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ABSTRACT

Multiple sequence alignment (MSA) has received much attention in the fields of
bioinformatics and computational biology because it is very useful for discovering the
biological meanings of sequences. Usually, biologists may have advanced knowledge
about the structural, functional, and /or evolutionary relationships about sequences of
their interest, such as active site residues, intramolecular disulfide bonds, substrate
binding sites, enzyme activities, conserved motifs (consensuses) and so on. They
would expect an MSA program that is able to align these sequences such that the
structural, functional, and/or conserved bases (i.e., nucleotides or residues) are aligned
together.

In 2004, our research group has already developed a tool, called MuSiC, for
multiple sequence alignment with constraint. Since then, it has been proven by many
biologists to be useful in biological research. Nevertheless, the constraints allowed in
MuSiC can only be simple substrings allowing mismatches but disallowing gaps in
the occurrences. Many biologically importantipatterns such as motifs in the PROSITE
database cannot be supported by MuSiC, either."Hence, in this thesis, we study and
develop an algorithm and a tool for the problem of multiple sequence alignment with
regular expression constraints (RECMSA).

We used a progressive approach to design an efficient program for solving the
RECMSA problem. The kernel of this approach is an efficient algorithm for solving
the problem of pairwise sequence alignment with regular expression constraints
(RECPSA). We transform the regular expressions into a finite automaton and then use
dynamic programming and divide-and-conquer approaches to develop a time and
space efficient algorithm for optimally solving the RECPSA problem, which can be
implemented effectively on a desktop PC with limited memory. Using this algorithm
as the kernel, we developed a web-server called RE-MuSiC (Multiple Sequence
Alignment with Regular Expression Constraints) that is available on-line at

http://140.113.239.131/RE-MUSIC.
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Chapter 1
Introduction

Multiple sequence alignment (MSA) is one of the fundamental problems in
bioinformatics and computational biology that have been studied extensively, because
it is a useful tool in the phylogenetic analyses among various organisms, identification
of conserved motifs and domains in-a group of related proteins, secondary and tertiary
structure prediction of a protein/RNA and so-on [8,9, 19, 36, 37]. The sum-of-pairs
score is widely used for selecting an eptimal MSA. This kind of MSA problem, called
sum-of-pairs MSA (SPMSA) problem,.can-be solved by extending the dynamic

programming algorithm of Needleman and Wunsch for aligning two sequence [38]. In
the worst case, it needs to take O(2“n*) time to align k sequences of length n. This

exponential time limits the dynamic programming technique to align only a small
number of short sequences. Actually, the SPMSA problem has been shown to be
NP-complete [7, 53], which means that it seems to be impossible to design an
efficient algorithm to find the mathematically optimal alignment. Hence, some
approximate and heuristic methods are introduced to overcome this problem. For the

approximate methods, Gusfield [18] first proposed a polynomial time approximation

algorithm with performance ratio of 2—%. Then Pevzner [40] improved the



performance ratio to 2—% Recently, Bafna, Lawler and Pevzner [6] further

. . I : . —
improved the performance ratio to Z_E for any fixed I. It is worth mentioning that

Li, Ma and Wang [26] have given a polynomial time approximation scheme for
finding a multiple sequence alignment within a constant band, which is often useful in
many practical cases. For the heuristic methods, the most widely used heuristic
methods are so-called progressive strategies [13, 17, 21, 49, 50].

Standard multiple sequence alignment is based solely on the information about the
residues/nucleotides constituting the sequences. In addition to merely the
residues/nucleotides, however, biologists often possess more knowledge regarding
function, structure or conserved patterns of the sequences to be analyzed. It is
generally desirable to have such information‘incerporated into an alignment procedure,
so that the alignment result can' be more, biologically meaningful. For example,
functionally important sites are ‘generally-e€xpected to-be aligned together, but a typical
alignment tool often fails to achieve this if the sequence similarity is low. Imposing
constraints representing such information turns out to be an effective manner to
incorporate biological knowledge into an alignment tool.

Motivated by such demand, Tang et al. [48] formulated the constrained multiple
sequence alignment problem, where each constraint is a single residue/nucleotide.
They considered alignment of RNase sequences, which are known to have a sequence
of conserved residues His (H), Lys (K), and His. Using H, K, H as constraints, in the
resulting constrained alignment each of these three residues can be found aligned
together in a column of the alignment, appearing in the order as specified. Chin et al.
[11] then proposed an improved algorithm for pairwise alignment and an
approximation algorithm for multiple alignment. It is also noted that there have been

other formulations regarding alignment with constraints proposed from different



perspectives with various approaches [15, 29-35, 44, 45, 51].

Conserved sites of a protei/RNA/DNA family are often of several
residues/nucleotides long. For these patterns, the original formulation in [48] is not
expressive enough. In addition, such patterns may not appear in the exact form in
general. Consequently, Tsai et al. [52] proposed a generalized formulation and
algorithm, where each constraint is a (usually short) string pattern allowing
mismatches. Lu and Huang [28] then proposed a space efficient algorithm for this
formulation. Web-based systems, MusSiC [52] (available at

http://genome.life.nctu.edu.tw/MUSIC) and MuSIiC-ME [28] (available at

http://genome.life.nctu.edu.tw/MUSICME), were also developed; from now on these

two systems will be referred to as MuSiC jointly. With the aid of MuSIC, Tsai et al.
[52] and Lu and Huang [28] successfully identified a fragment in the 3” untranslated
region (3’-UTR) of a SARS. (severe acute respiratory syndrome) coronavirus
sequence that can fold into a pseudoknot,-which is potentially responsible for
self-replication of the virus. Indeed, since.its release, MuSiC has been found useful
in, e.g., detection of functionally and/or structurally important residues/motifs in
sequences [10, 48], prediction of RNA pseudoknotted structures [23, 41, 52],
prediction of protein structures [16], and so on.

There are, however, formulations of many biologically significant patterns beyond
the capability of MuSIiC. For example, many function-related protein sites as those
collected in the PROSITE database [24] are expressed in regular expressions, which
cannot be modeled using the substring-with-mismatch formulation of constraints
implemented in MuSiC. An example of regular expression patterns is the EGF-like
domain signature 2 (EGF_2, PS01186 in PROSITE):
C-x-C-x(2)-[GP]-[FYW]-x(4,8)-C, which is related to the initiation of a signal
transduction that results in DNA synthesis and cell proliferation. The meaning of this

3
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pattern is that, the first residue is Cys, followed by one residue of any kind, then a Cys,
followed by two residues of any kind, then a Gly or Pro, etc. Regular expressions are
also convenient in describing variable ranges between patterns or between blocks
within a pattern, which is necessary for some single patterns themselves, and useful in
applications where different patterns are expected to exhibit proximity in their
occurrences. In the above example of EGF_2, the “x(4,8)” symbol preceding the last
Cys indicates a range of length varying from 4 to 8 between a residue of [F, Y or W]
(Phe, Tyr or Trp) and that last Cys.

Due to the usefulness of regular expressions in describing biological patterns,
Arslan formulated the problem of Regular Expression Constrained Sequence
Alignment (RECSA for short) [1]. A feasible solution of RECSA is an alignment
containing a run of contiguous.icolumns such:.that both of the two substrings
corresponding to these columns-match the regular expression. The following example,
constructed by Arslan, clearly indicates the-difference between RECSA and a standard

unconstrained alignment:

AL T-—-—-GFPSVGKTKDDA

o |

AL TFSVAKDDDGKS———A
* ok &k ok ok ok ok ok

where a match of identical symbols is scored 1 and all other cases are scored 0. The
alignment shown left is an optimal alignment without constraint, while that shown in
the right is an optimal constrained alignment. The constraint R is [GA]-x-x-X-G-K-
[ST], the P-loop motif. The starred columns “support” the satisfaction of constraint R:
both GFPSVGKT and AKDDDGKS match R. Later, Chung et al. [12] proposed more
time and space efficient algorithms for this problem, which, unlike Arslan’s algorithm,

is capable of reconstructing the optimal alignment.

4



The above mentioned formulation of RECSA is for pairwise alignment with single
regular expression constraints. In practice, however, it is more useful to be able to
support multiple alignment with multiple constraints. In [2] Arslan extended the
algorithm in [1] to support multiple alignment with multiple constraints. The
algorithm proposed in [2] computes mathematically optimal constrained alignments.
Unfortunately, the time complexity is extremely high, involving an exponential
multiplicative factor in addition to the exponential time complexity for optimal
(unconstrained) MSA computations. Even for pairwise alignment with multiple
constraints, its worst case time and space requirements are intensive. In addition, the
algorithms in [2] cannot find in the resulting alignment the regions responsible for the
satisfactions of the constraints, either; only the alignment score, without the alignment
itself, is reported. But being able to report alignments is important for practical
purposes. It is therefore necessary.to propose a solution more suitable for practical
applications.

In this thesis, we extend the algorithm_in-[12] to support multiple constraints and
multiple sequences. The resulting algorithm is more efficient than the one in [2] for
pairwise alignment with multiple constraints. To deal with multiple sequences, a
progressive method is implemented, using our improved pairwise algorithm as the
kernel. This extended algorithm turns out to be more appropriate for applications than
the one in [2], and we implemented a web server, RE-MuSiC (Multiple Sequence
Alignment with Regular Expression Constraints), based on this algorithm.
Experiments on GST proteins and on coronaviruses with phylogenetically conserved
pseudoknots demonstrate that, with additional knowledge incorporated, RE-MuSiC is
able to produce meaningful alignments in which important residues or structural
elements can be aligned properly, even if the similarity among input sequences is low.

Such ability is also useful for prediction purposes.

5



The rest of this thesis is organized as follows. In Chapter 2, we give the formal
definition of the RECMSA (Multiple Sequence Alignment with Regular Expression
Constraints) problem we study in this thesis, and also introduce weighted finite
automata. In Chapter 3, we first use the dynamic programming technique to design a
time-efficient algorithm for optimally solving the RECPSA (Pairwise Sequence
Alignment with Regular Expression Constraints) problem. In addition, we show how
to find in the resulting alignment the regions responsible for the satisfactions of the
constraints, and then reconstruct the constrained sequences alignment in a space
efficient manner using the divide-and-conquer approach. Based on this algorithm, we
developed a program able to support multiple constraints and multiple sequences,
called RE-MuSIC, using the progressive approach. In Chapter 4, we introduce the
RE-MuSIiC implementation and user interface. In Chapter 5, we demonstrate the
applicability of our developed programs by testing them on a data set of protein and

RNA sequences. Finally, we make some conclusions-in Chapter 6.



Chapter 2
Preliminaries

In this chapter, we shall first formulate the problem of multiple sequence alignment
with regular expression constraints. We shall then introduce the concept and basics of
weighted finite automaton we use to design an efficient algorithm for the pairwise
sequence alignment with regular expression consttaints. Finally, we shall describe the
so-called progressive approach, we use to-design: a heuristic algorithm for the

constrained multiple sequence alignment.

2.1 Problem Formulation

Given o sequences Si, S»,. . ., Sc over alphabet 2 and a sequence of m regular
expression constraints Ry, R, . . ., Ry, is a regular expression, the problem of the
so-called multiple sequence alignment with regular expression constraints (RECMSA)
is to find an alignment with the highest possible score such that all the constraints are
satisfied. An alignment A of S}, S,,. . ., S; 1s said to satisfy all the constraints if in A
there exist m regions with the following property. Let the jth region, corresponding to
the jth constraint, be composed of consecutive columns k;, ki1, . . . , k. It is required
that the jth region precedes the (j+1)st region without overlapping and the substring of

each §; in the jth region matches the regular expression R;. For example, suppose we



are given two sequences S;=cgacgta, S,=acgcgta, as well as two regular expression
constraints R;=a and R,=t. Then, Figure 2.1(c) shows an optimal constraint alignment
in which there are two regions (i.e., 3™ and 8" columns, respectively) whose

corresponding substrings of S; and S; match R;=a and R,=t, respectively.

(a) INPUT
S1 = cgacgta, SR = acgcgta
Rl=a =t

(b) OPTIMAL UNCONSTRAINED ALUGNMENT
—cgacgta
acg—-cgta

(c) OPTIMAL CONSTRAINED ALUGNMENT

cgAcg—-——-Ta
——AcgcgTa

Figure 2.1: An illustration of a constrained alighment. Here a match has a score of 1,
while all other cases are scoréd 0. Capital lettets in the constrained alignment

represent the columns responsible for the satisfactions of the constraints.

2.2 Constrained Alignment versus Weighted Finite

Automaton

Currently, it is still a challenge to design a polynomial-time algorithm for solving the
RECMSA problem, because the problem of multiple sequence alignment that can be
considered a special case of RECMSA without any given constraint has been proven
to be NP-hard [7, 53]. However, the pairwise version of RECMSA, simply denoted by
RECPSA (Pairwise Sequence Alignment with Regular Expression Constraints), is a
tractable problem, because Arslan [1] first designed a polynomial-time algorithm
whose time and space complexities were further improved by Chung et al. [12].

The basic idea of Arslan’s algorithm is to construct a weighted automaton that

can be utilized to recognize any pairwise alignment of satisfying a required constraint.



For example, the automaton M in Figure 2.2(c) is able to recognize the pairwise
alignment, as shown in Figure 2.2(b), which satisfies the given regular expression by
the following steps. Initially, the automaton M is in the state (qo, go). After reading the
first two columns of A that are deletion pairs (¢, -) and (c, -), M still stays in the state
(g0, 90)- When M reads the third column of A that is a match pair (a, @), it enters the
state of (q1, ¢1) that is a final state of M. After reading the last two columns that are
insertion pairs (-, #) and (-, ¢), M remains in the final state. In other words, M can enter
and stay a final state from its initial state if the input pairwise alignment satisfies the
given regular expression. Moreover, any non-initial state in M implies that the given
regular expression is partially or completely satisfied by the input alignment. Clearly,
there should be many satisfied alignments that can be accepted by M. Recall that the
objective of the RECPSA problem 1s to find a‘satisfied alignment with maximum
alignment score. For this purpose, a weight is, assigned to each state in M for
remembering the alignment that best Satisfies-the partial or complete constraint of
regular expression. In the following, we shall formally describe how to reconstruct
such a weighted automaton for recognizing the best pairwise alignment of satisfying a
regular expression constraint.

Give a regular expression R, let N = (Q, 2, 0, qo, F) be an e-free NFA
(nondeterministic finite automaton) equivalent to R, which can be constructed

manually or by any established algorithm [22]. We also define o6(Q',a) to be
Upegﬁ(p,a), where Q'cQ and aeX . In this thesis we use Q and V
interchangeably. Following the notations in [23], we define a weighted automaton N

x N as the finite automaton M = (QM, wM M sM ng, FM) which we construct as

follows:



Input

() S1=tca, S9=atc, R=a
Output
f cla——

(b) A =

——at c

i (0. (1 B
iy o

@—»Qq.q]/z ) Y_oxX_

{a,-] = w»—

Figure 2.2: (a) Input sequences .and @ regular expression. (b) A is a constrained
sequence alignment. (c) A simple weighted finite automaton that can accept the

alignment A.

OM =0 x Qis the set of s1::ates.‘ Each s“[ate‘o'f M corresponds to a pair of states
in N. M remembers in each state what part of the regular expression has been
seen in S and S,.

wM” . O™ - Ris a function that assigns real weights to each state in 0", and
initially all weights are -o. We determine the active set of states of M by
examining their weights. The active states of M have weights different than -co.
M= (2 x %) — {e—e}. The alphabet " for M is the set of edit operations
which does not include e—e.

40" = (g0, qo) is the start state whose initial weight is 0.

F"'=F x Fis the set of final states. If M is in a final state then M has processed
an alignment that satisfies the regular expression constraint. That is, there are

substrings s; of S; and s, of S, that are aligned together in an alignment, and

10



both s; and s, take N to final states.

- o™ is a transition function of M that

(g asp) = {21 OlaD) i(p.a)e 7 Ullgr.a,)
T A T o

Function 6" can be naturally extended to be defined on the cross product of 0"

and the set of all possible alignments. A state (p,q) of M, , is active iff there exists

some alignment 4 of Si[1..i;] and Sy[1..i2] such that (p,q) € 5" (q)', A). Each state
(p.g)in M, . hasascore W, (pq)assigned to it. If (p,q) is active, then W, . (p.q)

is the score of an optimal alignment A4 of Si[1..i;] and S,[1..i;] such

that(p,q) € 6" (q)', A) . Otherwise no suchsalignment exists and W, . @ q)=-o.

2.3 Progressive Multiple Sequence Alignment

The progressive approach is one of the'widely used heuristics for efficiently finding a
good MSA of several sequences. The ideas behind it are as follows [13, 17, 21, 49,
50].

1. Compute the distance matrix by aligning all pairs of sequences: Usually, this
distance matrix is obtained by applying FASTA [27, 39] or the dynamic
programming algorithm of Needleman and Wunsch [38] to each pair of
sequences.

2. Construct the guide tree from the distance matrix: For the existing progressive
methods, they mainly differ in the method used to build the guide tree for
directing the order of alignment of sequence. To build the guide tree, for

example, PILEUP (a program of GCG packages) uses UPGMA (Unweighted

11



Pair-Group Method using Arithmetic mean) method [46] and CLUSTAL W
[50] uses NJ (Neighbor-Joining) method [43].

3. Progressively align the sequences according to the branching order in the
guide tree: Initially, the closest two sequences in the tree are aligned using the
normal dynamic programming algorithm. After aligning, this pair of sequences
is fixed and any introduced gaps cannot be shifted later (i,e., once a gap,
always a gap). Then the next two closest pre-aligned groups of sequences are
joined in the same way until all sequences have been aligned. (Here, we may
consider a sequence as an aligned group of a sequence.) To align two groups
of the pre-aligned sequences, the score between any two positions in these two
groups is usually the arithmetic average of the scores for all possible character
comparisons at those positions. We call ‘this kind of scoring methods as a

set-to-set scoring.

In fact, MST has been used as a sighificant tool-for data classification in the fields
of biological data analysis. In [48], Tang et al. proposed a variant of progressive
method by using the Kruskal MST to construct the guide tree, called Kruskal merging
order tree. The Kruskal merging order tree of £ sequences is constructed as follows.
First, we create a complete graph G = (V,E) of k sequences in a way that each vertex
of V represents a sequence and each edge e of E is associated with a weight d(e) to
represent the distance between the corresponding sequences of its end-vertices. Then
we use the Kruskal’s algorithm [25] to construct the Kruskal MST of G, denoted by

T .For completeness, we describe the Kruskal method for constructing 7 as follows.

1. Sort all edges of £ in non-decreasing order according to their distances.
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2. Initially, T is empty. Then we repeatedly add the edges of £ in non-decreasing
order to 7 in a way that if the currently adding edge e to 7" dose not create a
cycle in T, then we add e to T ; otherwise, we discard e.

Next, according to the Kruskal MST 7', we build the Kruskal merging order tree

Tk as follows.

1. Let V={v, vs, ..., w}and e}, e, ..., e be the edges of T with d(e;) =
dle) = ... = d(er)).

2. For each vertex v;e V', we create a tree 7; such that 7; contains only a node v..
For the purpose of merging trees, we consider 7; as a rooted tree by
designating v; as its root, and define the merge of two tree 7; and 7;
respectively rooted at v; and v; to be a new tree rooted at a new vertex u such
that v; and v; become the children 'of u:

3. For each e, = (v;, v;), where'K increases from 1 to k - 1, we find the trees 7;and
T;containing v; and v; respectively-and-then merge them into a new tree. This
process is continued until the remaiing is only one tree. Then this final tree is

the so-called Kruskal merging order tree Tk.

The construction of G for k sequences can be done in O(k°) time and the
computation of the Kruskal’s MST T of G can be done in O(k’ log k) time. Then the
construction of Tx from 7 can be implemented by the disjoint set union and find
algorithm proposed by Gabow and Tarjan [33] in O(m + k) time, where m denotes the
number of union and find operations. It is not hard to see that m = O(k) and hence the
construction of 7k takes O(k) time. Therefore, the total time complexity of

constructing Tk is O(K’log k).
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Chapter 3
Algorithm

In this chapter, we shall propose an algorithm to solve the problem of pairwise
sequence alignment with several regular expression constraints (RECPSA). Then, we
shall present how to extend this algorithm for dealing with multiple sequences with

several regular expression constraints (RECMSA).

3.1 Algorithm for RECPSA (Pairwise Sequence Alignment

with Regular Expression Constraints)

First consider the case of pairwise alignment. For simplicity let the two input
sequences have equal lengths of n. Let A =(Q,.%,9,.0d,,F,) be an e-free NFA

equivalent  to Rn  (On 1s the initial state of  Ap), and

M, =(@Q" WM xMn sMn q(?”" ,F") be the weighted automaton corresponding to

An, where Q™ =QyxQy M :(ZU{_})X(ZU{_})\{(_a_)} ) q(’JVIh :(qhth) >

FM = (Fh X Fh), and, for (p,q)e Q" and (a,b) € =™,

" o)) [ 5 (p.2)6,(q.b) it (p.a)e F" UM}
7" (p.a) ’b))‘{5h<p,a>xah<q,b>u{<p,q>} theraise

On each pair (iy, iy) of indices of the sequences, denote as M, the corresponding

weighted automaton. Also let M be an NFA obtained by “concatenating” My, . . ., Mp

14



by adding an “empty move” from each final state of My, to the initial state of Mp, 1 <
h < m. The initial state of M is set to be the initial state of M;, and the final states of M

are the final states of My,. Hence M accepts all feasible constrained alignments (see

Fig. 3.3 for an example). The score held in state (p, q) of M (resp. M ") is denoted

as W, (p,q) (resp. W"=(p,q)). The score W,""(p,q) represents the score of a

best alignment A of Si[1..i;] and S;[1..iy] such that all of Ry, . . . ,Rn.; are satisfied and

that state (p, q) of My is reached if A is given to M, as input. It is equal to W " (p,q),
the score of optimally aligning S;[1..i;] and S;[1..i] such that the alignment can lead
us from the initial state of M""(p,q) to state (p,q). The goal of the algorithm is to
computeW, ", since max ¢ W h6psd) s is the optimal score of aligning S; and

S, with all m regular expression constraints satisfied.

The algorithm iterates over.all pairs-(if, Iz) of indices of sequences S; and S, row

by row. It computes M for all 1.<i;, i, < nand-1 < h < m throughout its execution.
Let Vi, and Ep be the set of states and set of arcs in automaton Ay, respectively. Denote
as LI a|Vh| x |Vy| table used to hold W,"" . On each sequence index pair (iy, i), the
algorithm computes Lir‘]’i2 s ey Li‘m’i2 , in the order. For all (p, @) € Q™ Lil"i2 [p,q] is
computed using the (first) algorithm Chung et al. proposed in [12]. The same is
performed forLi, h > 1, except that L' [gh,Qn] is initialized to the maximum
of L [p, q] rather than -co as the other states are, the maximum taken over all final
states (p, ) of Mp.1.

The above procedure takes O(Z|Eh"\/h|n2j time, since each L!" takes
h=1

Oth”\/hD time by [12]. In what follows we present how to reconstruct the optimal
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alignment in O(z h[\/h|2nJ space without affecting the time complexity, by a
h=1

generalization of the method Chung et al. proposed in [12].

Consider an optimal alignment A satisfying all constraints. Intuitively, if we
know the substrings of S; and S, responsible for A’s satisfaction of the constraints,
then A (or another optimal solution) can be reconstructed efficiently. Suppose that the
substrings of S; and S, responsible for A’s satisfying the Ith regular expression are
Sl[blI el'] and Sz[b;n-e'z] , 1<I<m . Then we can align Sl[blI el'] and
S,lb!---el| for all I = 1..h align S[i--b~1] and S,[1--bl-1] ,
alignSl[el'+l~--bl'+l—1] and Sz[e£+1~--b;”—1] for I =1,2, ..., m—1, and
align Sl[elm +1---n] and Sz[e;” + 1---n]. These alignments can be concatenated in the
proper order to obtain A. Each alignment can be computed in linear space by
Hirschberg’s celebrated divide-and*conquer algorithm [14]. In the example of Fig.3.1,
b =1, e =1,b) =1, e, =1,bF=3, ef=3,b;=2,¢ =2,

Two types of [Vy|X|Vp| tables, /ﬂijr’fz and nlii,;iz, 1< <h, are maintained for this

purpose. Let A be the alignment underlying the score W, (p,q). Then ,B,ijr;iz[p,q]

keeps the indices of S; and S corresponding to the column immediately before the

first column of leaving the initial state of M, If 1= h (resp. I<h), then keeps the
indices of S; and S, corresponding to the first column of A which leads us to arrive at

state (p, q)(resp. a final state) of M,. It can be seen that, if (p, q) is the final state of

M " with the best W "(p,q) value, then ﬂ[‘,;:‘[p,q] stores b/ —1and b} -1,

andan;:[p,q] stores € and e}, where the meanings of these b and e values are as

discussed in the last paragraph.’

" When (p, q) is not a final state, the values of nihe [p’q] are are actually not relevant (but the

V2 [p,g] values are still critical).
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The computation of ,Br']‘h'z and 77:1[;:2 , h=1,..., m, proceeds in the same manner as
in [12].% As to ,B,i"r;iz [qh,qh] and n,ij,;iz [qh,qh], | # h, we initialize them to ﬂ,i"r;ifl[p,q]
andi],ijgifl[p,q], respectively, where (p, ) is the final state of M:]‘_’if with the best
W/ (p,q) score among all final states. In general, when |=h, for (initial or

non-initial) state (p,q), each time when Lir;’iz[p,q] is updated to, say,

Li,i’ié[p',q']+;/(x,y)where (ill,i'z)e{(il—l,iz—l),(il—l,iz),(il,iz—l)} and (x,y) is the

corresponding edit operation (e.g..(X, ¥) = (Si[i1],-) if i,=i—1 and i,=i,),

'°[p.a] and 7i3%[p.a] are also updated to A" [pla] and 7'*[p'.q]
respectively.

When row i; is being considered, all'tables. for'rows less than i; are not necessary

and can be discarded. Thercfore the overall space requirement, including the

reconstruction of the optimal alignment; 18 O(z h[\/h |2 n] .

h=1

In [2], an algorithm extending the one in [1] to support multiple constraints and

multiple sequences, is proposed. In the pairwise case, the algorithm in [2] has time

complexity O[Z|Eh|2n2J and space complexity O(Z|Eh|2n) It is clear that
h=1 h=1

[\/h|:Oth

), hence the algorithm presented here never takes more time than the one

in [2]. In the worst case, 2, and the algorithm in [2]

Eh| can be proportional to [\/h
takes O(Z[\/hrnz] time, while the one presented here takes O(Z[\/hrnzj time.
h=1 h=l1

Hence the time complexity of the algorithm presented here compares favorably with

’If (p, q) is not a final state, then the value held in ni[p,q] may not be as described in the last

paragraph. But as just mentioned, this does not affect the correctness.
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the one in [2]. As to the space complexity, if |Eh| = O([\/h ), then the algorithm here

may take more space than the one in [2]. However, if Z|Eh|2 = Q[Z h[\/h
h=1

h=1

J , then the

algorithm here is more space efficient. More importantly, the stated space complexity
for the algorithm in [2] does not include the reconstruction of the alignment; only the
alignment score can be computed. It is clearly an important issue for a web-server to

report the alignment. If a naive backtracking method is used to augment the algorithm

m
in [2] to reconstruct the alignment, the space requirement would be O[Z|Eh|2n2j,
h=1

which is too high for practical use.

Now, we apply this algorithm to solve the following example.

Input Scoring matrix
S1 = acgt, S2 = atecg Match:3
Rl = a, R2:==t Mismatch:—1
Gap=—2
Optimal*unconstrained alignment
a-cgt
atcg-
Optimal constrained alignment
AcgT- -
A-——Tcg

Figure 3.1 : An illustration of a constrained alignment.
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Figure 3.2 : The matrix of weighted automata.
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(aa') a") empt§i(t’_) (ts')

" move

Alignment underlying W*r,] °

AcgT- -
A-——Tcg
with

B, 1= (0,0) ms [r, ] = (LD
B, =@ 1 ke, = 4.2
(b)

Figure 3.3: An illustration of the weighted automaton M corresponding to the

example in Fig.3.1. State (p, pi1), etc., is denoted as p,;, etc., for brevity. (a)

Automaton M **, which is the concatenation of M,** and M;** . Numbers in the

states are the scores W **[p,,], etc. Initial states of M** and M;* are p;; and ryy,

respectively, while the final states are p,; and Iy, respectively. The initial and final

states of M™** are p;; and ry, respectively. (b) The alignment underlying W **[r,, ]

is the optimal alignment of Si[1..4] and S;,[1..4] such that state I, is reached.
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3.2 Algorithm for RECMSA (Multiple Sequence Alignment

with Regular Expression Constraints)

In this section, we use Algorithm RECPSA in previous section as kernels to design an
RECMSA algorithm, for progressively aligning the input sequences into a RECMSA
according to the branching order of a guide tree, where the guide tree we use here is
the so-called Kruskal merging order tree. We refer the reader to Section 2 for the
details of constructing the Kruskal merging order tree. Except for the adopted
RECPSA kernel, the execution steps, which are described as follows.

1. Compute the distance matrix D by globally aligning all pairs of sequences using
Algorithm RECPSA, where D(i, ) denotes the distance between sequences S
and S; .

2. Create a complete graph G from the distance*matrix D and then compute the
Kruskal merging order tre¢ Ty from G to serve as the guide tree.

3. Progressively align the sequences according to the branching order of the guide
tree Ty in a way that the currently two closest pre-aligned groups of sequences
are joined by applying Algorithm RECPSA to these two groups of sequences,
where the score between any two positions in these two groups is the arithmetic

average of the scores for all possible character comparisons at those positions.

In the following, we analyze the time complexity of Algorithm RECPSA. It is not
hard to see that step 1 costs O(k’n?) time, where n is the maximum of the lengths of k
sequences. According to the paper of Tang et al. [48] , step 2 can be done in O(k*log k)

time. In step 3, there are at most O(K) iterations for calling Algorithm RECPSA,

whose time complexity is O[z [\/h|3 nzj , to join two pre-aligned groups of sequences.
h=1
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Hence, the time complexity of step 3 is O(Z [\/h|3kn2] . It is wusually that
h=1
|k| = O[Z [\/h|3], hence the cost of Algorithm RECMSA is dominated by step 3 and
h=1

m
hence its time complexity is O[Z [\/h|3 knz)
h=l1
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Chapter 4
Implementation of RE-MuSIC

In this chapter, we shall introduce the implementation of RE-MuSIC, as well as its
web interface, and then describe how to use it in details. Besides, we shall introduce

the syntax of regular expression utilized in RE-MuSiC.

4.1 RE-MuSIC

The kernel of RE-MuSIC (short. of Multiple Sequence Alignment with Regular
Expression Constraints) was implemented ‘by C and its web interface by PHP and

HTML. RE-MuSIiC (http://140.113.239.131/RE-MUSIC) can be easily accessed via a

simple web interface (see Figure 4.1). The input of the RE-MuSiC web server consists
of a set of Protein/DNA/RNA sequences and a set of user-specified regular expression
constraints. The output of RE-MuSIC is a multiple sequence alignment with regular

expression constraints.

4.2 Usage of RE-MuSiC

In this section, we shall describe the usage of RE-MuSIC step by step, the output of
RE-MuSIiC and other information including scoring matrices, gap-penalty, and syntax

of regular expressions currently used in RE-MuSiC.
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4.2.1 Input of RE-MuSIC

1.

Input a set of genomic sequences in the FASTA format in the top blank field
Q).

Enter one or more regular expressions that are separated by spaces in the
"Regular expression constraints" field (2). Note that each constraint of regular
expression should be put in quotes first. For example, if users have two regular
expressions, say [ST]-x(2)-[DE] and
G-{EDRKHPFYW}-x(2)-[STAGCN]-{P}, then they may key in the following
line in the "Regular expression constraints™ field:

"[ST]-X(2)-[DE]" "G-{EDRKHPFYW}-x(2)-[STAGCN]-{P}"

If no constraint is specified, then RE-MuSiC produces an unconstrained
alignment.

Select the type of input sequences that can be either protein or DNA/RNA (3).
Just click "Execute RE-MuSi€" button (4) if users would like to run
RE-MuSiC with default parameters; otherwise, they continue with the
following parameter settings:

Select a suitable scoring-matrix for protein or DNA/RNA sequences from a list
of predefined matrices (5).

Key in two real values for gap open.penalty (6) and gap extension penalty (7),
respectively, since the RE-MuSiC web server penalizes the gaps using the
affine gap penalty function.

Check the checkbox and enter an email address (8) if the user would also like
to receive an email that contains a hyperlink to the RE-MuSiC result from the
server. Note that the RE-MuSIC result will be kept on the server only for 24
hours.

Click "Execute RE-MuSiC" button to run RE-MuSIC (4).
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RE-MusSiC: A Tool for Multiple Sequence Alignment with Regular Expression Constraints [Help, Examples]

Enter your genomic sequences with FASTA format below (copy & paste): (1)

>ALGST o
AGIKVFGHPASIATRRVLIALHEKNLDFELVHVE LKDGEHKEKEPFLSRNEFGQVPAFEDG
DLELFESRAITQYIAHRYENQGTNLLOTDSKNISQYAIMAIGMOVEDHQFDPVASKLAFE
QIFKSIYGLTTDEAVVAEEEAKLAKVLDVYEARLKEFKYLAGETFTLT DLHHIPAIQYLL
GTPTEKEKLFTERPEVNEWVAEI TKRPASEKVQ

>3jGST
MSPI LGYWKI KGLVGPTRLLLEY LEEKYEEHTL YERDEG DKWRNKKFELGLEFPNLEYYI D
GDVELTQSMAT IRYTADKHNMLGGCPKERAET SMLEGAVLDI RYGVSRIAYSKDFET LKV

Parameters: @Protein ©ODNA/RNA (3)
Scoring matrix; | GONNET 250« | (5)
Gap open penalty: 100 | (6)

Gap extension penalty: 02 | (7)
Regular expression constraint(s): |"G-{EDEKHPFYW }-x(2)-[STAGCN]-{F}” 2)

1 Send the result via email to: |please type your email address here (8)

[ Excoute REMUSIC | [ Reset | (4)

Figure 4.1: The web interface of RE-MuSiC.

4.2.2 Output of RE-MuSIC

In the first part of the output page, RE=MuSiC shows the user-specified
parameters, including scoring=matrix, gap .open and extension penalties, regular
expression constraints and so onk.-Next,—-RE-MuSiC outputs its result of the
constrained sequence alignment, in which the .columns whose residues/nucleotides
match regular expression constraints are shaded in yellow (refer to Figures 4.2 and 4.3
for examples). On addition, RE-MuSiC allows users to download the RE-MuSiC

alignments in FASTA format or ClustalW format.
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The Resulting RE-MuSiC':

The user-specified parameters are:

Scoring matrix = GONNET 250

Gap open penalty =10.0

Gap extension penalty = 0.2

Regular expression(s) = "[ST]-x-[RK]" "G-{EDRKHPFYW}-x(2)-[STAGCN]-{P}"
Number of regular expression constraint(s) =2

Running time = 0 seconds.

Download the alignment in: [FASTA format] [ClustalW format]

P46850|RTCB_ECOLI WAELEAGYOWL--—-------———-———-———— TOKYPRFLNTNNYKHLGT LGTGNHFIEIC 40

25805957682 METJA WA-VKEGYGWKEDLEFIEEHGCLEDADASYVSDK----AKERGRVOLGSLGSGNHFLEY) 55
- £k 21 kK £ I L. iEEr kA EkkE LA

P46850|RTCB_ECOLI L 41

Q58095 Y682 METJA Y 56

Download the alignment in: [FASTA format] [ClustalW format]

Figure 4.2: An example of the output of RE-MuSIC for protein sequences, where the
residues in the first block of columns shaded in yellow match the first regular
expression of "[ST]-x-[RK]", and those in the second block of columns shaded in
yellow match the second regular expression of
"G-{EDRKHPFYW}-x(2)-[STAGEN]-{P}".

The Resulting RE-MuSiC:

The user-specified parameters are:

Scoring matrix = Identity

Gap open penalty = 15.0

Gap extension penalty = 6.66

Regular expression(s) = "C-U-x(4)-C-x(15.16)-U-G-x(2)-A" "G-x(4)-A-G" "U-x(3)-A"
Number of regular expression constraint(s) = 3

Running time = 2 seconds.

Download the alignment in: [FASTA format] [ClustalW format]

PEDV ——-GCGGUCUUGSUCUUGCACACAACGCURAAGCCAG - USCGUARUGUCAGUGCARGRAGGA 56
BCoV GAUAAGGCACU---CUCUAUCAGRATGGAUGUCUUGCUGCUA-UARTAGAUAGAGARAGEY 56
* % * %% £% *F K% £k K% x* % * % EEET S
PEDV UAUUACCAUAGCAZUGUCA 75
BCoV UA-UAGCA---GACUA-—- &8
Kk kA kK ]

Download the alignment in: [FASTA format] [ClustalW format]

Figure 4.3: An example of the output of RE-MuSiC for RNA sequences. Notice that a
gap appears in the block of matching the 1st regular expression constraint, which is
not allowed to happen in MuSiC.
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4.2.3 Scoring Matrices

For protein sequences, three inbuilt series of scoring matrices are used in
RE-MuSIC system: (1) GONNET 250 (default), (2) BLOSUM 30, 45, 62, and 80, and
(3) PAM 30, 70, 120, 250, and 350. For DNA/RNA sequences, RE-MuSIC provides

identity matrix only.

4.2.4 Gap Penalty

The RE-MuSIC web server penalizes the gaps with the so-called affine gap
penalty function, which charges the score of "Gap open penalty" for the existence of a
gap and the score of "Gap extension penalty” for each residue/nucleotide in the gap.
The default values of "Gap open penalty” for protein and DNA/RNA sequences are
10.0 and 15.0, respectively, and those of "Gap extension penalty” are 0.2 and 6.66,
respectively. All these default values can be modified by the user, depending on the

evolutionary distance between the input-Sequences of interest.

4.2.5 Syntax of Regular Expression’'Used in RE-MuSiC

Regular expression is a pattern-defining notation that describes a string (or,
equivalently, sequence here) or a set of strings. In RE-MuSIC, the conventions of

describing a pattern of regular expression are the same as those used in PROSITE.
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e The standard IUPAC one-letter codes for the amino acids and nucleotides are
used in the regular expression of RE-MuSiC. Notice here that the symbol
'X'I'X" is used for a position where any amino acid or nucleotide is accepted.

IUPAC Codes for Amino Acids
Letter Meaning Letter Meaning
A A (Alanine) N N (Asparagine)
B D,N P P (Proline)
C C (Cystine) Q Q (Glutamine)
D D (Aspartic Acid) R R (Arginine)
E E (Glutamic Acid) |S S (Serine)
F F (Phenylalanine) |T T (Threonine)
G G (Glycine) VM (Valine)
H M (Histidine) W w (T}yptgphan)
I | (Isoleucine) X 'i'i}{:'(ﬁh'knbwn or Other Amino Acid)
K K (Lysine) Yy 5 ‘:',L(Iwc-)sia'a)
L L (Leucine) z E, Q.
M M (Methionine) S

IUPAC Codes for Nucleotides
Letter| Meaning |Letter Meaning
A A (Adenine) X/N |A,C,G, T
B C,GT R A, G (Purine)
C C (Cytosine) |S CG
D A G T T T (Thymine)
G G (Guanine) |U U (Uracil)
H ACT \Y ACG
K GT W AT
M A, C Y C, T (Pyrimidine)




e The amino acids (or nucleotides) that are allowed to appear at a given position
are indicated by listing them in a pair of square brackets '[ ]'.

o For example, [ALT] stands for Ala (A), Leu (L) or Thr (T).

« The amino acids (or nucleotides) that are not accepted at a given position are
indicated by listing them in a pair of braces '{ }".

o For example, {AM} stands for any amino acid except Ala (A) and Met
(M).

o Each element in a pattern of regular expression is separated from its neighbors
by a dash '-'.

o For example, [GA]-G-K-[ST] means that the first position of the
pattern can be occupied by either Gly (G) or Ala (A), the second and
third positions must be Gly (G) and Lys (K), respectively, and the last
position can be either Ser (S) or Thr (T).

o Repetition of an element in a pattern is indicated by appending, immediately
following that element, an integer or a pair of integers (meaning the allowed
range of the number of repetitions) in parentheses. For example,

o X(3) equals to x-x-x, a meaning pattern of any three amino acids (or
nucleotides).

o A(3) equals to A=A-A, a meaning pattern of three amino acids of Ala
(A).

o X(2,4) equals to X=X, X-X-X; OI"X=X-X-X.

For example, based on the above conventions, [AC]-x-V-x(4)-{ED} is
translated as [Ala or Cys]-any-Val-any-any-any-any-{any but Glu or Asp}. A
subsequence matches a given regular expression, if it can be described by this regular

expression. For example, "AgVdefgB" matches the above regular expression.
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Chapter 5
Experiments

In this chapter, we shall demonstrate the applicability of our RE-MuSiC by testing it
on two data sets, one with protein sequences and the other with RNA sequences.

5.1 Protein Sequences with.Active Site Residues

In this experiment, we analyzed three GST (Glutathione S-Transferase) proteins as
follows.

1. AtGST: a phi class GST from-plant Arabidopsis thaliana whose PDBID is
1GNW:A.
2. SJGST: an alpha class GST from non-mammalian Schistosoma japonicum (flat
worm) whose PDBID is 1IM99:A.
3. SsGST: a pi class GST from mammalian Sus scrofa (pig) whose PDBID is
2GSR:A.
Notice that the structural similarity between these three proteins is very high
(see Figure 5.1), although their pairwise sequence identities are extremely low. In
particular, the glutathione binding sites (G-sites) of these GST proteins have been
found to have a conserved architecture, and the glutathione backbone conformations
adopted in these GSTs from different species are quite similar [42]. Also, the
cheimical natures of their residues acting as G-site ligands and interactions facilitated

with glutathione exhibit analogy [42]. Due to their low sequence identity, it is hard to

use a typical alignment tool, like ClustalW, to produce an accurate alignment (see
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Figure 5.2 for example). In this ClustalW alignment as shown in Figure 5.3, one of
the active site residues shared by these three GST proteins was not aligned well. They
actually should be aligned together, however, if we superpose the crystal structures of
these three GST proteins [42]. By querying PROSITE with these three GST protein
sequences, we noticed that they all share a pattern of PS00006 ("[ST]-x(2)-[DE]") in
common. Using this pattern as the constraint, we aligned again the three GST protein
sequences mentioned above with RE-MusSIC, resulting in an alignment as shown in
Figure 5.3 that indeed satisfies the requested constraint (i.e., those residues matching
"[ST]-x(2)-[DE]" were lined up). In addition, it is worth mentioning here that all the
active site residues shared among these GSTs were also aligned together. This
suggests that, with additional information regarding some common patterns,
RE-MuSIC is more reliable in aligning together biologically important residues from
a set of closely related proteins,.even when their sequence similarities are low.
Demonstrated by this experiment, therefore,-our RE-MuSiC web server is helpful in

the detection of active site residues’inagiven.set of protein sequences.

Figure 5.1: (a) Alpha class GST structure to which SJGST from non-mammalian S.
japonicum (flat worm) belongs, (b) Phi class GST structure to which AtGST from
plant A. thaliana belongs, (c) Pi class GST structure to which SsGST from
mammalian S. scrofa (pig) belongs.
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http://140.113.239.131/RE-MUSIC/help.html#figure 6

CLUSTAL W (1.83) multiple sequence alignment

ATLGST -—-AGTEVFGHPASTATRRVLIALHEKNLDFELVHVELKDG 58
S§GST MSPTILGYWKIKGLVOPTRLLLEYLEEKYEEHLYERDEGDK 59
SsGST PPYTITYFPVRGRCEAMRMLLADQDQSWKEEWTMET@P —————— . 54
- - * ek ) - . .

ALGST DGDLKL ITOQYIAHRYENQGTNLLYTDSKENI SQYAIMAIGMQVEDHQFDEVASKLA 118
S9GST DGDVELT) AT IRYIADKHNMLGGCPEERAEI SMLEGAVLDIRYGVSRIAYSKEDFETLE 119
S53G5T DGDLTL AT LRHLGRSFGLYGKDQKEAALVDMVNDGVEDLRCEYATLI VTN -YEAGK 113

ErEgE oEF A oran, . * : - : : .
ALGST FEQIFKSIYGLTTDEAVVAEEEAKLAKVLDVYEARLKEFKYLAGETFTLTDLHHIPAIQY 178
SjGST VDFLSKLPEMLKMFEDRLCH----KTYLNGDHVTHP DFMLYDALDVVLYMDPMCLDAFFK 175
S3G3T EEKYVEELPEHLKPFET LLEQNQGGQAFVVGSQI SFADYNLLDLLRIHQVILNPSCLDAFFL 173

. . * * . . . . - - Ea

ALGST LLGTPTKKLFTERPRVNEWVA--EITKRPAS ——————— EFvVQ--—- 211
S3GST LVCFKKR--IEAIPQIDKYLKSSKYIAWP LQGWQATFGGGDHEPK 218
53GST LSAYVAR--LSARPEIKAFLASPEEVNRPIN---—-— GNGKQ--- 207

* . . Foaow - . +* .

Figure 5.2: The active site residues shared by all three GST proteins are marked in
boxes. The active site residues in green boxes are aligned together, but the others in
red boxes are not.

The Resulting RE-MuSiC:

ALGST --AGTEKVFGHPASTATRRVLIALHEKNLDFELVHYVELKDG KEPFLSENPFEOVIPAFE 58
SiGST MEPILGYWKIKGLVQFTRLLLEYLEEKYEEHLYERDEGD- NEEFELGLEFEMNLFYYI L9
SsSGST PPYTITYFPVRGRCEAMRMLLADQDOSWKEEVVTMET - — - WP —-P LKP SCLFHQLPKFQ 54
- - E N ) - - - * =k -
ALGST DGDLKL ITQVIAHRYENQGTNLLOTDSENTI SQYATMATGMOVEDHQFDPVASKLA 118
SiGST DGDVELT ATIRYIADKHN----- MLGGCPEERAEISMLEG--AVLDIRYG--VSRIA 110
SsGST DGDLTL ATLRHLGRSFG----- LYGKDQEEAALVDMVND--GVEDLECK--YATLI 105
- . : o HH *oF HEH
ALGST FEQIFKSIYGLTTDEAVVAEEEAKLAKVLDVYEARLKE- - --FEKYLAGETFTLTD--LHH 172
51G5T YSKDFETLE-----—-——- VDFLSKLPEMLKMFEDRLCH----KTYLNGDHVTHPDFMLYD 157
S5aGS5T YTH-YRAGE-----———— EEYVEELPEHLKPFET LLSQNQGGQAFVVGSQISFADYNLLD 155
e e A T P
ALGST IPAIQYLLG-—---—— TPTEKLFTER----FPRVNEWVA--EITKRPAS-——---—— EKVQ-- 211
51G5T ALDVVLYMDPMCLDAFPKLVCFEKRIEATPQIDEYLESSKYIAWP LOGWOATFGGGDHPE 217
53GST LLRIHQVLNPSCLDAFPLLSAYVARLSARPKIKAFLASPEHVNRPIN---——~ GNGKQ-- 207
. . * . +* *oaw .. . * -
ALGST - 211
S4GST X 218
S5aGS5T - 207

Figure 5.3: The constrained sequence alignment produced by RE-MuSiC, using the
pattern of "[ST]-x(2)-[DE]" (PS00006) as the constraint, in which the residues shaded
in yellow match the pattern. In addition, the residues in green boxes that correspond to
the active sites shared by these three GST proteins are aligned together.
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5.2 RNA Sequences with Phylogenetically Conserved

Pseudoknots

In this experiment, we aligned the 3' untranslated region (3'-UTR) sequences of
the following four coronaviruses, where HCoV-229E and PEDV are group 1
coronaviruses, while BCoV and MHV belong to group 2.

1. HCoV-229E: human 229E coronavirus whose accession number in GenBank
is af304460.

2. PEDV: porcine epidemic diarrhea virus whose accession number in GenBank
is af353511.

3. BCoV: bovine coronavirus whose accession number in GenBank is af220295.

4. MHV: murine hepatitis virus whose accession number in GenBank is
af201929.

It has been reported that phylogenetically conserved pseudoknots found in the
3'-UTRs of these four coronaviruses;(refer to Figure 5.4) have been postulated to be
involved in their RNA replication‘[54]. Notice that the pairwise sequence identities
between sequences in the different groups are extremely low. Hence, it was difficult
for ClustalW to have the sequence fragments corresponding to the conserved
pseudoknots aligned together (see Figure 5.5 for example). However, as shown in
Figure 5.6, this goal was achieved by RE-MuSiC when the pseudoknot consensus (as
shown in Figure 5.7), derived by Williams et al., [54] from the 3'-UTRs of various
coronaviruses, was used as the constraint. In general, loops in pseudoknots are less
conserved. To enhance the flexibility of the consensus, hence, we treat the nucleotides

involved in the loop regions as "don't care™ symbols ("x") and describe the consensus

as
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http://140.113.239.131/RE-MUSIC/example7.htm
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"X(5)-C-U-x(4)-C-x(15,16)-U-G-x(2)-A-x(5,7)-G-x(4)-A-G-x(7,10)-U-x(3)-A-x(5)".
This experiment suggests that RE-MuSiC is able to help locate those sequence

fragments that are conserved from the structural point of view.

’* ACAAUGGUAAGCCA ]
—— AGAAUAUG — A —AAAUGAUGGUG

(a) 5 CuAG UCUUAUAC UUUGCUACUAU GUUA 3’
AA
’* ACAACGGUAAGCCA ]
—— AGAACGUG 7 A —CUGUAAUGGUG
(b) 5" UUGG UCUUGCAC GAUAUUACCAU AGCA 3/
AA
AGAAUGGAUGUCUUG ]
— AGAGAUAG — A— UAAUAUCGUC

(c) 5 GCAG —|— UCUCUAUC — GUUAUAGCAG —— ACUA 3/
AG —l
( AGAAUGGAUGUCUUG ]

AGAGAUAG —~ A~ CAAUACUGUC
(d) 5 ACAC ——|— UCUCUAUC GUUGUGGCAG —— ACCC 3

AG

Figure 5.4: Phylogenetically conserved pseudoknots in the 3-UTRs of four
coronavirus. (a) HCoV-229E (human 229E coronavirus), (b) PEDV (porcine epidemic
diarrhea virus), (c) BCoV (bovine coronavirus), (d) MHV (murine hepatitis virus).
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CLUSTAL W (1.83) multiple sequence alignment
HCoV-229E UAC-AUUGCUUUUCUCUGAUCUAUGUAUGAUGGUACGAUCAGAGCUGCUUUUAAUUAACA 179
PEDV UGCCAUUACACUGUUAUUA-CUGAGUGUUUUUCUAGCGACUUGGCUGCUGG -~ ~ GCUA 85
BCoV ARUGAACCUUAUGUCGGCA-CCUGGUGGUAAGCCCUCG-CAGGARAGUCGEG- -~~~ GAUA 56
MHV AAUGAAUCCUAUGUCGGCG-CUCGEUGGUAACCOCUCG-COAGAAAGUCGG-— - - GAUA 57
* * * * & * * *
HCoV-2259E UGAUCCCUUGCUUUGGCUUGACARGGAUCUAGUCUUAUA-CACARUGGUARGCCAGUGGU 238
PEDV UGGCUUUGCCCUCUAACCAGC - - -GGUCUUGGUCUUGCA - CACAACGGUAAGCCAGUGGU 151
BCoV AGGCACUCUCUAUCAGAAUGG - -AUGUCUUGCUGCUAUAAUAGRAUAGAGARGGUUAUAGC 114
MV GGACACUCUCUAUCAGARUGG--AUGUCUUGCUGUCAUAACAGAUAGAGARGGUUGUGGC 115
* * * I £k k Kk  kk+ * %
HCoV-229E AGUARAGGUAUARGAAARUUUGCUACUAUGUUACUGRACCUAGGUGRACGCUAGUAUARCU 298
PEDV AAUGUCAGUGCAAGAAGGAUAUUACCAUAGCACUGUCACGAGGGGAACGC-AGUACCUUU 210
BCoV AGACUAUAGAUUAAUUAGUUGARR - - - -GUU-UUGUGUSGGUAAUGUAUAGUGUUGGAGAR 169
METV AGACCCUGUAUCAAUUAGUUGARA- - - -GAGAUUGCAAAAUAGAGAAU-GUGUGAGAGAR 170
* * * * £ % * ok
HCoV-2Z25E CARUUACAAA--UGUGCUGGAGUAAUCARAGAUCGCAUUGACGAGCCAACAAUGGARGAGC 356
PEDV UCAUCUARACCUUUGCACGAGUAAUUAARGAICCGCUUGACGAGCCUAUA-UGGAAGAGS 269
BCoV AGUG--ARAAGACUUGCGG-——-—-~ ARGUAATUGCCGACAAGUGCCCAA--GGGAAGAGC 218
METV GUUAGCAAGGUCCUACGUCUA-ACCAUAAGAACGGCGAUAGGCGCCCCCU-GGGAAGAGC 228
* % * ok * ok kkx AhkkER A

Figure 5.5: A partial view of the alignment produced by ClustalW, where the
fragments shaded in light blue corresponds to the phylogenetically conserved
pseudoknots in the 3'-UTRs of the four coronaviruses. Notably, these four shaded
fragments were not aligned together.

The Resulting RE-MuSi(C':
HCoV-229E AUACAUTUGCUUTICUCUGATCUAUGUATGAUGGUACGAUCAGAGZUGCUTUUAATUALCA 179
PEDV UGGCUUUGCCCUCURACCAGCGGU -~~~ === === —mmm—mm o m e 120
BCoV e 58
MHV G-mmm 59
HCoV-229E UGAUCCCUUGCUUUGGCUUGACARGGAUCUAGUCUUAUACACARUGGUARGCCAGUGGUA 239
PEDV ~ —mmmmmmmmmmm e UUGGUCUUGCACACAACGGUAAGCCAGUGGUA 152
B0 /A S e e GCACUCUCUAUCAGARUGGAUGUCUUGCUGCU G0
MHV ~ mmmmmmm e ACACUCUCUAUCAGAAUGGAUGUCUUGCUGUC 91
* k& %k k& &% * * *
HCoV-220E GUARAGEUAUAAGAAAUUUGCUACUAUGUUA - -CUGAACCUAGGUGAACGCUAGUAURAC 297
PEDV AUGUCAGUGCAAGAAGGAUAUUACCAUAGCA- -CUGUCACGAGGGGAACGC-AGUACCUU 209
BCOV AUAAUAGAUAGAGAAGGUUA-UAGCAGACUAUAGAUUARUUAGUUGAARAGUU-UUGUGUG 148
MEY AUAACAGAUAGAGARGGUUG-UGGCAGACCCUGUAUCAAUUAGUUGAARGAGAUUGCARA 150
* * Ea * * * E EaE e *
HCoWV-Z2Z29E UCAUUACAAR--UGUGCUGGAGUAAUCAAAGAUCGCATUU-—---—---—-——-—-—-——— GACG 338
PEDV UUCAUCUAAACCUUUGCACGAGUAAUTAAAGAICCGCIU - -~ -~ -~ ——— GACG 2h2
BZov GUAATGUAUAGUGUUGGAGAARGUG--ARMGACUIGCGG—————— ARGUAAUIGCCGACA 200
MHY AUAGAGAAT-GUGUGAGAGARGUUAGCAAGGUCCUACGUCUAACCAUARGAACGECGAUA 209
* * & & £

Figure 5.6: A partial view of the alignment produced by RE-MuSiC using the
constraint of "x(5)-C-U-x(4)-C-x(15,16)-U-G-x(2)-A-x(5,7)-G-x(4)-A-G-x(7,10)-U-
X(3)-A-x(5)", where the fragments shaded in yellow, corresponding to the
phylogenetically conserved pseudoknots in the 3'-UTRs of the four coronaviruses, are
aligned together.
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AxAAXGGx(4)Cx(2,3) —

— xGAx(4)G —x(1,2) — x(4,5)Ax(2)GUx —
5 x(4) xCUx(4)C — x(4.5)Ux(2) xAx x(4) 3
x(2,4)

Figure 5.7: The consensuses adapted from [54], which was derived by Williams et al.
from the 3'-UTRs of various coronaviruses, including HCoV-229E, PEDV, BCoV and
MHV.
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Chapter 6
Conclusions

In this thesis, we studied the RECMSA problem, whose aim is to find an RECMSA
for the input sequences with several user-specified regular expression constraints such
that substrings of the input sequences whose bases match regular expression
constraint are aligned together. In.this model, each. of the user-specified constraints is
a regular expression, which is useful'in expressing.bielogically important sites such as
those stored in PROSITE, as well asistructural-elements which often involve variable
ranges in them. In contrast, the “plain-strings-with-mismatches model adopted in
previously available tools, MuSiC and MuSiC-ME, is not flexible enough to express
such patterns.

We adopted the dynamic programming and divide-and-conquer techniques to
design a time and memory efficient algorithm for optimally solving the RECPSA
problem. In addition, we designed a method to find in the resulting alignment the
regions responsible for the satisfactions of the constraints. Based on the algorithm, we
developed a web Server RE-MuSiC for the RECMSA problem using the progressive
approach. The algorithm underlying RE-MuSiC represents an improvement over the
previously proposed algorithm [2], and is more appropriate for implementation in a
web-server.

Experiments on GST proteins and on coronaviruses with phylogenetically
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conserved pseudoknots demonstrated that, with additional knowledge incorporated,
RE-MuSIC is able to produce meaningful alignments in which important residues or
structural elements can be aligned properly, even if the similarity among input

sequences is low. Such ability is also useful for prediction purposes.
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