
Efficient Mining of High Utility Itemsets on Data Streams

Efficient Mining of High Utility Itemsets on Data Streams

 Student Hsin-Yun Huang

 Advisor Suh-Yin Lee

A Thesis
Submitted to Institute of Computer Science and Engineering

College of Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master
in

Computer Science

July 2007
Hsinchu, Taiwan, Republic of China

item

item

MHUI_TransSW MHUI_TimeSW

TIDlist

item lexicographical tree THUI-Mine

i

Efficient Mining of High Utility Itemsets on Data Streams

Student: Hsin-Yun Huang Advisor: Suh-Yin Lee

Institute of Computer Science and Engineering
College of Computer Science

National Chiao-Tung University

Abstract

Since there are many applications in the form of data streams, such as sensor network,

stock analysis, mining useful patterns from a data stream is an important issue nowadays.

However, it is a difficult problem because of some limitations in the data stream environment.

A new issue, called utility mining, for mining interesting pattern which is profitable for users

is suggested in recent years. In the mining of high utility itemsets, the utility and the sales

quantity of each item could be arbitrarily number, so many methods applied to frequent

itemsets mining cannot be used anymore.

In this thesis, we propose MHUI_TransSW and MHUI_TimeSW to mine high utility

itemsets on a data stream in two types of sliding window. We use item information, i.e.

TIDlist or Bitvector of 1-itemsets, and lexicographical tree to improve the efficiency of

THUI-Mine. The experiment results show that our approach efficiently find the high utility

itemsets not only in execution time but also in memory space.

Index Terms: data stream, sliding window, high utility itemsets, Bitvector

ii

Acknowledgement

I greatly appreciate the guidance from my advisor, Prof. Suh-Yin Lee. Without her

suggestion and instruction, I can’t complete this thesis.

 Besides, I want to express my thanks to all the members in the Information System

Laboratory and all my sincere friends for their suggestions and encouragements. Finally, I

want to express my appreciation to my parents for their supports. This thesis is dedicated to

them.

iii

Table of Contents

Abstract (Chinese) …………………………………………….. …………..………….… i
Abstract(English) ……………………………...………………..…………..……………. ii
Acknowledgement…………………………………...…………..…………..…….…...… iii
Table of Contents………………………………………….. …………..………..….......... iv
Lists of Figures………………………………………..…………..……………………… vi
List of Tables…………………………………………………..…………………….......... vii
Chapter 1 Introduction…………………………………………………..…………......... 1
 1.1 Overview and Motivation……………………………………………………...…. 1
 1.2 Related Work…………………………………………………………………...… 3
 1.3 Organization of the Thesis……………………………………………………...... 5
Chapter 2 Problem definition and Background………………………………………... 6
 2.1 Definition and Background of Data Stream……………………………………… 6
 2.1.1 Data Stream………………………………………………………………...... 6
 2.1.2 A Sliding Window Model…………………………………………………… 7
 2.2 Problem definition: Mining High Utility Itemsets in a Sliding Window Model…. 8
 2.2.1 Utility Itemsets…………………………………………………..................... 8
 2.2.2 Problem definition: Mining High Utility Itemsets in a Sliding Window
 Model……………………………………………………………………...… 10
 2.3 Transaction-Weighted Downward Closure Property…………………………….. 11
Chapter 3 An Efficient Mining of High Utility Itemsets……………………………...... 12
 3.1 Related Work: THUI-Mine Algorithm………………………...…………………. 12
 3.1.1 The Preprocessing Procedure………………………………………………... 14
 3.1.2 The Incremental Procedure………………………………………................... 18
 3.1.3 The Drawback of THUI-Mine Algorithm…………………………………… 19
 3.2 Our Proposed Method: MHUI_TransSW…………….. 21
 3.2.1 Representation of Item Information(TIDlist or Bitvector of items)………... 21
 3.2.2 MHUI_TransSW Method……………………………………………………. 23
 3.2.2.1 Window Initialization Phase……………………………………………. 23
 3.2.2.2 Window Sliding Phase………………………………………………...... 25
 3.2.2.3 High Utility Itemsets Generation Phase………………………………… 28
 3.3 The proposed Algorithm: MHUI_TimeSW……………………………………… 29
 3.3.1 Item Information and Time Unit List………………………………………. 29
 3.3.2 Window Initialization Phase……………………………………………...... 32
 3.3.3 Window Sliding Phase……………………………………………………... 32
 3.3.4 High Utility Itemsets Generation Phase……………………………………. 34
Chapter 4 Performance Measurement………………………………………………...... 36
 4.1 Experiments of MHUI_TransSW Method……………………………...………... 37
 4.1.1 Different Minimum Utility Threshold……………………………………….. 37
 4.2 Experiments of MHUI_TimesW Method………………………………………… 40
 4.2.1 Different Minimum Utility Threshold……………………………………… 40
 4.2.2 Different Partition Size……………………………………………………... 42
 4.3 The Performance between TIDlist and Bitvector………………………………… 45
 4.4 The Stability of Our Proposed Work……………………………………………... 47
Chapter 5 Conclusion and Future Work…………………………………………………… 51

iv

 5.1 Conclusion of Our Proposed Work…………………………….................................. 51
 5.2 Future Work……………………………………………………………………… 52
Bibliography………………………………………………………………………………. 53

v

List of Figures

Fig 2-1 Data stream environment…………………………………………………………… 6
Fig 2-2 The sliding window model………………………………………………………….. 8
Fig 2-3 An example of input transaction database and utility table………………………… 9
Fig 3-1 An example of input transaction database and utility table…………………………. 14
Fig 3-2 The transaction utility of each transaction…………………………………………... 15
Fig 3-3 The potential candidate 2-itemsets and after processing .………..……..)(1 ITUP 1P 15
Fig 3-4 The potential candidate 2-itemsets and after
processing .………..……..

)(2 ITUP

2P
16

Fig 3-5 The potential candidate 2-itemsets and after processing .…..…………..)(3 ITUP 3P 17
Fig 3-6 The potential candidate 2-itemsets after performing first sub-step.………..……….. 18
Fig 3-7 The potential candidate 2-itemsets and after performing second sub-step..)(4 ITUP 19
Fig 3-8 An example of transaction database and utility table.……………. .……………..… 22
Fig 3-9 The tree after generating all candidate 2-itemsets from item a.……………. .……... 25
Fig 3-10 The tree built in TransSW1.……………. .……………. .……………. .……..…… 25
Fig 3-11 The tree after modifying the sub-trees of items in OnlyInsertItem.…………..…… 27
Fig 3-12 The tree after modify the sub-trees of items in IntersecItem.……………. .…..….. 28
Fig 3-13 An example of transaction database and utility table in a time-sensitive sliding
 window.……………………………………………………………………………… 30
Fig 3-14 The tree build in …………………………………………………………..1TimeSW 32
Fig 3-15 After checking the sub-trees of all items in OnlyInsertItem.…………………..….. 34
Fig 3-16 After checking the sub-trees of all items in IntersecItem.……………. .………….. 34
Fig 4-1 The execution time of MHUI_TransSW and THUI-Mine under different minimum
 utility thresholds.…………………………………………………………………… 38
Fig 4-2 The memory usage of MHUI_TransSW and THUI-Mine under different minimum

 utility thresholds.…………………………………………………………………….. 39
Fig 4-3 The execution time of MHUI_TimeSW and THUI-Mine with different minimum
 utility thresholds.……..…………………………………………………………….. 41
Fig 4-4 The memory usage of MHUI_TimeSW and THUI-Mine with different minimum

 utility thresholds.…………………………………………………………………….. 41
Fig 4-5 The execution time of MHUI_TimeSW and THUI-Mine with different partition
 sizes.…………………………………………………………………………………. 43
Fig 4-6 The memory usage of MHUI_TimeSW and THUI-Mine with different partition
 sizes.…………. .…………………….. .……………. .……………. .…………..….. 44
Fig 4-7 The execution time of these three methods under different minimum utility
 thresholds.………………………………………………………………………..…... 45
Fig 4-8 The execution time of these three methods under different datasets.………..…….. 46
Fig 4-9 The execution time of MHUI_TimeSW under different minimum utility thresholds. 48
Fig 4-10 The memory usage of MHUI_TimeSW under different minimum utility

 thresholds………………………………………………………………………..… 48
Fig 4-11 The execution time of MHUI_TimeSW under different partition sizes...………..... 49
Fig 4-12 The memory usage of MHUI_TimeSW under different partition sizes.……...…… 49
Fig 4-13 The execution time of MHUI_TimeSW under different window sizes. …………... 50
Fig 4-14 The memory usage of MHUI_TimeSW under different window sizes………..…... 50

vi

List of Tables

Table 3-1 The meanings of symbols used in THUI-Mine………………………………… 13
Table 3-2 The itemsets generated after first and second scan of …………………..…3,1db 17
Table 3-3 The itemsets generated after first and second scan of …………………….4,2db 19
Table 3-4 The TIDlist and Bitvector of all items in the first two windows……..………… 22
Table 3-5 The meanings of symbols used in our work………………………………..…... 23
Table 3-6 The itemsets generated after first and second scan in each window………..….. 29
Table 3-7 The transactions contained in each time unit and the size of each time unit…... 31
Table 3-8 The item information in the first two windows……………………………..….. 31
Table 3-9 The itemsets generated after first and second scan in each window…………… 35
Table 4-1 Meanings of symbols used…………………………………………………..…. 36
Table 4-2 The names and parameter settings for each data set………………………..….. 37
Table 4-3 The number of candidates generated of MHUI_TransSW and THUI-Mine

with different minimum utility thresholds…………………………………....... 39
Table 4-4 The number of candidates generated of MHUI_TimeSW and THUI-Mine
 with different minimum utility thresholds……………………………………... 42
Table 4-5 The number of candidates generated of MHUI_TimeSW and THUI-Mine

 with different partition sizes…………………………………………………… 44
Table 4-6 The Item_freq in each dataset……………………………………...………….... 47

vii

Chapter 1

Introduction

1.1 Overview and Motivation

 Association rules mining (ARM) is one of the most widely used techniques in data mining

and knowledge discovery and has tremendous applications in business, science and other

domains. Standard methods for mining association rules are based on the support-confidence

model. The first step involves finding all frequent itemsets, i.e., itemsets with support of at

least minsup, and then, from these itemsets, generating all association rules with confidence of

at least minconf. Once the frequent itemsets are found, generating association rules is

straightforward and can be accomplished in linear time. Therefore, many researches focus on

finding frequent itemsets efficiently.

 Mining frequent itemsets has been widely studied over the last decade. Past research

focuses on mining frequent itemsets from static database [1, 2, 3, 5, 6]. In many of the new

applications, data flow through the internet or sensor network. It is challenging to extend the

mining techniques to such a dynamic environment. The main challenges include a quick

response to the continuous request, a compact summary of the data stream and a mechanism

that adapts to the limited resources. An important research issue extended from the association

rules mining is the discovery of temporal association patterns in data streams. However, most

methods designed for the traditional databases cannot be directly applied to mining temporal

patterns in data streams, since when transactions are added or expired, the support counts of

the frequent itemsets contained in them are recomputed.

 Traditional ARM model treats all the items in the database equally by only considering if

an item is present in a transaction or not .However, the frequency of an itemset may not be a

1

sufficient indicator of interestingness, because it only reflects the number of transactions in

the database that contain the itemset. It does not reveal the utility of an itemset, which can be

measured in terms of cost, profit, or other expressions of user preferences. On the other hand,

frequent itemsets may only contribute a small portion of the overall profit, whereas non-

frequent itemsets may contribute a large portion of the profit.

 Recently, to address the limitation of AMR, a utility mining model was defined [13].

Intuitively, utility is a measure of how “useful” (i.e. “profitable”) an itemset is. The definition

of utility of an itemset X, u(X), is the sum of the utilities of X in all the transactions

containing X. The goal of utility mining is to identify high utililty itemsets which derive a

large portion of the total utility. Traditional ARM model assumes that the utility of each item

is 1 or 0, thus it is only a special case of utility mining, where the utility or the sales quantity

of each item could be any number. If u(X) is greater than a utility threshold, X is a high utility

itemset. Otherwise, it is a low utility itemset.

 However, a high utility itemset may consist of some low utility items. A level-wise

searching schema, Apriori, that exists in fast AMR algorithms, is used to prune impossible

itemsets as soon as possible. However this property cannot apply to the utility mining model.

Without this property, the number of candidates generated at each level quickly approaches all

the combinations of all the items. We are confronted by two difficulties. The first is how to

restrict the size of the candidate set and simplify the computation for calculating the utility.

The second is how to find temporal high utility itemsets from data streams as time advances.

 In this thesis, we propose a method that can find high utility itemsets from data streams

efficiently and effectively. We use the downward closure property in Two-Phase Algorithm

[19], and add an efficient method to restrict the candidates generated and simplify the

computation of utility.

2

1.2 Related Work

 The problem of generating association rules was first introduced in [1] and an algorithm

called AIS was proposed for mining all association rules. In past ten years, a considerable

number of studies have been made on traditional ARM algorithms and optimizations. The

base of these traditional ARM algorithms is the “downward closure property” (anti-monotone

property): any subset of a frequent itemset must also be frequent. That is, only the frequent

k-itemsets are exploited to generate potential frequent (k+1)-itemsets, called candidates. This

kind of candidate-generate-and-test methods needs multiple scans of database. A subsequent

research is proposed to speed-up Apriori, such as DHP [5] which uses a hash function to

prune candidate 2-itemsets. Besides, there are also other investigations for finding frequent

itemsets. Partition [3] algorithm is a kind of filter-and-refine approach. It first generates

candidate itemsets and then in one more scan verifies the validity of each candidate itemset.

Thus, the method needs only two scans of database. FP-growth [6] algorithm is a

pattern-growth approach. It completely eliminates the candidate generation bottleneck by

using a new tree structure called Frequent Pattern Tree (FP-Tree) which is constructed in only

two scans, and then recursively mines FP-trees of decreasing size to generate large itemsets

without candidates generation and database scans.

 One of the key features of all the previous algorithms is that they just suited for static

databases. However, most methods designed for the traditional databases cannot be directly

applied for mining temporal patterns in data streams because of high complexity. In recent

years, processing data from data streams is a very popular topic in data mining. Three models

are adopted by many researchers in ways of time spanning [8]: landmark model, sliding

window model, and damped window model. Landmark model utilizes all the data between a

particular point of time (called landmark) and the current time for mining. Lossy-counting [9]

is the representative approach under the landmark model. Li et al [15] proposes DSM-FI

3

algorithm, which is a projection-based and single passed algorithm, to mine frequent itemsets

in the landmark model over a data stream. However, in many applications, new data are often

more important than old ones. The landmark model is not aware of time and therefore cannot

distinguish between new data and old ones. Therefore, the time-fading model, a variation of

the landmark model, has been presented. It assigns different weights to transactions such that

the new ones have higher weights than old ones. EstDec algorithm [13] uses a decay function

to reduce the weight of the old transactions. In some applications, users can only be interested

in the data recently arriving within a fixed time period, thus the sliding window model

proposed. Algorithms SWF [7] employs a filtering threshold in each partition to deal with the

candidate itemsets generation. Algorithm Moment [16] use the closed enumeration tree (CET),

to maintain a dynamically selected set of itemsets over a sliding window.

A formal definition of utility mining and theoretical model was proposed in [17], namely

MEU, where the utility is defined as the combination of utility information in each transaction

and additional resources. Since this model cannot rely on downward closure property of

Apriori to shrink the number of candidate itemsets, a heuristic approach is used to predict

whether an itemset should be added to the candidate set. However, this prediction usually

overestimates, especially at the beginning stages, where the number of candidates approaches

the number of all the combinations of items. The examination of candidates is impractical,

either in computation cost or in memory space cost whenever the number of items is large or

the utility threshold is low. Besides, this model may miss some high utility itemsets when the

variation of the itemsets supports is large.

 Another algorithm named Two-Phase [19], which is based on the definition in [17] achieves

finding high utility itemsets. It presented a Two-Phase algorithm that not only can prune down

the number of candidate itemsets, but also find the complete high utility itemsets. In first

phase, it defines a transaction-weighted utilization mining model that holds a “Transaction-

Weighted Downward Closure Property”. The size of candidate set is reduced by only

4

considering the supersets of high transaction-weighted utilization itemsets. In second phase,

only one extra database scan is performed to filter out the high transaction-weighted

utilization itemsets that are indeed low utility itemsets. This algorithm guarantees that the

complete set of high utility itemsets will be defined. However, Two-Phase algorithm is

focused just only on traditional databases and is not suited for data streams.

 Chu et al [20] propose THUI (Temporal High Utility Itemsets)-Mine algorithm, which is

the first work on mining temporal high utility itemsets from data streams. The underlying idea

of THUI-Mine algorithm is to integrate the advantages of Two-Phase algorithm [19] and SWF

[7] algorithm and augment with the incremental mining techniques for mining temporal high

utility itemsets. In the first scan of database, it employs a filtering threshold in each partition

to generate progressive transaction-weighted utilization set of itemsets, and then uses database

scan reduction to generate k-candidate (k>2) itemsets. Finally, It just needs one more scan to

find temporal high utility itemsets from those candidates.

1.3 Organization of the Thesis

 The remainder of this thesis is organized as follows. Some basic definitions and

terminology about utility itemsets, and sliding window are described in Chapter 2. Our

proposed method for mining high utility itemsets is presented in Chapter 3. The experiments

and performances are described in Chapter 4. Conclusion and future work is in Chapter 5.

5

 Chapter 2

 Problem Definition and Background

 In this chapter we introduce the basic definition of problems. We introduce the data stream

environment and the sliding window model in Section 2.1. Next we describe the definition of

utility itemsets and the problem of mining high utility itemsets in Section 2.2. Finally, we

describe transaction-weighted utilization closure property in Section 2.3.

2.1 Definition and Background of Data Stream

2.1.1 Data Stream

 Database and knowledge discovery communities have focused on a new data model, where

data arrive in the form of continuous streams. It is often referred to as data streams or

streaming data. The characteristics of data streams are as follows: (1) Continuity: data

continuously arrive at a rapid rate. (2) Expiration: Data can be read only once. (3) Infinity:

The total amount of data is unbounded.

Data Streams
Mining Data

Streams Engine

In-Memory
Summary

Data Structure

…

User/Application

Data Streams

Continuous Queries

Approximate
Answers

(Deterministic Bound)

Single
Streaming
Data Scan

Bounded
Main Memory
RequirementMassive

Sequence Arrive
at Rapid rate

Figure 2-1. Data stream environment

6

 Figure 2-1 shows the data stream environment. For reasons given above, mining patterns of

data streams differs from traditional mining of static database in the following aspects: Firstly,

data streams continuously arrive at a rapid rate and thus the amount of data is huge. This

means that once a new data element arrives, it must be processed quickly. Besides, once a data

element is removed from the main memory, it is unable to backtrack over previously-arrived

data elements. Therefore, the best condition is to achieve one sequential pass over the data,

called one-pass scan. Secondly, the relatively small memory compared with the large amount

of streaming data results in the fact that we can only store a concise summary or partial data

of the data stream. Finally, due to the limited memory and one-pass scan, getting precise

answers from data streams is commonly impossible or very difficult. Due to these reasons it is

not feasible to use traditional multiple-pass techniques for mining static databases in the data

stream environment. The challenges of mining in data streams are how to design an efficient

algorithm to derive the useful patterns under limited memory and execution time.

2.1.2 A Sliding Window Model

Some applications in data streams emphasize the importance of the recent transactions. A

sliding window model is suitable to solve this kind of problems. In the sliding window model,

knowledge discovery is performed over a fixed number, window size, of recently generated

data elements which is the target of data mining and once the window is full, window sliding

is performed to eliminate the oldest data and then append the newest data.

According to the basic unit of window sliding, two types of sliding window, i.e.,

transaction-sensitive sliding window () and time-sensitive sliding window

(TimeSW) are used in mining data streams. A transaction-sensitive sliding window in the

transaction data stream is a window that slides forward for every transaction, whereas a time-

sensitive sliding window in the transaction data stream is a window that slides forward for

TransSW

7

every time unit(), each consisting of variable number of transactions. Therefore, the

window size, w, in at each slide is a fixed number of transactions, whereas the

window size, w, in at each slide is a variable number of transactions. The sliding

window model is shown in Figure 2-2.

iTU

TransSW

TimeSW

Figure 2-2. The sliding window model

2.2 Problem Definition: Mining High Utility Itemsets in a Sliding Window Model

2.2.1 Utility Itemsets

Let be a set of n distinct literals called items.}..{ ,2,1 niiiI },...,,{ 21 mTTTD is a set of

variable length transactions where each transaction DTi is a subset of I. A transaction also

has an associated unique identifier called TID. In general, a set of items is called an itemset.

The number of items in an itemset is called the length of an itemset. Itemsets of length k are

referred to as k-itemsets.

 In traditional frequent itemsets mining, the number of an item in each transaction is always

0 or 1. However, in utility mining model, the number of an item in each transaction, called

local transaction utility, may be arbitrary number. An extra resource, called external utility

which can be a measure for describing user preference, is defined as a utility table. Figure

2-3 shows an example of the transaction database and a utility table.

8

Figure 2-3. An example of input transaction database and utility table

Some definitions of a set of items that leads to the formal definition of utility mining

problem is given in [17]

1. , local transaction utility, represents the quantity of item in the transaction .

For example, and

),(qp Tio pi qT

12),(3Tao 12),(5Tco .

2. , external utility, is the value associated with item in the utility table. For

example, u(a)=3 and u(b)=10.

)(piu pi

3. , utility of an item in , is defined as),(qp Tiu pi qT)(),(pqp iuTio For example, =

= 6*10=60 and =

),(2Tbu

)(),(2 buTbo),(2Tdu)(),(2 duTdo =1*6=6.

4. , utility of an itemset X in transaction , is defined as , where X=

is a k-itemset, and

),(qTXu qT
Xi

qp
p

Tiu),(

},...,,{ 21 kiii qTX nk1 . For example, +

=6*10+1*6=66,

),(2Tbdu),(2Tbu

),(2Tdu),(),(),(444 TduTbuTbdu =1*10+7*6=52, =

+ =1*10+3*6=28,

),(8Tbdu

),(8Tbu),(8Tdu),(),(),(111111 TduTbuTbdu =3*10+2*6=42.

5. , utility of an itemset X, is the sum of the utilities of X in all the transactions)(Xu

9

containing X, is defined as
qq TXDT

qTXu),(. For example, = +

+ +u =66+52+28+42=188. The goal of utility mining is to identify high

utility itemsets which derive a large portion of the total utility. If the twelve transactions

are the target of data mining and the minimum utility threshold is 120, bd is a high utility

itemset.

)(bdu),(2Tbdu),(4Tbdu

),(8Tbdu),(11Tbd

2.2.2 Problem Definition: Mining High Utility Itemsets in a Sliding Window Model

A transaction-sensitive sliding window (TransSW) in the transaction data stream is a

window that slides forward for every transaction. The window at each slide has fixed number,

w, of transactions, and w is called the size of the window. The current transaction-sensitive

sliding window is],...,[2,11 NwNwNwN TTTTransSW , where N-w+1 is the id of current

window. An itemset X is called a high utility itemset if wutXu)(, where ut is a user

specified minimum utility threshold in the range of [0,1]. The value is the minimum

utility in the current transaction-sensitive sliding window.

wut

A time-sensitive sliding window () in the transaction data stream is a window

that slides forward for every time unit. Each time unit consists of a variable number,

| , of transactions, and | is also called the size of the time unit. Due to the different

size of each time unit, the window at each slide has variable number of transactions. The

current time-sensitive sliding window is = , where

N-w+1 is the id of current window. An itemset X is called a high utility itemset if

 , where ut is a user specified minimum utility threshold in the

range of [0, 1] and

TimeSW

iTU

| iTU | iTU

1wNTimeSW],...,,[21 NwNwN TUTUTU

||)(1wNTimeSWutXu

||...|||||| 211 NwNwNwN TUTUTUTimeSW is the number of

transactions in the current time-sensitive sliding window, called window size. The value

10

|| 1wNTimeSWut is the minimum utility in the current time-sensitive sliding window.

Later in thesis, we will show that our method can be adopted in both of transaction-

sensitive and time-sensitive sliding window model.

2.3 Transaction-Weighted Downward Closure Property

The downward closure property of Apriori cannot be applied for the utility mining model.

For example, u(d)=14*6=84<120 and is a low utility itemset but its superset u(bd)=160>120

is a high utility itemset. If candidates generated use all the combinations of items, the

computation will be intolerable. A level-wise approach apply for utility mining, called

“Transaction-weighted Downward Closure Property “ is proposed in Two-Phase Algorithm

[19].

Definition 1. (Transaction Utility) The transaction utility of transaction , denoted as

, is the sum of the utilities of all items in . For example, = +

=6*10+1*6=66

qT

)(qTtu qT)(2Ttu),(2Tbu

),(2Tdu

Definition 2. (Transaction-Weighted Utilization) The transaction-weighted utilization of an

itemset X, denoted as twu(X), is the sum of the transaction utilities of all the transactions

containing X. Assume the target of data mining is T1 to T9, = + +

= 66+52+37=155

)(bdtwu)(2Ttu)(4Ttu

)(8Ttu

Definition 3. (High Transaction-Weighted Utilization Itemsets) X is a high transaction-

weighted utilization itemset if minimum utility. Assume the minimum utility is

120, and thus bd is a high transaction-weighted utilization itemset.

)(Xtwu

Theorem 1. (Transaction-Weighted Downward Closure Property) Let KI be a k-itemset

and 1KI be a (k-1)-itemset such that KK II 1 . If KI is a high transaction-weighted

utilization itemset, 1KI is a high transaction-weighted utilization itemset.

11

Chapter 3

An Efficient Mining of High Utility Itemsets

The goal of our work is to find an efficient method for mining high utility itemsets in a data

stream. Therefore, in Section 3.1 we introduce a related work, called THUI-Mine algorithm.

Next, we introduce our proposed method for mining high utility itemsets in a transaction-

sensitive sliding window model, denoted as MHUI_TransSW, in Section 3.2. Subsequently,

we extend this method to time-sensitive sliding window model, denoted as MHUI_TimeSW,

in Section 3.3.

3.1 Related Work: THUI (Temporal High Utility Itemsets)-Mine Algorithm

 THUI-Mine [20] is based on transaction-weighted downward closure property, and is

extended the property with the sliding-window-filtering technique to find the temporal high

utility itemsets over a sliding window. In essence, by partitioning a transaction database into

several partitions from data streams, algorithm THUI-Mine employs a filtering threshold in

each partition to deal with the transaction-weighted utilization itemsets generation.

For ease of exposition, the processing of a partition is termed a phase of processing. The

cumulative information in the prior phase is selectively carried over toward the generation of

candidate itemsets in the subsequent phases. The cumulative information THUI-Mine

maintained consists of these two summary structures:

1. progressive transaction-weighted utilization set of itemsets (also called potential

candidate 2-itemsets): composed of the following two types of itemsets, i.e.,

(1) The transaction-weighted utilization itemsets that were carried over from the

12

previous progressive candidate set in the previous phase and remain as transaction-

weighted utilization itemsets after the current partition is taken into consideration.

(2) The transaction-weighted utilization itemsets that were not in the progressive

candidate set in the previous phase but are newly selected after the current partition is

taken into consideration.

2. : The transaction-weighted utilization itemsets and its corresponding transaction

-weighted utility in each partition .

)(ITUPk

KP

After processing a partition , THUI-Mine maintains the potential candidate 2-itemsets

and . Each potential candidate 2-itemset

KP

)(ITUPk 2Cc has two attributes: (1) c.start

contains the identify the starting partition identifier when c was added to , and (2) twu(c),

transaction-weighted utility of itemset c, is the sum of the transaction utilities of all the

transactions containing c since c was added to . Table 3-1 shows the meanings of symbols

used in THUI-Mine. The mining process of THUI-Mine is decomposed into two processes:

2C

2C

1. The preprocessing procedure: While the window is not full yet, it deals with mining on

the original transaction database, e.g., . This procedure is described in Section 3.1.1.ndb ,1

2. The incremental procedure: While the window is full and new partition arrives, it needs

to slide the window. Thus the cumulative information needs to be updated. This

procedure is described in Section 3.1.2.

Table 3-1. The meanings of symbols used in THUI-Mine

jidb , Partition database from toiP jP

s Utility threshold in one partition

)(ITUPk Transactions in that contain itemset I with transaction utility kP

jiThtw , The progressive temporal high transaction-weighted utilization 2-itemsets

of jidb ,

13

The deleted portion of an ongoing database

D The unchanged portion of an ongoing database

The added portion of an ongoing database

3.1.1 The Preprocessing Procedure

Figure 3-1 shows an input transaction database and utility table. Let each partition contains

three transactions and each window contains nine transactions. Assume the minimum utility is

120 for nine transactions, and thus the filtering threshold is s=120/3=40 for each partition.

The first window, , is segmented into three partitions, i.e., { , , }. Each partition is

scanned sequentially for the generation of progressive temporal high transaction-weighted

utilization 2-itemsets of , , in the first scan. Figure 3-2 shows the transaction

utility of each transaction.

3,1db 1P 2P 3P

3,1db 3,1Thtw

Figure 3-1. An example of input transaction database and utility table

14

Figure 3-2. The transaction utility of each transaction

After scanning the first 3 transactions, i.e., partition , we use high transaction-weighted

utilization 1-itemsets, itemsets {a, b, d}, in to generate potential candidate 2-itemsets {ab,

ad, bd}. Itemsets {ab, ad, bd} are newly generated in partition , so the start value of them is

1, the identifier of partition . The transaction-weighted value of itemsets {ab, ad, bd} in

are 0, 42, 66 respectively. Since twu(ab)=0<40, itemset ab is removed. On the contrary,

itemsets {ad, bd}, in shaded portion, have transaction-weighted value greater than 40, so they

are the potential candidate 2-itemsets remained and then its information are carried over to the

next phase of processing. maintains these potential candidate 2-itemsets and its

transaction -weighted utility in partition . Figure 3-3 shows the potential candidate

2-itemsets and after processing .

1P

1P

1P

1P 1P

)(1 ITUP

1P

)(1 ITUP 1P

Figure 3-3.The potential candidate 2-itemsets and)(1 ITUP after processing 1P

After processing partition , candidate 2-itemsets are decomposed into two types: 2P

15

(1) Itemsets that are carried over from the previous phase . The start value of this kind of

itemsets is 1. For example, itemsets {ad, bd} are carried over from , so ad.start=1 and

bd.start=1. Though itemset bd is carried from , it also occurs in . The transaction-

weighted utility of bd in is maintained in . Besides, its transaction-weighted

utility is accumulated and twu(bd) becomes 66+52=118.

1P

1P

1P 2P

2P)(2 ITUP

(2) Itemsets that are newly identified after the current partition, , is taken into

consideration.

2P

 The start value of this kind of itemsets is 2. For example, itemsets {ab, ae, be} are newly

generated after is taken into consideration. 2P

THUI-Mine prunes those itemsets with different filtering threshold. For itemset c where

c.satrt=1, its filtering threshold is 2*s=40*2=80. For itemset c where c.start=2, its filtering

threshold is 1*s=40. For example, Twu(ad)=42<80, so itemsets ad is not carried to next

partition. Twu(bd)=118>80 and twu(ab)=48>40, so itemset bd and ab are carried over to the

next partition. After pruning, there are four potential candidate 2-itemsets {ab, ae, bd, be}, in

shaded portion, carried over to the next phase. One of them is carried over from partition ,

and three of them are newly identified in . Figure 3-4 shows the potential candidate

2-itemsets and after processing .

1P

2P

)(2 ITUP 2P

Figure 3-4.The potential candidate 2-itemsets and)(2 ITUP after processing 2P

16

 Partition is processed in the same way. Figure 3-5 shows the potential candidate

2-itemsets and after processing . Observe that there are seven potential candidate

2-itemsets left in the preprocessing procedure.

3P

)(3 ITUP 3P

After generating , THUI-Mine employs the scan reduction technique to generate

other candidate itemsets. It uses to generate candidate 3-itemsets, , and subsequently

use candidate (k-1)-itemsets, , to generate candidate k-itemsets, (k= 3,…n), where

is the candidate last-itemsets. For instance, abe is constructed because itemsets {ab, ae, be} is

in . Candidate 3-itemsets {abe, abc, bce} is the last candidate itemsets in this example.

After generating all candidate itemsets, one more scan is needed to find the high utility

itemsets. Table 3-2 shows the itemsets generated after first and second scan of .

3,1Thtw

3,1Thtw 3C

1kC kC nC

3,1Thtw

3,1db

Table 3-2. The itemsets generated after first and second scan of 3,1db
Candidate itemsets
(1st scan of)3,1db

High utility itemsets
(2nd scan of)3,1db

a, b, c, d, e
ab, ac, ae, bc, bd, be, ce

abc, abe, ace, bce
 abce

b, bd, be

Figure 3-5. The potential candidate 2-itemsets and after processing)(3 ITUP 3P

17

3.1.2 The Incremental Procedure

 When partition arrives, window sliding is performed. As depicted in Figure 3-1, the

current window will be moved from to , i.e., { , , }. Some transactions, i.e.,

T1, T2 and T3, are deleted from the window, and transactions T10, T11 and T12 are added.

This incremental procedure is decomposed into three sub-steps as follows:

4P

3,1db 4,2db 2P 3P 4P

1. Prune the oldest partition and update potential candidate 2-itemsets

In this sub-step, we check the pruned partition, , and reduce the value of transaction-

weighted utility and set c.start=2 for those potential candidate 2-itemsets where c.start=1.

For example, Figure 3-5 shows the potential candidate 2-itemsets after processing .

Observe that bd.start=1, i.e. bd is in the pruned partition . We can observe that

twu(bd)=66 in from . Hence after pruning , twu(bd)=155-66=89 and bd.start

= 2. Figure 3-6 shows the result after the first sub-step, where .

1P

3,1db

1P

1P)(1 ITUP 1P

1
3,1 PdbD

Figure 3-6. The potential candidate 2-itemsets after performing first sub-step

2. Append newest partition and update potential candidate 2-itemsets

In this sub-step, the process to add new partition, , is similar to the operation of

partition , in the preprocessing process. There is no new itemsets join the potential

candidate 2-itemsets. However, itemsets {bc, bd} are carried from previous phase and also

4P

2P

18

appears in , so their transaction-weighted utility are accumulated and maintain them to

. Figure 3-7 shows the potential candidate 2-itemsets and after processing

, where .

4P

)(4 ITUP)(4 ITUP

4P 4,2
4 dbPD

Figure 3-7. The potential candidate 2-itemsets and after performing
second sub-step

)(4 ITUP

3. Use scan reduction techniques to generate all candidate itemsets, as mentioned above,

and then one more database scan finds the temporal high utility itemsets of . Table

3-3 shows the itemsets generated after first and second scan of .

4,2db

4,2db

Table 3-3. The itemsets generated after first and second scan of 4,2db
Candidate itemsets
(1st scan of)4,2db

High utility itemsets
(2nd scan of)4,2db

a,b,c,d,e
ab, ac, ae, bc, bd, be, ce

abc, abe, ace, bce
abce

b, bd, be

3.1.3 The Drawback of THUI-Mine Algorithm

THUI-Mine may give rise to two possible problems as follows:

19

1. More false candidate itemsets:

The temporal high transaction-weighted utilization itemsets may contain itemsets which may

not be truly high utility itemsets, called false candidates. The number of false candidates

depends on many factors such as the characteristics of the data, how the data is partitioned,

number of partitions, and so on. THUI-Mine records the start partition of each potential

candidate 2-itemsets and then uses different filtering threshold to prune. In this way,

THUI-Mine may overestimate some itemsets concentrating in the later partitions. For

example, there are seven potential candidate 2-itemsets maintained in shown in Figure

3-5. Observe that ac.start=3 and bc.start=3. Since twu(ac)=twu(bc)>40, filtering threshold,

itemsets ac and bc are added when is taken into consideration. In fact, itemsets ac and bc

only occur in . In other words, itemets ac and bc are overestimated.

3,1db

3P

3P

Next, THUI-Mine uses scan reduction technique to generate candidate itemsets. Candidate

3-itemsets, , is generated from . Subsequently, is generated from3C jiji ThtwThtw ,,
4C 33 CC ,

where will have a size greater than high transaction-weighted utilization 3-itemsets. In

other words, once the number of increases, it leads to a chain reaction for

3C

jiThtw ,

KC (k=3,…,n). Later in experiments, we will show that if the size of a partition or the

minimum utility decreases, the situation will be getting worse.

2. More memory:

 THUI-Mine needs to maintain for use in the incremental procedure. The

memory varies with the number of candidate 2-itemsets affected by many factors mentioned

above. Since THUI-Mine has these disadvantages, we propose a new method in next Section

so as to reduce the number of candidate itemsets generated, and decrease the memory used.

Later in Chapter 4, experiments will show that the proposed method outperforms than

THUI-Mine algorithm.

)(ITUPk

20

3.2 Our Proposed Method: MHUI_TransSW

 In this section, we propose an efficient method, called MHUI_TransSW(Mining High

Utility Itemsets over a Transaction-sensitive Sliding Window), to mine the set of all high

utility itemsets with a transaction-sensitive sliding window. MHUI_TransSW is based on

transaction-weighted downward closure property and additionally use effective item

information, i.e., TIDlist or Bitvector of all 1-itemsets, to restrict candidate itemsets generated

and thus reduce the time and memory needed. In section 3.2.1 we describe the representation

of item information and then proposed an efficient method, called MHUI_TransSW, in

Section 3.2.2.

3.2.1 Representation of Item information (TIDlist or Bitvector of items)

 For each item x, item information, i.e. TIDlist(x) or Bitvector(x), maintains the relative

placement of all transactions containing x in each sliding window, so that we can reduce the

scan of transaction database. Assume the window contains w transactions, i.e. window size is

w. The representation of item information is described as follows.

1. Definition of Bitvector(x): For each item x in the current transaction-sensitive sliding

window TransSW, a bit-sequence with w bits, denoted as Bitvector(x), is constructed. If

an item x is in the i-th transaction of current TransSW, the i-th bit of Bitvector(x) is set to

be 1; otherwise, it is set to be 0.

2. Definition of TIDlist(x): For each item x in the current transaction-sensitive sliding

window TransSW, a sorted list with at least w value, denoted as TIDlist(x), is constructed.

If an item x is in the i-th transaction of current TransSW, TIDlist(x) contains i.

Figure 3-8 shows an example of utility table and input transaction database where the first

two sliding windows are marked by and . Assume that the window size 1TransSW 2TransSW

21

is 9, consists of T1 to T9, and consists of T2 to T10. 1TransSW 2TransSW

 As reading the current transaction-sensitive sliding window, the item information generates.

The TIDlist and Bitvector of all items in each window are listed in Table 3-4. Take item a as

example. a appears in T3, T6, T8, and T9 which is in the 3rd, 6th, 8th, 9th placement

in respectively. Therefore, Bitvector(a)=<001001011> and TIDlist(a)={3,6,8,9} in

. a also appears in T3, T6, T8, and T9, however, the relative placement is in the 2

1TransSW

1TransSW rd,

5th, 7th, 8th in respectively. Bitvector(a)=<010010110> and TIDlist(a)={2,5,7,8}

in .

2TransSW

2TransSW

Figure 3-8. An example of transaction database and utility table

Table 3-4. The TIDlist and Bitvector of all items in the first two windows

22

3.2.2 MHUI_TransSW Method

We adopt the sliding window model to mine the high utility itemsets in a transaction-

sensitive sliding window. The mining process consists of three phases, i.e., window

initialization phase, window sliding phase, and high utility itemsets generation phase,

described from Section 3.2.2.1 to 3.2.2.3, respectively. Table 3-5 shows the meanings of

symbols used in our work. We assume only the summary structure derived from previous

window is provided for mining high utility itemsets in current window. The summary

structure of MHUI_TransSW consists of:

(1) Item information, i.e., TIDlist or Bitvector of all 1-itemsets.

(2) High transaction-weighted utilization 2-itemsets maintain in a lexicographical tree.

Table 3-5. The meanings of symbols used in our work

htwu k-itemsets High transaction-weighted utilization k-itemsets

The deleted portion of an ongoing database

D The unchanged portion of an ongoing database

The added portion of an ongoing database

3.2.2.1 Window Initialization Phase

 The phase is activated while the number of transactions generated so far in a data stream is

less than or equal to a user-specified sliding window size w, (i.e. w transactions). Initially, the

item information and transaction utility table are generated by reading transactions. Table 3-4

shows the item information in the first two windows. The transaction utility table is shown in

Figure 3-2. Once the window is full, we start to build the lexicographical tree.

23

The procedure to build a lexicographical tree is described as follows. We use high

transaction-weighted utilization 1-itemsets, denoted as htwu 1-itemsets, to generate

candidate 2-itemsets, . As each candidate generates, its transaction-weighted utility is

determined immediately by using item information and the transaction utility table. We

maintain the candidate 2-itemsets whose transaction-weighted utility are above the minimum

utility, called high transaction-weighted utilization 2-itemsets, denoted as htwu 2-itemsets,

in the lexicographical tree.

2C

 a, b, c, d and e are htwu 1-itemsets in . Take item a as an example. Candidate

2-itemsets {ab, ac, ad, ae} are generated from a. The TIDlist for a candidate k-itemset is

generated by joining the TIDlist of the two (k-1)-itemsets that were used to generate the

candidate k-itemset. The Bitvector for a candidate k-itemset is generated by performing

bitwise AND the Bitvector of the two (k-1)-itemsets that were used to generate the candidate

k-itemset. For example, TIDlist(ab) in is {6,8,9} which can be obtained by

intersection TIDlist(a) and TIDlist(b), and the Bitvector(ab) in is <000001011>

which can be obtained by bitwise AND Bitvector(a) and Bitvector(b). That means itemset ab

occur in the sixth, eighth and ninth transactions in . Next, twu(ab) can be obtained

by summation the corresponding transaction utilities. We obtain twu(ab)=tu(T6)+tu(T8)+

tu(T9)=48+37+53=138>120 from transaction utility table. Itemsets {ac, ad, ae} are verified in

the same way. Finally, there are two htwu 2-itemsets from item a. Figure 3-9, shows the tree

after generating all htwu 2-itemsets from item a. The sub-tree of item b, c, d and e operate the

same way as item a. Figure 3-10 shows the tree built in .

1TransSW

1TransSW

1TransSW

1TransSW

1TransSW

24

a b e c d

ab ae

Figure 3-9. The tree after generating all candidate 2-itemsets from item a

ce

a b e c d

bd beab ae

Figure 3-10. The tree built in 1TransSW

3.2.2.2 Window Sliding Phase

 The window sliding phase is activated while the window is full and new transaction arrives,

and window sliding is performed. In this phase, firstly, we update the item information and

record some extra information. Secondly, we update the tree. We describe these two steps as

follows:

1. update item information

 For removing old transactions, all TIDlist of items are sliding (decrmented by the number

25

of deleted transactions) and then for adding new transactions, the TIDlist of items in incoming

transactions need updating. For removing old transactions, all Bitvector of items perform left

shift (shift out the oldest bit) and then for adding new transactions, the Bitvector of items in

incoming transactions need updating.

T1 is deleted, so the first transaction is T2 and the last transaction is T10 in .

Take item c as an example, after deleting T1, TIDlist(c) changes from {1, 5, 8, 9} to {4, 7, 8}

and Bitvector(c) changes from<100010011> to <000100110>. Since item c appears in T10,

window size, w, is added to TIDlist(c) and the latest bit of Bitvector(c) is set to 1. Therefore,

TIDlist(c)={4, 7, 8, 9} and Bitvector (c)=<000100111> in .

2TransSW

2TransSW

 Besides modifying item information, we also need to record item in the oldest transaction,

denoted as DeleteItem, and item in incoming transaction, denoted as InsertItem. The oldest

transaction, T1, contains item c and e. The incoming transaction, T10, contains item b and c

Therefore, DeleteItem={c, e} and InsertItem={b, c}.

2. update lexicographical tree

 After modifying item information, MHUI_TransSW begins to modify the tree. Only the

sub-trees of the items in the DeleteItem or InsertItem need to be checked.

 This can be decomposed into three parts: The item only in DeleteItem is denoted as

OnlyDeleItem. The item only in InsertItem is denoted as OnlyInsertItem. The item not only in

DeleteItem but also in InsertItem is denoted as IntersecItem. Continue the example described

above. e is in OnlyDeleItem, b is in OnlyInsertItem, and c is in IntersecItem. Each item in

different set performs different operation. The operation in each set is described as follows:

(1) Item in OnlyDeleIte: Since the item is only in the oldest transaction, the transaction-

weighted utility of its child node may be less than or equal to the previous window. In

other words, the child node may be a htwu 2-itemset in previous window but is not a htwu

2-itemset in current window. We check the child node of this item with item information

and prune it while its transaction-weighted utility is below the minimum utility. Take item

26

e as an example. Since there are no potential candidate 2-itemsets from item e carried over

from the previous window, no itemsets need to be checked.

(2) Item in OnlyInsertItem: Since the item is only in the incoming transaction, the

transaction-weighted utility of itemsets from it may be larger than or equal to the previous

window. In other words, the itemset may be not a htwu 2-itemset in previous window but

become a htwu 2-itemset in current window. We check non-existing itemsets which is

from the item with item information and insert it while its transaction-weighted utility is

greater than the minimum utility. Take item b as an example. Twu(bc)=tu(T8)+tu(T9)+

tu(T10)=152>120, so bc is newly inserted into the sub-tree of b. For bd and be, it is not

necessary to check because twu(bd) and twu(be) may only increase but not decrease.

Figure 3-11 shows the tree after modifying the sub-trees of items in OnlyInsertItem.

ab ae

a b e c d

bebc bd ce

Figure 3-11. The tree after modifing the sub-trees of items in OnlyInsertItem

(3) Item in IntersecItem: Since the item is not only in the oldest transaction but also in

incoming transaction, original htwu 2-itemset may be not a htwu 2-itemset in current

window and vice versa. We check the transaction-weighted utility of existing nodes

whether it needs to delete. Besides, we check the transaction-weighted utility of

non-existing nodes whether it needs to insert. Take item c as an example. cd is a non-

existing node in , and twu(cd)=37<120, and thus it is not newly inserted in

. ce is an existing node in . However, twu(ce)=112<120, so it is

1TransSW

2TransSW 1TransSW

27

deleted in . Figure3-12 shows the tree after modifying the sub-trees of items in

IntersecItem.

2TransSW

a b e c d

ab ae bebc bd

Figure 3-12. The tree after modify the sub-trees of items in IntersecItem

3.2.2.3 High Utility Itemsets Generation Phase

 In this phase, MHUI_TransSW uses a level-wise method to generate the set of candidate

k-itemset , , from the pre-known htwu (k-1)-itemsets. Then, we immediately derive the

htwu k-itemsets, by using item information to verify its validity. The candidate-generation-

then-testing process stops when no candidates are generated.

kC

Let the minimum utility for nine transactions be 120. An itemset X is a high utility itemset

if u(X)>=120.There are five htwu 2-itemsets generated in . Hence only one

candidate 3-itemsets {abe} are generated by combining htwu 2-itemsets: ab, ae and be. The

TIDlist(abe)={5,7,8}(Bitvector(abe)=<000010110>), so twu(abe)=tu(T6)+tu(T8)+tu(T9)=138

>120. Hence, abe is a htwu 3-itemset. Because no new candidates are generated, the

generation-then-test process stops. After all candidate itemsets are generated, one more scan is

needed to find high utility itemsets in . Table 3-6 shows the itemsets generated

after first and second scan in each window.

1TransSW

1TransSW

28

Table 3-6. The itemsets generated after first and second scan in each sliding window.

 1TransSW 2TransSW

High transaction-weighted

utilization itemsets (itemsets

generated after first scan)

a, b, c, d, e

ab, ae, bd, be, ce

abe

a,b,c,d,e

ab, ae, bc, bd, be

abe

High Utility Itemsets

(itemsets generated after second

scan)

b, bd, be b, bd, be

3.3 The Proposed Method: MHUI_TimeSW

Based on MHUI_TransSW, an efficient method to mine high utility itemsets over a data

stream with a time-sensitive sliding window, denoted as MHUI_TimeSW, is proposed in this

Section. In section 3.3.1, we describe the time unit in time-sensitive sliding window and the

item information maintained. We adopt the sliding window model. MHUI_TimeSW consists

of three phases, window initialization phase, window sliding phase, and high utility itemsets

generation phase, is described from section 3.3.2 to 3.3.4, respectively.

3.3.1 Item Information and Time Unit List

A time-sensitive sliding window (TimeSW) in the transaction data stream is a window that

slides forward for every time unit (TU).The transaction in the time-sensitive sliding window

is denoted as T=(, TID, itemset), where is the identifier of the time unit, and TID is

the identifier of the transaction. Each time unit consists of variable number, | |, of

transactions, and | | is called the size of the time unit. As the window size is changed as

idTU idTU

iTU

iTU

29

time advances, MHUI_TimeSW needs to maintain the minimum utility each window

required.

 Assume the size of time-sensitive sliding window is three and the minimum utility for nine

transactions is 120. Figure 3-13 shows the transactions that arrive in the stream in two

successive windows, =[T1, T2,…, T6] and

=[T3, T4,…, T11]. Table 3-6 shows the transactions contained in each time unit and the

size of each time unit. The size of first window is

1TimeSW],,[321 TUTUTU 322 ,[TUTUTimeSW

], 4TU

6|||||||| 3211 TUTUTUTimeSW so

its minimum utility is 120*(6/9)=80, whereas the size of second window is

=9 so its minimum utility is 120. In this example, the deleted

portion of an ongoing database, denoted as

|| 2TimeSW

|||||| 432 TUTUTU

, is ; the added portion of an ongoing

database, denoted as , is ; the unchanged portion of an ongoing database is and

.

1TU

4TU 2TU

3TU

a time-sensitive sliding window
Figure 3-13. An example of transaction database and utility table in

30

Time

units

Transactions

contained

Size of Time

Unit

1TU TI,T2 2

2TU T3,T4,T5 3

3TU T6 1

4TU T7,T8,T9,T10,T11 5

and the size of each time unit
Table 3-7. The transactions contained in each time unit

The representation of item information maintained in MHUI_TimeSW is the same as

MHUI_TransSW. Table 3-7 shows the item information in each window. Noted that the value

of TIDlist is less than window size, w, and the Bitvector contains w bits. Take a as example, a

appears in T3, T6 in , and thus TIDlist(a)={3,6} and Bitvector(a)=<001001> in

. a appears in T3, T6, T8 and T9 in and their corresponding placement is

first, fourth, sixth and seventh. Hence TIDlist(a)={1,4,6,7}and Bitvector(A)=<100101100> in

.

1TimeSW

1TimeSW 2TimeSW

2TimeSW

Table 3-8. The item information in the first two windows

31

3.3.2 Window Initialization Phase

 The window initialization phase of MHUI_TimeSW is activated while the number of time

units generated so far in a transaction data stream is less than or equal to a user-specified

time-sensitive sliding window size w (i.e. w time units). In this phase, first we maintain item

information and the transaction utility as reading transactions. The item information is shown

in Table 3-7. The transaction utility table is shown in Figure 3-2.

Next, MHUI_TimeSW builds the lexicographical tree in the same way as

MHUI_TransSW. Candidate 2-itemsets are generated by the htwu 1-itemsets:{a b, d, e}and we

use their corresponding item information to verify their validity. Figure 3-14 shows the tree

built in . The potential candidate 2-itemsets is {bd}. 1TimeSW

bd

edba

Figure 3-14. The tree built in 1TimeSW

3.3.3 Window Sliding Phase

The window sliding phase of MHUI_TimeSW algorithm is activated while the window

becomes full. At this time, the oldest time unit is removed from the window, and then a newly

one is appended to the time-sensitive sliding window.

In this phase, firstly, we update the item information and record some extra information.

32

Secondly, we update the tree of candidate 2-itemsets. The procedure is the same as

MHUI_TransSW except that the minimum utility changes as the window size changes. We

describe these two steps as follows.

1. update TIDlist and Bitvector of items

Let is the size of deleted portion and | is the size of added portion. TIDlist is

decremented by and Bitvector is left shift bits for removing the oldest

transactions. Next, TIDlist and Bitvector of items in newly time unit need updating. The

deleted portion contains two transactions .Take c as an example. TIDlist(c) changes from {1,

5} to {3} and Bitvector(c) changes from <100010> to <001000> after is deleted. c is in

T8, T9 and T10 which is the sixth, seventh and eighth placement in respectively.

TIDlist(c)={3, 6, 7, 8}and Bitvector(c)=<001001110> after is added. Table 3-7, shows

the item information in each sliding window. Besides updating item information, we also need

to record DeleteItem, and InsertItem, the same as MHUI_ TransSW. DeleteItem = {b, c, d, e}

and InsertItem={a, b, c, d, e}.

|| |

|| ||

1TU

2TimeSW

4TU

2. update lexicographical tree

After modification of TIDlist of items, MHUI_TransSW begins to modify the tree. Only the

sub-trees of the items in the DeleteItem or InsertItem need to be checked. This can be

decomposed into three parts the same as MHUI_TransSW: OnlyDeleItem, OnlyInsertItem,

and IntersecItem. The operation in each set is the same as MHUI_TransSW mentioned above.

(1) Since there are no elements in OnlyDeleItem, we don’t do anything.

(2) The item in OnlyInsertItem: OnlyInsertItem is {a}. Take item a as an example. We

check the candidate 2-itemsets {ab, ac, ad, ae} with item information. Itemsets {ac, ad}

are low transaction-weighted utilization 2-itemsets. On the contrary, itemsets {ab, ae}

are htwu 2-itemsets and thus are inserted into the tree. Figure 3-15 shows the tree after

checking the sub-trees of all items in OnlyInsertItem.

(3) The item in IntersecItem: IntersecItem is {b, c, d, e}. Take item b as an example.

33

Itemset {bd} is an existing node. We check whether it becomes a non htwu 2-itemset.

On the contrary, itemsets {bc, be} are non-existing nodes. We check whether they

become htwu 2-itemsets. After verification, bd is kept and {bc, be} are inserted. The

sub-trees of c, d and e are maintained in the same way. Figure 3-16 shows the tree after

checking the sub-trees of all items in IntersecItem.

a b ec d

ab ae bd

Figure 3-15. After checking the sub-trees of all items in OnlyInsertItem

a b ec d

ab ae bc
bd be

Figure 3-16. After checking the sub-trees of all items in IntersecItem

3.3.4 High Utility Itemsets Generation Phase

In the high utility itemsets generation phase, MHUI_TimeSW performs the same as

MHUI_TransSW except the minimum utility changes as the window size changes. For

example, Table 3-9 shows there are five htwu 2-itemsets generated in . Only one

candidate 3-itemsets {abe} are generated. The TIDlist(abe)={4,6,7}and Bitvector(abe)=

2TimeSW

34

<000101100>. That is itemset abe occurs in T6, T8 and T9 so twu(abe)=tu(T6)+tu(T8)+

tu(T9)=138>120. Itemset abe is a htwu 3-itemset. Because no new candidates are generated,

the generation-then-test process stops. After all candidate itemsets are generated, one more

scan is needed to find the high utility itemsets. Table 3-9 shows the itemsets generated after

first and second scan.

Table 3-9. The itemsets generated after first and second scan in each window

 1TimeSW 2TimeSW

High transaction-weighted

utilization itemsets (itemsets

generated after first scan)

a,b,d,e a,b,c,d,e

bd ab, ae, bc, bd, be

abe

High utility itemsets b, bd b, bd, be

(itemsets generated after

second scan)

35

Chapter 4

Performance Measurement

We perform some experiments to compare our proposed work with THUI-Mine. All the

programs are implemented in C++ STL and compiled with Visual C++.NET compiler. All the

programs are performed on AMD Athlon(tm) 64 Processor 3000+ 1.8GHz with 1GB memory

and running on Windows XP system.

 All testing data was generated by the synthetic data generator provided by Agrawal et al

in [2]. However, the IBM generator only generates the quantity of 0 or 1 for each item in a

transaction. In order to adapt the databases into the scenario of utility mining, the quantity of

each item and the utility of each item is randomly generated. The meaning of symbols is

shown in Table 4-1.

Table 4-1. Meanings of symbols used

|W| Window size

|P| Partition size

ut Minimum utility threshold

The quantity of each item in each transaction
ipQ

Utility of each item
ipU

The added portion of ongoing database

The deleted portion of ongoing database

Item_freq The frequent of item, i.e., the average number of TIDlist of

all items. That is the average number of transactions each

item contained.

36

 In our programs, we randomly generate , ranging from 1 to 5. , stored in utility table,

is also synthetically created by assigning a utility value to each item randomly, ranging from 1

to 1000. Observed from real world databases that most items are in the low profit range, the

utility value generated using a log normal distribution, as is similar to the model used in

THUI-Mine. We use several sets of synthetic databases from IBM generator. Table 4-2 shows

the names and parameter settings for each data set. Our testing metric includes the number of

candidate itemsets generated, execution time and memory consumed.

ipQ ipU

Table 4-2. The names and parameter settings for each data set.

Average items per

transaction (T)

Average length

of maximal

pattern(I)

Number of

transactions(D)

Number

of items

T5I4D100K 5 4 100K 1000

T10I6D100K 10 6 100K 1000

T15I10D100K 15 10 100K 1000

T20I15D100K 20 15 100K 1000

4.1 Experiments of MHUI_TransSW Method

In this section, we compare the mining results of MHUI_TransSW and THUI-Mine using

the same dataset T5I4D100K. The number of item types is fixed to 1,000. The sliding window

is fixed to 5,000 transactions and the partition size is fixed to 1 transaction.

4.1.1 Different Minimum Utility Threshold

In this section, we test the execution time, memory usage and number of candidate itemsets

37

generated under different minimum utility thresholds where ut is changed from 0.9% to

6.0%.

1. Execution time: Figure 4-1 shows the result of execution time. Observe that MHUI_

TransSW runs efficiently faster than THUI-Mine in a transaction-sensitive sliding

window.

Figure 4-1. The execution time of MHUI_TransSW and THUI-Mine
under different minimum utility thresholds

2. Memory usage: Figure 4-2 shows the result of memory usage .Observe that the memory

used in MHUI_TransSW is almost the same (this is obvious from that the number of

candidate itemsets generated increases little under these different utility thresholds).

However, the memory used in THUI-Mine increases dramatically as the minimum utility

threshold decreases.

38

Figure 4-2. The memory usage of MHUI_TransSW and THUI-Mine
under different minimum utility thresholds

3. The number of candidates generated after 1st scan: Observe that the smaller the

minimum utility threshold is the larger the number of the candidates THUI-Mine

generates. Table 4-3 shows the number of candidates generated.

 Minimum utility

threshold (%)
THUI-Mine MHUI_TransSW

0.9 218521 15
1.0 217162 8
2.0 138062 0
3.0 98203 0
4.0 87019 0
5.0 20885 0

Table 4-3. The number of candidates generated by MHUI_TransSW and
THUI-Mine with different minimum utility thresholds

 From previous experiments, we verify that MHUI_TransSW generates less candidate

itemsets so that MHUI_TransSW runs significant faster and consumes less memory when

using transaction-sensitive sliding window.

39

4.2 Experiments of MHUI_TimeSW Method

In this section, we compare the mining results of MHUI_TimeSW and THUI-Mine using

the same dataset T10I6D100K. The number of item types is fixed to 1,000. The sliding

window is fixed to 30,000 transactions. The partition size is fixed to 10,000 transactions.

Without loss of generality, we set =10,000 for simplicity, where |P| denotes

the partition size, denotes the size of added portion, and denotes the size of

deleted portion.

|||||| P

|| ||

4.2.1 Different Minimum Utility Threshold

In this section, we test the execution time, memory usage and the number of candidate

itemsets generated under different minimum utility thresholds where ut is changed from 0.3%

to 1.0%.

1. Execution time: Figure 4-3 shows the result of execution time. As minimum utility

threshold is larger than 0.5%, MHUI_TimeSW in average is two times faster than

THUI-Mine. However, as the minimum utility threshold is less than 0.5%, the

performance difference becomes prominent in that MHUI_TimeSW significantly

outperforms THUI-Mine.

40

Figure 4-3. The execution time of MHUI_TimeSW and THUI-Mine with
different minimum utility thresholds

2. Memory usage: Figure 4-4 shows the result of memory usage. Observe that the memory

usage of MHUI_TimeSW is almost the same (this is obvious from that the number of

candidate itemsets generated increases little under these different utility thresholds).

However, the memory used in THUI-Mine is getting larger as the minimum utility

threshold decreases.

Figure 4-4. The memory usage of MHUI_TimeSW and THUI-Mine with different
minimum utility thresholds

41

3. The number of candidates generated after 1st scan: Observe that the smaller the

minimum utility threshold is the larger the number of the candidates THUI-Mine

generates. Table 4-4 shows the number of candidates generated by MHUI_ TimeSW and

THUI-Mine with different minimum utility thresholds.

Table 4-4. The number of candidates generated of MHUI_TimeSW and

THUI-Mine with different minimum utility thresholds

Minimum utility

threshold (%)
THUI-Mine MHUI_TimeSW

0.3 10788 672
102 38

0.6 18 7
0.8 1 1
1.0 0 0

We conclude that the execution time, memory usage and the number of candidate itemsets

of THUI-Mine will increase significantly as minimum utility threshold decreases.

4.2.2. Different Partition Size

 In this section, we compare the mining results of MHUI_TimeSW and THUI-Mine using the

same dataset as Section 4.2.1 except that ut is fixed and partition size is variable in this

Section. The minimum utility threshold is fixed to 0.5%.

 We test the execution time, memory usage and the number of candidate itemsets generated

under different partition size where |P| is changed from 1 to 15,000.

1. Execution time: Figure 4-5 shows the result of execution time. When partition size is

larger than 5K, MHUI_TimeSW in average is two to three times faster than THUI-Mine.

42

As the partition size is less than 5K, the performance difference becomes prominent in

that MHUI_TimeSW significantly outperforms THUI-Mine. The reason is that as the

partition size decreases, the number of false candidates becomes larger. Hence, it will

need much more time to process.

Figure 4-5. The execution time of MHUI_TimeSW and THUI-Mine with
different partition sizes

2. Memory usage: Figure 4-6 shows the result of memory usage. Observe that as partition

size is larger than 1K, the memory required in MHUI_TimeSW in average is two to three

times larger than THUI-Mine. As partition size is less than 1K, the memory required in

THUI-Mine increases dramatically. The mainly memory usage depends on two factors,

one is the extra resource each algorithm maintained; the other is the candidate itemsets

generated. For the former, THUI-Mine maintains which varies with the

number of candidate 2-itemsets, whereas MHUI_TimeSW maintains item information

which is fixed under the same dataset and window size. For the latter, the number of

candidate itemsets THUI-Mine generated is much more than MHUI_TimeSW, especially

when partition size decreases (see Table 4-5).

)(ITUPK

43

3. The number of candidate itemsets generated after 1st scan: Table 4-5 shows the result

of candidates generated. MHUI_TimeSW is not a partition-based method, so change of

partition size doesn’t affect the number of candidates generated. On the contrary,

THUI-Mine is deeply influenced. Observe that as the partition size is less than 1K, the

number of candidates THUI-Mine generated increase significantly.

We conclude that the execution time, memory usage and the number of candidate itemsets

of THUI-Mine will increase dramatically as partition size decreases.

Partition size THUI-Mine MHUI_TransSW

1K 8269 37
5K 181 37
10K 102 38
15K 71 39

Figure 4-6. The memory usage of MHUI_TimeSW and THUI-Mine with
different partition sizes

Table 4-5. The number of candidates generated of MHUI_TimeSW and
THUI-Mine with different partition sizes.

44

4.3 The Performance between TIDlist and Bitvector

We can use TIDlist or Bitvector, to store item information as mentioned in Section 3.2.1. In

Section 4.1 and 4.2, our method chooses TIDlist representation, because the performance of

TIDlist is better than Bitvector under those datasets. In this section, we compare our proposed

method using TIDlist and Bitvector, denoted as MHUI(TID) and MHUI(BIT) respectively,

with THUI-Mine. We show the execution time of different methods with different minimum

utility thresholds.

 The first experiment, we use dataset T10I6D100K to compare the performance of these

three methods. The parameter setting is the same as in Section 4.2.1. Figure 4-7 shows the

execution time of these three methods under different minimum utility thresholds.

Figure 4-7. The execution time of these three methods under different minimum

utility thresholds

 Observe that MHUI(TID) always performs better than THUI-Mine, especially when utility

threshold is small. MHUI(BIT) runs a little slowly than THUI-Mine when utility threshold is

larger than 0.5%, however, MHUI(BIT) runs significantly faster than THUI-Mine when utility

threshold is less than 0.5%.

45

 Next, we use three datasets, T15I10D100K, T20I15D100K and T30I20D100K, to compare

the performance of these three methods. The window size is fixed to 30,000. The partition

size is fixed to 10,000. The minimum utility threshold is fixed to 1%. Figure 4-8 shows the

execution time of these three methods. THUI-Mine only runs successfully in dataset

T15I10D100K. However, THUI-Mine cannot draw in the picture since that it needs much

more time corresponding than the MHUI(TID) and MHUI(BIT). Observe that in these three

datasets, the execution time needed is MHUI(TID) << MHUI(BIT) << THUI-Mine. Although

MHUI(BIT) does not completely win THUI-Mine in dataset T10I6D100K, but it completely

beats THUI-Mine in larger dataset, such as T15I10D100K, T20I15D100 and T30I20D100K.

In other words, MHUI(BIT) maybe runs a little slower than THUI-Mine in a smaller dataset,

it maybe runs significantly faster than THUI-Mine in a larger dataset.

Figure 4-8.The execution time of these three methods under different datasets

 Table 4-6 shows the Item_freq, the average number of transactions containing each item.

Observe that Item_freq increases a little as the dataset become larger. The ratio of Item_freq to

window size is from 480/30,000=1.6% to 750/30,000=2.5% in T15I10D100K to

T30I20D100K respectively. Since the ratio is apparently small, we can obtain that the

46

performance of MHUI(TID) is better that MHUI(BIT). Figure 4-7 and Figure 4-8 verified the

conclusion.

Table 4-6. The Item_freq in each dataset

Item_freq Dataset

T15I10D100K 480

T20I15D100K 550

T30I20D100K 750

4.4. The Stability of Our Proposed Work

In this experiment, we examine the two primary factors, execution time and memory usage,

to discovery high utility itemsets in a data stream environment. We use there datasets,

T10I6D100K, T15I20D100K and T20I15D100K, and change one parameter at a time to prove

the stability of our proposed work. Each is described as follows:

1. Different Minimum Utility Thresholds: In the first experiment, the window size is

fixed to 30,000 and the partition size is fixed to 10,000. We test the execution time and

memory usage under different minimum utility thresholds where ut is changed from

0.5% to 1.0%. Figure 4-9 and Figure 4-10 show the execution time and memory usage,

respectively.

47

Figure 4-9. The execution time of MHUI_TimeSW under different minimum
utility thresholds

Figure 4-10. The memory usage of MHUI_TimeSW under different
minimum utility thresholds

2. Different Partition Size: In the second experiment, the window size is fixed to 30,000

and the minimum utility threshold is fixed to 0.5%. We test the execution time and

memory usage under different partition sizes where |P| is changed from 100 to 15,000.

Figure 4-11 and Figure 4-12 show the execution time and memory usage respectively.

48

Figure 4-11. The execution time of MHUI_TimeSW under different partition
sizes

Figure 4-12. The memory usage of MHUI_TimeSW under different partition
sizes

3. Different Window Size: In the third experiment, the partition size is fixed to 10,000 and

the minimum utility threshold is fixed to 1.0%. We test the execution time and memory

usage under different window sizes where |W| is changed from to 20,000 to 60,000.

Figure 4-13 and Figure 4-14 show the execution time and memory usage, respectively.

49

Figure 4-13. The execution time of MHUI_TimeSW under different window sizes

Figure 4-14. The memory usage of MHUI_TimeSW under different window sizes

Observe that the execution time and memory usage goes smoothly as time advances no

matter we change what kind of parameters. This result indicates that our proposed work is

stable and fit for all kinds of datasets.

50

Chapter 5

Conclusion and future work

5.1 Conclusion of Our Proposed Work

Due to the limitation of data streams and the complexity of computing utility itemsets,

mining of high utility itemsets in a data stream is more complicated than in static database. In

this thesis we propose two methods: MHUI_TransSW and MHUI_TimeSW to mine the high

utility itemsets with the transaction-sensitive and time-sensitive sliding window respectively.

THUI-Mine is the first algorithm proposed to find high utility itemsets in a data stream.

THUI-Mine uses partition-based to find the candidate itemsets, and thus it generates too many

candidate itemsets and need more time and memory to find the high utility itemsets. The goal

of our work is to improve on mining high utility itemsets in execution time, memory usage

and the number of candidates generated. Our work is based on the transaction-weighted

downward closure property and utilizes efficient item information, i.e, TIDlist or Bitvector,

and additionally builds a lexicographical tree to maintain the candidate 2-itemsets.

Experiments show that execution time and memory usage of MHUI_TransSW significantly

outperforms THUI-Mine in a transaction-sensitive sliding window. Next, we extend MHUI_

TransSW to MHUI_TimeSW. Experiments validate the efficiency. For smaller datasets and

smaller item_freq/window, MHUI_TimeSW using TIDlist as item information runs averagely

two times faster than THUI-Mine, and the margin grows as the minimum utility threshold

decreases or the partition size decreases. MHUI_TimeSW using Bitvector as item information

runs a little slower than THUI-Mine, whereas it runs significantly faster as the partition size

decreases or the minimum utility threshold decreases. For larger datasets and smaller

item_freq/window size, no matter MHUI_TimeSW uses TIDlist or Bitvector as the item

information, it runs significantly faster and consumes less memory space than THUI-Mine

51

especially when the partition size is small or the minimum utility threshold is small.

5.2 Future Work

Our work uses the transaction-weighted utilization property to filter out the candidate

itemsets, so it needs two scans, the first scan to find high transaction-weighted utilization

itemsets and the second scan to find the high utility itemsets. However, one of the

characteristics of data streams is expiration, which means data can be read only once. Because

of the complicated calculation of utility itemsets it is challenging to mine high utility itemsets

on data streams in one-pass scan.

52

Bibliography

1. R. Agrawal, T. Imielinski, A. Swami, Mining associations rules between sets of items in

large Databases, In Proc. of ACM SIGMOD Intel. Conf. on Management of Data, pp.

207-216, 1993.

2. R. Agrawal and R. Srikant, Fast Algorithms for Mining Association Rules in Large

Database, In Proc. of the 20th Intel. Conf. on Very Large Databases (VLDB), pp. 487-

499, 1994.

3. A. Savasere, E. Omiecinski and S. Navathe, An Efficient Algorithm for Mining

Association Rules in Large Database, In Proc. of the 21th Intel. Conf. on Very Large

Databases (VLDB), pp. 432-444, 1995.

4. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo, Fast Discovery of

Associations Rules, Advances in Knowledge Discovery and Data Mining, pp. 307-328.

AAAI/MIT Press, 1996.

5. J. S. Park, M. S. Chen, P. S. Yu, Using a Hash-Based Method with Transaction Trimming

for Mining Association Rules, IEEE Trans. on Knowledge and Data Engineering, 9(5):

pp. 813-825, 1997.

6. J. Han, J. Pei, and Y. Yin, Mining Frequent Patterns without Candidate Generation, In

Proc. of ACM SIGMOD Intel. Conf. on Management of Data, pp. 1-12, 2000.

7. C. H. Lee, C. R. Lin and M. S. Chen, Sliding-Window Filtering: An Efficient Algorithm

for Incremental Mining, In Proc. of the ACM 10th Intel. Conf. on Information and

Knowledge Management (CIKM), pp. 263-270, 2001.

8. Y. Zhu, D. Shasha, StatStream: Statistical Monitoring of Thousands of Data Stream in

Real Time, In Proc. of the 28th Intel. Conf. on Very Large Databases (VLDB), pp.

358-369, 2002.

9. G. Manku and R. Motwani, Approximate Frequency Counts over Data Streams, In Proc.

53

of the 28th Intel. Conf. on Very Large Databases (VLDB), pp.346-357, 2002.

10. C. Jin, W. Qian, C. Sha, J. Yu, A. Zhou, Dynamically Maintaining Frequent Items over a

Data Stream, In Proc. of the ACM 12th Intel. Conf. on Information and Knowledge

Management (CIKM), pp. 287 - 294, 2003.

11. L. Golab and M. T. Ozsu, Issues in Data Stream Management, In ACM SIGMOD Record,

32(2): pp. 5-14, 2003.

12. R. Chan, Q. Yang, Y. D. Shen, Mining High utility Itemsets, In Proc. of the 3rd IEEE

Intel. Conf. on Data Mining (ICDM), 2003

13. J. H. Chang and W. S. Lee, Finding Recent Frequent Itemsets Adaptively over online

Data Streams, In Proc. of Intel. Conf. on Knowledge Discovery and Data Mining

(SIGKDD), pp.487-492, 2003.

14. J. Chang and W. Lee, “A Sliding Window Method for Finding Recently Frequent

Itemsets over online Data Streams”, Journal of Information Science and Engineering,

20(4): pp. 753 - 762, 2004.

15. H. F. Li, S. Y. Lee and M. K. Shan, DSM-FI: An Efficient Algorithm for Mining

Frequent Itemsets over the Entire History of Data Streams, In 1st Intel. Workshop on

Knowledge Discovery in Data Streams, 2004.

16. Y. Chi, H. Wang, P. S. Yu, R. Muntz, Moment: Maintaining Closed Frequent Itemsets

over a Stream Sliding Window, In Proc. IEEE Intel. Conf. on Data Mining (ICDM), pp.

59-66, 2004.

17. H. Yao, H. J. Hamilton, and C. J. Butz, A Foundational Approach to Mining Itemset

Utilities from Databases, In Proc. of 4th SIAM Intel. Conf. on Data Mining (SDM),

2004.

18. C. H. Lin, D. Y. Chiu, Y. H. Wu, A. L. P. Chen, Mining Frequent Itemsets from Data

Streams with A Time-Sensitive Sliding Window, In Proc. of SIAM Conf. on Data Mining

(SDM), 2005.

54

19. Y. Liu, W. Liao, and A. Choudhary, A Fast High Utility Itemsets Mining Algorithm, In

Proc. of the ACM Intel. Conf. on Utility-Based Data Mining Workshop (UBDM), 2005.

20. V. S. Tseng, C. J. Chu, and T. Liang, Efficient Mining of Temporal High Utility Itemsets

from Data Streams, In Proc. of the ACM Intel. Conf. on Utility-Based Data Mining

Workshop (UBDM), 2006.

21. H. Yao, H. Hamilton and L. Geng, A Unified Framework for Utilty-Based Measures for

Mining Itemsets, In Proc. of the ACM Intel. Conf. on Utility-Based Data Mining

Workshop (UBDM), pp. 28-37, 2006.

55

