Contents

Acknowledgement	l
Abstract	II
Contents	III
List of Tables	IV
List of Figures	V
Chapter 1:	
Introduction	1
1.1 General introduction	
1.2 Introduction of photoelectric device	2
1.3 Solid-state electronic devices for biosensing	4
1.4 Motivation	8
Chapter 2: Device principles and operations	10
2.1 Fundamentals of the MSM-PD	10
2.2 Semiconductor physics of the MSM-PD	11
2.2.1 Schottky diode	11
2.2.2 Current Transport Mechanism	14
2.3 Characteristic parameters of MSM-PD	15
2.3.1 Quantum efficiency	15
2.3.2 Responsivity	15

2.3.3 Response time	15
Chapter 3: Experiments	17
3.1 Device fabrication techniques	17
3.1.1 Fabrication process	19
3.1.2 E-beam lithography	19
3.1.2.1 Ideas for device layout	19
3.1.2.2 Introduction of proximity effect	20
3.1.2.3 E-beam proximity effect correction method	21
3.1.3 Lift-off process	26
3.1.3.1 Introduction of lift-off process	26
3.1.3.2 The problems during lift-off	28
3.1.3.3 Solutions for these problems	30
3.1.4 Procedure for reaction chamber	35
3.2 Immobilization process (luminol)	36
3.3 Process of gold nanoparticles synthesis	39
3.3.1 Gold nano particles synthesis process	39
3.3.2 Immobilization of gold nanoparticles	40
Chapter 4: Results and discussions	42
4.1 Device	
performance	42
4.1.1 Photo response without anti-reflection layer	43
4.1.2 Device stability	44
4.1.3 Symmetric characteristic of MSM-PD	45

4.1.4 Photo response with anti-reflection layer	46
4.1.5 Sampling mode measurement	50
4.2 Luminescence application	51
4.2.1 Real-time sensing for Luminescence	52
4.2.2 Calibration line and minimum detection limit	56
4.2.3 Average molecules per unit area	60
4.3 Gold nanoparticle detection	61
Chapter 5: Conclusions	68

List of Tables

Table 1. The specific range of absorbance of light wavelength for various types of semiconductor materials

List of Figures

Chapter 1

- Figure 1-1. The U.S. market for biosensors and bioelectronics
- Figure 1-2. Incident light results in electron hole pairs in semiconductor Photoconduction device under bias
- Figure 1-3. Incident light results in electron hole pairs in semiconductor Photovoltaic detector under bias
- Figure 1-4. Nanowire sensor for detection of ATP binding (a) real-time sensing, (b) calibration line of this device
- Figure 1-5. Dielectric loss data for two different nanogaps and a large commercial dielectric cell
- Figure 1-6. Schematic diagram of then opto-electric DNA chip at the level of 1 pixel

Figure 1-7. Schematic of detection platform

Chapter 2

- Figure 2-1. (a) schematic symbol, (b) 1-D schematic, (c) top view, and (d) cross-sectional view
- Figure 2-2. Schottky diode under thermal equilibrium condition, (a) metal and n-type semiconductor ($\phi_m > \phi_s$) (b) metal and p-type semiconductor ($\phi_m < \phi_s$)
- Figure 2-3. (a) schematic diagram of MSM-PD, (b) charge distribution under low bias voltage, (c) electric field distribution under low bias voltage, (d) energy band diagram of MSM-PD
- Figure 2-4. Current transport mechanism under forward bias

Chapter 3

- Figure 3-1. Process flow chart of MSM-PD fabrication
- Figure 3-2. (a) Full layout of MSM-PD, the dark area in the middle is the active area, the two squares in both side is contact pad, (b) Magnification image of active region, the active area contains 83 lines per side.
- Figure 3-3. In-line SEM image of interdigitated lines by E-beam lithography but without any correction method (dark color is silicon; white color is resist)
- Figure 3-4. In-line SEM image of interdigitated lines after EPC modification. The right-down areas are not exposed perfectly duo to underexposed. (dark color is silicon; white color is resist)
- Figure 3-5. The In-line SEM image shows the resist width of 293nm. (dark color is silicon; white color is resist)
- Figure 3-6. In-line SEM image of interdigitated lines, this correction method is by manually decreasing the line width of the layout. (dark color is silicon; white color is resist)
- Figure 3-7. The line width is 323nm from In-line SEM measurement. (dark color is silicon; white color is resist)
- Figure 3-8. Lift-off process flow chart
- Figure 3-9. Optical microscopic image of interdigitated lines: soaking in etching solution of NMP for 4 days.
- Figure 3-10. The SEM image of interdigitated lines (cross-touching leading to short circuits; width: space = 1:1)
- Figure 3-11. The SEM image of adjacent region between semi-dense area (width: space = 1:3) and dense area (width: space = 1:1); (fragmented

lines leading to open circuit)

Figure 3-12. New process flow chart of lift-off by etching down unerlayer Figure 3-13. The SEM image of adjacent region between semi-dense areas (width: space = 1:3) and dense areas (width: space = 1:1) by means of improvement method.

Figure 3-14. Rinsing in etching solutions for 4 days and then rinsing in SPM for 1 hour

Figure 3-15. Optical microscopic image of interdigitated lines. Condition: after performing sonication for 3 seconds

Figure 3-16. Optical microscopic image of interdigitated lines. Condition: after performing sonication for 6 seconds

Figure 3-17. Photo of PDMS mother mold

Figure 3-18. Photograph of MSM-PD as on-chip biosensor system

Figure 3-19. Schematic diagram of immobilization process flow

(a) SAM APTES, (b) Immobilization of biotin, (c) Immobilization of streptavidin, (d) Add substrate solution, (e) Schematic diagram of my system

Figure 3-20. The reactions in gold nanoparticles synthesis

Figure 3-21. The process flow of immobilization of gold nanoparticles

Chapter 4

Figure 4-1. Power intensity of halogen lamp measured by calibration photodiode

Figure 4-2. I-V characteristic before deposition of oxide anti-reflection layer

Figure 4-3. I-V characteristic indicates the device is stable. The

measurement of dark-current for 10 readings, the curve is the average value and the error bar is triple standard deviation.

Figure 4-4. I-V characteristic: Symmetric characteristic in positive and negative voltages.

Figure 4-5. I-V characteristic after deposition silicon oxide layer

Figure 4-6. The analysis of anti-reflection result by N&K

Figure 4-7. Sampling mode of MSM-PD. The device operation at -5V and the time interval is 4ms

Figure 4-8. Sampling mode of MSM-PD after SPM clean

Figure 4-9. Sampling mode of MSM-PD after immobilization of APTES

Figure 4-10. Sampling mode of MSM-PD after immobilization of biotin

Figure 4-11. Sampling mode of MSM-PD after immobilization of streptavidin

Figure 4-12. Real-time measurement after add substrate. (Immobilization of streptavidin-HRP catalyzed luminescent system)

Figure 4-13. Real-time measurement for non-immobilization luminescence. The mass of streptavidin is 100ng and dissolved in 10uL PBS solutions, and substrate solution is 90uL.

Figure 4-14. Real-time measurement for non-immobilization luminescence. The mass of streptavidin is 200ng and dissolved in 20uL PBS solutions, and substrate solution is 80uL.

Figure 4-15. Real-time measurement for non-immobilization luminescence. The mass of streptavidin is 1000ng and dissolved in 10uL PBS solutions, and substrate solution is 90uL.

Figure 4-16. Calibration line of MSM-PD on-chip biosensor.

Figure 4-17. Dark current (i.e. noise single) under PBS solution of the

MSM-PD on-chip biosensor

Figure 4-18. (a) SEM image of immobilization gold nanoparticles onto the oxide surface, (b) static analysis of gold nanoparticles size distribution by IPP software

Figure 4-19. I-V characteristic of the device after immobilization of APTES (Sweep mode)

Figure 4-20. I-V characteristic of the device after immobilization of gold nanoparticles (Sweep mode)

Figure 4-21. Absorption of gold nanoparticles dissolve in DI water measured by UV-Visible.

Figure 4-22. Reflection data of different surface by N&K measurement after each immobilization step.

Figure 4-23. The model about how to improvement the sensitivity for gold nanoparticles detection. The dotted area is around 520nm wavelength, the white area is the incident light of (a) Halogen lamp, (b) 520nm laser diode.