# **Contents**

| Acknowledge (in Chinese)                                                                                |
|---------------------------------------------------------------------------------------------------------|
| Abstract (in Chinese )II                                                                                |
| Abstract (in English)III                                                                                |
| Figure CaptionsIX                                                                                       |
| Chapter 1. Introduction                                                                                 |
| 1.1 General Background and Motivation                                                                   |
| 1.2 Outline of the Dissertation                                                                         |
| Chapter 2. Use of Si <sup>+</sup> pre-ion-implantation on Si substrate to enhance the strain            |
| relaxation of the Ge <sub>x</sub> Si <sub>1-x</sub> metamorphic buffer layer for the growth of Ge layer |
| on Si substrate 6                                                                                       |
| 2.2 Experimental                                                                                        |
| 2.2 Experimental                                                                                        |
| 2.4 Conclusions.                                                                                        |
| Chapter 3. Growth of epitaxial GaAs on Si substrates for high-speed electronic                          |
| applications21                                                                                          |
| 3.1 Introduction                                                                                        |
| 3.2 Experimental                                                                                        |
| 3.3 Results and discussion                                                                              |
| 3.4 Conclusions                                                                                         |
| Chapter 4. An AlGaAs/InGaAs HEMT's on Si substrates with Si <sup>+</sup> pre ion                        |
| implantation and $Ge_{0.95}Si_{0.05}/Ge_{0.9}Si_{0.1}/Ge_{0.8}Si_{0.2}$ metamorphic buffer41            |
| 4.1 Introduction                                                                                        |

| 4.2 Experimental                                                                | 43                       |
|---------------------------------------------------------------------------------|--------------------------|
| 4.3 Results and discussion.                                                     | 44                       |
| 4.4 Conclusions.                                                                | 49                       |
| Chapter 5. Growth of InAs channel HEMT on Si su                                 | ubstrates for high-speed |
| electronic applications                                                         | 62                       |
| 5.1 Introduction                                                                | 62                       |
| 5.2 Experimental                                                                | 63                       |
| 5.3 Results and discussion                                                      | 64                       |
| 5.4 Conclusions.                                                                | 72                       |
| Chapter 6. Self-assembled In <sub>0.22</sub> Ga <sub>0.78</sub> As quantum dots | grown on metamorphic     |
| GaAs/Ge/Ge <sub>1-x</sub> Si <sub>x</sub> /Si substrates                        | 83                       |
| 6.1 Introduction                                                                | 83                       |
| 6.2 Experimental                                                                |                          |
| 6.3 Results and discussion                                                      | 85                       |
| 6.4 Conclusions.                                                                | 91                       |
| Chapter 7. Conclusions                                                          | 104                      |

Vita (in Chinese)

Publication List

# **Figure Captions**

- Fig. 2-1. The layer structure and the growth conditions for the Ge film grown on the Si substrate with Ge<sub>x</sub>Si<sub>1-x</sub> metamorphic buffer layers. Note that Ge<sub>x</sub>Si<sub>1-x</sub> was grown at two growth rates ,the Ge composition set at 80% and 90%, and the Si substrate implanted with high dose Si<sup>+</sup> ions.
- Fig. 2-2. Cross-sectional TEM images of sample (a) with a Si<sup>+</sup> pre-ion implantation into the Si substrate; the inserted image is the high-resolution TEM image at the interface between the Ge<sub>x</sub>Si<sub>1-x</sub> metamorphic layer and the Si substrate. (b) the Ge<sub>x</sub>Si<sub>1-x</sub> metamorphic grown on the Si substrate without a Si<sup>+</sup> pre-ion implantation into the Si substrate.
- Fig. 2-3 (a) Double crystal x-ray data indicating variations at a [004] orientation for the  $Ge_xSi_{1-x}$  metamorphic buffer layer on the Si substrate with a Si<sup>+</sup> pre-ion-implantation. (b) Double crystal x-ray difference data indicating variations at [004] orientation for the  $Ge_xSi_{1-x}$  metamorphic buffer layer on the Si substrate without a Si<sup>+</sup> pre-ion-implantation.
- Fig. 2-4 (a) Reciprocal Space Map data of [004] orientation of Ge<sub>x</sub>Si<sub>1-x</sub> metamorphic buffer layer on Si substrate with Si<sup>+</sup> pre-ion-implantation. (b) Reciprocal Space Map data of [224] orientation of Ge<sub>x</sub>Si<sub>1-x</sub> metamorphic buffer layer on Si substrate with Si<sup>+</sup> pre-ion-implantation.
- Fig. 2-5 AFM image of the surface morphology of the sample with a Si<sup>+</sup> pre-ion implantation.

  The root mean square (RMS) of the roughness is 0.38nm.
- Fig. 2-6 Nomarski image of the etched Ge film, the etch pits arise from threading dislocations.

#### Chapter 3

- Fig. 3-1 Schematic diagram of GaAs MESFETs on Si substrate
- Fig. 3-2 The different low growth temperature GaAs buffer layers grown on the composite substrate structure with Ge/Si<sub>x</sub>Ge<sub>1-x</sub>/Si substrate (Si substrate without off angle). (a)550°C (b)500 °C (c) 450°C. The scanned area is 25  $\mu$  m×25  $\mu$  m.
- Fig. 3-3 AFM image of the GaAs grown on the composite structure with Ge/Si<sub>x</sub>Ge<sub>1-x</sub>/Si (Si substrate with  $6^{\circ}$  off toward <110>). The scanning area is 25  $\mu$  m×25  $\mu$  m.
- Fig. 3-4 SIMS profiles of As, Ga and Ge in a  $2 \mu$  m thick GaAs layer grown on Si with different off angle toward [110] direction. (a) 0 off (b)  $4^{\circ}$  off (c)  $6^{\circ}$  off.
- Fig. 3-5 Transmission electron micrograph of grown structure with from Si to Ge buffer layer to GaAs transitions. (a) GaAs layer grown on Si substrate with 6<sup>0</sup> off (100) toward <110> direction. (b) GaAs layer grown on Si substrate without off angle.
- Fig. 3-6 Double crystal x-ray diffraction pattern of (a)Ge and SiGe metamorphic layer grown on a Si.substrate (b)GaAs layer grown on a Ge/Si<sub>x</sub>Ge<sub>1-x</sub>/Si substrate.
- Fig. 3-7 Transmission electron micrograph of a structure grown with Si to Ge buffer layers and a transistion to GaAs transitions with AlGaAs/GaAs superlattice in the GaAs layer.

- Fig. 4-1. The layer structure and the growth conditions for InGaAs channel HEMT grown on Si substrate with Ge<sub>x</sub>Si<sub>1-x</sub> metamorphic buffer layers. Note that Ge<sub>x</sub>Si<sub>1-x</sub> was grown with two step growth with the Ge composition set at 80%, 90% and 95%.
- Fig. 4-2 (a) Double crystal x-ray difference data at [004] orientation for a HEMT structure grown on a Si substrate (b) Double crystal x-ray difference data at [004] orientation for a HEMT structure grown on a Ge substrate.

- Fig. 4-3(a) The cross section TEM image of a HEMT structure grown on Si substrate. (b) The cross section TEM image of the interface between the GaAs layer and  $Ge_{0.95}Si_{0.05}/Ge_{0.9}Si_{0.1}/Ge_{0.8}Si_{0.2}$  metamorphic buffer layer.
- Fig. 4-4 The AFM image of HEMT structure grown on Si substrate. The root mean square (RMS) of the roughness is 0.38nm.
- Fig. 4-5 SIMS profiles of As, Ga and Ge in a 2  $\mu$  m thick GaAs layer grown on Si with 6<sup>0</sup> off angle toward [110] direction.
- Fig. 4-6 Leakage current as a function of the bias voltage. The data was measured on a pad pattern of 300 μm wide with a spacing of 10 μm between pads.
- Fig. 4-7 (a) I-V characteristics of a 0.35  $\mu$ m  $\times$  100 $\mu$ m AlGaAs/InGaAs HEMT on a Si substrate with Ge/GeSi metamorphic layer. (b) Transconductance and drain-source current vs.  $V_{GS}$  of a 0.35  $\mu$ m  $\times$  100 $\mu$ m AlGaAs/InGaAs HEMT on the Si substrate with Ge/GeSi metamorphic layer.
- Fig. 4-8 (a) I-V characteristics of a 0.35  $\mu$ m  $\times$  100 $\mu$ m AlGaAs/InGaAs HEMT on the Ge substrate.(b) Transconductance and drain-source current vs.  $V_{GS}$  of the 0.35  $\mu$ m  $\times$  100 $\mu$ m HEMT on the Ge substrate.

- Fig. 5-1 (a) Schematic diagram of InAs MHEMT on GaAs substrate.
  - (b) Schematic diagram of InAs MHEMT on Si substrate
- Fig. 5-2 Cross-sectional TEM image of InAs MHEMT epilayer structure on Si
- Fig. 5-3 (a) The cross-section TEM image of antiphase boundary formation at GaAs layer on Si without off angle. (b) The suppression of antiphase boundary formation by Si substrate 6° off angle toward to [110].

- Fig. 5-4 (a) The comparison double crystal x-ray [004] orientation of crystalline quality of InAs MHEMT structure on GaAs substrate and Si substrate. (b)The detail comparison of InAs MHEMT structure on GaAs substrate and Si.
- Fig. 5-5 High resolution TEM image of AlSb nucleation on (a)GaAs substrate (b) Si substrate
- Fig. 5-6 High resolution TEM image of InAs channel on Si substrate
- Fig. 5-7 (a) Reciprocal Space Map data [004] orientation of InAs/AlGaSb on GaAs substrate

  (b) Reciprocal Space Map data [004] orientation of InAs/AlGaSb on Si substrate 6°

  off angle toward to [110]
- Fig. 5-8 AFM image of InAs MHEMT on GaAs substrate
- Fig. 5-9 AFM image of InAs MHEMT on Si substrate

- Fig. 6-1. Schematic diagram of InGaAs QDs on Si substrate.
- Fig. 6-2. Cross-sectional TEM image of the epitaxial structure.
- Fig. 6-3. (a) AFM image of the surface of the Ge layer. (b) The Quality of Ge layer of FWHM of X-ray rocking curves.
- Fig. 6-4. AFM scans ( $10 \,\mu$  mx $10 \,\mu$  m) of the typical GaAs grown on the composite structure with Ge/SiGe/Si sub with  $6^{\circ}$  off-degree toward [110] (b) The Quality of GaAs layer of FWHM of X-ray rocking curves.
- Fig. 6-5. (a) AFM scans  $(10 \,\mu \,\text{m} \times 10 \,\mu \,\text{m})$  of the typical GaAs grown on the composite structure with Ge/SiGe/Si sub with  $6^0$  off-degree toward <110>. (b) The TEM micrograph of GaA layer grown on Si sub. with  $6^0$  off-degree toward <110> shows the APBs cross the GaAs layer.
- Fig. 6-6. Bright-field cross-section TEM image of the In<sub>0.22</sub>Ga<sub>0.78</sub>As QDs formed on GaAs/Ge/SiGe/Si.

- Fig. 6-7. Distribution of InGaAs QDs grown on misorientated Si substrate. (a)  $6^{\circ}$  off-degree toward <110> (b)  $0^{\circ}$  off-degree toward <110>.
- Fig. 6-8. PL measurement of the InGaAs QDs grown on misorientated Si substrate. (a)  $6^{\circ}$  off-degree toward <110> (b)  $0^{\circ}$  off-degree toward <110>
- Fig. 6-9. AFM images of Self-assemble InGaAs QDs grown at different temperatures. (a) 450  $^{\circ}$ C (b) 480 $^{\circ}$ C (c) 520 $^{\circ}$ C
- Fig. 6-10. Average size distribution of the  $In_{0.22}Ga_{0.78}As$  QDs grown at different temperatures. (a)  $450^{\circ}\text{C}$  (b)  $480^{\circ}\text{C}$  (c)  $520^{\circ}\text{C}$

