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Abstract

An (n, d) permutation array(PA) is a subset of Sn with the property that

the distance (under any distance metric, such as hamming) between any two

permutations in the array is at least d, which becomes popular recently for

communication over power line. We use both hamming distance and l∞-

norm to measure the distance between permutations, and give constructions

of permutations arrays under those two metrics. For the hamming distance,

we give the first explicit construction of 3-DPMH. For the l∞-norm, we give

the first explicit construction of DPM∞ and a direct construction of (n, d)

permutation array with l∞-norm without using other binary code. Further-

more, all have efficient encoding and decoding algorithms.
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Chapter 1

Introduction

1.1 Background and Preliminary

Let Sn denote the set of all permutations of length n. We consider a coding

scheme C : {0, 1}k → Sn with the property that if we are given a permutation

y ∈ Sn that is close to a valid encoding C(x), then it is possible to recover

the message x from the corrupted encoding y. To do this, first we need to

choose a proper metric for the distance between two permutations. A natural

choice is hamming distance, but it is not clear how to decode corrupted

permutations efficiently under this metric. Secondly, we need to decide which

permutations can be used as code words, such that for any two different

messages x and x′, such that C(x) and C(x′) are “far” enough. In this

thesis, we give efficient encoding and decoding algorithms for such scheme

by measuring the permutation distance with the hamming distance and the

l∞-norm.

An (n, d) permutation array(PA) is a subset of Sn with the property

that the distance (under any distance metric, such as hamming, etc.) be-

tween any two permutations in the array is at least d. PAs were studied

7



CHAPTER 1. Introduction 8

for some time [6]. It is Vinck [25], who proposed permutation arrays as an

error correcting code over power-line communications, where each symbol

i ∈ {1, .., n} is associated with a frequency fi and a message is encoded as a

permutation, which is then transmitted in time as the series of corresponding

frequencies. For example, to transmit the message encoded as (3, 4, 1, 2), the

sequence of frequencies (f3, f4, f1, f2) is transmitted one by one. Since then

many researches have been done on coding/modulation schemes with PAs

[12],[21],[23],[24]. Ferreira and Vinck [12] made use of distance preserving

mappings (DPMs) from binary sequences to permutation sequences to con-

struct permutation trellis codes. A systematic study of DPMs was initiated

in [6]. Later, Lee [16],[18], Swart et al. [20] proposed several constructions of

DPMs, and Chang [4],[5] studied the distance increasing mappings (DIMs).

All the above mentioned works use the hamming distance as a metric for per-

mutations. Most of the efforts have been on finding mappings from binary

vectors to permutations that preserve the minimum distance of the binary

vectors. A typical scheme is starting by encoding a message with a binary

code, which is mapped to a permutation and transmitted. Upon receiving

a permutation, one can recover the corresponding binary vector and then

with the binary code one can do some error correcting to recover the mes-

sage. However, there is no discussion on the efficiency of error correcting

directly from the permutations. In our research, we construct distance pre-

serving mappings from ternary vectors to permutations and we give efficient

encoding/decoding scheme for the PAs we constructed.

A permutation can be seen as a ranking, and vice versa. To study the

correlations between ranks, several metrics on permutations were introduced,

such as the hamming distance, the minimum number of transpositions tak-

ing one permutation to another, etc. [14], [9], [7], [8]. And some consider
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permutation arrays with different metrics. Stoll and Kurz [22] investigated a

detection scheme of permutation arrays using Spearman’s rank correlation.

Chadwick and Kurz [3] studied the permutation arrays based on Kendall’s

tau.

We consider a noisy channel which can transmit permutations as code

words. The noise in the channel is an independent Gaussian distribution

with zero mean for each position. The received sequence is the original

permutation together with the Gaussian noise, and its ranking can be seen

as a permutation, which can be different from the original one. Under the

model of additive white gaussian noise (AWGN) [11], there is only a small

probability for any frequency to deviate significantly from the original one.

This inspires us to consider not only the hamming distance but also the

l∞-norm.

1.2 Main Result and Construction Idea

In this thesis, we have two main results.

First, we give the first explicit construction of distance preserving map-

pings from ternary vectors of dimension n to Sn with hamming distance

(3-DPMH) for n ≥ 16. Thus we can construct (n, d) permutation array

under hamming distance with size ≥ A3(n, d). Moreover, we have efficient

encoding/decoding scheme for the PAs we constructed by the 3-DPMH.

Second, we give explicit constructions of distance preserving mappings

with l∞-norm (DPM∞), which can be used to recover corrupted permuta-

tions. And we give an (n, d) permutation array under l∞-norm without us-

ing binary codes. It’s the first direct construction of PAs to the best of our

knowledge. With both constructions, a lower bound on the size of permu-
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tation arrays is given, i.e. P∞(n, d) ≥ A(n − 1, d), and P∞(n, d) ≥ 2n−d.

Moreover, for both constructions, we have efficient encoding/decoding algo-

rithms.

For the first result, Our 3-DPMH construction is inspired by [18]. It is

based on a crucial ”local” property which we discuss as follows. Intuitively,

an algorithm has the local property if each element of the permutation is

not far away from its initial position after running the algorithm. From a

2-DPMH with local property, we can obtain a 3-DPMH. First we run a 2-

DPMH algorithm such that every element in the permutation is not far from

the initial position, i.e. with a small position difference. Then we only swap

two positions far enough, i.e. with the position difference larger than the

difference resulting from the 2-DPMH . This will give us a 3-DPMH if we

have a 2-DPMH with local property. We constructed a two-pass 3-DPMH

by using a 2-DPMH, which is very similar to the one constructed in [17, 18].

However, in these papers, the local property is not fully exploited. Following

the same paradigm, one can obtain q-DPMH for all q > 3.

For the second result, both construction ideas are crucial on a greedy

strategy. For a binary vector, first we use the largest number n to represent

1 and the smallest number to represent 0 for the first bit. For the second bit,

we use the available largest number to represent 1 and the available smallest

number to represent 0, i.e. if the first and second bit is one, then we use the

largest value n to represent the first bit and second largest value n − 1 to

represent the second bit. The other bits can be determined one by one. Thus

each value of permutation only depends on the prefix of the vector, and then

it gives the largest distance with a greedy strategy and it can be decoded in

linear time.
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1.3 Notations

Let [n] = {1, · · · , n}, [m · · ·n] = {m, m+1, · · · , n}, for m < n. For a function

f , let f(S) denote the union of f(s) for all s ∈ S. Let δ : Zq×Zq → {0, 1} be

the function defined by δ(a, b) = 1 if a �= b and 0 otherwise. Let Sn denote

the set of all permutations of [n] and Zn
q denote the set of all q-ary vectors

of length n. For any π ∈ Sn and i ∈ [n], π−1(i) denotes the position of i in

π, i.e. if π(j) = i then π−1(i) = j. Let idn denote the identity permutation

in Sn, i.e. idn = (1, 2, · · · , n). For any x ∈ Zn
2 , we use x[i..j] to denote the

subvector (xi, · · · , xj) for any i < j. For any π ∈ Sn, we use π[i..j] to denote

the partial permutation (πi, · · · , πj) for any i < j. The Hamming distance

dH(a, b) between two n-tuples a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) is

the number of positions where they differ, i.e. dH(a, b) = |{j : aj �= bj}|. The

l∞-norm distance of two permutations is d∞(π, σ) = max
j
|πj − σj |.

Define Vf(n, d) = |{π ∈ Sn : df(id, π) ≤ d}| to be the size of a sphere

with center id ∈ Sn and radius d, where f is any metric function of Sn. If f is

right-invariant, i.e., df(π1, π2) = df(π1σ, π2σ) for all σ then for any center π

and fixed radius d, the size of a sphere is the same, i.e. |{π ∈ Sn : df(σ, π) ≤
d}| = {π ∈ Sn : df(id, πσ−1) ≤ d}| = Vf (n, d). Let (n, d) q-ary code be a

code over Zn
q with minimum distance d. Let (n, d)-PA with metric f be a

permutation array over Sn with minimum distance d based on metric f . Let

Aq(n, d) denote the maximum size among all (n, d) q-ary code and Pf (n, d)

denote the maximum size among all (n, d)-PA with metric f . A mapping

F : Zn1
q → Sn2 is a q-ary distance-preserving mappings under metric f (q-

DPMf ), if for any x, y ∈ Zn1
2 , df(F (x), F (y)) ≥ dH(x, y). We usually omit q

for q = 2.



Chapter 2

Metrics and Lower Bound of

Permutation Arrays

In this chapter, we introduce several metrics, and derive the Gilbert like

lower bounds for permutation arrays under these metrics. To get the lower

bounds, we will need to estimate the size of a sphere for every metric.

2.1 Metrics on Sn

Given Sn and a metric function d : Sn × Sn → R+ satisfied d(π, π) = 0,

d(π, σ) = d(σ, π) and d(π, σ) ≤ d(π, η)+ d(η, σ) then (Sn, d) formed a metric

space. The metric function d is designed to measure the distance between

any two permutations in Sn. We call the metric function just metric.

Many metrics can be defined and discussed. We need two additional

restrictions. First is right invariant. In general, permutations are presented

as one to one mappings between two sets with the same cardinality. π :

A → B, |A| = |B| = n. If the distance will not change when changing the

labeling of A, then it’s right invariant, i.e. d(π1, π2) = d(π1σ, π2σ) for all

12



CHAPTER 2. Metrics and Lower Bound of PAs 13

σ. On the other hand, if the distance will not change when changing the

labeling of B, it’s left invariant, d(π1, π2) = d(σπ1, σπ2). By the definition,

given a right invariant metric d, it’s easy to construct another inverse metric

d′(π1, π2) = d(π−1
1 , π−1

2 ) which is left invariant. It’s because d′(π1, π2) =

d(π−1
1 , π−1

2 ) = d(π−1
1 σ, π−1

2 σ) = d((σ−1π1)
−1, (σ−1π2)

−1) = d′(σ−1π1, σ
−1π2).

So we only need to consider right invariant.

Next we introduce several different kinds of metrics. These metrics have

been used to measure the distance of permutations in various areas.

Define Vf(n, d) = |{π ∈ Sn : df(id, π) ≤ d}|, the size of a sphere with

center id ∈ Sn with radius d with respect to metric f . Note that all metrics

we discuss here are right-invariant, so spheres with the same radius have the

same sizes, i.e., given any σ ∈ Sn, |{π ∈ Sn : df(σ, π) ≤ d}| = {π ∈ Sn :

df(id, πσ−1) ≤ d}| = Vf (n, d).

The Hamming distance is a well-known and very popular metric. Orig-

inally it’s a natural design for string. It counts the number of positions for

which the corresponding symbols are different. Hamming distance is widely

used for binary vectors and q-ary vectors in coding theory category. The

Hamming distance between two permutations is dH(π, σ) = |{j : πj �= σj}|.
One may verify that it’s a bi-invariant metric easily. Next let’s consider

VdH
(n, d). Because |{π|dH(id, π) = d}| = (

n
d

)
(!d), where the subfactorial !d

is the number of distinct derangement on d elements, it implies VdH
(n, d) =

d∑
i=0

(
n
i

)
(!i). It’s well known the subfactorials satisfy the recurrence relations

!(n+1) = n · [!n+!(n−1)] and !n is equivalent to ning(n!
e
), where ning is the

nearest integer function, ning(r) = minargj{z ∈ Z : |j − r|}(half-integers

are rounded to even numbers to avoid ambiguous). Thus VdH
(n, d) ≤ 2

e
n!

(n−d)!

for d < n by
(

n
i−1

)
(!(i− 1)) ≤ 1

2

(
n
i

)
(!i) if d < n.
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There is another famous norm called l1-norm, and it’s defined as l1(π, σ) =
n∑

j=1

|πj − σj |. It’s not clear whether an explicit formula of Vl1(n, d) exist, but

the upper bound can be derived. By [10], Vl1(n, d) ≤ (2e(d+n)
n

)n. Note that

l1-norm is one of a metric family called lp-norm family. In general, lp-norm

is defined as lp(π, σ) = [
n∑

j=1

(|πj − σj |)p ]
1
p .

The l∞-norm of two permutations is d∞(π, σ) = max
j
|πj − σj |. It’s a

special case of lp-norm when p is infinitely large. We give two ways to derive

upper bounds for V∞(n, d). Note that there is a connection between V∞(n, d)

and permanent. Recall the definition of permanent for a matrix A, perA ≡
∑

π∈Sn

a1π1 · · ·anπn = |{π ∈ Sn : aiπi
= 1 for all i}|. Define A(n,d) to be an n×n

matrix, a
(n,d)
ij =




1 if |j − i| ≤ d

0 otherwise

And by the theorem 11.5 in [19], for an n× n (0, 1)-matrix A with ri ones in

row i, then per(A) ≤
n∑

i=1

(ri)!
1
ri . We can derive the upper bound of V∞(n, d)

as follows.

V∞(n, d) = |{π ∈ Sn : d∞(id, π) ≤ d}|
= |{π ∈ Sn : |πi − i| ≤ d for all i}|
= |{π ∈ Sn : a

(n,d)
iπi

= 1 for all i}|
= per(A(n,d))

≤ [(2d + 1)!]
n

2d+1

The second way to estimate V∞(n, d) is by a recurrence relation. Define

Aij to be the matrix obtained from A by deleting row i and column i. It’s well

known per(A) =
n∑

i=1

aij · per(Aij). By observing A(n,d), one can find A
(n,d)
11 =

A(n−1,d) and each entry in A
(n,d)
1k is upper bounded by the corresponding entry
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A =




1 1 0 0 0 0

1 1 1 0 0 0

0 1 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 1

0 0 0 0 1 1




Figure 2.1: A6×6 such that per(A) = V∞(6, 1)

of A(n−1,d) for 2 ≤ k ≤ 1 + d. Thus

V∞(n, d) = per(A(n,d))

=
1+d∑
k=1

per(A
(n,d)
1k )

≤ (1 + d)per(A(n−1,d))

≤ (1 + d)2per(A(n−2,d))

· · ·
≤ (1 + d)n−d−1per(A(d+1,d))

= (1 + d)n−d−1V∞(d + 1, d)

= (1 + d)n−d−1(d + 1)!

The second bound is better when d is large.

For other metrics, define I(π, σ) as the minimum number of pairwise

adjacent transpositions taking π−1 to σ−1. It has an equivalent definition

I(π, σ) ≡ |{(i, j) : πi < πj , σi > σj}|. Let π be a permutation ∈ Sn. If

i < j and πi > πj , the pair (i, j) is called an inversion of π. Note that

I(π, σ) equals the number of inversions of πσ−1. Let In(k) denotes the num-
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ber of permutations ∈ Sn with exactly k inversions. By [15], In(k) have

a recurrence relation In(k) = In−1(k) + In−1(k − 1) + In−1(k − 2) + .. +

In−1(k − n + 1) and then VI(n, d) = |{π ∈ Sn : I(π, id) ≤ d}| = |{π ∈
Sn : the number of inversions of π ≤ d}| =

d∑
k=0

In(k). Thus VI(n, d) can be

computed by dynamic programming in quadratic time.

Define T (π, σ) as the minimum number of transpositions required to bring

π to σ. This is a bi-invariant metric on Sn. It’s known T (π, σ) = n−
number of cycles in πσ−1 [9]. Let c(n, k) denote the number of permutations

π ∈ Sn with exactly k cycles. This number is called a signless Stirling

number of the first kind. c(n, k) satisfies the recurrence relation c(n, k) =

(n − 1)c(n − 1, k) + c(n − 1, k − 1) by [19]. Thus VT (n, d) =
d∑

i=0

c(n, n − i),

which can be computed by dynamic programming in quadratic time.

2.2 Lower Bound of PAs

Gilbert bound [13] is a lower bound on A(n, d). Similar idea can be applied

to permutation arrays.

Theorem 1. Pf(n, d) ≥ n!
Vf (n,d−1)

, where f is any metric function of Sn.

Proof. We give a greedy algorithm for producing a permutation array achiev-

ing the claimed bound.

(a) Start with any permutation in Sn.

(b) Choose a permutation whose distance is at least d to all previous chosen

permutations.

(c) Repeat step (b) as long as there is such a permutation.
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Let P be the permutation array produced by the above greedy algorithm.

Once the algorithm stops, it implies all permutations can be covered with

the |P | spheres centered at codewords in P . Thus n! ≤ |P | · Vd(n, d− 1)

By the upper bounds of VdH
(n, d), Vl1(n, d) and V∞(n, d), we have follow-

ing corollaries immediately.

Corollary 1. P∞(n, d) ≥ n!

[(2d−1)!]
n

2d−1
, and P∞(n, d) ≥ n!

dn−d(d)!

Corollary 2. Pl1(n, d) ≥ n!

( 2e(d+n)
n

)n

Corollary 3. PH(n, d) ≥ n!
2
e

n!
(n−d)!

for d < n.

We give the lower bounds for n = 16 with different metrics by following

table. One can find that the lower bound of Pl1(n, d) is very large since the

l1-norm has a wide range up to n2/2. By [5], one can construct an (n, d)

permutation array P with hamming distance such that |P | = A(16, d − 2).

Let U [A(16, d − 2)] denote the upper bound of A(16, d − 2). The lower

bound of PH(n, d) is much larger than A(16, d− 2). The large gap between

those two constructions inspires us to construct PAs directly without using

DPMs/DIMs. Note that the permutation array meets the lower bound of

PH(n, d) by Gilbert bound may not have efficient encoding/decoding algo-

rithm.

P (16, d) d = 3 4 5 6 7 8 9 10 11

l1 1549 · 108 261 · 108 56 · 108 1439 · 106 423 · 106 139 · 106 50 · 106 19 · 106 8 · 106

T 3122338440 92948453 4082716 250023 20679 2269 327 62 15

l∞ 4647716 72097 3570 480 102 30 12 5 3

Hamming 1729 · 108 168 · 108 1187378122 99721132 8972294 888754 97568 12013 168

U [A(16, d − 2)] 65536 32768 3276 2048 340 256 37 32 6

Table 2.1: Lower bounds of P (16, d) with different metrics



Chapter 3

DPMs from Zn
3 to Sn with

Hamming Distance

3.1 Construction of 3-DPMH

In this section, we give the construction of 3-DPMH . First of all, we show

the algorithm for input length 8n for any integer n ≥ 2. We call the algorithm

A8n. Then we extend A8n for all input length ≥ 16. Note that our approach

gives a framework for designing general q-DPMH . In this chapter, all addition

and substraction is operated in Z8n = [8n], that is, if a, b ∈ Z8n then the

output of a + b is a + b mod 8n if a + b mod 8n �= 0, 8n otherwise.

3.1.1 3-DPMH of length 8n for n ≥ 2

The 3-DPMH of length 8n (A8n) is shown in Figure 3.1. Algorithm A8n

consists of two passes: PASS 1 and PASS 2. The transition patterns of both

passes are illustrated in figures 3.2 and 3.3 respectively.

In figures 2(a) and 3(a), the thin lines represent the transpositions in the

first for-loop of both passes and the thick lines represent those transpositions

18
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Algorithm A8n:

Input: (x1, · · · , x8n) ∈ Z8n
3

Output: (π1, · · · , π8n) ∈ S8n

PASS 1 :

(π1
1 , π

1
2, · · · , π1

8n)← (1, 2, · · · , 8n);

for i = 0 to 4n− 1 do;

if x2i+1 = 1 then swap (π1
2i+1, π

1
2i+2);

for i = 0 to 4n− 1 do;

if x2i+2 = 1 then swap (π1
2i+2, π

1
2i+3);

PASS 2 :

(π1, π2, · · · , π8n)← (π1
1, π

1
2, · · · , π1

8n);

for i = 0 to n− 1 do;

if x8i+1 = 2 then swap (π8i+1, π8i+5);

if x8i+2 = 2 then swap (π8i+2, π8i+6);

if x8i+3 = 2 then swap (π8i+3, π8i+7);

if x8i+4 = 2 then swap (π8i+4, π8i+8);

for i = 0 to n− 1 do;

if x8i+5 = 2 then swap (π8i+5, π8i+9);

if x8i+6 = 2 then swap (π8i+6, π8i+10);

if x8i+7 = 2 then swap (π8i+7, π8i+11);

if x8i+8 = 2 then swap (π8i+8, π8i+12);

Output (π1, · · · , π8n).

Figure 3.1: 3-DPMH Algorithm A8n
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1
2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

2(a)

2k + 1 2k + 2 2k + 3 2k + 4

2(b)

2k + 1 2k + 2 2k + 3 2k + 4

2(c)

Figure 3.2: Transition patterns of PASS 1.
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1
2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

3(a)

π1
8k+i π1

8k+4+i π1
8k+8+i π1

8k+12+i

3(b)

Figure 3.3: Transition patterns of PASS 2. i ∈ {0, 1, 2, 3}



CHAPTER 3. DPMs from Zn
3 to Sn with Hamming Distance 22

in the second for-loop. Note that PASS 1 has the ”local” property which

is implicitly used in [17, 18]. Since all transpositions in a single for-loop

are independent and can be done simultaneously, the local property can be

observed in figure 3.2. Now we prove the distance preserving property of

A8n.

Theorem 2. A8n is a 3-DPMH for all n ≥ 2.

Proof. Given x ∈ Z8n
3 , let π = A8n(x) and π1 be the intermediate result after

PASS 1. First of all, for any fixed position i, we look into what possible

values πi and π1
i can be after running the corresponding pass of A8n.

Claim 1. If i is even, the possible values of π1
i are in {i−1, i, i+1, i+2}. If i is

odd, the possible values of π1
i are in {i−2, i−1, i, i+1}. If i = 8k+4+j for j ∈

{0, 1, 2, 3}, the possible values of πi are in {π1
i−4, π

1
i , π

1
i+4, π

1
i+8}. If i = 8k +

8 + j for j ∈ {0, 1, 2, 3}, the possible values of πi are in {π1
i−8, π

1
i−4, π

1
i , π

1
i+4}.

Proof. First consider i is even. Let i = 2k + 2. Observe figure 3.2(b), the

possible values of π1
2k+2 are {2k + 1, 2k + 2, 2k + 3, 2k + 4}. For example,

if x2k+1 �= 1, x2k+2 = 1 and x2k+3 = 1 (transition indicated in dotted line),

π1
2k+2 = 2k + 4. If only x2k+2 = 1(normal line), π1

2k+2 = 2k + 3. If only

x2k+1 = 1(dashed line), π1
2k+2 = 2k +1. If all inputs are zero, π1

2k+2 = 2k +2.

Similarly for odd i, the transition pattern is shown in figure 3.2(c). All cases

are summarized in Table 3.1.

In the table, each row stands for the input and the corresponding result

after swap operations. For example, in row 7, if x2k+1 = x2k+2 = 1 and

x2k+3 �= 1, then π1
2k+2 = 2k + 3 and π1

2k+3 = 2k + 1. Thus by a similar obser-

vation from figure 3.3, we summarize the possible values of πi’s in Table 3.2,

which is very similar to Table 3.1 if we replace 1 by 2. The claim is true by

Table 3.1 and Table 3.2.
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x2k+1 x2k+2 x2k+3 π1
2k+2 π1

2k+3

1 - - - 2k+2 2k+3

2 - - 1 2k+2 2k+4

3 - 1 - 2k+3 2k+2

4 - 1 1 2k+4 2k+2

5 1 - - 2k+1 2k+3

6 1 - 1 2k+1 2k+4

7 1 1 - 2k+3 2k+1

8 1 1 1 2k+4 2k+1

Table 3.1: Possible values of π1
j after PASS 1 for k ∈ {0, 1, · · · , 4n− 1}.

Given x, y ∈ {0, 1}8n, let A8n(x) = π, A8n(y) = τ , and π1 and τ 1 are the

intermediate result after PASS 1 respectively.

Claim 2. If i and j are both even (or odd) and |i− j| ≥ 4, then π1
i �= τ 1

j .

Proof. Assume that i and j are even. By Claim 1, the possible values of π1
i are

in {i−1, i, i+1, i+2} and the possible values of τ 1
j are in {j−1, j, j+1, j+2}.

Clearly |i − j| ≥ 4 implies that π1
i �= τ 1

j . Similarly the claim holds for the

case when i and j are odd.

The following claim shows that if the values of the i-th position of π

and τ are different after running PASS 1, the difference will be kept (or the

difference may be propagated to different position) after running the whole

algorithm.

Claim 3. If π1
i �= τ 1

i and πj = π1
i for any i and j, then πj �= τj.
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x8k+i x8k+4+i x8k+8+i π8k+4+i π8k+8+i

1 - - - π1
8k+4+i π1

8k+8+i

2 - - 2 π1
8k+4+i π1

8k+12+i

3 - 2 - π1
8k+8+i π1

8k+4+i

4 - 2 2 π1
8k+12+i π1

8k+4+i

5 2 - - π1
8k+i π1

8k+8+i

6 2 - 2 π1
8k+i π1

8k+12+i

7 2 2 - π1
8k+8+i π1

8k+i

8 2 2 2 π1
8k+12+i π1

8k+i

Table 3.2: Possible values of πj after PASS 2 for k ∈ {0, 1, · · · , n − 1} and

i ∈ {1, 2, 3, 4}.

Proof. Note that πj = π1
i implies that 4|(j − i) since πj must be one of

the elements in {π1
i−8, π

1
i−4, π

1
i , π

1
i+4, π

1
i+8} by Claim 1. Similarly assume that

τj = τ 1
i′ , then we have 4|(j − i′). Thus, 4|(i − i′). If |i − i′| ≥ 4, then we

obtain π1
i �= τ 1

i′ by Claim 2. Therefore, in this case, πj �= τj . On the other

hand, if |i − i′| < 4, it implies i = i′. By assumption, we have π1
i �= τ 1

i and

this also implies πj �= τj .

Definition 1. For any i �= j, we say that position i can be covered with

position j if δ(xi, yi) > δ(πi, τi) and δ(xj , yj) < δ(πj , τj), where δ(a, b) = 1

if a �= b and 0 otherwise. (that is, xi �= yi, πi = τi, xj = yj, and πj �= τj).

Furthermore, we say that position i is self-covered if δ(xi, yi) ≤ δ(πi, τi).

For each i with δ(xi, yi) > δ(πi, τi), it needs some other position to make

up the decrease of distance at position i in order to satisfy the distance

preserving property.
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Definition 2. Let NSC be the set of positions not self-covered, that is,

NSC= {i ∈ [n] : δ(xi, yi) > δ(πi, τi)}. A covering pattern is a function g :

[n]→ [n] such that for any i ∈ NSC, g(i) covers i and for any i ∈ [n]\NSC,

g(i) = i.

The following is our main claim which is crucial to show the distance-

preserving property of algorithm A8n.

Claim 4. There exists a covering pattern g such that for any position j ∈NSC,

g(j) ∈ {j − 1, j − 4, j − 5, j − 8, j − 9}. Furthermore, |g−1(k) ∩ {k + 1, k +

4, k + 5, k + 8, k + 9}| ≤ 1 for any position k.

Proof. For any x and y ∈ {0, 1}8n, we define such a covering pattern g by

analyzing every possible position j ∈ [n] and setting g(j) case by case.

Case 1 : [j with xj = yj ] It implies that δ(xj , yj) = 0, and it is always

true that δ(πj, τj) ≥ δ(xj , yj). So j is self-covered. In this case,we can set

g(j) = j.

Case 2 : [j with xj �= yj and one of xj and yj is 2] W.L.O.G., we may

assume that xj = 2 and yj �= 2.

• Case 2-1: [j = 8k + 4 + i for some k ∈ {0, 1, · · · , n − 1} and i ∈
{1, 2, 3, 4}] Observe that in Table 3.2, under the case condition, the

possible values of πj are in {π1
8k+8+i, π

1
8k+12+i} and the possible values of

τj are in {τ 1
8k+i, τ

1
8k+4+i}. Note that {π1

8k+8+i, π
1
8k+12+i}∩{τ 1

8k+i, τ
1
8k+4+i} =

∅ by Claim 2. Thus, πj �= τj . So j is self-covered. In this case, we set

g(j) = j.

• Case2-2: [j = 8k+8+i for some k ∈ {0, 1, · · · , n−1} and i ∈ {1, 2, 3, 4}]
In this case, the possible values of πj are in {π1

8k+i, π
1
8k+4+i, π

1
8k+12+i}
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and the possible values of τj are in {τ 1
8k+i, τ

1
8k+4+i, τ

1
8k+8+i}. Assume

that πj = π1
j1 and τj = τ 1

j2. If j1 �= j2, then |j1 − j2| ≥ 4 and πj �= τj

by Claim 2. I.e., j is self-covered. In this case, set g(j) = j. On the

other hand, if j1 = j2, then it must be the cases in row 3 and 4 (i.e.

j1 = j2 = 8k + 4 + i) or in rows 7 and 8 (i.e. j1 = j2 = 8k + i) of

Table 3.2. In both cases, observe that x8k+4+i and y8k+4+i must be 2

and π8k+4+i = π1
8k+12+i and τ8k+4+i = τ 1

8k+8+i. By Claim 2, π8k+4+i �=
τ8k+4+i. Note that it’s still possible πj �= τj; i.e. j is self-covered, and

we can simply set g(j) = j. So if πj �= τj , then set g(j) = j, else

j = 8k + 8 + i can be covered with position j − 4 = 8k + 4 + i and we

set g(j) = j − 4.

For convenience, we can let g(j) = j for all j by default. If j is not

self-covered, then we can set g(j) to be other value. In other words, we reset

g(j) whenever necessary.

π8k−4+i π8k+i π8k+4+i π8k+8+i

Figure 3.4: Possible final positions of π1
8k+i, i ∈ {0, 1, 2, 3}.

Case 3 : [j with xj �= yj and xj , yj ∈ {0, 1}] In this case, W.L.O.G. we

may assume xj = 1 and yj = 0. For convenience, we use Table 3.3 to show

that the possible positions of π1
8k+i and π1

8k+4+i. For example, row 7 means

that when x8k−4+i = 2, x8k+i = 2 and x8k+4+i �= 2, then after running PASS
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x8k−4+i x8k+i x8k+4+i π8k−4+i π8k+i π8k+4+i π8k+8+i

1 - - - π1
8k+i π1

8k+4+i

2 - - 2 π1
8k+i π1

8k+4+i

3 - 2 - π1
8k+4+i π1

8k+i

4 - 2 2 π1
8k+4+i π1

8k+i

5 2 - - π1
8k+i π1

8k+4+i

6 2 - 2 π1
8k+i π1

8k+4+i

7 2 2 - π1
8k+4+i π1

8k+i

8 2 2 2 π1
8k+4+i π1

8k+i

Table 3.3: Possible final positions of π1
8k+i and π1

8k+4+i

2, π1
8k+i will appear in position 8k+4+ i (figure 3.4: dashed line) and π1

8k+4+i

in position 8k − 4 + i.

• Case 3-1: [π1
j �= τ 1

j and j = 8k + i for some k ∈ {0, 1, · · · , n − 1} and

i ∈ {1, 2, 3, 4}] Note that xj �= 2. By Table 3.3, π1
8k+i can be in position

either 8k+i or 8k−4+i. If π8k+i = π1
8k+i, then π8k+i �= τ8k+i by Claim 3.

Thus, j is self-covered and we set g(j) = j. Similarly it applies to the

case when τ8k+i = τ 1
8k+i. The rest of this case is that both π1

8k+i and

τ 1
8k+i are in position 8k − 4 + i. When this happens, it implies that

xj−4 = yj−4 = 2 by observing Table 3.3 and we have π8k−4+i = π1
8k+i

and τ8k−4+i = τ 1
8k+i. By assumption that π1

8k+i �= τ 1
8k+i, we conclude

that j can be covered with j − 4. In this case, set g(j) = j − 4, if

πj = τj .

• Case 3-2: [π1
j �= τ 1

j and j = 8k+4+ i for some k ∈ {0, 1, · · · , n−1} and

i ∈ {1, 2, 3, 4}] Again by observing Table 3.3 if xj �= 2 and yj �= 2, then



CHAPTER 3. DPMs from Zn
3 to Sn with Hamming Distance 28

π1
8k+4+i and τ 1

8k+4+i have three possible final positions i.e., 8k + 4 + i,

8k + i, and 8k − 4 + i. We divide the analysis into three subcases.

– Subcase 3-2-I: [π1
8k+4+i or τ 1

8k+4+i are in position 8k+4+i] W.L.O.G.

we assume that π1
8k+4+i appears in position 8k+4+i, i.e. π8k+4+i =

π1
8k+4+i. By the assumption that π1

8k+4+i �= τ 1
8k+4+i, we obtain

π8k+4+i �= τ8k+4+i by Claim 3. Thus j = 8k + 4 + i is self-covered

and set g(j) = j by default.

– Subcase 3-2-II: [π1
8k+4+i or τ 1

8k+4+i are in position 8k+ i] W.L.O.G.

we assume that π1
8k+4+i appears in position 8k + i, i.e. π8k+i =

π1
8k+4+i. We can assume that τ8k+4+i �= τ 1

8k+4+i, otherwise it has

been done in Subcase 3-2-I. By Claim 3, it’s clear that π8k+i �=
τ8k+i. In this subcase since π8k+4+i �= π1

8k+4+i, τ8k+4+i �= τ 1
8k+4+i

and both x8k+4+i and y8k+4+i are not equal to 2, it must be the

cases in row 3 or row 7 of Table 3.3. In both cases we have

x8k+i = y8k+i = 2. Thus j can be covered with j − 4 and we set

g(j) = j − 4, if πj = τj .

– Subcase 3-2-III: [Both π1
8k+4+i and τ 1

8k+4+i are in position 8k−4+i]

I.e. π8k−4+i = π1
8k+4+i and τ8k−4+i = τ 1

8k+4+i. Clearly π8k−4+i �=
τ8k−4+i by the assumption of Case 3-2 that π1

8k+4+i �= τ 1
8k+4+i.

Again, by observing Table 3.3, it must be the case that x8k−4+i =

y8k−4+i = 2 and x8k+i = y8k+i = 2. Thus j can be covered with

j − 8 and we set g(j) = j − 8, if πj = τj .

Next, we deal with the case that π1
j = τ 1

j and xj , yj ∈ {0, 1} with

xj �= yj. By observing Table 3.1, in this case, j must be odd, and in

rows 3 and 4 (i.e. π1
2k+3 = τ 1

2k+3 = 2k + 2) or in rows 7 and 8 (i.e.

π1
2k+3 = τ 1

2k+3 = 2k + 1) in Table 3.1. Observe that xj−1 = yj−1 = 1
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and π1
j−1 �= τ 1

j−1 in these cases. We divide the analysis into two cases.

• Case 3-3: [π1
j = τ 1

j and j = 8k + i for some k ∈ {0, 1, · · · , n − 1} and

i ∈ {3, 5}] Note that xj �= yj. From the above discussion, we know

that xj−1 = yj−1 = 1 and π1
j−1 �= τ 1

j−1. The possible final positions

of π1
j−1 and τ 1

j−1 are j − 1 and j − 5 by observing Table 3.3. Thus,

there are the following three cases: (1) πj−5 = π1
j−1 and τj−1 = τ 1

j−1

(or symmetrically πj−1 = π1
j−1 and τj−5 = τ 1

j−1); (2)πj−1 = π1
j−1 and

τj−1 = τ 1
j−1 and (3) πj−5 = π1

j−1 and τj−5 = τ 1
j−1. For (1), by Claim 3,

πj−1 �= τj−1. Thus, j can be covered with position j − 1 and we set

g(j) = j − 1. For (2), it is obvious that j can be covered with position

j − 1 and we set g(j) = j − 1. For (3), note that xj−5 = yj−5 = 2 by

observing Table 3.3. Thus j can be covered with position j− 5 and we

set g(j) = j − 5.

• Case 3-4: [π1
j = τ 1

j and j = 8k + 4 + i for some k ∈ {0, 1, · · · , n − 1}
and i ∈ {3, 5}] Again we have xj−1 = yj−1 = 1 and π1

j−1 �= τ 1
j−1. By

observing Table 3.3, the possible final positions of π1
j−1 and τ 1

j−1 are

j − 1, j − 5, and j − 9. If one of the final positions of π1
j−1 and τ 1

j−1

is j − 1, then j can be covered with position j − 1 by Claim 3 and we

can set g(j) = j− 1. Suppose that one of final positions is j − 5. With

the same argument as in Subcase 3-2-II, j can be covered with position

j − 5 and we can set g(j) = j − 5. Finally, suppose that both the final

positions are j − 9. With the same argument as of Subcase 3-2-III, j

can be covered with position j − 9 and we can set g(j) = j − 9.

By the above analysis, we can set up a covering pattern g such that

g(j) = j if position j is self-covered and g(j) ∈ {j−1, j−4, j−5, j−8, j−9}
for each j ∈ NSC. Furthermore, we show that |g−1(k) ∩ {k + 1, k + 4, k +
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5, k + 8, k + 9}| ≤ 1 for any position k. We illustrate this in Table 3.4.

covered case necessary condition

g(k + 4) = k xk = yk = 2

xk+4 �= yk+4

xk = yk = 2

g(k + 8) = k xk+4 = yk+4 = 2

xk+8 �= yk+8

g(k + 1) = k xk = yk = 1

xk+1 �= yk+1

xk = yk = 2

g(k + 5) = k xk+4 = yk+4 = 1

xk+5 �= yk+5

xk = yk = 2

g(k + 9) = k xk+4 = yk+4 = 2

xk+8 = yk+8 = 1

xk+9 �= yk+9

Table 3.4: Necessary Conditions for Position Covering

In Table 3.4, we list the necessary conditions for the covering pattern g.

Note that those conditions are all disjoint. This implies that g−1(k) contains

at most one position in {k+1, k+4, k+5, k+8, k+9} Therefore we complete

the proof of Claim 4.

Recall that NSC= {i ∈ [n] : δ(xi, yi) > δ(πi, τi)}. Based on Claim 4, we

show that g on NSC is a one-to-one function.

Claim 5. Let g be the covering pattern obtained in Claim 4. Then g :
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NSC → [n] is a one-to-one function and g(NSC) ∩NSC = ∅, and hence

|g(NSC)| = |NSC|.

Proof. Assume that g(i) = g(h) = j. Thus we have j ∈ {i−1, i−4, i−5, i−
8, i−9}∩{h−1, h−4, h−5, h−8, h−9}. If i �= h, then |g−1(j)∩{j +1, j +

4, j +5, j +8, j +9}| ≥ 2 since i and h are both in the intersection. However,

this is impossible by Claim 4. Thus, i = h and hence g is one-to-one. By

Table 3.4, if k covers some other position, then xk = yk. By definition, if

k can be covered with some other position, then xk �= yk. Thus it implies

g(NSC)∩NSC = ∅. Since g is one-to-one, we have |g(NSC)| = |NSC|.

Now we show the distance-preserving property of A8n. Note that for any

i ∈ NSC, δ(xi, yi) = 1 and δ(πi, τi) = 0. Also for any i ∈ g(NSC), we have

δ(xi, yi) = 0 and δ(πi, τi) = 1. Thus
∑

i∈NSC δ(xi, yi) +
∑

i∈g(NSC) δ(xi, yi) =
∑

i∈NSC δ(πi, τi) +
∑

i∈g(NSC) δ(πi, τi) by Claim 5. Thus, we have

dH(x, y) =
8n∑
i=1

δ(xi, yi)

=
∑

i∈NSC∪g(NSC)

δ(xi, yi) +
∑

i/∈NSC∪g(NSC)

δ(xi, yi)

≤
∑

i∈NSC∪g(NSC)

δ(πi, τi) +
∑

i/∈NSC∪g(NSC)

δ(πi, τi)

=
8n∑
i=1

δ(πi, τi) = dH(π, τ).

This completes the proof of Theorem 2.

3.1.2 3-DPMH for input length ≥ 16

In this section, we modify our algorithm A8n such that new algorithm can

be applied to any input length at least 16. To achieve this goal, we need
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to show another property of algorithm A8n. As in the previous section, let

π = A8n(x) and π1 be the intermediate result after PASS 1.

Lemma 1. For any i ∈ {1, 2, · · · , 8n}, πi �= i− 3.

Proof. By way of contradiction, suppose that there is i such that πi = i− 3.

Assume that πi = π1
j = i − 3 for some j. j must satisfy 4|(i − j). By the

structure of PASS 1, (i− 3)− 2 ≤ j ≤ (i− 3) + 2. Thus, it must be the case

that j = i− 4, that is πi = π1
i−4 = i− 3. If πi = π1

i−4, then we have xi−4 = 2.

However, if π1
i−4 = i − 3, then we have xi−4 = 1 by observing Table 3.1.

Hence, we get a contradiction.

Now we show the 3-DPMH A8n+k as in Figure 3.5.

Algorithm A8n+k (8n ≥ 16 , 1 ≤ k ≤ 7) :

Input: (x1, · · · , x8n+k) ∈ Z8n+k
3

Output: (π1, · · · , π8n+k) ∈ S8n+k

(π1, · · · , π8n)← A8n(x1, x2 · · · , x8n);

(π8n+1, · · · , π8n+k)← (8n + 1, · · · , 8n + k);

for i = 1 to k do;

if x8n+i = 1 then swap (π8n+i, ππ−1(i−3));

if x8n+i = 2 then swap (π8n+i, πi);

Figure 3.5: 3-DPMH Algorithm A8n+k for k ∈ [7]

We prove its correctness in the following theorem.

Theorem 3. A8n+k : Z8n+k
3 → S8n+k is a 3-DPMH for all n ≥ 2 and

k ∈ {1, · · · , 7}.



CHAPTER 3. DPMs from Zn
3 to Sn with Hamming Distance 33

Proof. Given two inputs (x, w), (y, z) ∈ Z8n
3 ×Zk

3 , suppose that π = A8n+k(x, w)

and τ = A8n+k(y, z). Let wi and zi denote the first i symbols of w and z

respectively. Let πi and τ i be the permutations in S8n+i obtained by run-

ning the i-th iteration in the for loop when the inputs are (x, w) and (y, z)

respectively. It suffices to prove the following claim.

Claim 6. dH((x, wi), (y, zi)) ≤ dH(πi, τ i) for any i ∈ {0, · · · , k}.

Proof. We prove this claim by induction on i. It holds trivially for i = 0

since we have dH(x, y) ≤ dH(A8n(x), A8n(y)) = dH(π0, τ 0). For the inductive

step, suppose that dH(x, y) + dH(wi−1, zi−1) ≤ dH(πi−1, τ i−1). We divide the

analysis into the following cases.

• Case [wi = zi] : The claim holds trivially in this case since both swap

operations in the ith iteration are the same.

• Case [wi �= zi and one of them is 0] : W.L.O.G. we assume that wi = 0.

In this case we have πi
8n+i = 8n + i, πi

[1..8n+i−1] = πi−1 and τ i
8n+i equals

to either i − 3 or τ i−1
i . Thus we have δ(πi

8n+i, τ
i
8n+i) = 1. W.L.O.G.,

we assume that τ i
8n+i = τ i−1

i and hence τ i
i = 8n + i. So δ(πi

i, τ
i
i ) = 1.

Also note that τ i
t = τ i−1

t for any t ∈ [8n + i − 1]\{i}. So we have

dH((x, wi), (y, zi)) ≤ dH(πi, τ i).

• Case [wi �= zi, and wi, zi ∈ {1, 2}] : W.L.O.G. we assume that wi = 1

and zi = 2. In this case, πi
8n+i = i − 3 and τ i

8n+i = τ i−1
i = τi. By

Lemma 1, we know that π−1(i − 3) �= i and τi �= i − 3. Now it is

easy to check dH(πi, τ i) = dH(πi−1, τ i−1) + 1. Hence we also have

dH((x, wi), (y, zi)) ≤ dH(πi, τ i).

Thus Theorem 3 follows from Claim 6.
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From Theorem 2 and Theorem 3, we give the first explicit construction

of 3-DPMH .

Corollary 4. There exists an explicit construction of 3-DPMH from Zn
3 to

Sn for any n ≥ 16.

Note that the above construction can be applied to the case when q ≥ 3.

However, for different q, we need a different version of lemma 1 in order to

obtain an explicit construction of q-DPMH .

3.2 Construction of PAs with Hamming Dis-

tance

As shown in [6] and [4], we know that distance-increasing mappings are quite

helpful for constructing permutation arrays. Similarly we can make use of

3-DPMH to construct permutation array with hamming distance. In this

section we introduce the construction and the corresponding encoding and

decoding algorithms.

Theorem 4. For all N ≥ 16 and d ≤ N , suppose C is an (N, d) ternary

code. Then there is an (N, d) permutation array P with hamming distance

and the same cardinality as C. If C has an efficient encoding/decoding algo-

rithm pair, then there is an efficient encoding/decoding algorithm pair for P .

Furthermore, if the decoding algorithm of C can correct up to e errors, then

the decoding algorithm of P can decode correctly when the corrupted codeword

π′ satisfying dH(π, π′) ≤ e/4− 2, for some codeword π ∈ P .

Proof. First note that C may not be a linear code. It can be any code over

ZN
3 . Let N = 8n + k, n ≥ 2 and 0 ≤ k ≤ 7. By Theorem 3 and n ≥ 2, we
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have a distance-preserving mapping A8n+k : ZN
3 → SN . It is easy to see that

A8n+k(C) is a permutation array of length N with minimum distance d. Let

P be A8n+k(C) and so |P | = |A8n+k(C)| = |C|.

Next consider the encoding issue. If C has an efficient encoding algorithm

E : Msg → ZN
3 , where Msg is any arbitrary message space with size equal

to |C|. In particular, Msg usually is Z
log|C|
2 or Z

log3|C|
3 when using ternary

code. Let EP = A8n+k ◦ E, then EP : Msg → SN is an efficient encoding

algorithm for P because E and A8n+k are both efficient.

message m ∈Msg codeword x ∈ C permutation π ∈ P

m̂ ∈ Msg x̂ ∈ ZN
3 receive π′ ∈ SN

E A8n+k

A−1
8n+kD

channel

Figure 3.6: Construction of permutation array with 3-DPMH

Finally consider the decoding issue. If C has an efficient decoding al-

gorithm D : ZN
3 → C to correct up to e errors, i.e. for any codeword

x ∈ C , and a corrupted codeword y ∈ ZN
3 with dH(x, y) ≤ e, then

D(y) = x. Let π = A8n+k(x) ∈ P and π′ be a corrupted permutation

satisfying dH(π, π′) = d. Without decoding π′ to π directly, we design an

algorithm A−1
8n+k which compute the inversion of A8n+k. If we can bound

dH(A−1
8n+k(π

′), x) by dH(π, π′), then we can decode P by combining A−1
8n+k

and D. We will describe how to do that in the rest of this proof.

To understand the decoding algorithm, let’s give the idea first. Note that
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A8n+k is based on A8n and then handle the last k positions. We consider the

inversion of A8n first. The idea is based on the proof of lemma 1. In the

lemma, we prove for any i, πi �= i − 3 by checking the path of symbol i− 3

and derive a contradiction on the value of xi−4. In general if the value of

πi = t is given, we can determine the path of symbol t and the values of four

positions of x. For example, given π5 = 12, the path of symbol 12 can be

determined as in the figure below, where symbol 12 goes to position 13 in

PASS 1 and goes to position 9 and then 5 in PASS 2. Furthermore, we can

determine that x11 �= 1, x12 = 1, x5 = 2 and x9 = 2 by Tables 3.5 and 3.6.

125 9 13

Figure 3.7: The unique path of symbol 12, given π5 = 12.

We give Tables 3.5 and 3.6. for each possible value of πi. For example,

given πi = i + 7, i mod 8 ∈ {5, 6, 7, 8} and i is odd(the case π5 = 12). In the

gray area in Table 3.6, it implies that πi = π1
i+8 , π1

i+8 = i+7 and determines

the values of four positions of x, i.e., xi = 2, xi+4 = 2, xi+6 �= 1 and xi+7 = 1.

One can verify each entry in the both tables by checking algorithm A8n. Note

that the tables give some entries, whcih are not applicable(n.a.) since under

our construction certain positions in a permutation will avoid some values.

Checking each position of π, we can determine all the values of xi, so we

can compute the inversion of A8n. Then we consider A−1
8n+k. If given πi = t

where i ∈ [8n+1, 8n+k], then we set xi = 0 if πi = i, xi = 1 if πi = i−3, and
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i = 8k + 8 + j, j ∈ {1, 2, 3, 4}, i ∈ [n], k ∈ {0, n
8
− 1}

i is odd i is even

πi πi

π1
i−8

xi−8 = 2,

xi−4 = 2

i− 10 xi−10 = 1, xi−9 = 1 i− 9 xi−9 = 1, xi−8 �= 1

i− 9 xi−10 �= 1, xi−9 = 1 i− 8 xi−9 �= 1, xi−8 �= 1

i− 8 xi−9 �= 1, xi−8 �= 1 i− 7(n.a)

i− 7 xi−9 �= 1, xi−8 = 1 i− 6(n.a.)

π1
i−4

xi−8 �= 2,

xi−4 = 2

i− 6 xi−6 = 1, xi−5 = 1 i− 5 xi−5 = 1, xi−4 �= 1

i− 5 xi−6 �= 1, xi−5 = 1 i− 4 xi−5 �= 1, xi−4 �= 1

i− 4 xi−5 �= 1, xi−4 �= 1 i− 3(n.a.)

i− 3(n.a.) i− 2(n.a.)

π1
i

xi−4 �= 2,

xi �= 2

i− 2 xi−2 = 1, xi−1 = 1 i− 1 xi−1 = 1, xi �= 1

i− 1 xi−2 �= 1, xi−1 = 1 i xi−1 �= 1, xi �= 1

i xi−1 �= 1, xi �= 1 i + 1 xi = 1, xi+1 �= 1

i + 1 xi−1 �= 1, xi = 1 i + 2 xi = 1, xi+1 = 1

π1
i+4

xi−4 �= 2,

xi = 2

i + 2 xi+2 = 1, xi+3 = 1 i + 3 xi+3 = 1, xi+4 �= 1

i + 3 xi+2 �= 1, xi+3 = 1 i + 4 xi+3 �= 1, xi+4 �= 1

i + 4 xi+3 �= 1, xi+4 �= 1 i + 5 xi+4 = 1, xi+5 �= 1

i + 5 xi+3 �= 1, xi+4 = 1 i + 6 xi+4 = 1, xi+5 = 1

Table 3.5: Path Table of πi , i = 8k + 8 + j, j ∈ {1, 2, 3, 4}
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i = 8k + 4 + j, j ∈ {1, 2, 3, 4}, i ∈ [n], k ∈ {0, n
8
− 1}

i is odd i is even

πi πi

π1
i−4

xi �= 2,

xi−4 = 2

i− 6 xi−6 = 1, xi−5 = 1 i− 5 xi−5 = 1, xi−4 �= 1

i− 5 xi−6 �= 1, xi−5 = 1 i− 4 xi−5 �= 1, xi−4 �= 1

i− 4 xi−5 �= 1, xi−4 �= 1 i− 3(n.a.)

i− 3(n.a.) i− 2(n.a.)

π1
i

xi �= 2,

xi−4 �= 2

i− 2 xi−2 = 1, xi−1 = 1 i− 1 xi−1 = 1, xi �= 1

i− 1 xi−2 �= 1, xi−1 = 1 i xi−1 �= 1, xi �= 1

i xi−1 �= 1, xi �= 1 i + 1 xi = 1, xi+1 �= 1

i + 1 xi−1 �= 1, xi = 1 i + 2 xi = 1, xi+1 = 1

π1
i+4

xi = 2,

xi+4 �= 2

i + 2 xi+2 = 1, xi+3 = 1 i + 3 xi+3 = 1, xi+4 �= 1

i + 3 xi+2 �= 1, xi+3 = 1 i + 4 xi+3 �= 1, xi+4 �= 1

i + 4 xi+3 �= 1, xi+4 �= 1 i + 5 xi+4 = 1, xi+5 �= 1

i + 5 xi+3 �= 1, xi+4 = 1 i + 6 xi+4 = 1, xi+5 = 1

π1
i+8

xi = 2,

xi+4 = 2

i + 6 xi+6 = 1, xi+7 = 1 i + 7 xi+7 = 1, xi+8 �= 1

i + 7 xi+6 �= 1, xi+7 = 1 i + 8 xi+7 �= 1, xi+8 �= 1

i + 8 xi+7 �= 1, xi+8 �= 1 i + 9 xi+8 = 1, xi+9 �= 1

i + 9 xi+7 �= 1, xi+8 = 1 i + 10 xi+8 = 1, xi+9 = 1

Table 3.6: Path Table of πi , i = 8k + 4 + j, j ∈ {1, 2, 3, 4}
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xi = 2 otherwise. If given πi = t where i ∈ [1, 8n] and t ∈ [8n + 1, 8n + k], it

implies πi must have been swapped with πt = t in the final stage of algorithm

A8n+k. Thus we can just swap the value of πi and πt first and then determine

x by the above approach.

We give the algorithm A−1
8n+k as follows.

Algorithm A−1
8n+k (8n ≥ 16 , k ∈ [0, 7]) :

(a) For all i in [1, k], check whether π8n+i is 8n + i or i − 3 or others,

and then assign the corresponding value 0, 1, or 2, to x8n+i respectively.

(b) For all i in [1, 8n], if it is larger than 8n, then swap (πi, ππi
).

(c) For each πi, i ∈ [1, 8n], let Bi is a bucket for index i. By the value

of i and πi, find the corresponding entries in Table 3.5 or Table 3.6.

If it is not in the tables or not applicable(n.a), then do nothing. Else

it will determine the values of four positions of x. Once we know

xi = b ∈ {1, 2} by checking the tables, put b to Bi. If xi �= b ∈ {1, 2},
then put 0 to Bi.

(d) Decide xi by a weighted majority vote. For each i in [1, 8n], check

Bi, ‘0’ gives half weight, ‘1’ and ‘2’ each gives weight 1, and assign xi be

the largest weighted value b ∈ {0, 1, 2}. If tie, choose the larger value.

Let us explain the algorithm A−1
8n+k. First using π8n+i to decide x8n+i for

all i ∈ [1, k]. One can verify that if π8n+k is not corrupted then x8n+k is

correct too. Next for i ∈ [1, 8n], if πi > 8n, it implies A8n+k swap πi and ππi
,
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and then we should swap them. Third, the bucket Bi is designed to collect

the vote (information) of xi. For each πi = t, one can determine the values

of four positions of x by checking Table 3.5 and Table 3.6. And if it gives

xi = b ∈ {1, 2} then puts b to Bi; if it gives xi �= b ∈ {1, 2} then puts ‘0’ to

Bi. For example, if π5 = 12, then it will put ‘2’ to B5 and B9, put ‘1’ to B12

and put ‘0’ to B11. Finally for each bucket Bi, make a weighted majority

vote to decide the value of xi. Because if it gives xi �= 1(or 2) then we puts

0 to bucket but the vote 0 does not guarantee xi is 0, thus we give 0 half

weight in the weighted majority vote. If tie, choose the larger value. Also we

give another version of algorithm A−1
8n+k in appendix A without table lookup.

Let’s give figure 3.8 to illustrate the weighted majority vote. Each π′

determine information in at most 4 positions of x. For each xi, there are four

positions of π′ determine information of xi if π′ is not corrupted, since xi

can be used to decide whether to swap two positions or not in PASS 1, and

to swap two positions or not in PASS 2. Thus it reveals some information

about xi by checking the path of those four symbols.
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Bucket x π′

B1 x1 π′
1

B2 x2 π′
2

B3 x3 π′
3

· · ·
· · ·
· · ·

B8 x8 π′
8

B9 x9 π′
9

· · ·
· · ·

B16 x16 π′
16

Figure 3.8: Weighted majority vote

The inverse algorithm A−1
8n+k works well if π is not corrupted. Let us

consider the corrupted π′. By Tables 3.5 and 3.6, each error will give us wrong

information in at most 4 positions of x, and also lose correct information in

at most 4 positions of x. It gives us a rough bound dH(A−1
8n+k(π

′), x) ≤
8 · dH(π, π′). Here we give a better bound by analyzing it more carefully.

Let π = A8n+k(x) be the correct codeword of x, and π′ be the corrupted

permutation.

Claim 7. dH(A−1
8n+k(π

′), x) ≤ 4 · dH(π, π′) + k

Proof. Let x′ = A−1
8n+k(π

′). First note |Bi| = 4 for all i ∈ [1, 8n] if π′ is not
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corrupted by figure 3.8. Furthermore it is easy to verify Bi = {2, 2, 0, 0} if

xi = 2, Bi = {1, 1, 0, 0} if xi = 1 and Bi = {0, 0, 0, 0} if xi = 0 . Observe that

adding any extra vote to Bi or taking any vote from Bi would not change the

result of the weighted majority vote. It implies that once the result of the

weighted majority vote is wrong, then it must have at least two wrong votes.

Each πi votes at most four times and it creates at most eight changes on the

buckets when πi is corrupted since a wrong vote can have two effects, i.e.,

removing a vote from a bucket and adding an extra vote to another bucket.

Let’s calculate the total influence of the corrupted positions.

Let dH(π[1,8n], π
′
[1,8n]) = d1, dH(π[8n+1,8n+k], π′

[8n+1,8n+k]) = d2, and d = d1+d2.

It’s clear dH(x[8n+1,8n+k], x
′
[8n+1,8n+k]) ≤ d2 because πi = π′

i implies xi = x′
i

for i ∈ [8n + 1, 8n + k]. For each πi �= π′
i where i ∈ [8n], by the above

observation, it makes at most 8/2 = 4 wrong decisions on the weighted

majority vote. For each i ∈ [8n] and πi = π′
i, if π′

i > 8n, even π′
i is not

corrupted, the corresponding π′
π′

i
could be corrupted already. Each corrupted

π′
π′

i
adds wrong information to at most 8 buckets. But there are at most d2

such π′
π′

i
. Thus dH(x[1,8n], x

′
[1,8n]) ≤ 4 ∗ (d1 + d2) = 4d. And then dH(x, x′) =

dH(x[1,8n], x
′
[1,8n]) + dH(x[8n+1,8n+k], x

′
[8n+1,8n+k]) ≤ 4d + k ≤ 4 · dH(π, π′) + k.

Let us return to decoding issue. Let DP = D ◦A−1
8n+k and d ≤ e/4− 2 be

the number of errors in π′. By Claim 7, dH(x, x′) ≤ 4d+k ≤ 4(e/4−2)+7 ≤
e. Thus DP (π′) = D(A−1

8n+k(π
′)) = D(x′) = x by the definition of D. We

conclude that the decoding algorithm is efficient because D and A−1
8n+k are

both efficient and can correct up to e/4− 2 errors.

Note that we not only consider the corrupted codeword is a permutation

π′ ∈ Sn, but also consider the corrupted codeword is an n-ary vector y ∈
{1, 2, · · · , n}n. The decoding scheme can also decode correctly when the
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corrupted codeword y satisfying dH(π, y) ≤ e/4 − 2, for some codeword

π ∈ P .

In most cases, we take n as a multiple of 8 and then the decoding algo-

rithm DP guarantees to correct up to e/4 errors. In particular, the decoding

algorithm can decode almost correctly as long as the errors does not exceed

e/4 too much.

3.3 Previous Result and Comparison

Recall that PH(n, d) denotes the maximal size among all permutation arrays

of length n and minimum distance d with hamming distance, and Aq(n, d)

the maximal size among all q-ary codes of length n and minimum distance

d.

Corollary 5. For all n ≥ 16 and d ≤ n, PH(n, d) ≥ A3(n, d).

Proof. Let C be the largest ternary code of length n with minimum distance

d. By the definition of A3(n, d), |C| = A3(n, d). By Theorem 4, we have an

(n, d) permutation array P with hamming distance of the same size as C.

Thus PH(n, d) ≥ |P | = |C| = A3(n, d).

Here we give some comparison between A(n, d−k) and A3(n, d) for k < d.

First of all, we need the well-known asymptotic Gilbert-Varshamov bound.

Fact 1. (Theorem 2.10.8 in [13]) A3(n, d) ≥ 3n(1−H3( d
n

)) for d ≤ 2n
3

and

sufficiently large n.

The q-ary entropy function is defined as Hq(x) = x logq(q−1)−x logq x−
(1− x) logq(1− x) for 0 < x ≤ 1.
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Thus for d ≤ 3n
5

, we get a lower bound of PH(n, d) = 3Ω(n). On the other

hand, A(n, d−k) ≤ 2n for any k. Thus, in this case, we significantly improve

the lower bounds by DIMs in [5].

Since the minimum input length of the known DIMH which increases

distance at least 2 is 16 (see [5]), we give a comparison between A(16, d− 2)

and A3(n, d) in Table 3.7. Where the lower bound of PH(16, d) we obtained

is much larger than the previous lower bound via DIMH . Furthermore, we

can decode the permutation arrays efficiently.

d 3 4 5 6 7 8 9 10 11 12 13 14

L[A3(16, d)] 1062882 216513 19683 6561 729 297 253 54 18 9 4 3

U [A(16, d − 2)] 65536 32768 3276 2048 340 256 37 32 6 4 2 2

Table 3.7: Comparison between A3(16, d) and A(16, d−2) where L[A3(16, d)]

stands for the lower bound of A3(16, d) as in [2] and U [A(16, d−2)] the upper

bound of A(16, d− 2) as in [1].



Chapter 4

Permutation Arrays with

l∞-Norm

In this chapter we give a construction of distance preserving mappings for

binary vectors to permutations with l∞-norm. It’s similar to the previous

chapter, first we give an algorithm to construct the DPM∞ and explain the

recurrence construction. Next we describe how to construct PAs by the

DPM∞ and introduce the encoding/decoding scheme of the PAs. Finally we

give a direct way to construct permutation arrays. It’s a general approach

to constructing PAs for any n and d without using DPM∞.

4.1 DPMs from Zn−1
2 to Sn with l∞-norm

Note that under l∞-norm, the maximum distance between two permutations

in Sn is at most n− 1. It implies that DPM∞ from Zn
2 to Sn does not exist.

So we consider DPM∞ from Zn−1
2 to Sn. We give an explicit algorithm to

implement a family of DPM∞ in the following figure.

Theorem 5. Bn is a DPM∞ from Zn−1
2 to Sn, for n ≥ 2.

45
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Algorithm Bn ( n ≥ 2 ):

Input: (x1, · · · , xn−1) ∈ Zn−1
2

Output: (π1, · · · , πn) ∈ Sn

let max = n; min = 1 ;

for i = 1 to n− 1 do

if xi = 1

then πi = max; max = max− 1 ;

else πi = min; min = min + 1 ;

πn = min ;

Output (π1, · · · , πn).

Figure 4.1: Algorithm Bn computes DPM∞ from Zn−1
2 to Sn

Proof. Given x �= y ∈ Zn−1
2 , let π = Bn(x) and σ = Bn(y). Assume k is the

first position where x and y differ, i.e. k = min{j ∈ [1, n − 1] : xj �= yj}.
W.L.O.G., let xk = 0 and yk = 1. Let k1 = |{i ∈ [1, k − 1] : xi = 0}| and

k2 = |{i ∈ [1, k − 1] : yi = 1}|. It’s clear k1 + k2 = k − 1, πk = k1 + 1 and

σk = n − k2 by observing algorithm Bn. By the definition of k, xi = yi for

i ∈ [1, k − 1]. Thus dH(x, y) ≤ (n − 1) − (k − 1) = (n − k2) − (k1 + 1) =

σk − πk ≤ l∞(σ, π). The first inequality holds because the length of x and y

is n− 1, and x and y have at least first k − 1 bits equal.

Observe that the algorithm gives a recursive construction for more general

DPM∞ or DIM∞. We define the general (n1, n2, k)-DIMs and the correspond-

ing algorithm C as follows.

Definition 3. Given n1, n2 ∈ N , k ∈ Z and d a distance metric, an

(n1, n2, k)-DIMd is a mapping f : Zn1
2 → Sn2 such that for any x, y ∈ Zn1

2 ,

x �= y, d(f(x), f(y)) ≥ dH(x, y) + k.
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Note that in the above definition n1 and n2 can be different, and k can

be negative to indicate the distance decreasing mappings. In our definition,

(n, n, 1)-DIMH is different from the (n,1)-DIM in [4]. (The latter relaxes

the inequality d(f(x), f(y)) ≥ dH(x, y) + k if d(f(x), f(y)) is already the

maximum distance, i.e, max
π,σ∈Sn

d(π, σ).)

Algorithm C:

Input: (x1, · · · , xn1+1) ∈ Zn1+1
2 , f is an (n1, n2, k)-DIM∞

Output: (π1, · · · , πn2+1) ∈ Sn2+1

if x1 = 0

then π1 = 1;

for i = 2 to n2 + 1 do πi = f(x[2,n2+1])i−1 + 1 ;

else π1 = n2 + 1;

for i = 2 to n2 + 1 do πi = f(x[2,n2+1])i−1 ;

Output (π1, · · · , πn2+1).

Figure 4.2: Algorithm C computes an (n1 + 1, n2 + 1, k)-DIM∞ with an

(n1, n2, k)-DIM∞

Theorem 6. Given an (n1, n2, k)-DIM∞, then an (n1 + 1, n2 + 1, k)-DIM∞

can be obtained by algorithm C.

Proof. Let f be an (n1, n2, k)-DIM∞. Suppose x �= y ∈ Zn1+1
2 and let π =

C(x) and σ = C(y). Note that n1 ≤ n2 − 1− k because n1 is the maximum

distance among Zn1
2 and n2− 1 is the maximum distance among Sn2 and the

existence of (n1, n2, k)-DIM∞ . Thus if x1 = 0 and y1 = 1, then dH(x, y) ≤
n1 + 1 ≤ n2 − k = d∞(σ, π)− k. The last equality holds because π1 = 1 and

σ1 = n2 + 1. It’s similar for x1 = 1 and y1 = 0. For the case x1 = 0 and
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y1 = 0, we have

d∞(σ, π) = max
i∈[2,n2+1]

(πi − σi) (∵ π1 = σ1 = 1)

= max
i∈[2,n2+1]

((f(x[2,n2+1])i−1 + 1)− (f(y[2,n2+1])i−1 + 1))

= max
i∈[1,n2]

(f(x[2,n2+1])i − f(y[2,n2+1])i)

= d∞(f(x[2,n2+1]), f(y[2,n2+1]))

Thus dH(x, y) = dH(x[2,n2+1], y[2,n2+1])≤ d∞(x[2,n2+1], y[2,n2+1])−k = d∞(π, σ)−
k. It’s similar for the case x1 = 1 and y1 = 1.

Repeat the above, we have the following corollary.

Corollary 6. Given an (n1, n2, k)-DIM∞, then (n1 +n, n2 +n, k)-DIM∞ can

be constructed for all n ∈ N .

In fact algorithm Bn is a special case of the recurrence construction with

a basis case (1, 2, 0)-DIM∞ which maps 0 ∈ Z1
2 to (12) ∈ S2 and 1 ∈ Z1

2 to

(21) ∈ S2. In general, to find a basis construction is a very time-consuming

job, since the search space of mapping : Zn1
2 → Sn2 is

(
n2!
2n1

)
, which can be

very large even for small n1 and n2. Once the basis construction is available,

Algorithm C will systematically generate larger constructions. We show

(4, 4,−1)-DIM∞ in Table 1, which can be found by back-tracking search.

4.2 Encoding and Decoding with PAs by DPM∞

Similar to the hamming distance metric, we can construct permutation array

with l∞-norm by DPM∞. We give the decoding algorithms in figure 4.4.

Theorem 7. Let C be an (n−1, d) binary code. Then there is an (n, d) per-

mutation array P with l∞ norm such that |P | = |C|. If C has efficient encod-
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x f(x) x f(x) x f(x) x f(x)

0000 1234 0001 1243 0010 1324 0011 1342

0100 1423 0101 1432 0110 2314 0111 2341

1000 2134 1001 2143 1010 3124 1011 3142

1100 3214 1101 3241 1110 2413 1111 2431

Table 4.1: f is a (4, 4,−1)-DIM∞.

ing/decoding algorithms, then P has efficient encoding/decoding algorithms.

Furthermore, if the decoding algorithm of C can correct up to e errors, then

the decoding algorithm of P can decode correctly when the corrupted codeword

π′ satisfying d∞(π, π′) ≤ e/2, for some codeword π ∈ P .

Proof. First note that C may not be a linear code. It can be any code over

Zn−1
2 . By Theorem 5, we have a DPM∞ Bn : Zn−1

2 → Sn. It is easy to see

that Bn(C) is a permutation array of length n with minimum distance d. Let

P be Bn(C) and so |P | = |Bn(C)| = |C|.
Next consider the encoding issue. Let E : Msg → Zn

2 be an efficient

encoding algorithm for C, where Msg is any arbitrary message space with

size equal to |C|. Typically, Msg can be Z
�log|C|�
2 , but we consider the general

case here. Let EP = Bn ◦ E, where Bn is a linear-time algorithm as in

figure 4.1. Then EP : Msg → Sn is an efficient encoding algorithm for P

because E and Bn are both efficient.

Finally consider the decoding issue. If C has an efficient decoding algo-

rithm D : Zn−1
2 → Msg, which can correct up to e errors, i.e., for any message

m ∈ Msg, and a corrupted codeword y ∈ Zn−1
2 with dH(E(m), y) ≤ e, then

D(y) = m. Let x = E(m) ∈ C, π = Bn(x) ∈ P and π′ ∈ Sn be a corrupted

permutation satisfying d∞(π, π′) ≤ d. The decoding idea is that first trans-
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message m ∈Msg codeword x ∈ C permutation π ∈ P

m̂ ∈ Msg (x̂, π̂), x̂ ∈ Zn
2 , π̂ ∈ P receive π′ ∈ Sn

BnE

DnD

channel

Figure 4.3: Encoding and decoding with DPM∞

form π′ to x̂, which is an estimation of x, and then use D to recover m with

x̂.

Note that π have a good property that if x[1, i− 1] is fixed then πi has

only two possible values. We state it formally in the following claim.

Claim 8. Let x ∈ Zn−1
2 and π = Bn(x). Assume there are t 0’s in x[1,i−1].

If xi = 0 then πi = t + 1 else πi = n− i + 1 + t.

Proof. Observe in algorithm Bn, max = n and min = 1 initially. In round j,

if xj = 0 then the value of min increases by 1, otherwise max decreases by

1. After the (i− 1)-st iteration, min = 1 + t and max = n− ((i− 1)− t) =

n− i+1+ t, where (i−1)− t is the number of 1’s in x[1,i−1]. Thus in the i th

iteration, If xi = 0 then πi = min = t + 1 else πi = max = n− i + 1 + t.

By claim 1, we can sequentially determine x̂i from π′
i by a very simple

rule. Initially π1 has two possible values, i.e., 1 or n. We decide x̂1 by which

value π′
1 is closer to. If π′

1 is closer to 1, we set x̂i = 0; otherwise we set

x̂i = 1. Based on x̂[1,i−1] and claim 8, there are two possible values for π′
i.

Repeat the procedure we obtain x̂. We give the decoding algorithm Dn in

figure 4.4.

Claim 9. For any i ∈ [1, n− (2d + 1)], x̂i = xi and π̂i = πi
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Algorithm Dn:

Input: (π′
1, · · · , π′

n) ∈ Sn

Output: (x̂1, · · · , x̂n−1)

let max = n, min = 1 ;

for i = 1 to n− 1 do

if |max− π′
i| < |π′

i −min|
then {x̂i = 1; π̂i = max; max← max− 1;}
else {x̂i = 0; π̂i = min; min← min + 1;}

π̂n = min ;

Output x̂.

Figure 4.4: Algorithm Dn

Proof. We prove it by induction on i. The basis case has been explained

above. Assume that π̂[1,i−1] = π[1,i−1] and x̂[1,i−1] = x[1,i−1] where i ∈ [1, n −
(2d+1)]. By claim 8 and the induction hypothesis, assume t is the number of

0’s in x[1,i−1]. Then the only two possible values for πi are t+1 or n−i+1+t.

Let min = t + 1 and max = n− i + 1 + t be the value in the algorithm after

the (i−1)-th iteration. If πi = min, then π′
i−min = π′

i−πi ≤ d∞(π′, π) ≤ d

by the assumption. And max−π′
i ≥ (n− i+1+ t)− (min+d) = n− i−d ≥

n−(n−(2d+1))−d) = d+1, where the last inequality holds by i ≤ n−(2d+1).

Thus the decoding is correct, since π′
i is closer to min than max. It implies

π̂i = πi and x̂i = xi. Similarly, it follows for πi = max = n− i + 1 + t.

Finally we complete the decoding algorithm by combining D and Dn.

First we get x̂ by Dn(π′) and then output D(x̂). Let d∞(π, π′) = d and

d ≤ e/2. By claim 9, dH(x, x̂) = dH(x[n−2d,n−1], x̂[n−2d,n−1]) ≤ 2d ≤ e, thus x̂
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can be decoded correctly to m by the definition of D. We conclude that the

decoding algorithm is efficient because D and Dn are both efficient and can

decode correctly while the corrupted codeword π′ satisfying d∞(π, π′) ≤ e/2.

Note that for any (n − 1, d) code, it can only decode correctly up to

(d − 1)/2 errors with uniquely decoding, and then the decoding algorithm

of P is only proven to decode π′ where d∞(π, π′) ≤ (d − 1)/4 by the above

construction.

It’s similar to the last chapter. We can not only consider the corrupted

codeword is a permutation π′ ∈ Sn, but also consider the corrupted codeword

is an n-ary vector y ∈ {1, 2, · · · , n}n. The decoding scheme can also decode

correctly when the corrupted codeword y satisfying dH(π, y) ≤ e/2, for some

codeword π ∈ P .

4.3 Encoding and Decoding Directly with PAs

under l∞-norm

Note that claim 9 implies the decoding errors only occur in the last 2d po-

sitions of x̂. It means that we don’t need a good code to do the mapping.

Instead, one can directly encode and decode using the first n − d position,

where d is the minimal distance we want for the permutation array. We show

the algorithm in figure 4.6.

The algorithm is very similar to Bn in the first loop and the second loop

is not important– just fill legal values to π[n−d+1,n]. The algorithm is an

encoding algorithm for an (n, d) permutation array under l∞-norm. Let’s

state it in the following theorem.
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message m ∈ Zn−d
2 permutation π ∈ P

m̂ ∈ Zn−d
2 receive π′ ∈ Sn

Gn

G−1
n

channel

Figure 4.5: Direct encoding and decoding scheme with PAs

Algorithm Gn:

Input: (x1, · · · , xn−d) ∈ Zn−d
2

Output: (π1, · · · , πn) ∈ Sn

let max = n, min = 1 ;

for i = 1 to n− d do

if xi = 1

then πi = max ;

max← max− 1 ;

else πi = min ;

min← min + 1 ;

for i = n− d + 1 to n do

πi = min ;

min← min + 1 ;

Output (π1, · · · , πn).

Figure 4.6: Algorithm Gn encodes from Zn−d
2 to Sn
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Theorem 8. The range of Gn : Zn−d
2 → Sn is an (n, d) permutation array

P with l∞-norm.

Proof. Given x �= y ∈ Zn−d
2 , let π = Gn(x) and σ = Gn(y). Assume k is the

first position where x and y differ, i.e. k = min{j ∈ [1, n − d] : xj �= yj}.
W.L.O.G., let xk = 0 and yk = 1.

Let k1 = |{i ∈ [1, k − 1] : xi = 0}| and k2 = |{i ∈ [1, k − 1] : yi = 1}|.
It’s clear πk = k1 + 1 and σk = n − k2 by observing algorithm Gn. By

the definition of k, xi = yi for i ∈ [1, k − 1], so k1 + k2 = k − 1. Thus

d∞(σ, π) ≥ σk − πk = (n − k2) − (k1 + 1) = n − k ≥ n − (n − d) = d. The

last inequality holds because k ≤ n − d, which is the length of x. Thus the

range of Gn is a (n, d) permutation array under l∞-norm, and Gn is a direct

encoding algorithm for message space Zn−d
2 .

The decoding algorithm G−1
n is also very similar to algorithm Dn as in

figure 4.4.

Theorem 9. For any n and d < n , if π = Gn(x) is the codeword, π′ is a

corrupted codeword such that d∞(π, π′) ≤ (d− 1)/2 then G−1
n (π′) = x.

Proof. We prove it by induction on i. Let x′ be the output of G−1
n (π′). The

basis case is clear because π1 = 1 or n. By the assumption d∞(π, π′) ≤ d−1
2

,

x1 must be 0 if π′
1 ≤ 1 + d−1

2
; x1 must be 1 if π′

1 ≥ n − d−1
2

. Assume that

x′
[1,i−1] = x[1,i−1] where i ∈ [2, n − d]. By the same argument as for claim 8

and the induction hypothesis, assume t is the number of 0’s in x[1,i−1], and

then the only two possible values of πi are t + 1 or n − i + 1 + t. Let

min = t + 1 and max = n − i + 1 + t after the (i − 1)-th iteration. If

πi = min , π′
i −min = π′

i − πi ≤ l∞(π′, π) ≤ d−1
2

by the assumption. And

max−π′
i ≥ (n−i+1+t)−(min+ d−1

2
) = n−i− d−1

2
≥ n−(n−d)− d−1

2
= d+1

2
,

where the last inequality holds by i ≤ n − d. Thus the decoding is correct,
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Algorithm G−1
n :

Input: (π1, · · · , πn) ∈ Sn

Output: (x1, · · · , xn−d)

let max = n, min = 1 ;

for i = 1 to n− d do

if |max− πi| < |πi −min|
then {xi = 1; π̂i = max; max← max− 1;}
else {xi = 0; π̂i = min; min← min + 1;}

Output (x1, · · · , xn−d)

Figure 4.7: Algorithm G−1
n is the decoding algorithm for Gn.

since π′
i is closer to min than max. It implies x′

i = xi. The proof is similar

for πi = max = n− i + 1 + t.

Corollary 7. There exists an (n, d) permutation array P under l∞-norm,

|P | = 2n−d, and P have efficient encoding/decoding algorithms. Furthermore,

the decoding algorithm of P can decode correctly while the corrupted codeword

π′ satisfying d∞(π, π′) ≤ (d− 1)/2.

It’s the same as the binary code, for any (n, d) permutation array P with

metric d, it can be only uniquely decoded correctly as long as the corrupted

distance ≤ (d− 1)/2.

The decoding algorithm G−1
n is proven to decode correctly while the cor-

rupted distance ≤ (d − 1)/2. But the construction of an (n, d) PA in the

previous section requires an (n− 1, d) binary code and just have a decoding

algorithm proven to decode distance ≤ (d − 1)/4. By the well known sin-
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gleton bound in [13], A(n− 1, d) ≤ 2n−d, and by Corollary 7.4.4 in [13], the

equality does not hold for d �= 1 or n. It implies that the direct construction

in this section has a better codeword size and decoding algorithm than the

construction via DPM∞ in the last section.

(n, d) PA codeword size efficient encoder efficient decoder

Gilbert Bound n!

[(2d−1)!]
n

2d−1
May not exist May not exist

DPM∞ and (n− 1, d) code C |C| ≤ A(n− 1, d) EP = Bn ◦ E d(π′, π) ≤ (d− 1)/4

Construct directly 2n−d Gn d(π′, π) ≤ (d− 1)/2

Table 4.2: Comparison of the three constructions

In general, any construction via DPM/DIM has a disadvantage that the

decoding algorithm would uses the decoding algorithm of the code C, where

C is the code it applies. But it results that we need to decode twice and lose

some decoding power.



Chapter 5

Conclusion and Open Problem

We first prove the permutation array version of Gilbert bound. It gives a

lower bound for Pf(n, d) for any metric f but those permutation arrays may

not have efficient encoding/decoding algorithms. The main result of this the-

sis is constructing the permutation arrays with efficient encoding/decoding

algorithms based on Hamming distance and l∞-norm.

For the hamming distance, we give the first explicit construction of 3-

DPMH , and one can construct PAs under hamming distance, and these PAs

have efficient encoding/decoding algorithms. It significantly improves the

size of (n, d) permutation array asymptotically in [5] Moreover, following the

same paradigm, one can obtain q-DPMH for all q > 3. There is an open

question that how to construct 3-DIMH.

For the l∞-norm, we give the first explicit construction of distance-preserving

mappings from binary vectors to permutations with l∞-norm. By DPM∞,

one can construct PAs under l∞-norm, and these PAs have efficient encod-

ing/decoding algorithms. We also propose a direct construction of (n, d)

permutations arrays under l∞-norm whose cardinality equals 2n−d. These

PAs have efficient encoding/decoding algorithms. Furthermore, the decod-

57
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ing algorithm can decode correctly if the distance between the corrupted

codeword and the correct codeword is at most (d− 1)/2.

It’s interesting to consider other distance metrics, such as l1-norm or l2-

norm. We leave it as an open question.



Appendix A

Algorithm A−1
8n+k without table

lookup

We give the algorithm A−1
8n+k without table lookup in figureA.1.

59
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Algorithm A−1
8n+k without table lookup (8n ≥ 16 , k ∈ [0, 7]) :

Input: (π1, · · · , π8n+k) ∈ S8n+k

Output: (x1, · · · , x8n+k) ∈ Z8n+k
3

(x1, · · · , x8n+k)← (0, 0, · · · , 0);
B1, B2, · · · , B8n are 8n empty buckets ;
for i = 1 to k do;

if π8n+i = 8n + i then x8n+i ← 0 ;
if π8n+i = i− 3 then x8n+i ← 1 ;
if π8n+i �= 8n + i and π8n+i �= i− 3 then x8n+i ← 2 ;

for i = 1 to 8n do;
if πi > 8n then swap (πi, ππi) ;
let t = πi;
if i%2 = 1 then let p = {t− 1, t, t + 1, t + 2} ∩ {i− 8, i− 4, i, i + 4, i + 8} ;

else let p = {t− 2, t− 1, t, t + 1} ∩ {i− 8, i− 4, i, i + 4, i + 8} ;

if i%2 = 1
then if πi = p + 1 then put 0 to Bp−1 , put 1 to Bp ;

if πi = p then put 0 to Bp−1 , put 0 to Bp ;
if πi = p− 1 then put 0 to Bp−2 , put 1 to Bp−1 ;
if πi = p− 2 then put 1 to Bp−2 , put 1 to Bp−1 ;

if i%2 = 0
then if πi = p + 2 then put 1 to Bp , put 1 to Bp+1 ;

if πi = p + 1 then put 1 to Bp , put 0 to Bp+1 ;
if πi = p then put 0 to Bp−1 , put 0 to Bp ;
if πi = p− 1 then put 1 to Bp−1 , put 0 to Bp ;

if i%8 ∈ [1, 4]
then if p = i + 4 then put 0 to Bi−4 , put 2 to Bi ;

if p = i then put 0 to Bp−4 , put 0 to Bi ;
if p = i− 4 then put 0 to Bi−8 , put 2 to Bi−4 ;
if p = i− 8 then put 2 to Bi−8 , put 2 to Bi−4 ;

if i%8 ∈ [5, 8]
then if p = i + 8 then put 2 to Bi , put 2 to Bi+4 ;

if p = i + 4 then put 2 to Bi , put 0 to Bi+4 ;
if p = i then put 0 to Bi−4 , put 0 to Bi ;
if p = i− 4 then put 2 to Bi−4 , put 0 to Bi ;

for i = 1 to 8n do decide xi by majority vote of Bi.
(0 gives half weight, if tied choose the larger value)

end

Figure A.1: Algorithm A−1
8n+k without table lookup for n ≥ 2, k ∈

[0, 7]
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By checking the tables 3.5, 3.6, one can find the intermediate position of

t given πi = t. We state it formally by the following claim.

Claim 10. Let πi = t and let p = {t−1, t, t+1, t+2}∩{i−8, i−4, i, i+4, i+8}
if i is odd, p = {t− 2, t− 1, t, t + 1} ∩ {i− 8, i− 4, i, i + 4, i + 8} if i is even.

Then π1
p = t and πi = π1

p.

The claim is true clearly by checking all the entries of Table 3.5 and

Table 3.6. For example, given πi = i + 7, i mod 8 ∈ {5, 6, 7, 8} and i

is odd. Then p = {t − 1, t, t + 1, t + 2} ∩ {i − 8, i − 4, i, i + 4, i + 8} =

{i + 6, i + 7, i + 8, i + 9} ∩ {i − 8, i − 4, i, i + 4, i + 8} = i + 8. It’s the gray

area in the second table.

Proof. Assume j is the index such that π1
j = t and πi = π1

j . Consider

when i is odd first. By Claim1, t ∈ {j − 2, j − 1, j, j + 1}. It implies

j ∈ {t− 1, t, t + 1, t + 2}. By Claim 1 again, πi ∈ {π1
i−8, π

1
i−4, π

1
i , π

1
i+4, π

1
i+8}.

It implies j ∈ {i− 8, i− 4, i, i + 4, i + 8} since πi = π1
j . Thus j ∈ {i− 8, i−

4, i, i + 4, i + 8} ∩ {t − 1, t, t + 1, t + 2}. It implies j = p uniquely and so

π1
p = t and πi = π1

p. The proof is similar for even t.

The claim gives us the algorithm A−1
8n+k in figure A.1 without using table

lookup.
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