

[Home](http://iopscience.iop.org/) [Search](http://iopscience.iop.org/search) [Collections](http://iopscience.iop.org/collections) [Journals](http://iopscience.iop.org/journals) [About](http://iopscience.iop.org/page/aboutioppublishing) [Contact us](http://iopscience.iop.org/contact) [My IOPscience](http://iopscience.iop.org/myiopscience)

Topological entropy for multidimensional perturbations of snap-back repellers and onedimensional maps

This content has been downloaded from IOPscience. Please scroll down to see the full text. View [the table of contents for this issue](http://iopscience.iop.org/0951-7715/21/11), or go to the [journal homepage](http://iopscience.iop.org/0951-7715) for more 2008 Nonlinearity 21 2555 (http://iopscience.iop.org/0951-7715/21/11/005)

Download details:

IP Address: 140.113.38.11 This content was downloaded on 25/04/2014 at 14:26

Please note that [terms and conditions apply.](iopscience.iop.org/page/terms)

Topological entropy for multidimensional perturbations of snap-back repellers and one-dimensional maps

Ming-Chia Li1**, Ming-Jiea Lyu**¹ **and Piotr Zgliczynski ´** ²

¹ Department of Applied Mathematics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan

² Institute of Computer Science, Jagiellonian University, Nawojki 11, 30-072 Krakow, Poland

E-mail: [mcli@math.nctu.edu.tw](mailto: mcli@math.nctu.edu.tw)

Received 28 April 2008, in final form 1 September 2008 Published 29 September 2008 Online at [stacks.iop.org/Non/21/2555](http://stacks.iop.org/no/21/2555)

Recommended by R de la Llave

Abstract

We consider a one-parameter family of maps F_λ on $\mathbb{R}^m \times \mathbb{R}^n$ with the singular map F_0 having one of the two forms (i) $F_0(x, y) = (f(x), g(x))$, where $f: \mathbb{R}^m \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^n$ are continuous, and (ii) $F_0(x, y) =$ $(f(x), g(x, y))$, where $f : \mathbb{R}^m \to \mathbb{R}^m$ and $g : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^n$ are continuous and *g* is locally trapping along the second variable *y*. We show that if *f* is onedimensional and has a positive topological entropy, or if *f* is high-dimensional and has a snap-back repeller, then F_λ has a positive topological entropy for all *λ* close enough to 0.

Mathematics Subject Classification: 37D45, 54C70, 37B30, 37J40, 37B10

1. Introduction

In this paper, we consider multidimensional perturbations from a continuous map *f* on a lowdimensional phase space, say \mathbb{R}^m , to a continuous family of maps F_λ on a high-dimensional space, say $\mathbb{R}^m \times \mathbb{R}^n$, where $\lambda \in \mathbb{R}^{\ell}$ is a parameter, such that at $\lambda = 0$, the singular map F_0 is one of the following forms:

(i) $F_0(x, y) = (f(x), g(x)) \in \mathbb{R}^m \times \mathbb{R}^n$;

(ii) $F_0(x, y) = (f(x), g(x, y)) \in \mathbb{R}^m \times \mathbb{R}^n$ and $g(\mathbb{R}^m \times S) \subset \text{int}(S)$ for some compact set *S* ⊂ \mathbb{R}^n homeomorphic to the closed unit ball in \mathbb{R}^n ; here int*(S)* denotes the interior of *S*.

Let $h_{\text{top}}(\varphi)$ denote the supremum of topological entropies of a map φ restricted to compact invariant sets. The basic question we study here is the following:

(#) If $h_{top}(f) > 0$, will $h_{top}(F_\lambda) > 0$ for λ near 0?

0951-7715/08/112555+13\$30.00 © 2008 IOP Publishing Ltd and London Mathematical Society Printed in the UK 2555

In this paper, we establish two kinds of results addressing question (#). First we show that if *f* is one-dimensional (without any additional assumption) then $\liminf_{\lambda \to 0} h_{top}(F_\lambda) \geq h_{top}(f)$ (see theorems [1](#page-3-0) and [2\)](#page-3-0). Second, we allow *f* to be possibly high-dimensional and show that if *f* has a snap-back repeller (for a discussion of its definition see definition [3](#page-3-0) and remarks in the next section) then $h_{\text{top}}(F_\lambda) > 0$ for all λ near enough 0 (see theorems [4](#page-4-0) and [5\)](#page-4-0).

Our methodology is based on the concept of covering relations (see section [3](#page-4-0) for the definition and basic properties), which was introduced by Zgliczynski in $[11, 12]$ $[11, 12]$ $[11, 12]$ $[11, 12]$. It allows one to prove the existence of periodic points, the symbolic dynamics and the positive topological entropy without using hyperbolicity. As a by-product of using such a method, we give a new proof of Blanco Garcia's result in [\[1\]](#page-13-0) that the existence of a snap-back repeller implies positive topological entropy (see proposition [15\)](#page-10-0). It is also possible that the notion of a snap-back repeller can be changed by another structure, such as a hyperbolic horseshoe, in order to obtain similar results.

Let us compare our results with the existing literature. Assuming that *f* is one-dimensional (i.e. $m = 1$) and some additional conditions are satisfied, affirmative answers to question $(\#)$ have been given in the literature. For the case when f is an interval map and $g = 0$, Misiurewicz and Zgliczynski in [[8\]](#page-13-0) proved that $\liminf_{\lambda \to 0} h_{top}(F_\lambda) \geq h_{top}(f)$. They used the covering relation approach in the same way as we use it in this paper.

For the planar case (i.e. $m = n = 1$), Marotto in [\[6\]](#page-13-0) restricted perturbations to two types: one is that $F_\lambda(x, y) = (\varphi(x, \lambda y), x)$ and $\lambda \in \mathbb{R}$ and the other one that is $F_{\lambda}(x, y) = (\varphi(x, \lambda_1 y), g(\lambda_2 x, y))$, $\lambda = (\lambda_1, \lambda_2) \in \mathbb{R}^2$, and the map $y \mapsto g(0, y)$ has a stable fixed point. Assuming the map $x \mapsto \varphi(x, 0)$ is C^1 and has a snap-back repeller (for a discussion of its definition see definition [3](#page-3-0) and remarks in the next section), he showed that for all λ near 0, the map F_{λ} has a transverse homoclinic point. His method relies heavily on the planar structure of the map *F*⁰ and the Birkhoff–Smale transverse homoclinic point theorem.

The results from $[2, 4]$ $[2, 4]$ $[2, 4]$ about difference equations can be applied to question $(\#)$, but these are in fact perturbations of one-dimensional maps.

Our results are applicable to a high-dimensional version of the Henon-like maps. Define ´ a family of maps $H_b(x, y)$ on $\mathbb{R}^m \times \mathbb{R}^n$, with parameter $b \in \mathbb{R}^{\ell}$, by its components, for $x = (x_1, \ldots, x_m)$ and $y = (y_1, \ldots, y_n)$,

$$
\begin{cases} \bar{x}_i = a_i - x_i^2 + o_i(b)\varphi_i(x, y), & 1 \leq i \leq m, \\ \bar{y}_j = g_j(x, y), & 1 \leq j \leq n, \end{cases}
$$

where each a_i is a constant, o_i, φ_i, g_j are real-valued continuous functions and $\lim_{b\to 0}$ $o_i(b)/|b| = 0$. If $m = n = 1$, one can reduce H_b to the original Henon-map $(x, y) \mapsto (a - x^2 + by, x)$ and apply results from this paper as well as from [\[2,](#page-13-0) [4,](#page-13-0) [6\]](#page-13-0). For the general case when $m \ge 1$ and $n \ge 1$, we assume that each g_j is either dependent only on *x* or bounded (hence, the conditions in form (i) or (ii) are satisfied, respectively). At the singular value *b* = 0, the first *m* components of *H*₀, i.e. $\bar{x}_i = a_i - x_i^2$ for $1 \leq i \leq m$, form a decoupled map from \mathbb{R}^m into itself, and such a map has a positive topological entropy or a snap-back repeller by choosing suitable *ai*. By applying the results presented in this paper, we get that $h_{\text{top}}(H_b) > 0$ for all *b* sufficiently near 0. Nevertheless, if $m > 1$ (the high-dimensional case), we cannot apply the results in [\[2,](#page-13-0) [4,](#page-13-0) [6,](#page-13-0) [8\]](#page-13-0) to H_b . Even when $m = 1$, we cannot apply those results either for many situations: more precisely, in [\[8\]](#page-13-0) if one of the g_j is not the zero function, in [\[6\]](#page-13-0) if one of the g_i depends on the variable *y* and in [\[2,](#page-13-0) [4\]](#page-13-0) if each coordinate of the full orbits of H_b is not reduced to solutions of a difference equation.

This paper is organized as follows. In the next section, we give a precise statement of our main results along with a definition of snap-back repellers. In section [3,](#page-4-0) we present background information about covering relations, mainly from the work of Zgliczyński and Gidea in [[13\]](#page-13-0). In section [4,](#page-5-0) we prove our results concerning a one-dimensional map with a positive topological entropy (theorems 1 and 2). Then, in section [5,](#page-6-0) we show that the existence of a snap-back repeller implies the existence of two closed loops of covering relations, as well as a positive topological entropy (proposition [15\)](#page-10-0). Finally, in section 6 , we prove our results concerning a high-dimensional map with a snap-back repeller (theorems [4](#page-4-0) and [5\)](#page-4-0).

2. Definitions and statement of main results

In this section, we state our main results and define snap-back repellers. First, we consider multidimensional perturbations of a one-dimensional map f . If the singular map F_0 depends only on the phase variable of f (refer to form (i) in section [1\)](#page-1-0), we have the following result.

Theorem 1. Let F_{λ} be a one-parameter family of continuous maps on $\mathbb{R} \times \mathbb{R}^n$ such that *F_{* λ *}*(*x, y*) *is continuous as a function jointly of* $\lambda \in \mathbb{R}^{\ell}$ *and* $(x, y) \in \mathbb{R} \times \mathbb{R}^{n}$ *. Assume that* $F_0(x, y) = (f(x), g(x))$ *for all* $(x, y) \in \mathbb{R} \times \mathbb{R}^n$ *, where* $f : \mathbb{R} \to \mathbb{R}$ *and* $g : \mathbb{R} \to \mathbb{R}^n$ *. Then* $\liminf_{\lambda \to 0} h_{top}(F_{\lambda}) \geq h_{top}(f)$ *.*

For the case when the singular map is locally trapping along the normal direction (refer to form (ii) in section [1\)](#page-1-0), we have the following.

Theorem 2. Let F_{λ} be a one-parameter family of continuous maps on $\mathbb{R} \times \mathbb{R}^n$ such that *F_λ*(*x, y*) *is continuous as a function jointly of* $\lambda \in \mathbb{R}^{\ell}$ *and* $(x, y) \in \mathbb{R} \times \mathbb{R}^{n}$ *. Assume that* $F_0(x, y) = (f(x), g(x, y))$ *for all* $(x, y) \in \mathbb{R} \times \mathbb{R}^n$ *, where* $f : \mathbb{R} \to \mathbb{R}$ *, g* : $\mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ *, and* $g(\mathbb{R} \times S)$ ⊂ int(S) *for some compact set* $S \subset \mathbb{R}^n$ *homeomorphic to the closed unit ball in* \mathbb{R}^n *. Then* $\liminf_{\lambda \to 0} h_{top}(F_\lambda) \geq h_{top}(f)$ *.*

Next, we consider multidimensional perturbations of a map on a space of dimension possibly bigger than one. Recently, Marotto [\[7\]](#page-13-0) redefined snap-back repellers and stated that his earlier result in [\[5\]](#page-13-0) that the existence of a snap-back repeller implies Li–Yorke chaos is still correct. Both definitions of snap-back repellers in [\[5,](#page-13-0) [7\]](#page-13-0) depend on the norms of the phase space. In the following, we give a slightly different definition so that it is independent of norms defined on the phase space.

Definition 3. Let $f : \mathbb{R}^m \to \mathbb{R}^m$ be a C^1 function. A fixed point x_0 for f is called a snap-back *repeller if (i) all eigenvalues of the derivative* $df(x_0)$ *are greater than one in absolute value and (ii) there exists a sequence* $\{x_{-i}\}_{i\in\mathbb{N}}$ *such that* $x_{-1} \neq x_0$, $\lim_{i\to\infty} x_{-i} = x_0$, and for all *i* ∈ \mathbb{N} *, f*(x_{-i}) = x_{-i+1} *and* det($df(x_{-i})$) $\neq 0$ *.*

Roughly speaking, a snap-back repeller of a map is a repelling fixed point associated with a transverse homoclinic orbit. Notice that if there exists a norm $\|\cdot\|_*$ on \mathbb{R}^m such that for some constants $r > 0$ and $\rho > 1$, one has that $|| f(x) - f(y)||_* > \rho ||x - y||_*$ for all *x*, *y* ∈ *B*(*x*₀, *r*), where *B*(*x*₀, *r*) = {*x* ∈ \mathbb{R}^m : $||x - x_0||_*$ < *r*}, then *f* is one-to-one on *B*(*x*₀, *r*) and $f(B(x_0, r)) \supset B(x_0, r)$; hence item (ii) of the above definition is satisfied provided that there is a point $q \in B(x_0, r)$ such that $f^k(q) = x_0$ and $\det(\mathrm{d} f^k(q)) \neq 0$ for some positive integer *k*. In fact, item (i) implies that such a norm must exist (refer to theorem V.6.1 of Robinson [\[10\]](#page-13-0)). Furthermore, if all eigenvalues of $(d f(x_0))^T d f(x_0)$ are greater than 1, then such a norm can be chosen to be the Euclidean norm on \mathbb{R}^m (see lemma 5 of Li and Chen [\[3\]](#page-13-0)).

If the singular map depends only on the phase variable of a snap-back repeller, we have the following result.

Theorem 4. Let F_{λ} be a one-parameter family of continuous maps on $\mathbb{R}^m \times \mathbb{R}^n$ such that *F_λ*(*x, y*) *is continuous as a function jointly of* $\lambda \in \mathbb{R}^{\ell}$ *and* $(x, y) \in \mathbb{R}^m \times \mathbb{R}^n$ *. Assume that* $F_0(x, y) = (f(x), g(x))$ *for all* $(x, y) \in \mathbb{R}^m \times \mathbb{R}^n$ *, where* $f : \mathbb{R}^m \to \mathbb{R}^m$ *is* C^1 *and has a snap-back repeller and* $g : \mathbb{R}^m \to \mathbb{R}^n$. Then F_λ *has a positive topological entropy for all* λ *sufficiently close to* 0*.*

When the singular map is locally trapping along the normal direction, we have the following.

Theorem 5. Let F_{λ} be a one-parameter family of continuous maps on $\mathbb{R}^m \times \mathbb{R}^n$ such that *F*_{λ}(*z*) *is continuous as a function jointly of* $\lambda \in \mathbb{R}^{\ell}$ *and* $(x, y) \in \mathbb{R}^m \times \mathbb{R}^n$ *. Assume that* $F_0(x, y) = (f(x), g(x, y))$ *for all* $(x, y) \in \mathbb{R}^m \times \mathbb{R}^n$ *, where* $f : \mathbb{R}^m \to \mathbb{R}^m$ *is* C^1 *and has a snap-back repeller,* $g : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^n$ *, and* $g(\mathbb{R}^m \times S) \subset \text{int}(S)$ *for some compact set* $S \subset \mathbb{R}^n$ *homeomorphic to the closed unit ball in* \mathbb{R}^n . Then F_λ has a positive topological entropy for *all λ sufficiently close to* 0*.*

3. Covering relations

In this section, we give the background information about covering relations. First of all, we introduce some notations. Suppose that \mathbb{R}^k has a norm $\|\cdot\|$. For $x \in \mathbb{R}^k$ and $r > 0$, we denote $B_k(x, r) = \{z \in \mathbb{R}^k : ||z - x|| < r\}$, that is, the open ball of radius *r* centred at the origin 0 in \mathbb{R}^k ; in short, we write $B_k = B_k(0, 1)$, the open unit ball in \mathbb{R}^k . Moreover, for a subset *S* of R*^k*, let *S*, int*(S)* and *∂S* denote the closure, the interior and the boundary of *S*, respectively. It will be always clear from the context which norm is used.

We briefly recall some definitions and results in [\[13\]](#page-13-0).

Definition 6 ([\[13\]](#page-13-0), definition 1). An h-set in \mathbb{R}^k is a quadruple consisting of the *following data:*

- *a compact subset* N *of* \mathbb{R}^k *;*
- *a pair of numbers* $u(N)$, $s(N) \in \{0, 1, ..., n\}$ *with* $u(N) + s(N) = k$;
- *a homeomorphism* $c_N : \mathbb{R}^k \to \mathbb{R}^k = \mathbb{R}^{u(N)} \times \mathbb{R}^{s(N)}$ such that

$$
c_N(N) = \overline{B_{u(N)}} \times \overline{B_{s(N)}}.
$$

For simplicity, we will denote such a quadruple by *N.* Furthermore, we set

$$
N_c = \overline{B_{u(N)}} \times \overline{B_{s(N)}}, \qquad N_c^- = \partial B_{u(N)} \times \overline{B_{s(N)}}, \qquad N_c^+ = \overline{B_{u(N)}} \times \partial B_{s(N)},
$$

and

$$
N^- = c_N^{-1}(N_c^-), \qquad N^+ = c_N^{-1}(N_c^+).
$$

A covering relation between two h-sets is defined as follows.

Definition 7 ([\[13\]](#page-13-0), definition 6). *Let N, M be h*-sets in \mathbb{R}^k *with* $u(N) = u(M) = u$ *and* $s(N) = s(M) = s$, $f: N \to \mathbb{R}^u \times \mathbb{R}^s$ *be a continuous function,* $f_c = c_M \circ f \circ c_N^{-1}: N_c \to C$ R*^u* × R*^s and w be a nonzero integer. We say N f -cover M with degree w, denoted by*

 $N \stackrel{f,w}{\Longrightarrow} M$,

if the following conditions are satisfied.

1. There exists a homotopy $h : [0, 1] \times N_c \rightarrow \mathbb{R}^u \times \mathbb{R}^s$ such that

$$
h(0, x) = f_c(x) \qquad \text{for } x \in N_c,
$$
\n
$$
(1)
$$

$$
h([0, 1], N_c^-) \cap M_c = \emptyset,
$$
\n⁽²⁾

$$
h([0, 1], N_c) \cap M_c^+ = \emptyset. \tag{3}
$$

2. There exists a map $A : \mathbb{R}^u \to \mathbb{R}^u$ such that

$$
h(1, p, q) = (A(p), 0) \quad \text{for } p \in \overline{B_u} \text{ and } q \in \overline{B_s},
$$

$$
A(\partial B_u) \subset \mathbb{R}^u \backslash \overline{B_u}.
$$

3. The local Brouwer degree of A at 0 *in Bu is w; refer to [\[13,](#page-13-0) appendix] for its properties.*

Usually, we will be not interested in the values of *w* among covering relations and we just write $N \stackrel{f}{\Longrightarrow} M$ if there exists $w \neq 0$ such that $N \stackrel{f,w}{\Longrightarrow} M$.

We will need the following two theorems proved by Zgliczyński and Gidea in $[13]$ $[13]$. The first one says that a closed loop of covering relations implies the existence of a periodic point.

Theorem 8 ([\[13\]](#page-13-0), theorem 9). Let N_i for $0 \leq i \leq m$ be h-sets in \mathbb{R}^k such that $N_m = N_0$ and i *let* f_i *for* $1 \leq i \leq m$ *be continuous maps on* \mathbb{R}^k *such that the covering relations* $N_{i-1} \stackrel{f_i, w_i}{\Longrightarrow} N_i$ *with* $w_i \neq 0$ *for all* $1 \leq i \leq m$. Then there exists a point $x \in int(N_0)$ such that

$$
f_i \circ f_{i-1} \circ \cdots \circ f_1(x) \in \text{int}(N_i) \quad \text{for } 1 \leq i \leq m,
$$

$$
f_m \circ f_{m-1} \circ \cdots \circ f_1(x) = x.
$$

The following one shows that a covering relation is persistent under C^0 small perturbations.

Theorem 9 ([\[13\]](#page-13-0), theorem 14). *Let N, M be h*-sets in \mathbb{R}^k *such that* $u(N) = u(M)$ *and* $s(N) = s(M)$ *. Let* $f, g: N \to \mathbb{R}^k$ *be continuous maps. Assume that* $N \stackrel{f,w}{\Longrightarrow} M$ *and that the map* c_M *satisfies a Lipschitz condition. Then there exists* $\varepsilon > 0$ *such that if* $|| f(x) - g(x) || < \varepsilon$ *for all* $x \in N$ *, then* $N \stackrel{g,w}{\Longrightarrow} M$ *.*

4. Proofs of theorems [1](#page-3-0) and [2](#page-3-0)

In this section, we will prove the first two of our main results. To this end, we need the following lemma, which can be easily derived from [\[9\]](#page-13-0); see also theorem 3.1 of Misiurewicz and Zgliczyński in $[8]$ $[8]$. It says that for continuous interval maps, the positive topological entropy is realized by horseshoes.

Lemma 10. *Let I be a closed interval in* \mathbb{R} *and* $f : I \rightarrow I$ *be a continuous map with a positive topological entropy, i.e.* $h_{top}(f) > 0$. *Then there exist sequences* $\{s_k\}_{k=1}^{\infty}$ *and* $\{t_k\}_{k=1}^{\infty}$ *of positive integers such that for each* $k \in \mathbb{N}$ *there exist* s_k *disjoint closed intervals,* N_1, \ldots, N_{s_k} *, which are h-sets in* $\mathbb R$ *and satisfy the covering relations* $N_i \stackrel{f'^k_*, w_{i,j}}{\Longrightarrow} N_j$ *with* $w_{i,j} \in \{-1, 1\}$ *for all* $1 \le i, j \le s_k$ *; moreover, one has* $\lim_{k\to\infty} (\log(s_k)/t_k) = h_{\text{top}}(f)$ *.*

Now we are ready to prove the first main result.

Proof of theorem [1.](#page-3-0) We only need to consider the case when *f* has a positive topological entropy. Let δ be an arbitrary number such that $0 < \delta < h_{top}(f)$. From lemma 10, there exist *k*, $p \in \mathbb{N}$ such that f^k has *p* disjoint closed intervals, denoted by $N'_i = [a_{2i}, a_{2i+1}]$ for $0 \le i \le p - 1$ with $a_0 < \cdots < a_{2p-1}$, which are h-sets satisfying

$$
N_i' \stackrel{f^k, w_{i,j}}{\Longrightarrow} N_j' \quad \text{for } 0 \leqslant i \leqslant p-1 \quad \text{and} \quad 0 \leqslant j \leqslant p-1,
$$

where $w_{i,j} = 1$ or -1 , and $\log(p)/k > \delta$.

Set $N' = \bigcup_{i=0}^{p-1} N'_i$. Since $g \circ f^{k-1}$ is continuous and N' is compact, there exists $r > 0$ such *that g* ◦ *f*^{*k*−1}(*N'*) ⊂ *B_n*(0*, r*). Set *N_i* = *N_i*' × $\overline{B_n(0,r)}$ for $0 \le i \le p - 1$ and $N = \cup_{i=0}^{p-1} N_i$. Then every N_i is an h-set for $0 \le i \le p-1$ and N is compact in $\mathbb{R} \times \mathbb{R}^n$. For $\lambda = 0$, we have $F_0^k(x, y) = (f^k(x), g \circ f^{k-1}(x))$. Hence there are covering relations:

$$
N_i \stackrel{F_0^k, w_{i,j}}{\longrightarrow} N_j \quad \text{for } 0 \leqslant i \leqslant p-1 \quad \text{and} \quad 0 \leqslant j \leqslant p-1.
$$

Since $F^k_\lambda(z)$ is uniformly continuous on a compact set, say $[-1, 1] \times N$, as a function jointly of λ and *z*, by using theorem [9](#page-5-0) for p^2 times while each c_{N_i} is linear and satisfies the Lipschitz condition, there exists $\lambda_0 > 0$ such that if $|\lambda| < \lambda_0$ then we have

$$
N_i \stackrel{F_k^k, w_{i,j}}{\Longrightarrow} N_j \quad \text{for } 0 \leqslant i \leqslant p-1 \quad \text{and} \quad 0 \leqslant j \leqslant p-1.
$$

Let *m* be a positive integer and $|\lambda| < \lambda_0$. Consider any closed loop

 $N_{\alpha_0} \stackrel{F_{\lambda}^k}{\Longrightarrow} N_{\alpha_1} \stackrel{F_{\lambda}^k}{\Longrightarrow} \cdots \stackrel{F_{\lambda}^k}{\Longrightarrow} N_{\alpha_m},$

where every $\alpha_i \in \{0, 1, \ldots, p-1\}$ and $\alpha_m = \alpha_0$. By using theorem [8,](#page-5-0) F_{λ}^k has a periodic point $x = x(\lambda) \in \text{int}(N_{\alpha_0})$ such that $F_\lambda^{km}(x) = x$. Since there are p^m choices of such closed loops, F^k_λ has at least p^m periodic points in *N*. These periodic points provide a (m, ε) separated set for F^k_λ as long as ε is a positive number less than gaps of N_i 's, i.e. $0 < \varepsilon <$ $\min\{a_{2i} - a_{2(i-1)+1} : 1 \leq i \leq p-1\}$. Since *m* is arbitrarily chosen, we have $h_{top}(F_\lambda^k) \geq \log(p)$ and so $h_{top}(F_\lambda) \geq \log(p)/k > \delta$. Therefore, $\liminf_{\lambda \to 0} h_{top}(F_\lambda) \geq h_{top}(f)$.

The proof of the second main result is the following.

Proof of theorem [2.](#page-3-0) Define $G_\lambda = (\text{id}, c) \circ F_\lambda \circ (\text{id}, c)^{-1}$, where id denotes the identity map on R and *c* is a homeomorphism from *S* to $\overline{B_n}$. Then the topological entropies of G_λ and F_λ are equal. By applying the above argument to the family G_λ while the corresponding c_M of a covering relation $N \stackrel{G_{\lambda},w}{\Longrightarrow} M$ is the identity now, we have the desired result.

5. Snap-back repeller and closed loops of covering relations

Throughout this section, we assume that $f : \mathbb{R}^m \to \mathbb{R}^m$ is a C^1 map having a snap-back repeller x_0 associated with a transverse homoclinic orbit. We shall construct two closed loops of covering relations for *f* : the first one is from the snap-back repeller to a homoclinic point then back to the repeller, and the second one consists of just one relation $N_r \stackrel{f}{\Longrightarrow} N_r$, where N_r is one of the h-sets in the first closed loop. Then we use the covering relations approach to prove that *f* has a positive topological entropy.

Let *L* be a linearization of *f* at x_0 , that is, $L(z) = x_0 + d f(x_0)(z - x_0)$ for $z \in \mathbb{R}^m$. Since all eigenvalues of $df(x_0)$ are greater than one in absolute value, there exist a norm $\|\cdot\|$ on \mathbb{R}^m and a constant $\rho > 1$ such that

$$
\|df(x_0)z\| \ge \rho \|z\| \qquad \text{for } z \in \mathbb{R}^m. \tag{4}
$$

From now on, we keep this norm fixed.

For any $r > 0$ and $x \in \mathbb{R}^m$, we denote the closed ball with the centre *x* and radius *r* by *N (x, r)* = {*x*} + *Bm(*0*, r).*

$$
N(x, r) = \{x\} + B_m(0, r).
$$

For any $r > 0$ we define an h-set $N_{x,r}$ in \mathbb{R}^m as follows: we set $N_{x,r} = N(x,r)$, $c_{N_{xx}}(z) = (z - x)/r$, $u(N_{xx}) = m$ and $s(N_{xx}) = 0$. Since the point x_0 is a fixed point for *f* and will play a distinguished role in the following, we will write N_r instead of $N_{x_0,r}$. Next, we define a homotopy from the map f to L , its linearization at x_0 , as follows:

$$
f_{\mu}(z) = (1 - \mu)f(z) + \mu L(z)
$$
 for $\mu \in [0, 1]$ and $z \in \mathbb{R}^{m}$. (5)

It is easy to see that $f_0(z) = f(z)$, $f_1(z) = L(z)$ and $df_u(z) = (1 - \mu) df(z) + \mu df(x_0)$ for all μ and z. This homotopy will be later used in covering relations in the vicinity of the snap-back repeller.

First, we show that the size of the repulsion set for snap-back repeller x_0 can be chosen uniformly for all f_μ for $\mu \in [0, 1]$.

Lemma 11. *Let* $\beta = (\rho + 1)/2$ *. Then there exists* $r_0 > 0$ *such that for any* $\mu \in [0, 1]$ *,* $0 < r \leq r_0$, $z \in N_r$ with $||z - x_0|| = r$, the following holds:

$$
||f_{\mu}(z)-x_0||>\beta r.
$$

Proof. By using Taylor's theorem with an integral remainder, we have

$$
f_{\mu}(z) - x_0 = f_{\mu}(z) - f_{\mu}(x_0) = C(z - x_0),
$$

where

$$
C = C(\mu, z, x_0) = \int_0^1 df_\mu(x_0 + t(z - x_0)) dt.
$$

By (5) , we get that

$$
C - df_{\mu}(x_0) = \int_0^1 (1 - \mu) df(x_0 + t(z - x_0)) + \mu df(x_0) dt - df_{\mu}(x_0)
$$

=
$$
\int_0^1 (1 - \mu) [df(x_0 + t(z - x_0)) - df(x_0)] dt.
$$
 (6)

Since d*f* is continuous at x_0 and $\rho > 1$, there exists $r_0 > 0$ such that if $||y - x_0|| \le r_0$ then $\|df(y) - df(x_0)\| < (\rho - 1)/2$. Hence, from (6), we have that for any $\mu \in [0, 1]$ and $z \in B_m(x_0, r_0)$,

$$
||C - df_{\mu}(x_0)|| \le \int_0^1 (1 - \mu) || df(x_0 + t(z - x_0)) - df(x_0) || dt
$$

<
$$
< \int_0^1 (1 - \mu) \frac{\rho - 1}{2} dt \le \frac{\rho - 1}{2}.
$$

Therefore, by using [\(4\)](#page-6-0), we have that for any $\mu \in [0, 1]$, $0 < r \leq r_0$, $z \in N_r$ with $||z - x_0|| = r$,

$$
|| f_{\mu}(z) - x_0 || = ||C(z - x_0)|| = ||(C - df_{\mu}(x_0) + df_{\mu}(x_0))(z - x_0)||
$$

\n
$$
\geq ||df(x_0)(z - x_0)|| - ||(C - df_{\mu}(x_0))(z - x_0)||
$$

\n
$$
> \rho r - \frac{\rho - 1}{2}r = \beta r.
$$

Throughout the rest of this section, we fix the two constants β and r_0 as given in lemma 11. In the following, we establish a covering relation between two h-sets around the snap-back repeller.

Proposition 12. *Let r and* r_1 *be two numbers satisfying* $0 < r \leq r_0$ *and* $0 < r_1 \leq \beta r$ *. Then the following covering relation holds:*

$$
N_r \stackrel{f}{\Longrightarrow} N_{r_1}.
$$

Proof. Define $h(\mu, z) = c_{N_{r_1}}(f_{\mu}(c_{N_r}^{-1}(z))$. We need to check whether all conditions for the covering relation $N_r \stackrel{f}{\Longrightarrow} N_{r_1}$ are satisfied.

First we deal with the conditions in the first item of definition [7.](#page-4-0) Condition [\(1\)](#page-5-0) is implied by $f_0 = f$, [\(2\)](#page-5-0) follows from lemma [11,](#page-7-0) and since $N_{r_1}^+ = \emptyset$, [\(3\)](#page-5-0) is also satisfied.

Next, we define a map *A* on \mathbb{R}^m by $A(z) = (r/r_1) df(x_0)z$. Then for $z \in \overline{B_m}$, we have

$$
h(1, z) = \frac{L(rz + x_0) - x_0}{r_1} = \frac{df(x_0)(rz)}{r_1} = A(z).
$$

Moreover, from [\(4\)](#page-6-0) it follows that for $z \in \overline{B_m}$ with $||z|| = 1$,

$$
||A(z)|| \geq \frac{\rho r}{r_1} \geq \frac{\rho r}{\beta r} > 1.
$$

Since *A* is linear, from the above equation we have that $deg(A, B_m, 0) = \pm det(A) \neq 0$. \Box

Next, we give a covering relation from the snap-back repeller x_0 to points near x_0 , which will be homoclinic points near x_0 as the result is used later.

Lemma 13. *Let* $r > 0$, $r_1 > 0$ *and* $z_1 \in \mathbb{R}^m$ *near* x_0 *satisfy that* $(\|z_1 - x_0\| + r_1)/\beta < r < r_0$. *Then*

$$
N_r \stackrel{f}{\Longrightarrow} N_{z_1,r_1}.
$$

Proof. As in the proof of proposition [12,](#page-7-0) we set $h(\mu, z) = c_{N_{z_1, r_1}}(f_{\mu}(c_{N_r}^{-1}(z))$. Again, we need to check all conditions for the covering relation $N_r \stackrel{f}{\Longrightarrow} N_{z_1,r_1}$.

Condition [\(1\)](#page-5-0) is implied by $f_0 = f$, and since $N^+_{z_1, r_1} = \emptyset$, [\(3\)](#page-5-0) is also satisfied.

To verify condition (2) , observe that it is equivalent to the following one:

$$
f_{\mu}(N_r^-) \cap N_{z_1, r_1} = \emptyset \qquad \text{for } \mu \in [0, 1].
$$
 (7)

From lemma [11,](#page-7-0) it follows that for any $z \in N_r^-$ (hence $||z - x_0|| = r$),

$$
|| f_{\mu}(z) - z_1 || = || f_{\mu}(z) - x_0 + x_0 - z_1 || \ge || f_{\mu}(z) - x_0 || - || x_0 - z_1 ||
$$

\n
$$
\ge \beta r - || x_0 - z_1 || > || x_0 - z_1 || + r_1 - || x_0 - z_1 || = r_1.
$$

This proves (7).

It remains to investigate $h(1, z)$. Define a map *A* on \mathbb{R}^m by $A(z) = (r \, df(x_0)z + x_0 - z_1)/r_1$. Then *A* is affine and for $z \in \overline{B_m}$,

$$
h(1, z) = \frac{L(rz + x_0) - z_1}{r_1} = \frac{x_0 + df(x_0)(rz) - z_1}{r_1} = A(z).
$$

To prove that deg(A, B_m , 0) = det(d $f(x_0)$) = ± 1 , it is sufficient to show that the unique solution $\hat{z} = (1/r) d f(x_0)^{-1} (z_1 - x_0)$ of the equation $A(z) = 0$ is in B_m . To this end, observe that from [\(4\)](#page-6-0), we have $||df(x_0)^{-1}|| \leq \rho^{-1}$ and hence

$$
\|\hat{z}\| \leqslant \frac{1}{r} \|\mathrm{d}f(x_0)^{-1}\| \cdot \|z_1 - x_0\| \leqslant \frac{\|z_1 - x_0\|}{\rho r} < \frac{\|z_1 - x_0\| + r_1}{\beta r} < 1. \qquad \Box
$$

The following lemma gives a covering relation from a homoclinic point to the snap-back repeller.

Lemma 14. Assume that $z_0 \in \mathbb{R}^m$ such that $f^k(z_0) = x_0$ for some integer $k > 0$ and $\det(\mathrm{d} f^k(z_0)) \neq 0$. Then there exists $R > 0$ such that if $0 < r < R$ then there is $v \equiv v(r)$ with $0 < v < r_0$ such that for any $0 < r_2 \leq v$, we have

$$
N_{z_0,r} \stackrel{f^k}{\Longrightarrow} N_{r_2}.\tag{8}
$$

Proof. By continuity of *f*, there is $R_1 > 0$ such that

$$
f^k(\overline{B_m(z_0,R_1)})\subset B_m(x_0,r_0).
$$

Define a homotopy as follows: for $\mu \in [0, 1]$ and $z \in \overline{B_m(z_0, R_1)}$,

$$
g_{\mu}(z) = (1 - \mu) f^{k}(z) + \mu (df^{k}(z_{0})(z - z_{0}) + x_{0}).
$$
\n(9)

Then $g_\mu(z_0) = x_0$ and $dg_\mu(z) = (1 - \mu) df^k(z) + \mu df^k(z_0)$ for all μ and z . Since $df^k(z_0)$ is nonsingular, there is a constant $\alpha > 0$ such that for any $z \in \mathbb{R}^m$,

$$
\|\mathrm{d}f^k(z_0)z\| \geqslant \alpha \|z\|.\tag{10}
$$

Next, we show that there exists a positive number $R < \min\{R_1, 2r_0/\alpha\}$ such that for all $||z - z_0|| < R$ and $\mu \in [0, 1]$, one has

$$
||g_{\mu}(z) - x_0|| > \frac{\alpha}{2} ||z - z_0||. \tag{11}
$$

To this end, we have to modify the proof of lemma [11](#page-7-0) a bit. By using Taylor's theorem with integral remainder, we have

$$
g_{\mu}(z) - x_0 = g_{\mu}(z) - g_{\mu}(z_0) = C(z - z_0),
$$

where

$$
C = C(\mu, z, z_0) = \int_0^1 dg_\mu(z_0 + t(z - z_0)) dt.
$$

By (9) , we get that

$$
C - dg_{\mu}(z_0) = \int_0^1 (1 - \mu) df^k(z_0 + t(z - z_0)) + \mu df^k(z_0) dt - dg_{\mu}(z_0)
$$

=
$$
\int_0^1 (1 - \mu) [df^k(z_0 + t(z - z_0)) - df^k(z_0)] dt.
$$
 (12)

Since df^k is continuous at z_0 , there exists $R > 0$ such that if $||y - z_0|| < R$ then

$$
\|\mathrm{d}f^k(y)-\mathrm{d}f^k(z_0)\|<\alpha/2.
$$

Hence, from (12), we have that for any $\mu \in [0, 1]$ and $z \in B_m(z_0, R)$,

$$
||C - d g_{\mu}(x_0)|| \leq \int_0^1 (1 - \mu) ||d f^k(z_0 + t(z - z_0)) - d f^k(z_0)|| dt
$$

<
$$
< \int_0^1 (1 - \mu) \frac{\alpha}{2} dt \leq \frac{\alpha}{2}.
$$

Therefore, by using (10), we obtain that for any $\mu \in [0, 1]$ and $z \in B_m(z_0, R)$,

$$
\|g_{\mu}(z) - x_0\| = \|C(z - z_0)\| = \|(C - dg_{\mu}(z_0) + dg_{\mu}(z_0))(z - z_0)\|
$$

\n
$$
\geq \|df^{k}(z_0)(z - z_0)\| - \|(C - dg_{\mu}(z_0))(z - z_0)\|
$$

\n
$$
> \left(\alpha - \frac{\alpha}{2}\right) \|(z - z_0)\| = \frac{\alpha}{2} \|(z - z_0)\|.
$$

Now we are ready to prove the desired covering relation [\(8\)](#page-9-0). Let *r* be a number with $0 < r < R$ and let $v = \alpha r/2$. Let r_2 be a number with $0 < r_2 \le v$. Since $\alpha > 0$ and $R < 2r_0/\alpha$, we have $0 < v < r_0$. We define a homotopy h_μ by

$$
h_{\mu}(z) = c_{N_{r_2}}(g_{\mu}(c_{N_{z_0,r}}^{-1}(z))) \quad \text{for } \mu \in [0,1] \quad \text{and} \quad z \in \overline{B_m}.
$$

The conditions from definition [7](#page-4-0) requiring the proof are only [\(2\)](#page-5-0) and deg(h_1 , B_m , 0) \neq 0 while the others are clear. To verify condition [\(2\)](#page-5-0), note that it is equivalent to the following one:

$$
g_{\mu}(N_{z_0,r}^-) \cap N_{r_2} = \emptyset \qquad \text{for } \mu \in [0,1].
$$
 (13)

From [\(11\)](#page-9-0), it follows that for any $z \in N_{z_0,r}^-$ (hence $||z - z_0|| = r$), one has

$$
\|g_{\mu}(z) - x_0\| > \frac{\alpha}{2} \|z - z_0\| > r_2.
$$

This proves (13). Finally, since

$$
h_1(z) = \frac{r}{r_2} \mathrm{d} f^k(z_0) z,
$$

we obtain that h_1 is a linear isomorphism; therefore deg $(h_1, B_m, 0) = \det(\mathrm{d}f^k(z_0)) \neq 0$. \Box

The next proposition shows that the existence of a snap-back repeller as defined in definition [3](#page-3-0) implies a positive topological entropy. In [\[1\]](#page-13-0), Blanco Garcia gave the same result based on Marotto's definition of a snap-back repeller and results in [\[5\]](#page-13-0). Here, we give a new proof by using covering relations.

Proposition 15. *The topological entropy of f is positive.*

Proof. Let β and r_0 be as given in lemma [11.](#page-7-0) Since x_0 is a snap-back repeller for f, there exists a sequence $\{x_{-i}\}_{i\in\mathbb{N}}$ such that $x_{-1} \neq x_0$, $\lim_{i\to\infty} x_{-i} = x_0$ and for all $i \in \mathbb{N}$, $f(x_{-i}) = x_{-i+1}$ and det($df(x_{−i})$) \neq 0. Thus, there is an integer $k > 0$ such that $x_{−k} ∈ B(x₀, r₀)$. By the chain rule, we have det($df^{k}(x_{-k})$) ≠ 0. Furthermore, from lemma [14,](#page-9-0) there exist positive constants r_k and r_b such that $r_b < r_0$ and

$$
B(x_{-k}, r_k) \subset B(x_0, r_0), \tag{14}
$$

$$
N_{x_{-k},r_k} \cap N_{r_b} = \emptyset, \tag{15}
$$

$$
N_{x_{-k},r_k} \xrightarrow{f^k} N_{r_b}.\tag{16}
$$

Since $\beta > 1$, there exists the minimal positive integer *a* such that $\beta^{a} r_b > ||x_{-k} - x_0|| + r_k$. By the minimum of *a* and equation (14), we have $\beta^{a-1}r_b \leq ||x_{-k} - x_0|| + r_k < r_0$. From proposition [12](#page-7-0) and lemma [13,](#page-8-0) it follows that we have the following chain of covering relations:

$$
N_{r_b} \stackrel{f}{\Longrightarrow} N_{\beta r_b} \stackrel{f}{\Longrightarrow} \cdots \stackrel{f}{\Longrightarrow} N_{\beta^{a-1}r_b} \stackrel{f}{\Longrightarrow} N_{x_{-k},r_k}.\tag{17}
$$

Moreover, from proposition [12,](#page-7-0) it also follows that

$$
N_{r_b} \stackrel{f}{\Longrightarrow} N_{r_b}.\tag{18}
$$

These covering relations are enough to produce symbolic dynamics and a positive topological entropy as follows. Let $w = max(a, k)$. It is sufficient to construct an f^{2w} -invariant set on which f^{2w} can be semi-conjugated onto the shift map $\sigma : \Sigma_2^+ \to \Sigma_2^+$, where $\Sigma_2^+ = \{0, 1\}^{\mathbb{N}}$, the one-sided shift space on two symbols with the standard Tikhonov (product) topology. By using equations (16) – (18) , one can consider the following chains of covering relations, each one of length $2w$ (which is counted by the number of iterates of f):

$$
N_{r_b} \stackrel{f}{\Longrightarrow} N_{r_b} \stackrel{f}{\Longrightarrow} N_{r_b} \stackrel{f}{\Longrightarrow} \cdots \stackrel{f}{\Longrightarrow} N_{r_b},
$$

\n
$$
N_{r_b} \stackrel{f}{\Longrightarrow} N_{r_b} \stackrel{f}{\Longrightarrow} \cdots \stackrel{f}{\Longrightarrow} N_{r_b} \stackrel{f}{\Longrightarrow} N_{\beta r_b} \stackrel{f}{\Longrightarrow} \cdots \stackrel{f}{\Longrightarrow} N_{\beta^{a-1}r_b} \stackrel{f}{\Longrightarrow} N_{x_{-k},r_k},
$$

\n
$$
N_{x_{-k},r_k} \stackrel{f^k}{\Longrightarrow} N_{r_b} \stackrel{f}{\Longrightarrow} N_{r_b} \stackrel{f}{\Longrightarrow} \cdots \stackrel{f}{\Longrightarrow} N_{r_b},
$$

\n
$$
N_{x_{-k},r_k} \stackrel{f^k}{\Longrightarrow} N_{r_b} \stackrel{f}{\Longrightarrow} \cdots \stackrel{f}{\Longrightarrow} N_{\beta r_b} \stackrel{f}{\Longrightarrow} \cdots \stackrel{f}{\Longrightarrow} N_{\beta^{a-1}r_b} \stackrel{f}{\Longrightarrow} N_{x_{-k},r_k}.
$$

Let us denote $N_0 = N_{r_b}$ and $N_1 = N_{x_{-k}, r_k}$. Then N_0 and N_1 are disjoint due to [\(15\)](#page-10-0). Define *Z* to be the set of points whose forward orbits under f^{2w} stay in $N_0 \cup N_1$, that is,

$$
Z = \{ z \in N_0 \cup N_1 : f^{2iw}(z) \in N_0 \cup N_1 \text{ for all } i \in \mathbb{N} \}.
$$

Then *Z* is compact. On *Z* we define a projection $\pi : Z \to \Sigma_2^+$ by

$$
\pi(z)_i = j
$$
 if and only if $f^{2iw}(z) \in N_j$.

It is obvious that the map π is continuous and we have a semiconjugacy: $\pi \circ f^{2w} = \sigma \circ \pi$.

Finally, we shall show that π is onto. This gives us that the topological entropy of f^{2w} on *Z* is greater than or equal to log 2. Let $\alpha = (\alpha_0, \ldots, \alpha_{l-1}) \in \{0, 1\}^l$ for some positive integer *l*. By a suitable concatenation of the above listed chains of covering relations and from theorem [8,](#page-5-0) it follows that there exists a point $x_\alpha \in N_{\alpha_0}$ such that

$$
f^{2iw}(x_{\alpha}) \in N_{\alpha_i} \quad \text{for } 0 \leq i \leq l-1,
$$

$$
f^{2lw}(x_{\alpha}) = x_{\alpha}.
$$

It is clear that $x_\alpha \in Z$ and $\pi(x_\alpha) = (\alpha, \alpha, \ldots) \in \Sigma_2^+$. Since α is arbitrarily chosen, the set $\pi(Z)$ contains all repeating sequences. From the density of repeating sequences in Σ_2^+ , it follows that $\pi(Z) = \Sigma_2^+$. $\overline{2}$.

6. Proofs of theorems [4](#page-4-0) and [5](#page-4-0)

In this section, we combine all the material in the previous section to prove the last two of our main results. First, we assume that all the hypotheses of theorem [4](#page-4-0) are satisfied. We continue using the notations of the previous section. From the proof of proposition [15,](#page-10-0) we have a positive integer *a* such that the following closed loop of covering relations holds:

$$
N_{r_b} \stackrel{f}{\Longrightarrow} N_{r_b} \stackrel{f}{\Longrightarrow} N_{\beta r_b} \stackrel{f}{\Longrightarrow} \cdots \stackrel{f}{\Longrightarrow} N_{\beta^{a-1}r_b} \stackrel{f}{\Longrightarrow} N_{x_{-k},r_k} \stackrel{f^k}{\Longrightarrow} N_{r_b}.
$$

By adding the normal direction to the above h-sets and using the persistence of covering relation, we shall construct a closed loop of covering relations for F_λ , similar to the above loop for *f*. Recall that the singular map F_0 is of the form $F_0(x, y) = (f(x), g(x)) \in \mathbb{R}^m \times \mathbb{R}^n$. Set $N = (\bigcup_{i=0}^{a-1} N_{\beta^i r_b}) \cup (\bigcup_{i=0}^k f^i(N_{x-k}, r_k))$. Since *g* is continuous and *N* is compact, there exists $r > 0$ such that $g(N) \subset B_n(0, r)$. Let us define the corresponding h-sets in $\mathbb{R}^m \times \mathbb{R}^n$ as follows. For $i = 0, 1, \ldots, a-1$, we define h-sets $N'_{\beta^i r_b}$ in $\mathbb{R}^m \times \mathbb{R}^n$ by $N'_{\beta^i r_b} = N_{\beta^i r_b} \times \overline{B_n(0, r)}$, $u(N'_{\beta^i r_b}) = m$, $s(N'_{\beta^i r_b}) = n$ and $c_{N'_{\beta^i r_b}}(x, y) = (c_{N_{\beta^i r_b}}(x), \frac{1}{r}y)$. Moreover, we define an h-set N'_{x_{-k},r_k} in $\mathbb{R}^m \times \mathbb{R}^n$ by $N'_{x_{-k},r_k} = N_{x_{-k},r_k} \times \overline{B_n(0,r)}, u(N'_{x_{-k},r_k}) = m, s(N'_{x_{-k},r_k}) = n$ and $c_{N'_{x-k},r_k}(x, y) = (c_{N_{x-k},r_k}(x), \frac{1}{r}y).$

Observe that we have the following closed loop of covering relations for *F*0.

Lemma 16. *The following covering relations hold:*

$$
N'_{r_b} \stackrel{F_0}{\Longrightarrow} N'_{r_b} \stackrel{F_0}{\Longrightarrow} N'_{\beta r_b} \stackrel{F_0}{\Longrightarrow} \cdots \stackrel{F_0}{\Longrightarrow} N'_{\beta^{a-1}r_b} \stackrel{F_0}{\Longrightarrow} N'_{x_{-k},r_k} \stackrel{F_0^k}{\Longrightarrow} N'_{r_b}.
$$

Proof. For each covering relation under consideration $N' \stackrel{F_0^j}{\Longrightarrow} M'$ with $j = 1$ or *k*, we define a homotopy $\hat{h} : [0, 1] \times \overline{B_m} \times \overline{B_n} \to \mathbb{R}^{m+n}$ by

$$
\hat{h}(\mu, x, y) = \left(h(\mu, x), \frac{1 - \mu}{r} g \circ f^{j-1}(c_N^{-1}(x)) \right),
$$

where *h* is the homotopy from the corresponding covering relation $N \stackrel{f^j}{\Longrightarrow} M$. Then we have

$$
\hat{h}(0, x, y) = \left(h(0, x), \frac{1}{r} g \circ f^{j-1}(c_N^{-1}(x)) \right)
$$

=
$$
\left(c_M \circ f^j \circ c_N^{-1}(x), \frac{1}{r} g \circ f^{j-1}(c_N^{-1}(x)) \right) = (F_0^j)_c(x, y).
$$

Since $\hat{h}([0, 1], N'^{,-}) \subset h([0, 1], N^{-}) \times \mathbb{R}^{n}$, we get that condition [\(2\)](#page-5-0) in definition [7](#page-4-0) follows from the analogous condition for *h*. Condition [\(3\)](#page-5-0) is satisfied due to

$$
\hat{h}([0,1]\times\overline{B_m}\times\overline{B_n})\subset\mathbb{R}^m\times B_n.
$$

Finally, note that

$$
\hat{h}(1, x, y) = (h(1, x), 0).
$$

Therefore, the other conditions in definition [7](#page-4-0) are also satisfied. \Box

From theorem [9,](#page-5-0) there exists $\lambda_0 > 0$ such that if $|\lambda| < \lambda_0$ then the following chain of covering relations holds for *Fλ*:

$$
N'_{r_b} \stackrel{F_\lambda}{\Longrightarrow} N'_{r_b} \stackrel{F_\lambda}{\Longrightarrow} N'_{\beta r_b} \stackrel{F_\lambda}{\Longrightarrow} \cdots \stackrel{F_\lambda}{\Longrightarrow} N'_{\beta^{a-1}r_b} \stackrel{F_\lambda}{\Longrightarrow} N'_{x_{-k},r_k} \stackrel{F_\lambda^k}{\Longrightarrow} N'_{r_b}.
$$
 (19)

Similar to the proof of proposition 15 , covering relations listed in (19) are sufficient to produce the symbolic dynamics and a positive topological entropy for F_λ with $|\lambda| < \lambda_0$.

This completes the proof of theorem [4.](#page-4-0)

For the proof of theorem [5,](#page-4-0) define $G_\lambda = (\text{id}, c) \circ F_\lambda \circ (\text{id}, c)^{-1}$, where id denotes the identity map on \mathbb{R}^k and *c* is a homeomorphism from *S* to $\overline{B_n}$. Then the conclusion follows from the above argument applied to G_λ .

Acknowledgments

The authors are grateful to the editor and unknown referees for valuable suggestions. This work was done during PZ's visit to the NCTS (Hsinchu, Taiwan). M-CL was partially supported by the NSC grant 96-2115-M-009-004-MY3 and PZ was partially supported by the Polish State Ministry of Science and Information Technology grant N20102431/2163.

$$
\Box
$$

References

- [1] Blanco Garc´ıa C 1986 Chaos and topological entropy in dimension *n >* 1 *Erg. Theory Dyn. Syst.* **6** 163–5
- [2] Juang J, Li M-C and Malkin M 2008 Chaotic difference equations in two variables and their multidimensional perturbations *Nonlinearity* **21** [1019–40](http://dx.doi.org/10.1088/0951-7715/21/5/007)
- [3] Li C and Chen G 2003 An improved version of the Marotto theorem *Chaos Solitons Fractals* **18** [69–77](http://dx.doi.org/10.1016/S0960-0779(02)00605-7)
- [4] Li M-C and Malkin M 2006 Topological horseshoes for perturbations of singular difference equations *Nonlinearity* **19** [795–811](http://dx.doi.org/10.1088/0951-7715/19/4/002)
- [5] Marotto F R 1978 Snap-back repellers imply chaos in R*ⁿ J. Math. Anal. Appl.* **63** [199–223](http://dx.doi.org/10.1016/0022-247X(78)90115-4)
- [6] Marotto F R 1979 Perturbations of stable and chaotic difference equations *J. Math. Anal. Appl.* **72** [716–29](http://dx.doi.org/10.1016/0022-247X(79)90259-2)
- [7] Marotto F R 2005 On redefining a snap-back repeller *Chaos Solitons Fractals* **25** [25–8](http://dx.doi.org/10.1016/j.chaos.2004.10.003)
- [8] Misiurewicz M and Zgliczyński P 2001 Topological entropy for multidimensional perturbations of onedimensional maps *Int. J. Bifurc. Chaos Appl. Sci. Eng.* **11** [1443–6](http://dx.doi.org/10.1142/S021812740100281X)
- [9] Misiurewicz M and Szlenk W 1980 Entropy of piecewise monotone mappings *Stud. Math.* **67** 45–63
- [10] Robinson C 1999 *Dynamical Systems: Stability, Symbolic Dynamics, and Chaos* 2nd edn (Boca Raton, FL: CRC Press)
- [11] Zgliczynski P 1996 Fixed point index for iterations, topological horseshoe and chaos ´ *Topological Methods Nonlinear Anal.* **8** 169–77
- [12] Zgliczyński P 1997 Computer assisted proof of chaos in the Rössler equations and in the Hénon map *Nonlinearity* **10** [243–52](http://dx.doi.org/10.1088/0951-7715/10/1/016)
- [13] Zgliczyński P and Gidea M 2004 Covering relations for multidimensional dynamical systems J. Diff. Eqns **202** [32–58](http://dx.doi.org/10.1016/j.jde.2004.03.013)