎜
⎝

⎛∑
=

m

h
hh nVEO

1

2  time, since each  takes 21,ii
hL

( hh VEO ) time by [12]. In what follows we present how to reconstruct the optimal 
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alignment in ⎟
⎠

⎞
⎜
⎝

⎛∑
=

m

h
h nVhO

1

2  space without affecting the time complexity, by a 

generalization of the method Chung et al. proposed in [12]. 

Consider an optimal alignment A satisfying all constraints. Intuitively, if we 

know the substrings of S1 and S2 responsible for A’s satisfaction of the constraints, 

then A (or another optimal solution) can be reconstructed efficiently. Suppose that the 

substrings of S1 and S2 responsible for A’s satisfying the lth regular expression are 

[ ]ll ebS 111 L  and [ ]ll ebS 222 L , ml ≤≤1 . Then we can align [ ]ll ebS 111 L  and 

[ ]ll ebS 222 L  for all l = 1,…,h, align [ ]11 1
11 −bS L  and [ ]11 1

22 −bS L , 

align [ ]11 1
111 −+ +ll beS L  and [ ]11 1

222 −+ +ll beS L  for l = 1, 2, . . . , m－1, and 

align [ ]neS m L111 +  and [ ]neS m L122 + . These alignments can be concatenated in the 

proper order to obtain A. Each alignment can be computed in linear space by 

Hirschberg’s celebrated divide-and-conquer algorithm [14]. In the example of Fig.3.1, 

, , , , , , , . 11
1 =b 11

1 =e 11
2 =b 11

2 =e 32
1 =e 22

2 =e32
1 =b 22

2 =b

Two types of |Vh|×|Vh| tables,  and , 21,
,

ii
hlβ 21,

,
ii

hlη hl ≤≤1 , are maintained for this 

purpose. Let A be the alignment underlying the score . Then  

keeps the indices of S

),(21, qpW ii
h [ ]qpii

hl ,21,
,β

1 and S2 corresponding to the column immediately before the 

first column of leaving the initial state of Ml. If l= h (resp. l＜h), then keeps the 

indices of S1 and S2 corresponding to the first column of A which leads us to arrive at 

state (p, q)(resp. a final state) of Ml. It can be seen that, if (p, q) is the final state of 

 with the best value, then nn
mM , ),(, qpW nn

m [ ]qpnn
ml ,,

,β  stores and , 

and  stores and , where the meanings of these b and e values are as 

discussed in the last paragraph.

11 −
lb 12 −

lb

[ qpnn
ml ,,

,η ]

                                                

le1
le2

1

 
1 When (p, q) is not a final state, the values of [ ]qpii

hh ,21 ,
,η  are are actually not relevant (but the 

 values are still critical). [ qpii
hh ,21 ,

,β ]
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The computation of and , h=1,…, m, proceeds in the same manner as 

in [12].

21 ,
,

ii
hhβ 21 ,

,
ii

hhη

2 As to  and [ hh
ii

hl qq ,21 ,
,β ] [ ]hh

ii
hl qq ,21 ,

,η , hl ≠ , we initialize them to  

and , respectively, where (p, q) is the final state of  with the best 

score among all final states. In general, when 

[ ]qpii
hl ,21 ,

1, −β

[ qpii
hl ,21 ,

1, −η ] 21 ,
1
ii

hM −

),(21 ,
1 qpW ii

h− hl ≠ , for (initial or 

non-initial) state (p,q), each time when [ ]qpL ii
h ,21 ,  is updated to, say, 

where [ ] ( yxqpL ii
h ,','

'
2

'
1 , γ+ ) ( ) ( ) ( ) ( ){ }1,,,1,1,1, 212121

'
2

'
1 −−−−∈ iiiiiiii  and (x,y) is the 

corresponding edit operation (e.g.,(x, y) = (S1[i1],-) if  and ), 

 and  are also updated to

11
'
1 −= ii 2

'
2 ii =

[ qpii
hl ,21 ,

,β ] ][ qpii
hl ,21 ,

,η [ ]','
'
2

'
1 ,
, qpii
hlβ  and  

respectively. 

[ ]','
'
2

'
1 ,
, qpii
hlη

When row i1 is being considered, all tables for rows less than i1 are not necessary 

and can be discarded. Therefore the overall space requirement, including the 

reconstruction of the optimal alignment, is ⎟
⎠

⎞
⎜
⎝

⎛∑
=

m

h
h nVhO

1

2 . 

In [2], an algorithm extending the one in [1] to support multiple constraints and 

multiple sequences, is proposed. In the pairwise case, the algorithm in [2] has time 

complexity ⎟
⎠

⎞
⎜
⎝

⎛∑
=

m

h
h nEO

1

22  and space complexity ⎟
⎠

⎞
⎜
⎝

⎛∑
=

m

h
h nEO

1

2 . It is clear that 

( hh EOV = ) , hence the algorithm presented here never takes more time than the one 

in [2]. In the worst case, hE  can be proportional to 2
hV , and the algorithm in [2] 

takes ⎟
⎠

⎞
⎜
⎝

⎛∑
=

m

h
h nVO

1

24  time, while the one presented here takes ⎟
⎠

⎞
⎜
⎝

⎛∑
=

m

h
h nVO

1

23  time. 

Hence the time complexity of the algorithm presented here compares favorably with 

                                                 
2If (p, q) is not a final state, then the value held in [ ]qpii

hh ,21 ,
,η  may not be as described in the last 

paragraph. But as just mentioned, this does not affect the correctness. 
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the one in [2]. As to the space complexity, if ( )hh VOE = , then the algorithm here 

may take more space than the one in [2]. However, if ⎟
⎠

⎞
⎜
⎝

⎛
Ω= ∑∑

==

m

h
h

m

h
h VhE

11

2 , then the 

algorithm here is more space efficient. More importantly, the stated space complexity 

for the algorithm in [2] does not include the reconstruction of the alignment; only the 

alignment score can be computed. It is clearly an important issue for a web-server to 

report the alignment. If a naive backtracking method is used to augment the algorithm 

in [2] to reconstruct the alignment, the space requirement would be ⎟
⎠

⎞
⎜
⎝

⎛∑
=

m

h
h nEO

1

22 , 

which is too high for practical use. 

Now, we apply this algorithm to solve the following example. 
 

Input Scoring matrix
S1 = acgt, S2 = atcg Match:3 

R1 = a, R2 = t                    Mismatch:-1 
Gap=-2

Optimal unconstrained alignment
a – c g t
a t c g –

Optimal constrained alignment
A c g T - -
A -- T c g  

Figure 3.1：An illustration of a constrained alignment. 
 

t

g

c

a

S1

gctaS2

0,0M 1,0M 3,0M2,0M

0,1M 1,1M 2,1M 3,1M

0,3M 1,3M 2,3M 3,3M
0,2M 1,2M 2,2M 3,2M

0,4M 1,4M 2,4M 3,4M

4,1M

4,1M

4,3M
4,2M

4,4M
 

Figure 3.2：The matrix of weighted automata. 
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5

5-∞

-∞ 5

-2

-∞

4

r12

r22r21

r11p12

p22p21

p11

(a,-) (a,-)

(-,a)

(-,a)

(a,a) (t,-) (t,-)

(-,t)

(-,t)

(t,t)

MΣ

MΣ MΣ

MΣ

4,4
2M4,4

1M

empty

move

5

5-∞

-∞ 5

-2

-∞

4

r12

r22r21

r11p12

p22p21

p11

(a,-) (a,-)

(-,a)

(-,a)

(a,a) (t,-) (t,-)

(-,t)

(-,t)

(t,t)

MΣ

MΣ MΣ

MΣ

4,4
2M4,4

1M

empty

move

(a)

Alignment underlying              :][ 22
4,4 rW

A c g T - -
A -- T c  g

with

[ ] )0,0(22
4,4

2,1 =rβ

[ ] )1,3(22
4,4
2,2 =rβ

[ ] )1,1(22
4,4

2,1 =rη

[ ] )2,4(22
4,4
2,2 =rη

(b)
 

Figure 3.3: An illustration of the weighted automaton M corresponding to the 
example in Fig.3.1. State (p2, p1), etc., is denoted as p21, etc., for brevity. (a) 

Automaton , which is the concatenation of  and  . Numbers in the 

states are the scores , etc. Initial states of  and  are p

4,4M 4,4
1M 4,4

2M

][ 11
4,4 pW 4,4

1M 4,4
2M 11 and r11, 

respectively, while the final states are p22 and r22, respectively. The initial and final 

states of  are p4,4M 11 and r22, respectively. (b) The alignment underlying  

is the optimal alignment of S

][ 22
4,4 rW

1[1..4] and S2[1..4] such that state r22 is reached. 
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3.2 Algorithm for RECMSA (Multiple Sequence Alignment 

with Regular Expression Constraints) 

In this section, we use Algorithm RECPSA in previous section as kernels to design an 

RECMSA algorithm, for progressively aligning the input sequences into a RECMSA 

according to the branching order of a guide tree, where the guide tree we use here is 

the so-called Kruskal merging order tree. We refer the reader to Section 2 for the 

details of constructing the Kruskal merging order tree. Except for the adopted 

RECPSA kernel, the execution steps, which are described as follows. 

1. Compute the distance matrix D by globally aligning all pairs of sequences using 

Algorithm RECPSA, where D(i, j) denotes the distance between sequences Si 

and Sj . 

2. Create a complete graph G from the distance matrix D and then compute the 

Kruskal merging order tree Tk from G to serve as the guide tree.  

3. Progressively align the sequences according to the branching order of the guide 

tree Tk in a way that the currently two closest pre-aligned groups of sequences 

are joined by applying Algorithm RECPSA to these two groups of sequences, 

where the score between any two positions in these two groups is the arithmetic 

average of the scores for all possible character comparisons at those positions. 

 

In the following, we analyze the time complexity of Algorithm RECPSA. It is not 

hard to see that step 1 costs O(k2n2) time, where n is the maximum of the lengths of k 

sequences. According to the paper of Tang et al. [48] , step 2 can be done in O(k2log k) 

time. In step 3, there are at most O(k) iterations for calling Algorithm RECPSA, 

whose time complexity is ⎟
⎠

⎞
⎜
⎝

⎛∑
=

m

h
h nVO

1

23 , to join two pre-aligned groups of sequences. 
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Hence, the time complexity of step 3 is ⎟
⎠

⎞
⎜
⎝

⎛∑
=

m

h
h knVO

1

23 . It is usually that 

⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

m

h
hVOk

1

3 , hence the cost of Algorithm RECMSA is dominated by step 3 and 

hence its time complexity is ⎟
⎠

⎞
⎜
⎝

⎛∑
=

m

h
h knVO

1

23 . 
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Chapter 4  
Implementation of RE-MuSiC 
 
In this chapter, we shall introduce the implementation of RE-MuSiC, as well as its 

web interface, and then describe how to use it in details. Besides, we shall introduce 

the syntax of regular expression utilized in RE-MuSiC. 

 

4.1 RE-MuSiC 

The kernel of RE-MuSiC (short of Multiple Sequence Alignment with Regular 

Expression Constraints) was implemented by C and its web interface by PHP and 

HTML. RE-MuSiC (http://140.113.239.131/RE-MUSIC) can be easily accessed via a 

simple web interface (see Figure 4.1). The input of the RE-MuSiC web server consists 

of a set of Protein/DNA/RNA sequences and a set of user-specified regular expression 

constraints. The output of RE-MuSiC is a multiple sequence alignment with regular 

expression constraints. 

 

4.2 Usage of RE-MuSiC 

In this section, we shall describe the usage of RE-MuSiC step by step, the output of 

RE-MuSiC and other information including scoring matrices, gap-penalty, and syntax 

of regular expressions currently used in RE-MuSiC. 
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4.2.1 Input of RE-MuSiC  

1. Input a set of genomic sequences in the FASTA format in the top blank field 
(1).  

2. Enter one or more regular expressions that are separated by spaces in the 
"Regular expression constraints" field (2). Note that each constraint of regular 
expression should be put in quotes first. For example, if users have two regular 
expressions, say [ST]-x(2)-[DE] and 
G-{EDRKHPFYW}-x(2)-[STAGCN]-{P}, then they may key in the following 
line in the "Regular expression constraints" field:  

"[ST]-x(2)-[DE]" "G-{EDRKHPFYW}-x(2)-[STAGCN]-{P}" 
 
If no constraint is specified, then RE-MuSiC produces an unconstrained 
alignment.  

3. Select the type of input sequences that can be either protein or DNA/RNA (3).  
4. Just click "Execute RE-MuSiC" button (4) if users would like to run 

RE-MuSiC with default parameters; otherwise, they continue with the 
following parameter settings.  

5. Select a suitable scoring matrix for protein or DNA/RNA sequences from a list 
of predefined matrices (5).  

6. Key in two real values for gap open penalty (6) and gap extension penalty (7), 
respectively, since the RE-MuSiC web server penalizes the gaps using the 
affine gap penalty function.  

7. Check the checkbox and enter an email address (8) if the user would also like 
to receive an email that contains a hyperlink to the RE-MuSiC result from the 
server. Note that the RE-MuSiC result will be kept on the server only for 24 
hours.  

8. Click "Execute RE-MuSiC" button to run RE-MuSiC (4).  
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Figure 4.1: The web interface of RE-MuSiC. 

 
4.2.2 Output of RE-MuSiC  

In the first part of the output page, RE-MuSiC shows the user-specified 

parameters, including scoring matrix, gap open and extension penalties, regular 

expression constraints and so on. Next, RE-MuSiC outputs its result of the 

constrained sequence alignment, in which the columns whose residues/nucleotides 

match regular expression constraints are shaded in yellow (refer to Figures 4.2 and 4.3 

for examples). On addition, RE-MuSiC allows users to download the RE-MuSiC 

alignments in FASTA format or ClustalW format.  
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Figure 4.2: An example of the output of RE-MuSiC for protein sequences, where the 
residues in the first block of columns shaded in yellow match the first regular 
expression of "[ST]-x-[RK]", and those in the second block of columns shaded in 
yellow match the second regular expression of 
"G-{EDRKHPFYW}-x(2)-[STAGCN]-{P}".  

 

 
Figure 4.3: An example of the output of RE-MuSiC for RNA sequences. Notice that a 
gap appears in the block of matching the 1st regular expression constraint, which is 
not allowed to happen in MuSiC. 
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4.2.3 Scoring Matrices 

For protein sequences, three inbuilt series of scoring matrices are used in 

RE-MuSiC system: (1) GONNET 250 (default), (2) BLOSUM 30, 45, 62, and 80, and 

(3) PAM 30, 70, 120, 250, and 350. For DNA/RNA sequences, RE-MuSiC provides 

identity matrix only.  

4.2.4 Gap Penalty 

The RE-MuSiC web server penalizes the gaps with the so-called affine gap 

penalty function, which charges the score of "Gap open penalty" for the existence of a 

gap and the score of "Gap extension penalty" for each residue/nucleotide in the gap. 

The default values of "Gap open penalty" for protein and DNA/RNA sequences are 

10.0 and 15.0, respectively, and those of "Gap extension penalty" are 0.2 and 6.66, 

respectively. All these default values can be modified by the user, depending on the 

evolutionary distance between the input sequences of interest.  

4.2.5 Syntax of Regular Expression Used in RE-MuSiC 

Regular expression is a pattern-defining notation that describes a string (or, 

equivalently, sequence here) or a set of strings. In RE-MuSiC, the conventions of 

describing a pattern of regular expression are the same as those used in PROSITE.  
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• The standard IUPAC one-letter codes for the amino acids and nucleotides are 
used in the regular expression of RE-MuSiC. Notice here that the symbol 
'x'/'X' is used for a position where any amino acid or nucleotide is accepted. 

 

IUPAC Codes for Amino Acids  

Letter Meaning  Letter Meaning  

A  A (Alanine)  N  N (Asparagine)  

B  D, N  P  P (Proline)  

C  C (Cystine)  Q  Q (Glutamine)  

D  D (Aspartic Acid) R  R (Arginine)  

E  E (Glutamic Acid) S  S (Serine)  

F  F (Phenylalanine) T  T (Threonine)  

G  G (Glycine)  V  V (Valine)  

H  H (Histidine)  W  W (Tryptophan)  

I  I (Isoleucine)  X  X (Unknown or Other Amino Acid) 

K  K (Lysine)  Y  Y (Tyrosine)  

L  L (Leucine)  Z  E, Q  

M  M (Methionine)   

 

IUPAC Codes for Nucleotides  

Letter Meaning Letter Meaning  

A  A (Adenine) X/N A, C, G, T 

B  C, G, T R  A, G (Purine)  

C  C (Cytosine) S  C, G 

D  A, G, T T  T (Thymine)  

G  G (Guanine) U  U (Uracil)  

H  A, C, T V  A, C, G 

K  G, T W  A, T  

M  A, C Y  C, T (Pyrimidine) 
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• The amino acids (or nucleotides) that are allowed to appear at a given position 
are indicated by listing them in a pair of square brackets '[ ]'.  

o For example, [ALT] stands for Ala (A), Leu (L) or Thr (T).  
• The amino acids (or nucleotides) that are not accepted at a given position are 

indicated by listing them in a pair of braces '{ }'.  
o For example, {AM} stands for any amino acid except Ala (A) and Met 

(M).  
• Each element in a pattern of regular expression is separated from its neighbors 

by a dash '-'.  
o For example, [GA]-G-K-[ST] means that the first position of the 

pattern can be occupied by either Gly (G) or Ala (A), the second and 
third positions must be Gly (G) and Lys (K), respectively, and the last 
position can be either Ser (S) or Thr (T).  

• Repetition of an element in a pattern is indicated by appending, immediately 
following that element, an integer or a pair of integers (meaning the allowed 
range of the number of repetitions) in parentheses. For example,  

o x(3) equals to x-x-x, a meaning pattern of any three amino acids (or 
nucleotides).  

o A(3) equals to A-A-A, a meaning pattern of three amino acids of Ala 
(A).  

o x(2,4) equals to x-x, x-x-x, or x-x-x-x.  

For example, based on the above conventions, [AC]-x-V-x(4)-{ED} is 

translated as [Ala or Cys]-any-Val-any-any-any-any-{any but Glu or Asp}. A 

subsequence matches a given regular expression, if it can be described by this regular 

expression. For example, "AgVdefgB" matches the above regular expression. 
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Chapter 5  
Experiments 
 
In this chapter, we shall demonstrate the applicability of our RE-MuSiC by testing it 
on two data sets, one with protein sequences and the other with RNA sequences. 

 

5.1 Protein Sequences with Active Site Residues 

In this experiment, we analyzed three GST (Glutathione S-Transferase) proteins as 
follows.  

1. AtGST: a phi class GST from plant Arabidopsis thaliana whose PDBID is 
1GNW:A.  

2. SjGST: an alpha class GST from non-mammalian Schistosoma japonicum (flat 
worm) whose PDBID is 1M99:A.  

3. SsGST: a pi class GST from mammalian Sus scrofa (pig) whose PDBID is 
2GSR:A.  

Notice that the structural similarity between these three proteins is very high 

(see Figure 5.1), although their pairwise sequence identities are extremely low. In 

particular, the glutathione binding sites (G-sites) of these GST proteins have been 

found to have a conserved architecture, and the glutathione backbone conformations 

adopted in these GSTs from different species are quite similar [42]. Also, the 

cheimical natures of their residues acting as G-site ligands and interactions facilitated 

with glutathione exhibit analogy [42]. Due to their low sequence identity, it is hard to 

use a typical alignment tool, like ClustalW, to produce an accurate alignment (see 
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Figure 5.2 for example). In this ClustalW alignment as shown in Figure 5.3, one of 

the active site residues shared by these three GST proteins was not aligned well. They 

actually should be aligned together, however, if we superpose the crystal structures of 

these three GST proteins [42]. By querying PROSITE with these three GST protein 

sequences, we noticed that they all share a pattern of PS00006 ("[ST]-x(2)-[DE]") in 

common. Using this pattern as the constraint, we aligned again the three GST protein 

sequences mentioned above with RE-MuSiC, resulting in an alignment as shown in 

Figure 5.3 that indeed satisfies the requested constraint (i.e., those residues matching 

"[ST]-x(2)-[DE]" were lined up). In addition, it is worth mentioning here that all the 

active site residues shared among these GSTs were also aligned together. This 

suggests that, with additional information regarding some common patterns, 

RE-MuSiC is more reliable in aligning together biologically important residues from 

a set of closely related proteins, even when their sequence similarities are low. 

Demonstrated by this experiment, therefore, our RE-MuSiC web server is helpful in 

the detection of active site residues in a given set of protein sequences. 

 

Figure 5.1: (a) Alpha class GST structure to which SjGST from non-mammalian S. 
japonicum (flat worm) belongs, (b) Phi class GST structure to which AtGST from 
plant A. thaliana belongs, (c) Pi class GST structure to which SsGST from 
mammalian S. scrofa (pig) belongs. 
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Figure 5.2: The active site residues shared by all three GST proteins are marked in 
boxes. The active site residues in green boxes are aligned together, but the others in 
red boxes are not.  

 

 
Figure 5.3: The constrained sequence alignment produced by RE-MuSiC, using the 
pattern of "[ST]-x(2)-[DE]" (PS00006) as the constraint, in which the residues shaded 
in yellow match the pattern. In addition, the residues in green boxes that correspond to 
the active sites shared by these three GST proteins are aligned together. 
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5.2 RNA Sequences with Phylogenetically Conserved 

Pseudoknots 

In this experiment, we aligned the 3' untranslated region (3'-UTR) sequences of 

the following four coronaviruses, where HCoV-229E and PEDV are group 1 

coronaviruses, while BCoV and MHV belong to group 2.  

1. HCoV-229E: human 229E coronavirus whose accession number in GenBank 
is af304460.  

2. PEDV: porcine epidemic diarrhea virus whose accession number in GenBank 
is af353511.  

3. BCoV: bovine coronavirus whose accession number in GenBank is af220295.  
4. MHV: murine hepatitis virus whose accession number in GenBank is 

af201929.  

It has been reported that phylogenetically conserved pseudoknots found in the 

3'-UTRs of these four coronaviruses (refer to Figure 5.4) have been postulated to be 

involved in their RNA replication [54]. Notice that the pairwise sequence identities 

between sequences in the different groups are extremely low. Hence, it was difficult 

for ClustalW to have the sequence fragments corresponding to the conserved 

pseudoknots aligned together (see Figure 5.5 for example). However, as shown in 

Figure 5.6, this goal was achieved by RE-MuSiC when the pseudoknot consensus (as 

shown in Figure 5.7), derived by Williams et al., [54] from the 3'-UTRs of various 

coronaviruses, was used as the constraint. In general, loops in pseudoknots are less 

conserved. To enhance the flexibility of the consensus, hence, we treat the nucleotides 

involved in the loop regions as "don't care" symbols ("x") and describe the consensus 

as  
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"x(5)-C-U-x(4)-C-x(15,16)-U-G-x(2)-A-x(5,7)-G-x(4)-A-G-x(7,10)-U-x(3)-A-x(5)". 

This experiment suggests that RE-MuSiC is able to help locate those sequence 

fragments that are conserved from the structural point of view.  

 
Figure 5.4: Phylogenetically conserved pseudoknots in the 3'-UTRs of four 
coronavirus. (a) HCoV-229E (human 229E coronavirus), (b) PEDV (porcine epidemic 
diarrhea virus), (c) BCoV (bovine coronavirus), (d) MHV (murine hepatitis virus). 
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Figure 5.5: A partial view of the alignment produced by ClustalW, where the 
fragments shaded in light blue corresponds to the phylogenetically conserved 
pseudoknots in the 3'-UTRs of the four coronaviruses. Notably, these four shaded 
fragments were not aligned together. 

 
Figure 5.6: A partial view of the alignment produced by RE-MuSiC using the 
constraint of "x(5)-C-U-x(4)-C-x(15,16)-U-G-x(2)-A-x(5,7)-G-x(4)-A-G-x(7,10)-U- 
x(3)-A-x(5)", where the fragments shaded in yellow, corresponding to the 
phylogenetically conserved pseudoknots in the 3'-UTRs of the four coronaviruses, are 
aligned together. 
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Figure 5.7: The consensuses adapted from [54], which was derived by Williams et al. 
from the 3'-UTRs of various coronaviruses, including HCoV-229E, PEDV, BCoV and 
MHV. 
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Chapter 6 
Conclusions 
 
In this thesis, we studied the RECMSA problem, whose aim is to find an RECMSA 

for the input sequences with several user-specified regular expression constraints such 

that substrings of the input sequences whose bases match regular expression 

constraint are aligned together. In this model, each of the user-specified constraints is 

a regular expression, which is useful in expressing biologically important sites such as 

those stored in PROSITE, as well as structural elements which often involve variable 

ranges in them. In contrast, the plain-strings-with-mismatches model adopted in 

previously available tools, MuSiC and MuSiC-ME, is not flexible enough to express 

such patterns. 

We adopted the dynamic programming and divide-and-conquer techniques to 

design a time and memory efficient algorithm for optimally solving the RECPSA 

problem. In addition, we designed a method to find in the resulting alignment the 

regions responsible for the satisfactions of the constraints. Based on the algorithm, we 

developed a web Server RE-MuSiC for the RECMSA problem using the progressive 

approach. The algorithm underlying RE-MuSiC represents an improvement over the 

previously proposed algorithm [2], and is more appropriate for implementation in a 

web-server. 

Experiments on GST proteins and on coronaviruses with phylogenetically 
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conserved pseudoknots demonstrated that, with additional knowledge incorporated, 

RE-MuSiC is able to produce meaningful alignments in which important residues or 

structural elements can be aligned properly, even if the similarity among input 

sequences is low. Such ability is also useful for prediction purposes. 
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