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Abstract
We consider a one-parameter family of maps Fλ on R

m × R
n with the singular

map F0 having one of the two forms (i) F0(x, y) = (f (x), g(x)), where
f : R

m → R
m and g : R

m → R
n are continuous, and (ii) F0(x, y) =

(f (x), g(x, y)), where f : R
m → R

m and g : R
m × R

n → R
n are continuous

and g is locally trapping along the second variable y. We show that if f is one-
dimensional and has a positive topological entropy, or if f is high-dimensional
and has a snap-back repeller, then Fλ has a positive topological entropy for all
λ close enough to 0.

Mathematics Subject Classification: 37D45, 54C70, 37B30, 37J40, 37B10

1. Introduction

In this paper, we consider multidimensional perturbations from a continuous map f on a low-
dimensional phase space, say R

m, to a continuous family of maps Fλ on a high-dimensional
space, say R

m × R
n, where λ ∈ R

� is a parameter, such that at λ = 0, the singular map F0 is
one of the following forms:

(i) F0(x, y) = (f (x), g(x)) ∈ R
m × R

n;
(ii) F0(x, y) = (f (x), g(x, y)) ∈ R

m × R
n and g(Rm × S) ⊂ int(S) for some compact set

S ⊂ R
n homeomorphic to the closed unit ball in R

n; here int(S) denotes the interior of S.

Let htop(ϕ) denote the supremum of topological entropies of a map ϕ restricted to compact
invariant sets. The basic question we study here is the following:

(#) If htop(f ) > 0, will htop(Fλ) > 0 for λ near 0?
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In this paper, we establish two kinds of results addressing question (#). First we show that if
f is one-dimensional (without any additional assumption) then lim infλ→0 htop(Fλ) � htop(f )

(see theorems 1 and 2). Second, we allow f to be possibly high-dimensional and show that
if f has a snap-back repeller (for a discussion of its definition see definition 3 and remarks in
the next section) then htop(Fλ) > 0 for all λ near enough 0 (see theorems 4 and 5).

Our methodology is based on the concept of covering relations (see section 3 for the
definition and basic properties), which was introduced by Zgliczyński in [11, 12]. It allows one
to prove the existence of periodic points, the symbolic dynamics and the positive topological
entropy without using hyperbolicity. As a by-product of using such a method, we give a new
proof of Blanco Garcia’s result in [1] that the existence of a snap-back repeller implies positive
topological entropy (see proposition 15). It is also possible that the notion of a snap-back
repeller can be changed by another structure, such as a hyperbolic horseshoe, in order to
obtain similar results.

Let us compare our results with the existing literature. Assuming that f is one-dimensional
(i.e. m = 1) and some additional conditions are satisfied, affirmative answers to question (#)
have been given in the literature. For the case when f is an interval map and g = 0, Misiurewicz
and Zgliczyński in [8] proved that lim infλ→0 htop(Fλ) � htop(f ). They used the covering
relation approach in the same way as we use it in this paper.

For the planar case (i.e. m = n = 1), Marotto in [6] restricted perturbations to
two types: one is that Fλ(x, y) = (ϕ(x, λy), x) and λ ∈ R and the other one that is
Fλ(x, y) = (ϕ(x, λ1y), g(λ2x, y)), λ = (λ1, λ2) ∈ R

2, and the map y �→ g(0, y) has a
stable fixed point. Assuming the map x �→ ϕ(x, 0) is C1 and has a snap-back repeller (for a
discussion of its definition see definition 3 and remarks in the next section), he showed that for
all λ near 0, the map Fλ has a transverse homoclinic point. His method relies heavily on the
planar structure of the map F0 and the Birkhoff–Smale transverse homoclinic point theorem.

The results from [2, 4] about difference equations can be applied to question (#), but these
are in fact perturbations of one-dimensional maps.

Our results are applicable to a high-dimensional version of the Hénon-like maps. Define
a family of maps Hb(x, y) on R

m × R
n, with parameter b ∈ R

�, by its components, for
x = (x1, . . . , xm) and y = (y1, . . . , yn),{

x̄i = ai − x2
i + oi(b)ϕi(x, y), 1 � i � m,

ȳj = gj (x, y), 1 � j � n,

where each ai is a constant, oi, ϕi, gj are real-valued continuous functions and
limb→0 oi(b)/|b| = 0. If m = n = 1, one can reduce Hb to the original Hénon-map
(x, y) �→ (a − x2 + by, x) and apply results from this paper as well as from [2, 4, 6]. For
the general case when m � 1 and n � 1, we assume that each gj is either dependent only on x

or bounded (hence, the conditions in form (i) or (ii) are satisfied, respectively). At the singular
value b = 0, the first m components of H0, i.e. x̄i = ai − x2

i for 1 � i � m, form a decoupled
map from R

m into itself, and such a map has a positive topological entropy or a snap-back
repeller by choosing suitable ai . By applying the results presented in this paper, we get that
htop(Hb) > 0 for all b sufficiently near 0. Nevertheless, if m > 1 (the high-dimensional case),
we cannot apply the results in [2, 4, 6, 8] to Hb. Even when m = 1, we cannot apply those
results either for many situations: more precisely, in [8] if one of the gj is not the zero function,
in [6] if one of the gj depends on the variable y and in [2, 4] if each coordinate of the full orbits
of Hb is not reduced to solutions of a difference equation.

This paper is organized as follows. In the next section, we give a precise statement of our
main results along with a definition of snap-back repellers. In section 3, we present background
information about covering relations, mainly from the work of Zgliczyński and Gidea in [13].
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In section 4, we prove our results concerning a one-dimensional map with a positive topological
entropy (theorems 1 and 2). Then, in section 5, we show that the existence of a snap-back
repeller implies the existence of two closed loops of covering relations, as well as a positive
topological entropy (proposition 15). Finally, in section 6, we prove our results concerning a
high-dimensional map with a snap-back repeller (theorems 4 and 5).

2. Definitions and statement of main results

In this section, we state our main results and define snap-back repellers. First, we consider
multidimensional perturbations of a one-dimensional map f . If the singular map F0 depends
only on the phase variable of f (refer to form (i) in section 1), we have the following result.

Theorem 1. Let Fλ be a one-parameter family of continuous maps on R × R
n such that

Fλ(x, y) is continuous as a function jointly of λ ∈ R
� and (x, y) ∈ R × R

n. Assume that
F0(x, y) = (f (x), g(x)) for all (x, y) ∈ R × R

n, where f : R → R and g : R → R
n. Then

lim infλ→0 htop(Fλ) � htop(f ).

For the case when the singular map is locally trapping along the normal direction (refer
to form (ii) in section 1), we have the following.

Theorem 2. Let Fλ be a one-parameter family of continuous maps on R × R
n such that

Fλ(x, y) is continuous as a function jointly of λ ∈ R
� and (x, y) ∈ R × R

n. Assume that
F0(x, y) = (f (x), g(x, y)) for all (x, y) ∈ R × R

n, where f : R → R, g : R × R
n → R

n,
and g(R × S) ⊂ int(S) for some compact set S ⊂ R

n homeomorphic to the closed unit ball in
R

n. Then lim infλ→0 htop(Fλ) � htop(f ).

Next, we consider multidimensional perturbations of a map on a space of dimension
possibly bigger than one. Recently, Marotto [7] redefined snap-back repellers and stated that
his earlier result in [5] that the existence of a snap-back repeller implies Li–Yorke chaos is
still correct. Both definitions of snap-back repellers in [5, 7] depend on the norms of the phase
space. In the following, we give a slightly different definition so that it is independent of norms
defined on the phase space.

Definition 3. Let f : R
m → R

m be a C1 function. A fixed point x0 for f is called a snap-back
repeller if (i) all eigenvalues of the derivative df (x0) are greater than one in absolute value
and (ii) there exists a sequence {x−i}i∈N such that x−1 �= x0, limi→∞ x−i = x0, and for all
i ∈ N, f (x−i ) = x−i+1 and det(df (x−i )) �= 0.

Roughly speaking, a snap-back repeller of a map is a repelling fixed point associated
with a transverse homoclinic orbit. Notice that if there exists a norm ‖ · ‖∗ on R

m such
that for some constants r > 0 and ρ > 1, one has that ‖f (x) − f (y)‖∗ > ρ‖x − y‖∗ for all
x, y ∈ B(x0, r), where B(x0, r) = {x ∈ R

m : ‖x−x0‖∗ < r}, then f is one-to-one on B(x0, r)

and f (B(x0, r)) ⊃ B(x0, r); hence item (ii) of the above definition is satisfied provided that
there is a point q ∈ B(x0, r) such that f k(q) = x0 and det(df k(q)) �= 0 for some positive
integer k. In fact, item (i) implies that such a norm must exist (refer to theorem V.6.1 of
Robinson [10]). Furthermore, if all eigenvalues of (df (x0))

T df (x0) are greater than 1, then
such a norm can be chosen to be the Euclidean norm on R

m (see lemma 5 of Li and Chen [3]).
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If the singular map depends only on the phase variable of a snap-back repeller, we have
the following result.

Theorem 4. Let Fλ be a one-parameter family of continuous maps on R
m × R

n such that
Fλ(x, y) is continuous as a function jointly of λ ∈ R

� and (x, y) ∈ R
m × R

n. Assume that
F0(x, y) = (f (x), g(x)) for all (x, y) ∈ R

m × R
n, where f : R

m → R
m is C1 and has a

snap-back repeller and g : R
m → R

n. Then Fλ has a positive topological entropy for all λ

sufficiently close to 0.

When the singular map is locally trapping along the normal direction, we have the
following.

Theorem 5. Let Fλ be a one-parameter family of continuous maps on R
m × R

n such that
Fλ(z) is continuous as a function jointly of λ ∈ R

� and (x, y) ∈ R
m × R

n. Assume that
F0(x, y) = (f (x), g(x, y)) for all (x, y) ∈ R

m × R
n, where f : R

m → R
m is C1 and has a

snap-back repeller, g : R
m×R

n → R
n, and g(Rm×S) ⊂ int(S) for some compact set S ⊂ R

n

homeomorphic to the closed unit ball in R
n. Then Fλ has a positive topological entropy for

all λ sufficiently close to 0.

3. Covering relations

In this section, we give the background information about covering relations. First of all, we
introduce some notations. Suppose that R

k has a norm ‖ · ‖. For x ∈ R
k and r > 0, we denote

Bk(x, r) = {z ∈ R
k : ‖z − x‖ < r}, that is, the open ball of radius r centred at the origin 0

in R
k; in short, we write Bk = Bk(0, 1), the open unit ball in R

k . Moreover, for a subset S of
R

k , let S, int(S) and ∂S denote the closure, the interior and the boundary of S, respectively. It
will be always clear from the context which norm is used.

We briefly recall some definitions and results in [13].

Definition 6 ([13], definition 1). An h-set in R
k is a quadruple consisting of the

following data:

• a compact subset N of R
k;

• a pair of numbers u(N), s(N) ∈ {0, 1, . . . , n} with u(N) + s(N) = k;
• a homeomorphism cN : R

k → R
k = R

u(N) × R
s(N) such that

cN(N) = Bu(N) × Bs(N).

For simplicity, we will denote such a quadruple by N. Furthermore, we set

Nc = Bu(N) × Bs(N), N−
c = ∂Bu(N) × Bs(N), N+

c = Bu(N) × ∂Bs(N),

and

N− = c−1
N (N−

c ), N+ = c−1
N (N+

c ).

A covering relation between two h-sets is defined as follows.

Definition 7 ([13], definition 6). Let N , M be h-sets in R
k with u(N) = u(M) = u and

s(N) = s(M) = s, f : N → R
u × R

s be a continuous function, fc = cM ◦ f ◦ c−1
N : Nc →

R
u × R

s and w be a nonzero integer. We say N f -cover M with degree w, denoted by

N
f,w�⇒ M,
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if the following conditions are satisfied.

1. There exists a homotopy h : [0, 1] × Nc → R
u × R

s such that

h(0, x) = fc(x) for x ∈ Nc, (1)

h([0, 1], N−
c ) ∩ Mc = ∅, (2)

h([0, 1], Nc) ∩ M+
c = ∅. (3)

2. There exists a map A : R
u → R

u such that

h(1, p, q) = (A(p), 0) for p ∈ Bu and q ∈ Bs,

A(∂Bu) ⊂ R
u\Bu.

3. The local Brouwer degree of A at 0 in Bu is w; refer to [13, appendix] for its properties.

Usually, we will be not interested in the values of w among covering relations and we just

write N
f�⇒ M if there exists w �= 0 such that N

f,w�⇒ M .
We will need the following two theorems proved by Zgliczyński and Gidea in [13]. The

first one says that a closed loop of covering relations implies the existence of a periodic point.

Theorem 8 ([13], theorem 9). Let Ni for 0 � i � m be h-sets in R
k such that Nm = N0 and

let fi for 1 � i � m be continuous maps on R
k such that the covering relations Ni−1

fi ,wi�⇒ Ni

with wi �= 0 for all 1 � i � m. Then there exists a point x ∈ int (N0) such that

fi ◦ fi−1 ◦ · · · ◦ f1(x) ∈ int(Ni) for 1 � i � m,

fm ◦ fm−1 ◦ · · · ◦ f1(x) = x.

The following one shows that a covering relation is persistent under C0 small perturbations.

Theorem 9 ([13], theorem 14). Let N , M be h-sets in R
k such that u(N) = u(M) and

s(N) = s(M). Let f, g : N → R
k be continuous maps. Assume that N

f,w�⇒ M and that the
map cM satisfies a Lipschitz condition. Then there exists ε > 0 such that if ‖f (x)−g(x)‖ < ε

for all x ∈ N, then N
g,w�⇒ M .

4. Proofs of theorems 1 and 2

In this section, we will prove the first two of our main results. To this end, we need the
following lemma, which can be easily derived from [9]; see also theorem 3.1 of Misiurewicz
and Zgliczyński in [8]. It says that for continuous interval maps, the positive topological
entropy is realized by horseshoes.

Lemma 10. Let I be a closed interval in R and f : I → I be a continuous map with a positive
topological entropy, i.e. htop(f ) > 0. Then there exist sequences {sk}∞k=1 and {tk}∞k=1 of positive
integers such that for each k ∈ N there exist sk disjoint closed intervals, N1, . . . , Nsk

, which

are h-sets in R and satisfy the covering relations Ni

f tk ,wi,j�⇒ Nj with wi,j ∈ {−1, 1} for all
1 � i, j � sk; moreover, one has limk→∞(log(sk)/tk) = htop(f ).

Now we are ready to prove the first main result.

Proof of theorem 1. We only need to consider the case when f has a positive topological
entropy. Let δ be an arbitrary number such that 0 < δ < htop(f ). From lemma 10, there



2560 M-C Li et al

exist k, p ∈ N such that f k has p disjoint closed intervals, denoted by N ′
i = [a2i , a2i+1] for

0 � i � p − 1 with a0 < · · · < a2p−1, which are h-sets satisfying

N
′
i

f k,wi,j�⇒ N ′
j for 0 � i � p − 1 and 0 � j � p − 1,

where wi,j = 1 or −1, and log(p)/k > δ.
Set N ′ = ∪p−1

i=0 N ′
i . Since g◦f k−1 is continuous and N ′ is compact, there exists r > 0 such

that g ◦ f k−1(N ′) ⊂ Bn(0, r). Set Ni = N ′
i × Bn(0, r) for 0 � i � p − 1 and N = ∪p−1

i=0 Ni .
Then every Ni is an h-set for 0 � i � p − 1 and N is compact in R × R

n. For λ = 0, we have
Fk

0 (x, y) = (f k(x), g ◦ f k−1(x)). Hence there are covering relations:

Ni

Fk
0 ,wi,j�⇒ Nj for 0 � i � p − 1 and 0 � j � p − 1.

Since Fk
λ (z) is uniformly continuous on a compact set, say [−1, 1] × N , as a function

jointly of λ and z, by using theorem 9 for p2 times while each cNj
is linear and satisfies the

Lipschitz condition, there exists λ0 > 0 such that if |λ| < λ0 then we have

Ni

Fk
λ ,wi,j�⇒ Nj for 0 � i � p − 1 and 0 � j � p − 1.

Let m be a positive integer and |λ| < λ0. Consider any closed loop

Nα0

Fk
λ�⇒ Nα1

Fk
λ�⇒ · · · Fk

λ�⇒ Nαm
,

where every αi ∈ {0, 1, . . . p − 1} and αm = α0. By using theorem 8, Fk
λ has a periodic

point x = x(λ) ∈ int(Nα0) such that Fkm
λ (x) = x. Since there are pm choices of such

closed loops, Fk
λ has at least pm periodic points in N . These periodic points provide a (m, ε)-

separated set for Fk
λ as long as ε is a positive number less than gaps of N ′

i s, i.e. 0 < ε <

min{a2i −a2(i−1)+1 : 1 � i � p−1}. Since m is arbitrarily chosen, we have htop(F
k
λ ) � log(p)

and so htop(Fλ) � log(p)/k > δ. Therefore, lim infλ→0 htop(Fλ) � htop(f ). �

The proof of the second main result is the following.

Proof of theorem 2. Define Gλ = (id, c) ◦ Fλ ◦ (id, c)−1, where id denotes the identity map
on R and c is a homeomorphism from S to Bn. Then the topological entropies of Gλ and Fλ

are equal. By applying the above argument to the family Gλ while the corresponding cM of a

covering relation N
Gλ,w�⇒ M is the identity now, we have the desired result. �

5. Snap-back repeller and closed loops of covering relations

Throughout this section, we assume that f : R
m → R

m is a C1 map having a snap-back
repeller x0 associated with a transverse homoclinic orbit. We shall construct two closed loops
of covering relations for f : the first one is from the snap-back repeller to a homoclinic point

then back to the repeller, and the second one consists of just one relation Nr
f�⇒ Nr , where

Nr is one of the h-sets in the first closed loop. Then we use the covering relations approach to
prove that f has a positive topological entropy.

Let L be a linearization of f at x0, that is, L(z) = x0 + df (x0)(z − x0) for z ∈ R
m. Since

all eigenvalues of df (x0) are greater than one in absolute value, there exist a norm ‖ · ‖ on R
m

and a constant ρ > 1 such that

‖df (x0)z‖ � ρ‖z‖ for z ∈ R
m. (4)

From now on, we keep this norm fixed.



Topological entropy for multidimensional perturbations of snap-back repellers 2561

For any r > 0 and x ∈ R
m, we denote the closed ball with the centre x and radius r by

N(x, r) = {x} + Bm(0, r).

For any r > 0 we define an h-set Nx,r in R
m as follows: we set Nx,r = N(x, r),

cNx,r
(z) = (z − x)/r , u(Nx,r ) = m and s(Nx,r ) = 0. Since the point x0 is a fixed point

for f and will play a distinguished role in the following, we will write Nr instead of Nx0,r .
Next, we define a homotopy from the map f to L, its linearization at x0, as follows:

fµ(z) = (1 − µ)f (z) + µL(z) for µ ∈ [0, 1] and z ∈ R
m. (5)

It is easy to see that f0(z) = f (z), f1(z) = L(z) and dfµ(z) = (1 − µ) df (z) + µ df (x0)

for all µ and z. This homotopy will be later used in covering relations in the vicinity of the
snap-back repeller.

First, we show that the size of the repulsion set for snap-back repeller x0 can be chosen
uniformly for all fµ for µ ∈ [0, 1].

Lemma 11. Let β = (ρ + 1)/2. Then there exists r0 > 0 such that for any µ ∈ [0, 1],
0 < r � r0, z ∈ Nr with ‖z − x0‖ = r, the following holds:

‖fµ(z) − x0‖ > βr.

Proof. By using Taylor’s theorem with an integral remainder, we have

fµ(z) − x0 = fµ(z) − fµ(x0) = C(z − x0),

where

C = C(µ, z, x0) =
∫ 1

0
dfµ(x0 + t (z − x0)) dt.

By (5), we get that

C − dfµ(x0) =
∫ 1

0
(1 − µ) df (x0 + t (z − x0)) + µ df (x0) dt − dfµ(x0)

=
∫ 1

0
(1 − µ)[df (x0 + t (z − x0)) − df (x0)] dt. (6)

Since df is continuous at x0 and ρ > 1, there exists r0 > 0 such that if ‖y − x0‖ � r0

then ‖df (y) − df (x0)‖ < (ρ − 1)/2. Hence, from (6), we have that for any µ ∈ [0, 1] and
z ∈ Bm(x0, r0),

‖C − dfµ(x0)‖ �
∫ 1

0
(1 − µ)‖ df (x0 + t (z − x0)) − df (x0)‖ dt

<

∫ 1

0
(1 − µ)

ρ − 1

2
dt � ρ − 1

2
.

Therefore, by using (4), we have that for any µ ∈ [0, 1], 0 < r � r0, z ∈ Nr with ‖z−x0‖ = r ,

‖fµ(z) − x0‖ = ‖C(z − x0)‖ = ‖(C − dfµ(x0) + dfµ(x0))(z − x0)‖
� ‖df (x0)(z − x0)‖ − ‖(C − dfµ(x0))(z − x0)‖

> ρr − ρ − 1

2
r = βr. �

Throughout the rest of this section, we fix the two constants β and r0 as given in lemma 11.
In the following, we establish a covering relation between two h-sets around the snap-back
repeller.
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Proposition 12. Let r and r1 be two numbers satisfying 0 < r � r0 and 0 < r1 � βr . Then
the following covering relation holds:

Nr
f�⇒ Nr1 .

Proof. Define h(µ, z) = cNr1
(fµ(c−1

Nr
(z)). We need to check whether all conditions for the

covering relation Nr
f�⇒ Nr1 are satisfied.

First we deal with the conditions in the first item of definition 7. Condition (1) is implied
by f0 = f , (2) follows from lemma 11, and since N+

r1
= ∅, (3) is also satisfied.

Next, we define a map A on R
m by A(z) = (r/r1) df (x0)z. Then for z ∈ Bm, we have

h(1, z) = L(rz + x0) − x0

r1
= df (x0)(rz)

r1
= A(z).

Moreover, from (4) it follows that for z ∈ Bm with ‖z‖ = 1,

‖A(z)‖ � ρr

r1
� ρr

βr
> 1.

Since A is linear, from the above equation we have that deg(A, Bm, 0) = ±det(A) �= 0. �

Next, we give a covering relation from the snap-back repeller x0 to points near x0, which
will be homoclinic points near x0 as the result is used later.

Lemma 13. Let r > 0, r1 > 0 and z1 ∈ R
m near x0 satisfy that (‖z1 − x0‖ + r1)/β < r < r0.

Then

Nr
f�⇒ Nz1,r1 .

Proof. As in the proof of proposition 12, we set h(µ, z) = cNz1 ,r1
(fµ(c−1

Nr
(z)). Again, we need

to check all conditions for the covering relation Nr
f�⇒ Nz1,r1 .

Condition (1) is implied by f0 = f , and since N+
z1,r1

= ∅, (3) is also satisfied.
To verify condition (2), observe that it is equivalent to the following one:

fµ(N−
r ) ∩ Nz1,r1 = ∅ for µ ∈ [0, 1]. (7)

From lemma 11, it follows that for any z ∈ N−
r (hence ‖z − x0‖ = r),

‖fµ(z) − z1‖ = ‖fµ(z) − x0 + x0 − z1‖ � ‖fµ(z) − x0‖ − ‖x0 − z1‖
� βr − ‖x0 − z1‖ > ‖x0 − z1‖ + r1 − ‖x0 − z1‖ = r1.

This proves (7).
It remains to investigate h(1, z). Define a map A on R

m by A(z) = (r df (x0)z+x0−z1)/r1.
Then A is affine and for z ∈ Bm,

h(1, z) = L(rz + x0) − z1

r1
= x0 + df (x0)(rz) − z1

r1
= A(z).

To prove that deg(A, Bm, 0) = det(df (x0)) = ±1, it is sufficient to show that the unique
solution ẑ = (1/r) df (x0)

−1(z1 − x0) of the equation A(z) = 0 is in Bm. To this end, observe
that from (4), we have ‖df (x0)

−1‖ � ρ−1 and hence

‖ẑ‖ � 1

r
‖df (x0)

−1‖ · ‖z1 − x0‖ � ‖z1 − x0‖
ρr

<
‖z1 − x0‖ + r1

βr
< 1. �
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The following lemma gives a covering relation from a homoclinic point to the snap-back
repeller.

Lemma 14. Assume that z0 ∈ R
m such that f k(z0) = x0 for some integer k > 0 and

det(df k(z0)) �= 0. Then there exists R > 0 such that if 0 < r < R then there is v ≡ v(r) with
0 < v < r0 such that for any 0 < r2 � v, we have

Nz0,r
f k�⇒ Nr2 . (8)

Proof. By continuity of f , there is R1 > 0 such that

f k(Bm(z0, R1)) ⊂ Bm(x0, r0).

Define a homotopy as follows: for µ ∈ [0, 1] and z ∈ Bm(z0, R1),

gµ(z) = (1 − µ)f k(z) + µ(df k(z0)(z − z0) + x0). (9)

Then gµ(z0) = x0 and dgµ(z) = (1 − µ) df k(z) + µ df k(z0) for all µ and z. Since df k(z0)

is nonsingular, there is a constant α > 0 such that for any z ∈ R
m,

‖df k(z0)z‖ � α‖z‖. (10)

Next, we show that there exists a positive number R < min{R1, 2r0/α} such that for all
‖z − z0‖ < R and µ ∈ [0, 1], one has

‖gµ(z) − x0‖ >
α

2
‖z − z0‖. (11)

To this end, we have to modify the proof of lemma 11 a bit. By using Taylor’s theorem with
integral remainder, we have

gµ(z) − x0 = gµ(z) − gµ(z0) = C(z − z0),

where

C = C(µ, z, z0) =
∫ 1

0
dgµ(z0 + t (z − z0)) dt.

By (9), we get that

C − dgµ(z0) =
∫ 1

0
(1 − µ) df k(z0 + t (z − z0)) + µ df k(z0) dt − dgµ(z0)

=
∫ 1

0
(1 − µ)[df k(z0 + t (z − z0)) − df k(z0)] dt. (12)

Since df k is continuous at z0, there exists R > 0 such that if ‖y − z0‖ < R then

‖df k(y) − df k(z0)‖ < α/2.

Hence, from (12), we have that for any µ ∈ [0, 1] and z ∈ Bm(z0, R),

‖C − dgµ(x0)‖ �
∫ 1

0
(1 − µ)‖ df k(z0 + t (z − z0)) − df k(z0)‖ dt

<

∫ 1

0
(1 − µ)

α

2
dt � α

2
.

Therefore, by using (10), we obtain that for any µ ∈ [0, 1] and z ∈ Bm(z0, R),

‖gµ(z) − x0‖ = ‖C(z − z0)‖ = ‖(C − dgµ(z0) + dgµ(z0))(z − z0)‖
� ‖df k(z0)(z − z0)‖ − ‖(C − dgµ(z0))(z − z0)‖

>

(
α − α

2

)
‖(z − z0)‖ = α

2
‖(z − z0)‖.
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Now we are ready to prove the desired covering relation (8). Let r be a number with
0 < r < R and let v = αr/2. Let r2 be a number with 0 < r2 � v. Since α > 0 and
R < 2r0/α, we have 0 < v < r0. We define a homotopy hµ by

hµ(z) = cNr2
(gµ(c−1

Nz0 ,r
(z))) for µ ∈ [0, 1] and z ∈ Bm.

The conditions from definition 7 requiring the proof are only (2) and deg(h1, Bm, 0) �= 0 while
the others are clear. To verify condition (2), note that it is equivalent to the following one:

gµ(N−
z0,r

) ∩ Nr2 = ∅ for µ ∈ [0, 1]. (13)

From (11), it follows that for any z ∈ N−
z0,r

(hence ‖z − z0‖ = r), one has

‖gµ(z) − x0‖ >
α

2
‖z − z0‖ > r2.

This proves (13). Finally, since

h1(z) = r

r2
df k(z0)z,

we obtain that h1 is a linear isomorphism; therefore deg(h1, Bm, 0) = det(df k(z0)) �= 0. �

The next proposition shows that the existence of a snap-back repeller as defined in
definition 3 implies a positive topological entropy. In [1], Blanco Garcia gave the same result
based on Marotto’s definition of a snap-back repeller and results in [5]. Here, we give a new
proof by using covering relations.

Proposition 15. The topological entropy of f is positive.

Proof. Let β and r0 be as given in lemma 11. Since x0 is a snap-back repeller for f , there exists
a sequence {x−i}i∈N such that x−1 �= x0, limi→∞ x−i = x0 and for all i ∈ N, f (x−i ) = x−i+1

and det(df (x−i )) �= 0. Thus, there is an integer k > 0 such that x−k ∈ B(x0, r0). By the chain
rule, we have det(df k(x−k)) �= 0. Furthermore, from lemma 14, there exist positive constants
rk and rb such that rb < r0 and

B(x−k, rk) ⊂ B(x0, r0), (14)

Nx−k ,rk
∩ Nrb

= ∅, (15)

Nx−k ,rk

f k�⇒ Nrb
. (16)

Since β > 1, there exists the minimal positive integer a such that βarb > ‖x−k − x0‖ + rk .
By the minimum of a and equation (14), we have βa−1rb � ‖x−k − x0‖ + rk < r0. From
proposition 12 and lemma 13, it follows that we have the following chain of covering relations:

Nrb

f�⇒ Nβrb

f�⇒ · · · f�⇒ Nβa−1rb

f�⇒ Nx−k ,rk
. (17)

Moreover, from proposition 12, it also follows that

Nrb

f�⇒ Nrb
. (18)

These covering relations are enough to produce symbolic dynamics and a positive
topological entropy as follows. Letw = max(a, k). It is sufficient to construct anf 2w-invariant
set on which f 2w can be semi-conjugated onto the shift map σ : �+

2 → �+
2 , where

�+
2 = {0, 1}N, the one-sided shift space on two symbols with the standard Tikhonov (product)
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topology. By using equations (16)–(18), one can consider the following chains of covering
relations, each one of length 2w (which is counted by the number of iterates of f ):

Nrb

f�⇒ Nrb

f�⇒ Nrb

f�⇒ · · · f�⇒ Nrb
,

Nrb

f�⇒ Nrb

f�⇒ · · · f�⇒ Nrb

f�⇒ Nβrb

f�⇒ · · · f�⇒ Nβa−1rb

f�⇒ Nx−k ,rk
,

Nx−k ,rk

f k�⇒ Nrb

f�⇒ Nrb

f�⇒ · · · f�⇒ Nrb
,

Nx−k ,rk

f k�⇒ Nrb

f�⇒ · · · f�⇒ Nrb

f�⇒ Nβrb

f�⇒ · · · f�⇒ Nβa−1rb

f�⇒ Nx−k ,rk
.

Let us denote N0 = Nrb
and N1 = Nx−k ,rk

. Then N0 and N1 are disjoint due to (15). Define Z

to be the set of points whose forward orbits under f 2w stay in N0 ∪ N1, that is,

Z = {z ∈ N0 ∪ N1 : f 2iw(z) ∈ N0 ∪ N1 for all i ∈ N}.
Then Z is compact. On Z we define a projection π : Z → �+

2 by

π(z)i = j if and only if f 2iw(z) ∈ Nj .

It is obvious that the map π is continuous and we have a semiconjugacy: π ◦ f 2w = σ ◦ π .
Finally, we shall show that π is onto. This gives us that the topological entropy of f 2w

on Z is greater than or equal to log 2. Let α = (α0, . . . , αl−1) ∈ {0, 1}l for some positive
integer l. By a suitable concatenation of the above listed chains of covering relations and from
theorem 8, it follows that there exists a point xα ∈ Nα0 such that

f 2iw(xα) ∈ Nαi
for 0 � i � l − 1,

f 2lw(xα) = xα.

It is clear that xα ∈ Z and π(xα) = (α, α, . . .) ∈ �+
2 . Since α is arbitrarily chosen, the set π(Z)

contains all repeating sequences. From the density of repeating sequences in �+
2 , it follows

that π(Z) = �+
2 . �

6. Proofs of theorems 4 and 5

In this section, we combine all the material in the previous section to prove the last two of
our main results. First, we assume that all the hypotheses of theorem 4 are satisfied. We
continue using the notations of the previous section. From the proof of proposition 15, we
have a positive integer a such that the following closed loop of covering relations holds:

Nrb

f�⇒ Nrb

f�⇒ Nβrb

f�⇒ · · · f�⇒ Nβa−1rb

f�⇒ Nx−k ,rk

f k�⇒ Nrb
.

By adding the normal direction to the above h-sets and using the persistence of covering
relation, we shall construct a closed loop of covering relations for Fλ, similar to the above loop
for f . Recall that the singular map F0 is of the form F0(x, y) = (f (x), g(x)) ∈ R

m × R
n.

Set N = (∪a−1
i=0 Nβirb

) ∪ (∪k
i=0f

i(Nx−k ,rk
)). Since g is continuous and N is compact, there

exists r > 0 such that g(N) ⊂ Bn(0, r). Let us define the corresponding h-sets in R
m × R

n as
follows. For i = 0, 1, . . . , a−1, we define h-sets N ′

βirb
in R

m×R
n by N ′

βirb
= Nβirb

×Bn(0, r),

u(N ′
βirb

) = m, s(N ′
βirb

) = n and cN ′
βi rb

(x, y) = (cNβi rb
(x), 1

r
y). Moreover, we define an h-set

N ′
x−k ,rk

in R
m × R

n by N ′
x−k ,rk

= Nx−k ,rk
× Bn(0, r), u(N ′

x−k ,rk
) = m, s(N ′

x−k ,rk
) = n and

cN ′
x−k ,rk

(x, y) = (cNx−k ,rk
(x), 1

r
y).
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Observe that we have the following closed loop of covering relations for F0.

Lemma 16. The following covering relations hold:

N ′
rb

F0�⇒ N ′
rb

F0�⇒ N ′
βrb

F0�⇒ · · · F0�⇒ N ′
βa−1rb

F0�⇒ N ′
x−k ,rk

F k
0�⇒ N ′

rb
.

Proof. For each covering relation under consideration N ′ F
j

0�⇒ M ′ with j = 1 or k, we define
a homotopy ĥ : [0, 1] × Bm × Bn → R

m+n by

ĥ(µ, x, y) =
(

h(µ, x),
1 − µ

r
g ◦ f j−1(c−1

N (x))

)
,

where h is the homotopy from the corresponding covering relation N
f j�⇒ M . Then we have

ĥ(0, x, y) =
(

h(0, x),
1

r
g ◦ f j−1(c−1

N (x))

)

=
(

cM ◦ f j ◦ c−1
N (x),

1

r
g ◦ f j−1(c−1

N (x))

)
= (F

j

0 )c(x, y).

Since ĥ([0, 1], N ′,−) ⊂ h([0, 1], N−) × R
n, we get that condition (2) in definition 7 follows

from the analogous condition for h. Condition (3) is satisfied due to

ĥ([0, 1] × Bm × Bn) ⊂ R
m × Bn.

Finally, note that

ĥ(1, x, y) = (h(1, x), 0).

Therefore, the other conditions in definition 7 are also satisfied. �

From theorem 9, there exists λ0 > 0 such that if |λ| < λ0 then the following chain of
covering relations holds for Fλ:

N ′
rb

Fλ�⇒ N ′
rb

Fλ�⇒ N ′
βrb

Fλ�⇒ · · · Fλ�⇒ N ′
βa−1rb

Fλ�⇒ N ′
x−k ,rk

F k
λ�⇒ N ′

rb
. (19)

Similar to the proof of proposition 15, covering relations listed in (19) are sufficient to produce
the symbolic dynamics and a positive topological entropy for Fλ with |λ| < λ0.

This completes the proof of theorem 4.
For the proof of theorem 5, define Gλ = (id, c) ◦ Fλ ◦ (id, c)−1, where id denotes the

identity map on R
k and c is a homeomorphism from S to Bn. Then the conclusion follows

from the above argument applied to Gλ.
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