i
L
-
e
ISy

AERERBERG S ETAMEABEIAR

Efficient Mining of High Utility Itemsets on Data Streams

P2 A S NN

FBEHIR T 2EB R

TERBEALTASAFELEH

EHEREEEYSEAMBEEEXITR

&

£

1B &
Efficient Mining of High Utility Itemsets on Data Streams
A

NN Student : Hsin-Yun Huang
BEHR 2 EB Advisor : Suh-Yin Lee
IR @R F
B OA R BT R R AT
e s Rl

A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

July 2007
Hsinchu, Taiwan, Republic of China

FERBEALTNFEA

LAEBERBARABEEISERAMBBEEZIMER

VAV S I = TREHET - ZERBR

SRVESTPN S s M e

HE

FE H AR Z A E R AR TR it it L2 5% - BRI DL RIIIE UEA: -
PRI A e R B Fh PR B e R AR B SRR - R R R ERR HIR
] > (SRR T PR RS - PR = T S T A AL A — (R ARIR(E
F IR E R P AP S BRI o AR E AR AT - (e item HYBEL{ERE
DAR 228 gl item RS AT ELEATEAE - RIS INEE 1 FER B AERE -

(RSP ERAMEEH T MHUL TransSW ke MHUI_TimeSW > A5 3CRIAEFE T
L (R BRI FR PR e B I H B - BB 5 - B TIDlist BOZAL
TR SRSk ittem HYEEH » FFAIE lexicographical tree FYZET. » ditife " THUI-Mine
HENEHTRAE - BEAS RABURE AR 5k - ANVELER R 22 LR EE - #RES
AR EE R A B TR PR B e B M E E 2R -

R - BRI WEmiE > REHAMEEE DTHE

Efficient Mining of High Utility Itemsets on Data Streams

Student: Hsin-Yun Huang Advisor: Suh-Yin Lee

Institute of Computer Science and Engineering
College of Computer Science
National Chiao-Tung University

Abstract

Since there are many applications in the form of data streams, such as sensor network,
stock analysis, mining useful patterns from a data stream is an important issue nowadays.
However, it is a difficult problem becauselof Soie limitations in the data stream environment.
A new issue, called utility mining, for mining interesting pattern which is profitable for users
is suggested in recent years. In the mining-of-‘high utility itemsets, the utility and the sales
quantity of each item could be arbitrarily mumber, so many methods applied to frequent
itemsets mining cannot be used anymore.

In this thesis, we propose MHUI TransSW and MHUI TimeSW to mine high utility
itemsets on a data stream in two types of sliding window. We use item information, i.e.
TIDlist or Bitvector of l-itemsets, and lexicographical tree to improve the efficiency of
THUI-Mine. The experiment results show that our approach efficiently find the high utility

itemsets not only in execution time but also in memory space.

Index Terms: data stream, sliding window, high utility itemsets, Bitvector

il

Acknowledgement

I greatly appreciate the guidance from my advisor, Prof. Suh-Yin Lee. Without her
suggestion and instruction, I can’t complete this thesis.

Besides, I want to express my thanks to all the members in the Information System
Laboratory and all my sincere friends for their suggestions and encouragements. Finally, I
want to express my appreciation to my parents for their supports. This thesis is dedicated to

them.

il

Table of Contents

AN 01 8 10l (O 1111 1Y) T 1
AbStract(English) ...c.coieiiniiniiiiiiiiiiiiiiiiiiiiieiieiinienesmmeesasssssssommsssssssssnsonses i
AcCKNOWIEAEEMENT.....uiiuiiiniiiiiiiiiiiiiiiiiiiiiiiiietietiateniteesetatenramasensorasmmnes i1
010 (1 1) 1 1) 11 v
| B LT 3 3 Fed 1 N vi
LiSt 0f Tables...uouuiiitiittietttettecttasnscnsmmmmnees vii
Chapter 1 Introduction.......c.coveiiieiiiniiiniiiieiiieieinieinecssersesssssssnmascssssssssssssnnnes 1
1.1 Overview and MoOtIVAtION.ouiitii i 1
1.2 Related WOrK. ... 3
1.3 Organization of the Thesis..........oooiiiiiii e, 5
Chapter 2 Problem definition and Background.. 6
2.1 Definition and Background of Data Stream.................cooiiiiiiiiiiiiiiin.n. 6
2.1.1 Data Stream........ooueii e 6
2.1.2 A Sliding Window Model...........oooiiiiii e 7
2.2 Problem definition: Mining High Utility Itemsets in a Sliding Window Model.... 8
2.2.1 Utility Itemsets.. e 8

2.2.2 Problem deﬁmtlon Mlmng ngh Ut111ty Itemsets ina Shdlng Wlndow
Model.......cooon.. all e R T MG - < coneeneeeenneneeaeeaneaeeaeaeenans 10
2.3 Transaction-Weighted Downward Closure Property.................cooiiiiia.e. 11
Chapter 3 An Efficient Mining of High Utility Itemsets............c..ccceeiiiiiiiiininn. 12
3.1 Related Work: THUI-Mine Algorithme=z. . .ov. oo 12
3.1.1 The Preprocessing Pracedure.0ut . oo 14
3.1.2 The Incremental Procedure:: e 18
3.1.3 The Drawback of THUI- Mlne Algorlthm .. 19
3.2 Our Proposed Method: MHUI TransSW.. . ceereneens 21
3.2.1 Representation of Item Information(TIDhst or B1tvector of 1tems) 21
3.2.2 MHUI TransSW Method...........coooiiiiiiiiii 23
3.2.2.1 Window Initialization Phase.................oooiiiiiiiiiiiiiie 23
3.2.2.2 Window Sliding Phase............cccooiiiiiii e, 25
3.2.2.3 High Utility Itemsets Generation Phase......................c..co. 28
3.3 The proposed Algorithm: MHUIL TimeSW............cooviiiiiiiiiiiiiiiiennn. 29
3.3.1 Item Information and Time Unit List................coooiiiiiiiiiiii e, 29
3.3.2 Window Initialization Phase..............c.coooiiiiiiiiiiii 32
3.3.3 Window Sliding Phase...........oooiiiiiii e 32
3.3.4 High Utility Itemsets Generation Phase..................cocooiiiiiin. 34
Chapter 4 Performance Measurement......c.oeeveereiieiieeroraressscssssssssossscsssssnsssens 36
4.1 Experiments of MHUI TransSW Method..............coooiiiiiiiiiiiiii e, 37
4.1.1 Different Minimum Utility Threshold........................o i, 37
4.2 Experiments of MHUI TimesW Method.................ooooiiiiiiiiiiii 40
4.2.1 Different Minimum Utility Threshold........................ . 40
4.2.2 Different Partition SiZe............coouiiiiiiiiiii i 42
4.3 The Performance between TIDlist and Bitvector.................c.ociiiiant. 45
4.4 The Stability of Our Proposed Work............coooiiiiiiiiiii 47
Chapter 5 Conclusion and Future Work.....cceeeiiieiiiiieiiiiieieiiinieciineeciianecsinsccennnces 51

iv

5.1 Conclusion of Our Proposed Work.........c.ooiiiiiiiiiiiiiiie e
S2FUtUre WOrK. ... e

Bibliography

List of Figures

Fig 2-1 Data stream envirOnmeNnt.o.eeutentinntent ettt ettt et eee e eeeneanaans 6
Fig 2-2 The sliding window model............cooiiiiiiii e 8
Fig 2-3 An example of input transaction database and utility table.............................. 9
Fig 3-1 An example of input transaction database and utility table............................... 14
Fig 3-2 The transaction utility of each transaction..................cceiiiiiiiiiiiiii i, 15
Fig 3-3 The potential candidate 2-itemsets and 7TUP, (/) after processing P, 15
Fig 3-4 The potential candidate 2-itemsets and TUP, (1) after 16
processing P,ccceeenen
Fig 3-5 The potential candidate 2-itemsets and TUP, (/) after processing P;.................... 17
Fig 3-6 The potential candidate 2-itemsets after performing first sub-step....................... 18
Fig 3-7 The potential candidate 2-itemsets and TUP, (1) after performing second sub-step.. 19
Fig 3-8 An example of transaction database and utility table................. ...l 22
Fig 3-9 The tree after generating all candidate 2-itemsets from itema................. 25
Fig 3-10 The tree built in TransSWi..... ..o i e ee e 25
Fig 3-11 The tree after modifying the sub-trees of items in Onlylnsertitem..................... 27
Fig 3-12 The tree after modify the sub-trees of items in Intersecltem................. 28
Fig 3-13 An example of transaction database and.utility table in a time-sensitive sliding

WINAOW.. .ot B e s e e e e et et et ettt e 30
Fig 3-14 The tree build inTimeST, . .. oo o e i e e e 32
Fig 3-15 After checking the sub-trees of all items in Onlylnsertltem............................. 34
Fig 3-16 After checking the sub-trees of alkitems in Intersecltem................. 34
Fig 4-1 The execution time of MHUI rTransSW-and' THUI-Mine under different minimum

utility thresholds...... ... i 38

Fig 4-2 The memory usage of MHUI TransSW and THUI-Mine under different minimum

utility thresholds.o e 39
Fig 4-3 The execution time of MHUI TimeSW and THUI-Mine with different minimum

utility thresholds.o 41

Fig 4-4 The memory usage of MHUI TimeSW and THUI-Mine with different minimum

utility thresholds..... ..o 41
Fig 4-5 The execution time of MHUI TimeSW and THUI-Mine with different partition

SIZES. . ettt e 43
Fig 4-6 The memory usage of MHUI TimeSW and THUI-Mine with different partition

1z ettt e e e e e e e e 44
Fig 4-7 The execution time of these three methods under different minimum utility

thresholds. 45
Fig 4-8 The execution time of these three methods under different datasets.................... 46

Fig 4-9 The execution time of MHUI TimeSW under different minimum utility thresholds. 48
Fig 4-10 The memory usage of MHUI TimeSW under different minimum utility

thresholds. ... 48
Fig 4-11 The execution time of MHUI TimeSW under different partition sizes................. 49
Fig 4-12 The memory usage of MHUI TimeSW under different partition sizes................ 49
Fig 4-13 The execution time of MHUI TimeSW under different window sizes. 50
Fig 4-14 The memory usage of MHUI TimeSW under different window sizes................. 50

vi

List of Tables

Table 3-1 The meanings of symbols used in THUI-Mine..................ccoooiviiiiiinnnnn..
Table 3-2 The itemsets generated after first and second scan of db™

Table 3-3 The itemsets generated after first and second scan of db™*
Table 3-4 The TIDlist and Bitvector of all items in the first two windows....................
Table 3-5 The meanings of symbols used in our work.................ooiiiiiiiiiiiiii
Table 3-6 The itemsets generated after first and second scan in each window................
Table 3-7 The transactions contained in each time unit and the size of each time unit......
Table 3-8 The item information in the first two windows..............ccovviiiiiiiiiinnnn. ..
Table 3-9 The itemsets generated after first and second scan in each window...............
Table 4-1 Meanings of symbols used............oooiiiiiiiiiiiii e
Table 4-2 The names and parameter settings for each dataset..................................
Table 4-3 The number of candidates generated of MHUI TransSW and THUI-Mine

with different minimum utility thresholds......................o
Table 4-4 The number of candidates generated of MHUI TimeSW and THUI-Mine

with different minimum utility thresholds.......................oo,
Table 4-5 The number of candidates generated of MHUI TimeSW and THUI-Mine

with different partition S1ZeS.. . i o
Table 4-6 The Item_freq in each dataset. . mymm.an. it oo,

vii

Chapter 1

Introduction

1.1 Overview and Motivation

Association rules mining (ARM) is one of the most widely used techniques in data mining
and knowledge discovery and has tremendous applications in business, science and other
domains. Standard methods for mining association rules are based on the support-confidence
model. The first step involves finding all frequent itemsets, i.e., itemsets with support of at
least minsup, and then, from these itemsets, generating all association rules with confidence of
at least minconf. Once the frequent itemsets are found, generating association rules is
straightforward and can be accomplished inlinear time. Therefore, many researches focus on
finding frequent itemsets efficiently.

Mining frequent itemsets has‘ been widely studied over the last decade. Past research
focuses on mining frequent itemsets from static database [1, 2, 3, 5, 6]. In many of the new
applications, data flow through the internet or sensor network. It is challenging to extend the
mining techniques to such a dynamic environment. The main challenges include a quick
response to the continuous request, a compact summary of the data stream and a mechanism
that adapts to the limited resources. An important research issue extended from the association
rules mining is the discovery of temporal association patterns in data streams. However, most
methods designed for the traditional databases cannot be directly applied to mining temporal
patterns in data streams, since when transactions are added or expired, the support counts of
the frequent itemsets contained in them are recomputed.

Traditional ARM model treats all the items in the database equally by only considering if

an item is present in a transaction or not .However, the frequency of an itemset may not be a

sufficient indicator of interestingness, because it only reflects the number of transactions in
the database that contain the itemset. It does not reveal the utility of an itemset, which can be
measured in terms of cost, profit, or other expressions of user preferences. On the other hand,
frequent itemsets may only contribute a small portion of the overall profit, whereas non-
frequent itemsets may contribute a large portion of the profit.

Recently, to address the limitation of AMR, a utility mining model was defined [13].
Intuitively, utility is a measure of how “useful” (i.e. “profitable”) an itemset is. The definition
of utility of an itemset X, u(X), is the sum of the utilities of X in all the transactions
containing X. The goal of utility mining is to identify high utililty itemsets which derive a
large portion of the total utility. Traditional ARM model assumes that the utility of each item
i1s 1 or 0, thus it is only a special case of utility mining, where the utility or the sales quantity
of each item could be any number. If #(X) is greater. than a utility threshold, X is a high utility
itemset. Otherwise, it is a low utility itemset.

However, a high utility itemset may-consist of 'some low utility items. A level-wise
searching schema, Apriori, that exists in fast AMR algorithms, is used to prune impossible
itemsets as soon as possible. However this property cannot apply to the utility mining model.
Without this property, the number of candidates generated at each level quickly approaches all
the combinations of all the items. We are confronted by two difficulties. The first is how to
restrict the size of the candidate set and simplify the computation for calculating the utility.
The second is how to find temporal high utility itemsets from data streams as time advances.

In this thesis, we propose a method that can find high utility itemsets from data streams
efficiently and effectively. We use the downward closure property in Two-Phase Algorithm
[19], and add an efficient method to restrict the candidates generated and simplify the

computation of utility.

1.2 Related Work

The problem of generating association rules was first introduced in [1] and an algorithm
called AIS was proposed for mining all association rules. In past ten years, a considerable
number of studies have been made on traditional ARM algorithms and optimizations. The
base of these traditional ARM algorithms is the “downward closure property” (anti-monotone
property): any subset of a frequent itemset must also be frequent. That is, only the frequent
k-itemsets are exploited to generate potential frequent (k+1)-itemsets, called candidates. This
kind of candidate-generate-and-test methods needs multiple scans of database. A subsequent
research is proposed to speed-up Apriori, such as DHP [5] which uses a hash function to
prune candidate 2-itemsets. Besides, there are also other investigations for finding frequent
itemsets. Partition [3] algorithm isi-a kind of filter-and-refine approach. It first generates
candidate itemsets and then in one more scan verifies the validity of each candidate itemset.
Thus, the method needs only- two. scansof. database. FP-growth [6] algorithm is a
pattern-growth approach. It completely. eliminates the candidate generation bottleneck by
using a new tree structure called Frequent Pattern Tree (FP-Tree) which is constructed in only
two scans, and then recursively mines FP-trees of decreasing size to generate large itemsets
without candidates generation and database scans.

One of the key features of all the previous algorithms is that they just suited for static
databases. However, most methods designed for the traditional databases cannot be directly
applied for mining temporal patterns in data streams because of high complexity. In recent
years, processing data from data streams is a very popular topic in data mining. Three models
are adopted by many researchers in ways of time spanning [8]: landmark model, sliding
window model, and damped window model. Landmark model utilizes all the data between a
particular point of time (called landmark) and the current time for mining. Lossy-counting [9]
is the representative approach under the landmark model. Li et al [15] proposes DSM-FI

3

algorithm, which is a projection-based and single passed algorithm, to mine frequent itemsets
in the landmark model over a data stream. However, in many applications, new data are often
more important than old ones. The landmark model is not aware of time and therefore cannot
distinguish between new data and old ones. Therefore, the time-fading model, a variation of
the landmark model, has been presented. It assigns different weights to transactions such that
the new ones have higher weights than old ones. EstDec algorithm [13] uses a decay function
to reduce the weight of the old transactions. In some applications, users can only be interested
in the data recently arriving within a fixed time period, thus the sliding window model
proposed. Algorithms SWF [7] employs a filtering threshold in each partition to deal with the
candidate itemsets generation. Algorithm Moment [16] use the closed enumeration tree (CET),
to maintain a dynamically selected set of itemsets over a sliding window.

A formal definition of utility mining and theoretical model was proposed in [17], namely
MEU, where the utility is defined as.the combination of utility information in each transaction
and additional resources. Since-this imodel._cannot rely on downward closure property of
Apriori to shrink the number of candidate itemsets, a heuristic approach is used to predict
whether an itemset should be added to the candidate set. However, this prediction usually
overestimates, especially at the beginning stages, where the number of candidates approaches
the number of all the combinations of items. The examination of candidates is impractical,
either in computation cost or in memory space cost whenever the number of items is large or
the utility threshold is low. Besides, this model may miss some high utility itemsets when the
variation of the itemsets supports is large.

Another algorithm named Two-Phase [19], which is based on the definition in [17] achieves
finding high utility itemsets. It presented a Two-Phase algorithm that not only can prune down
the number of candidate itemsets, but also find the complete high utility itemsets. In first
phase, it defines a transaction-weighted utilization mining model that holds a “Transaction-
Weighted Downward Closure Property”. The size of candidate set is reduced by only

4

considering the supersets of high transaction-weighted utilization itemsets. In second phase,
only one extra database scan is performed to filter out the high transaction-weighted
utilization itemsets that are indeed low utility itemsets. This algorithm guarantees that the
complete set of high utility itemsets will be defined. However, Two-Phase algorithm is
focused just only on traditional databases and is not suited for data streams.

Chu et al [20] propose THUI (Temporal High Utility Itemsets)-Mine algorithm, which is
the first work on mining temporal high utility itemsets from data streams. The underlying idea
of THUI-Mine algorithm is to integrate the advantages of Two-Phase algorithm [19] and SWF
[7] algorithm and augment with the incremental mining techniques for mining temporal high
utility itemsets. In the first scan of database, it employs a filtering threshold in each partition
to generate progressive transaction-weighted utilization set of itemsets, and then uses database
scan reduction to generate k-candidate (k>2) itemsets. Finally, It just needs one more scan to

find temporal high utility itemsets from those candidates.

1.3 Organization of the Thesis

The remainder of this thesis is organized as follows. Some basic definitions and
terminology about utility itemsets, and sliding window are described in Chapter 2. Our
proposed method for mining high utility itemsets is presented in Chapter 3. The experiments

and performances are described in Chapter 4. Conclusion and future work is in Chapter 5.

Chapter 2

Problem Definition and Background

In this chapter we introduce the basic definition of problems. We introduce the data stream
environment and the sliding window model in Section 2.1. Next we describe the definition of
utility itemsets and the problem of mining high utility itemsets in Section 2.2. Finally, we

describe transaction-weighted utilization closure property in Section 2.3.

2.1 Definition and Background of Data Stream

2.1.1 Data Stream

Database and knowledge discovery communities haye focused on a new data model, where
data arrive in the form of continuous streams. It+is often referred to as data streams or
streaming data. The characteristics of data streams are as follows: (1) Continuity: data
continuously arrive at a rapid rate. (2) Expiration: Data can be read only once. (3) Infinity:

The total amount of data is unbounded.

In-Memory Bounded

Summary Main Memory
Massive Data Structure Requirement
Sequence Arrive

at Rapid rate

Data St Mining Data Single
ata Streams Streams Engine Streaming
Data Scan

- - M Approximate

. . Answers
Continuous Queries L
Q w@ (Deterministic Bound)

User/Application

Figure 2-1. Data stream environment

Figure 2-1 shows the data stream environment. For reasons given above, mining patterns of
data streams differs from traditional mining of static database in the following aspects: Firstly,
data streams continuously arrive at a rapid rate and thus the amount of data is huge. This
means that once a new data element arrives, it must be processed quickly. Besides, once a data
element is removed from the main memory, it is unable to backtrack over previously-arrived
data elements. Therefore, the best condition is to achieve one sequential pass over the data,
called one-pass scan. Secondly, the relatively small memory compared with the large amount
of streaming data results in the fact that we can only store a concise summary or partial data
of the data stream. Finally, due to the limited memory and one-pass scan, getting precise
answers from data streams is commonly impossible or very difficult. Due to these reasons it is
not feasible to use traditional multiple-pass techniques for mining static databases in the data
stream environment. The challenges of mining in data streams are how to design an efficient

algorithm to derive the useful patterns under limited memory and execution time.

2.1.2 A Sliding Window Model

Some applications in data streams emphasize the importance of the recent transactions. A
sliding window model is suitable to solve this kind of problems. In the sliding window model,
knowledge discovery is performed over a fixed number, window size, of recently generated
data elements which is the target of data mining and once the window is full, window sliding
is performed to eliminate the oldest data and then append the newest data.

According to the basic unit of window sliding, two types of sliding window, i.e.,

transaction-sensitive sliding window (7TransSW) and time-sensitive sliding window

(TimeSW) are used in mining data streams. A transaction-sensitive sliding window in the

transaction data stream is a window that slides forward for every transaction, whereas a time-

sensitive sliding window in the transaction data stream is a window that slides forward for

every time unit(TU,), each consisting of variable number of transactions. Therefore, the
window size, w, in TransSW at each slide is a fixed number of transactions, whereas the

window size, w, in TimeSW at each slide is a variable number of transactions. The sliding

window model is shown in Figure 2-2.

Stream /‘\ {{ H

T.— W — TCurrent
T W T Current
System start T W , TCHI‘I"EIlt

MIining useful patterns from the current window

Figure.2-2."The'sliding window model

2.2 Problem Definition: Mining High Utility Itemsets in a Sliding Window Model

2.2.1 Utility Itemsets

Let I=1{ii,.i,}be a set of n distinct literals called items. D =1T,T,,...,T,}is a set of

variable length transactions where each transaction 7, € D is a subset of /. A transaction also
has an associated unique identifier called TID. In general, a set of items is called an itemset.
The number of items in an itemset is called the /ength of an itemset. Itemsets of length £ are
referred to as k-itemsets.

In traditional frequent itemsets mining, the number of an item in each transaction is always
0 or 1. However, in utility mining model, the number of an item in each transaction, called
local transaction utility, may be arbitrary number. An extra resource, called external utility
which can be a measure for describing user preference, is defined as a utility table. Figure
2-3 shows an example of the transaction database and a utility table.

8

item

_ a (b |c d |e
TTW (0 [0 |26 [0 |1
T |0 (6 |0 10
T3 (12 |0 |0 10
T4 (0 (1 |0 710
TS (0 |0 (12 |0 |2
Te |1 |4 |0 |0 |1 item | Profit
T7 |0 |10 0|1 (Per Unit)
T8 |1 |1 301 a 3
T (2 |1 (27 |0 |2 b 10
Ti0 (0 |6 (2 0|0 c 1
T11 (0 |3 |0 2 |0 d 6
T2 (0 (2 |1 0|0 e 5

(a) Transaction table (b) Utility table

Figure 2-3. An example of input transaction database and utility table

Some definitions of a set of items!that leads. to the formal definition of utility mining

problem is given in [17]

1. o(i,,T,), local transactionutility, represents the quantity of item i, in the transactionY;.
For example, o(a,T;)=12andao(e;15) =127

2. u(i,), external utility, is the value associated with item i, in the utility table. For
example, u(a)=3 and u(b)=10.

3. u(i,,T,), utility of an itemi, inY;, is defined aso(i,,T,) xu(i,) For example, u(b,T,)=

o(b,T,)xu(b)=6*10=60 and u(d,T,)=o0(d,T,)xu(d)=1*6=6.

4. wu(X,T,), utility of an itemset X in transaction Tq, is defined as Zu(z‘ »»1,), where X=

ipeX
{iysiy,e00i } 15 @ k-itemset, X < T, and 1<k <n. For example, u(bd,T,) = u(b,T,) +
u(d,T,) =6*10+1*6=66, u(bd,T,)=u(b,T,))+u(d,T,) =1*10+7*6=52, u(bd,Ty) =
u(b, Ty) +u(d, Ty)=1*¥10+3*6=28, u(bd,T,)) =u(b,T,,)+u(d,T,,)=3*10+2%6=42.

5. u(X), utility of an itemset X, is the sum of the utilities of X in all the transactions

9

containing X, is defined as ZU(XaTq). For example, u(bd)=u(bd,T,)+u(bd,T),)

T;IED/\X gTq

+u(bd,Ty) +u(bd,T,,) =66+52+28+42=188. The goal of utility mining is to identify high

utility itemsets which derive a large portion of the total utility. If the twelve transactions
are the target of data mining and the minimum utility threshold is 120, bd is a high utility

itemset.

2.2.2 Problem Definition: Mining High Utility Itemsets in a Sliding Window Model

A transaction-sensitive sliding window (7ransSW') in the transaction data stream is a
window that slides forward for every transaction. The window at each slide has fixed number,

w, of transactions, and w is called the'Size of'the window. The current transaction-sensitive

sliding window isTransSW_, == [Ty .4 Ty 55y], Wwhere N-w+1[is the id of current

w+l
window. An itemset X is called-a high-utility itemset ifu(X) >uzxw , where ut is a user
specified minimum utility threshold in:the range of [0,1]. The value uzxw is the minimum

utility in the current transaction-sensitive sliding window.

A time-sensitive sliding window (7imeSW) in the transaction data stream is a window

that slides forward for every time unit. Each time unit 7U, consists of a variable number,
|TU, |, of transactions, and |7U, | is also called the size of the time unit. Due to the different
size of each time unit, the window at each slide has variable number of transactions. The
current time-sensitive sliding window is TimeSW, _ ..=[TU, ...»TUy_,.7»--TU], Where
N-w+1 is the id of current window. An itemset X is called a high utility itemset if

u(X) > utx | TimeSW,,_ , where ut is a user specified minimum utility threshold in the

w+1 |

range of [0, 1] and |TimeSW, ., HTU, ,.|+ITU, .., |+..+|TU, | is the number of

transactions in the current time-sensitive sliding window, called window size. The value

10

utx | TimeSW,_, ., | is the minimum utility in the current time-sensitive sliding window.
Later in thesis, we will show that our method can be adopted in both of transaction-

sensitive and time-sensitive sliding window model.

2.3 Transaction-Weighted Downward Closure Property

The downward closure property of Apriori cannot be applied for the utility mining model.
For example, u(d)=14%6=84<120 and is a low utility itemset but its superset u(bd)=160>120
is a high utility itemset. If candidates generated use all the combinations of items, the
computation will be intolerable. A level-wise approach apply for utility mining, called
“Transaction-weighted Downward Closure Property * is proposed in Two-Phase Algorithm
[19].

Definition 1. (Transaction Utility) The transaction utility of transaction7,, denoted as

tu(T,), is the sum of the utilities"of all“items .in7,. For example, w(T,)=u(b,T,) +

u(d,T,)=6*10+1*6=66

Definition 2. (Transaction-Weighted Utilization) The transaction-weighted utilization of an
itemset X, denoted as mu(X), is the sum of the transaction utilities of all the transactions
containing X. Assume the target of data mining is T1 to T9, twu(bd)=tu(T,)+tu(T,)+
tu(Ty)= 66+52+37=155

Definition 3. (High Transaction-Weighted Utilization Itemsets) X is a high transaction-
weighted utilization itemset if rwu(X)> minimum utility. Assume the minimum utility is
120, and thus bd is a high transaction-weighted utilization itemset.

Theorem 1. (Transaction-Weighted Downward Closure Property) Let /° be a k-itemset
and 75" be a (k-1)-itemset such that 7*"' < 7*. If I* is a high transaction-weighted

1

utilization itemset, /*~' is a high transaction-weighted utilization itemset.

11

Chapter 3

An Efficient Mining of High Utility Itemsets

The goal of our work is to find an efficient method for mining high utility itemsets in a data
stream. Therefore, in Section 3.1 we introduce a related work, called THUI-Mine algorithm.
Next, we introduce our proposed method for mining high utility itemsets in a transaction-
sensitive sliding window model, denoted as MHUI TransSW, in Section 3.2. Subsequently,
we extend this method to time-sensitive sliding window model, denoted as MHUI TimeSW,

in Section 3.3.

3.1 Related Work: THUI (Temporal High Utility Itemsets)-Mine Algorithm

THUI-Mine [20] is based on ‘transaction-weighted downward closure property, and is
extended the property with the sliding-window-filtering technique to find the temporal high
utility itemsets over a sliding window. In essence, by partitioning a transaction database into
several partitions from data streams, algorithm THUI-Mine employs a filtering threshold in
each partition to deal with the transaction-weighted utilization itemsets generation.

For ease of exposition, the processing of a partition is termed a phase of processing. The
cumulative information in the prior phase is selectively carried over toward the generation of
candidate itemsets in the subsequent phases. The cumulative information THUI-Mine
maintained consists of these two summary structures:

1. progressive transaction-weighted utilization set of itemsets (also called potential
candidate 2-itemsets): composed of the following two types of itemsets, i.¢.,

(1) The transaction-weighted utilization itemsets that were carried over from the

12

previous progressive candidate set in the previous phase and remain as transaction-
weighted utilization itemsets after the current partition is taken into consideration.

(2) The transaction-weighted utilization itemsets that were not in the progressive
candidate set in the previous phase but are newly selected after the current partition is
taken into consideration.

2. TUP (I): The transaction-weighted utilization itemsets and its corresponding transaction

-weighted utility in each partition P, .

After processing a partition P, THUI-Mine maintains the potential candidate 2-itemsets

and TUP, (1) . Each potential candidate 2-itemset c e C, has two attributes: (1) c.start

contains the identify the starting partition identifier when ¢ was added toC,, and (2) twu(c),

transaction-weighted utility of itemset ¢, is,the sum of the transaction utilities of all the

transactions containing ¢ since ¢ was added to.~C’, . Table 3-1 shows the meanings of symbols

used in THUI-Mine. The miningprocess of THUI-Mine is decomposed into two processes:

1. The preprocessing procedure: While the window is not full yet, it deals with mining on
the original transaction database, ¢.g.,db"". This procedure is described in Section 3.1.1.

2. The incremental procedure: While the window is full and new partition arrives, it needs
to slide the window. Thus the cumulative information needs to be updated. This

procedure is described in Section 3.1.2.

Table 3-1. The meanings of symbols used in THUI-Mine

db"’ Partition database from P, to P,

S Utility threshold in one partition

TUP, (1) Transactions in P, that contain itemset / with transaction utility

Thtw"’ The progressive temporal high transaction-weighted utilization 2-itemsets
of db™’

13

A The deleted portion of an ongoing database

D~ The unchanged portion of an ongoing database

A The added portion of an ongoing database

3.1.1 The Preprocessing Procedure

Figure 3-1 shows an input transaction database and utility table. Let each partition contains
three transactions and each window contains nine transactions. Assume the minimum utility is

120 for nine transactions, and thus the filtering threshold is s=120/3=40 for each partition.
The first window, db"’, is segmented into three partitions, i.e., { P, P,, P, }. Each partition is
scanned sequentially for the generation of pregressive temporal high transaction-weighted

utilization 2-itemsets of db"’, Fhtw'> ,in 'thé first:scan. Figure 3-2 shows the transaction

utility of each transaction.

ID'[E"' a |[b |c d |e
T{r1 o o |26 |0 |1 |]
PrllT2z [0 |6 |0 |1 |0
UlTs [12]0 |0 [1 o ab'"
tlte |0 [1 [0 |7 |0 1
Pzllrs [0 [o |12 Jo [2 item Profit
y|T6 |1 |4 |0 0|1 - (Per Unit)
- T7 [0 [10]0 [0 |1 db* N 3
s T8 |1 (1 |1 |3 |1 b o
lTo |2 (1 |27 |o |2 ||
p,||T0]0 [6 [z [0]o : (15
Ti1 (o |3 |0 (2 |0
Vlrizlo |2 |1 [o |o ! e 5
(a) Transaction table (b) Utility table

Figure 3-1. An example of input transaction database and utility table

14

TID | Transaction | TID | Transaction
utility utility

T1 31 T7 105

T2 66 T8 37

T3 42 T9 53

T4 52 T10 62

TS 22 T11 42

T6 48 T12 21

Figure 3-2. The transaction utility of each transaction

After scanning the first 3 transactions, i.e., partition £, we use high transaction-weighted
utilization 1-itemsets, itemsets {a, b, d}, in F to generate potential candidate 2-itemsets {ab,
ad, bd}. Itemsets {ab, ad, bd} are newly generated in partition £, so the start value of them is
1, the identifier of partition £, . The transaction-weighted value of itemsets {ab, ad, bd} in P,
are 0, 42, 66 respectively. Since twu(ab)=0<40, itemset ab is removed. On the contrary,
itemsets {ad, bd}, in shaded portion, have transaction-weighted value greater than 40, so they
are the potential candidate 2-itemsets remained-and then its information are carried over to the
next phase of processing. TUF, (/) maintains ‘these potential candidate 2-itemsets and its
transaction -weighted utility in partition P, . Figure 3-3 shows the potential candidate

2-itemsets and TUR, (/) after processing P, .

g7.1.1

_ db™ ()
C, |start |twu

TUR(I)
ab 1 0 =

C, | twu
ad 1 42 ad 42
bd 1 66 bd 66

Figure 3-3.The potential candidate 2-itemsets and 7TUP, (/) after processing P,

After processing partition P, , candidate 2-itemsets are decomposed into two types:

15

(1) Itemsets that are carried over from the previous phase £, . The start value of this kind of
itemsets is 1. For example, itemsets {ad, bd} are carried over from F,, so ad.start=1 and
bd.start=1. Though itemset bd is carried from £, it also occurs in P, . The transaction-
weighted utility of bd in P, is maintained in7UP, (/). Besides, its transaction-weighted
utility is accumulated and twu(bd) becomes 66+52=118.

(2) Itemsets that are newly identified after the current partition, P, , is taken into
consideration.

The start value of this kind of itemsets is 2. For example, itemsets {ab, ae, be} are newly
generated after P, is taken into consideration.

THUI-Mine prunes those itemsets with different filtering threshold. For itemset ¢ where
c.satrt=1, its filtering threshold is 2*s=40%2=80. For itemset ¢ where c.start=2, its filtering
threshold is 1*s=40. For example,’ Twu(ad)=42<80, so itemsets ad is not carried to next
partition. Twu(bd)=118>80 and twu(ab)=48>40, so. itemset bd and ab are carried over to the
next partition. After pruning, there are four potential candidate 2-itemsets {ab, ae, bd, be}, in
shaded portion, carried over to the hext phase..One of them is carried over from partition 7, ,
and three of them are newly identified in P,. Figure 3-4 shows the potential candidate

2-itemsets and TUP,(I) after processing P, .

T.Z
db>"(F ~P)
C, |start | twu

Start=1 ad 1 42 T[ﬂ% ([)
Filtering bd |1 |66+52 C, |twu
threshold=80 1 ~118 bd 52

_________ ab (2 |48 ab |48
Start =2 1 ae) 48 ae 48
Filtering be) 48 be 48

threshold=40
Figure 3-4.The potential candidate 2-itemsets and 7TUP,(I) after processing P,

16

Partition P, is processed in the same way. Figure 3-5 shows the potential candidate
2-itemsets and TUP, (/) after processing P. Observe that there are seven potential candidate

2-itemsets left in the preprocessing procedure.

S db”(F, ~F,) TUB()
Filtering C start twu C; | twu
threshold=120]| bd | 1 118+37=155 ab |90
Start=2 | ab | 2 48+90=138 ac |90
Filtering ae 2 48+90-=138 ae %0
I gU Sy be | 2 48+195=243 bec |90
SR 1 e 90 bd |37
Filtering be | 3 90 be |[195
threshold=40 ce 3 9() ce ()

Figure 3-5. The potential candidate 2-itemsets and TUP, (/) after processing P,

After generating Thrw'®, THUI-Mine employs the: scan reduction technique to generate
other candidate itemsets. It uses Thfw's to generate candidate 3-itemsets, C,, and subsequently
use candidate (k-1)-itemsets, C,_,, to generate candidate k-itemsets, C, (k= 3,...n), where C,
is the candidate last-itemsets. For instance, abe is constructed because itemsets {ab, ae, be} is
inThrw"? . Candidate 3-itemsets {abe, abc, bee} is the last candidate itemsets in this example.
After generating all candidate itemsets, one more scan is needed to find the high utility

itemsets. Table 3-2 shows the itemsets generated after first and second scan of db" .

Table 3-2. The itemsets generated after first and second scan of db"’

Candidate itemsets High utility itemsets
(1" scan of db"?*) (2" scan of db™?)
a,b,c,d, e b, bd, be

ab, ac, ae, bc, bd, be, ce
abc, abe, ace, bce

abce

17

3.1.2 The Incremental Procedure

When partition P, arrives, window sliding is performed. As depicted in Figure 3-1, the

current window will be moved from db"’ to db**,ie., {P,, P, P,}. Some transactions, i.c.,

T1, T2 and T3, are deleted from the window, and transactions T10, T11 and T12 are added.

This incremental procedure is decomposed into three sub-steps as follows:

1. Prune the oldest partition and update potential candidate 2-itemsets

In this sub-step, we check the pruned partition, £, and reduce the value of transaction-

weighted utility and set c.start=2 for those potential candidate 2-itemsets where c.start=1.

For example, Figure 3-5 shows the potential candidate 2-itemsets after processing db"’.

Observe that bd.start=1, i.e. bd is_in the pruned partition ;. We can observe that

twu(bd)=66 in P, from TUR, (). Hencesafter. pruning P, twu(bd)=155-66=89 and bd.start

= 2. Figure 3-6 shows the result after the first sub-stép, where D~ = db"> — P,.

D™ =db™ — B
C2 | start twu
bd | (1)2| 15566=89
ab 2 138
ae 2 138
be 2 243
ac 3 90
bc 3 90
ce 3 90

Figure 3-6. The potential candidate 2-itemsets after performing first sub-step

2. Append newest partition and update potential candidate 2-itemsets

In this sub-step, the process to add new partition, P, , is similar to the operation of

partition P,, in the preprocessing process. There is no new itemsets join the potential

candidate 2-itemsets. However, itemsets {bc, bd} are carried from previous phase and also

18

appears in P,, so their transaction-weighted utility are accumulated and maintain them to
TUP, (1) . Figure 3-7 shows the potential candidate 2-itemsets and TUP, (1) after processing

P,,where D™ + P, = db™*.

D +P,=db™
C2 |start | twu
bd 2 89+42=131
Start=2 ab 2 138
Filtering ae 2 138
tlu‘eslmld=1201 be 2 243
""""" TUR(
Start=3 1 ac 3 90 4(_)
Filtering bc 3 90+83=173 bc |83
threshold=80 ce 3 90 bd 2

Figure 3-7. The potential candidate 2-itemsets and TUP, (/) after performing

second sub-step

3. Use scan reduction techniques to generate all-candidate itemsets, as mentioned above,
and then one more database scan finds the temporal high utility itemsets of db>* . Table

3-3 shows the itemsets generated after first and second scan of db>* .

Table 3-3. The itemsets generated after first and second scan of db**

Candidate itemsets High utility itemsets
(1* scan of db>*) (2™ scan of db**)
a,b,c.d.e b, bd, be

ab, ac, ae, bc, bd, be, ce
abc, abe, ace, bce

abce

3.1.3 The Drawback of THUI-Mine Algorithm

THUI-Mine may give rise to two possible problems as follows:

19

1. More false candidate itemsets:

The temporal high transaction-weighted utilization itemsets may contain itemsets which may
not be truly high utility itemsets, called false candidates. The number of false candidates
depends on many factors such as the characteristics of the data, how the data is partitioned,
number of partitions, and so on. THUI-Mine records the start partition of each potential
candidate 2-itemsets and then uses different filtering threshold to prune. In this way,
THUI-Mine may overestimate some itemsets concentrating in the later partitions. For
example, there are seven potential candidate 2-itemsets maintained in db'> shown in Figure
3-5. Observe that ac.start=3 and bc.start=3. Since twu(ac)=twu(bc)>40, filtering threshold,
itemsets ac and bc are added when P, is taken into consideration. In fact, itemsets ac and bc

only occur in 7. In other words, itemets ac and bc are overestimated.

Next, THUI-Mine uses scan reduction technique.to generate candidate itemsets. Candidate
3-itemsets, C,, is generated fromThow"’ x Thtw"’ . Subsequently, C, is generated from C; x C;,

where C,; will have a size greater than high transaction-weighted utilization 3-itemsets. In

other words, once the number of Thrw’/ ! increases, it leads to a chain reaction for
C (k=3,...,n). Later in experiments, we will show that if the size of a partition or the

minimum utility decreases, the situation will be getting worse.
2. More memory:

THUI-Mine needs to maintain 7UP, (/) for use in the incremental procedure. The
memory varies with the number of candidate 2-itemsets affected by many factors mentioned
above. Since THUI-Mine has these disadvantages, we propose a new method in next Section
so as to reduce the number of candidate itemsets generated, and decrease the memory used.
Later in Chapter 4, experiments will show that the proposed method outperforms than

THUI-Mine algorithm.

20

3.2 Our Proposed Method: MHUI_TransSW

In this section, we propose an efficient method, called MHUI_TransSW(Mining High
Utility Itemsets over a Transaction-sensitive Sliding Window), to mine the set of all high
utility itemsets with a transaction-sensitive sliding window. MHUI TransSW is based on
transaction-weighted downward closure property and additionally use effective item
information, 1.e., TIDlist or Bitvector of all 1-itemsets, to restrict candidate itemsets generated
and thus reduce the time and memory needed. In section 3.2.1 we describe the representation
of item information and then proposed an efficient method, called MHUI TransSW, in

Section 3.2.2.

3.2.1 Representation of Item information (TIDlist.or Bitvector of items)

For each item x, item informationy e, TIDlist(x) or Bitvector(x), maintains the relative
placement of all transactions containing x in each'sliding window, so that we can reduce the
scan of transaction database. Assume the window contains w transactions, i.e. window size is
w. The representation of item information is described as follows.

1. Definition of Bitvector(x): For each item x in the current transaction-sensitive sliding
window TransSW, a bit-sequence with w bits, denoted as Bitvector(x), is constructed. If
an item X is in the i-th transaction of current 7TransSW, the i-th bit of Bitvector(x) is set to
be 1; otherwise, it is set to be 0.

2. Definition of TIDIlist(x): For each item x in the current transaction-sensitive sliding
window TransSW, a sorted list with at least w value, denoted as TIDlist(x), is constructed.
If an item x is in the i-th transaction of current TransSW, TIDlist(x) contains i.

Figure 3-8 shows an example of utility table and input transaction database where the first
two sliding windows are marked by TransSW, andTransSW,. Assume that the window size

21

189, TransSW, consists of T1 to T9, and TransSW, consists of T2 to T10.

As reading the current transaction-sensitive sliding window, the item information generates.
The TIDlist and Bitvector of all items in each window are listed in Table 3-4. Take item a as
example. a appears in T3, T6, T8, and T9 which is in the 3" 6™ 8" 9" placement
inTransSW, respectively. Therefore, Bitvector(a)=<001001011> and TIDlist(a)={3,6,8,9} in
TransSW, . a also appears in T3, T6, T8, and T9, however, the relative placement is in the 2
5t 7% 8™ in TransSW, respectively. Bitvector(a)=<010010110> and TIDlist(a)={2,5,7,8}

in TransSW, .

TID |a |b |c¢ d |e
11Tt |0 |0 |26 [0 |1
2|12 |0 |6 1o |!
= 2| -
£ 3(T3 |12 |0 110 = E
g 4174 |0 |1 7|0 . g%. Ttem Profit
B 6|T6 |1 |4 [0 |0 |1 |5 NE] .
1]
%3 7{T7 |0 J10)0 |0 |1 [6] E b 10
— :
EE slT8 |1 |1 301 |7 = c 1
g |T9 |2 |1 |27 [0 |2 |3 d &
T10 (0 |6 |2 |0 |0 | ov e 5
(a) Transaction table (b) Utility table

Figure 3-8. An example of transaction database and utility table

Table 3-4. The TIDIlist and Bitvector of all items in the first two windows

It IDlistx TransSW, TransSW, Item LI TransSW, TransSW,
em
a {3,6,8.9} §2.5,7.8} a <001001011> | <010010110>
b {2,4,6,7,89% |11,3,5,6,7.8.9 b <010101111> | <101011111=>
c §1,5.8,9} {4,789}
d 12348} £1.23.7} c <100010011> | <000100111=>
o 15.67.89} (45678} d <011100010> | <111000100=
e <100011111> | <000111110>

22

3.2.2 MHUI_TransSW Method

We adopt the sliding window model to mine the high utility itemsets in a transaction-
sensitive sliding window. The mining process consists of three phases, i.e., window
initialization phase, window sliding phase, and high utility itemsets generation phase,
described from Section 3.2.2.1 to 3.2.2.3, respectively. Table 3-5 shows the meanings of
symbols used in our work. We assume only the summary structure derived from previous
window is provided for mining high utility itemsets in current window. The summary
structure of MHUI TransSW consists of:

(1) Item information, i.e., TIDlist or Bitvector of all 1-itemsets.

(2) High transaction-weighted utilization 2-itemsets maintain in a lexicographical tree.

Table 3-5. The meanings of symbols used in our work

htwu k-itemsets | High transaction-weighted-utilization k-itemsets

A The deleted portion of an.ongoing database
D™ The unchanged portion of an ongoing database
A The added portion of an ongoing database

3.2.2.1 Window Initialization Phase

The phase is activated while the number of transactions generated so far in a data stream is
less than or equal to a user-specified sliding window size w, (i.e. w transactions). Initially, the
item information and transaction utility table are generated by reading transactions. Table 3-4
shows the item information in the first two windows. The transaction utility table is shown in

Figure 3-2. Once the window is full, we start to build the lexicographical tree.

23

The procedure to build a lexicographical tree is described as follows. We use high
transaction-weighted utilization 1-itemsets, denoted as htwu I-itemsets, to generate
candidate 2-itemsets, C,. As each candidate generates, its transaction-weighted utility is
determined immediately by using ifem information and the transaction utility table. We
maintain the candidate 2-itemsets whose transaction-weighted utility are above the minimum
utility, called high transaction-weighted utilization 2-itemsets, denoted as htwu 2-itemsets,
in the lexicographical tree.

a, b, ¢, d and e are htwu I-itemsets in TransSW, . Take item a as an example. Candidate
2-itemsets {ab, ac, ad, ae} are generated from a. The TIDlist for a candidate k-itemset is
generated by joining the TIDlist of the two (k-1)-itemsets that were used to generate the
candidate k-itemset. The Bitvector for a candidate k-itemset is generated by performing
bitwise AND the Bitvector of the two (k-1)-itemsets that were used to generate the candidate
k-itemset. For example, TIDlist(ab) in TransSW,"is {6,8,9} which can be obtained by
intersection TIDlist(a) and TIDlist(b); and the Bitvector(ab) in TransSW, is <000001011>
which can be obtained by bitwise AND: Bitvector(a) and Bitvector(b). That means itemset ab
occur in the sixth, eighth and ninth transactions in7ransSW, . Next, twu(ab) can be obtained
by summation the corresponding transaction utilities. We obtain twu(ab)=tu(T6)+tu(T8)+
tu(T9)=48+37+53=138>120 from transaction utility table. Itemsets {ac, ad, ae} are verified in
the same way. Finally, there are two htwu 2-itemsets from item a. Figure 3-9, shows the tree
after generating all htwu 2-itemsets from item a. The sub-tree of item b, ¢, d and e operate the

same way as item a. Figure 3-10 shows the tree built in TransSW, .

24

a

ah ae

Figure 3-9. The tree after generating all candidate 2-itemsets from item a

.-

ce

ab

Figure 3-10. The tree built in TransSW,

3.2.2.2 Window Sliding Phase

The window sliding phase is activated while the window is full and new transaction arrives,

and window sliding is performed. In this phase, firstly, we update the item information and

record some extra information. Secondly, we update the tree. We describe these two steps as

follows:

update item information

For removing old transactions, all TIDlist of items are sliding (decrmented by the number

25

of deleted transactions) and then for adding new transactions, the TIDlist of items in incoming
transactions need updating. For removing old transactions, all Bitvector of items perform left
shift (shift out the oldest bit) and then for adding new transactions, the Bitvector of items in
incoming transactions need updating.

T1 is deleted, so the first transaction is T2 and the last transaction is T10 in TransSW,.
Take item c as an example, after deleting T1, TIDlist(c) changes from {1, 5, 8, 9} to {4, 7, 8}
and Bitvector(c) changes from<100010011> to <000100110>. Since item c appears in T10,
window size, w, is added to TIDlist(c) and the latest bit of Bitvector(c) is set to 1. Therefore,
TIDlist(c)={4, 7, 8, 9} and Bitvector (c)=<000100111> in TransSW, .

Besides modifying item information, we also need to record item in the oldest transaction,
denoted as Deleteltem, and item in incoming transaction, denoted as Insertltem. The oldest
transaction, T1, contains item ¢ and:e. The incoming transaction, T10, contains item b and ¢
Therefore, Deleteltem={c, e} and Insertitem=1{b, c}.

2. update lexicographical tree

After modifying item information, MHUIL TransSW begins to modify the tree. Only the
sub-trees of the items in the Deleteltem or Insertltem need to be checked.

This can be decomposed into three parts: The item only in Deleteltem is denoted as
OnlyDeleltem. The item only in Insertltem is denoted as Onlylnsertltem. The item not only in
Deleteltem but also in Insertltem is denoted as Intersecltem. Continue the example described
above. e is in OnlyDeleltem, b is in Onlylnsertltem, and c is in Intersecltem. Each item in
different set performs different operation. The operation in each set is described as follows:
(1) Item in OnlyDelelte: Since the item is only in the oldest transaction, the transaction-

weighted utility of its child node may be less than or equal to the previous window. In
other words, the child node may be a Atwu 2-itemset in previous window but is not a htwu
2-itemset in current window. We check the child node of this item with item information
and prune it while its transaction-weighted utility is below the minimum utility. Take item

26

e as an example. Since there are no potential candidate 2-itemsets from item e carried over
from the previous window, no itemsets need to be checked.

(2) Item in OnlylInsertltem: Since the item is only in the incoming transaction, the
transaction-weighted utility of itemsets from it may be larger than or equal to the previous
window. In other words, the itemset may be not a htwu 2-itemset in previous window but
become a htwu 2-itemset in current window. We check non-existing itemsets which is
from the item with item information and insert it while its transaction-weighted utility is
greater than the minimum utility. Take item b as an example. Twu(bc)=tu(T8)+tu(T9)+
tu(T10)=152>120, so bc is newly inserted into the sub-tree of b. For bd and be, it is not
necessary to check because twu(bd) and twu(be) may only increase but not decrease.

Figure 3-11 shows the tree after modifying the sub-trees of items in Onlylnsertltem.

/
e \\

ab ace be

Figure 3-11. The tree after modifing the sub-trees of items in Onlylnsertltem

(3) Item in Intersecltem: Since the item is not only in the oldest transaction but also in
incoming transaction, original Atwu 2-itemset may be not a htwu 2-itemset in current
window and vice versa. We check the transaction-weighted utility of existing nodes
whether it needs to delete. Besides, we check the transaction-weighted utility of
non-existing nodes whether it needs to insert. Take item c as an example. cd is a non-
existing node in7TransSW,, and twu(cd)=37<120, and thus it is not newly inserted in
TransSW,. ce is an existing node in TransSW,. However, twu(ce)=112<120, so it is

27

deleted in TransSW,. Figure3-12 shows the tree after modifying the sub-trees of items in

| /b/c

P2 ARN

ab ae bc bd be

Intersecltem.

Figure 3-12. The tree after modify the sub-trees of items in Intersecltem

3.2.2.3 High Utility Itemsets Generation Phase

In this phase, MHUI TransSW uses a level-wise method to generate the set of candidate
k-itemset ,C,, from the pre-known htwu (k-1)-itemsets. Then, we immediately derive the
htwu k-itemsets, by using item information-to-verify its validity. The candidate-generation-
then-testing process stops when no candidates are generated.

Let the minimum utility for nine transactions be 120. An itemset X is a high utility itemset
if u(X)>=120.There are five htwu 2-itemsets generated in TransSW,. Hence only one
candidate 3-itemsets {abe} are generated by combining htwu 2-itemsets: ab, ae and be. The
TIDlist(abe)={5,7,8} (Bitvector(abe)=<000010110>), so twu(abe)=tu(T6)+tu(T8)+tu(T9)=138
>120. Hence, abe is a htwu 3-itemset. Because no new candidates are generated, the
generation-then-test process stops. After all candidate itemsets are generated, one more scan is
needed to find high utility itemsets in 7ransSW,. Table 3-6 shows the itemsets generated

after first and second scan in each window.

28

Table 3-6. The itemsets generated after first and second scan in each sliding window.

TransSW, TransSW,
High transaction-weighted a,b,c,d, e a,b,c.d.e
utilization itemsets (itemsets ab, ae, bd, be, ce ab, ae, bc, bd, be
generated after first scan) abe abe
High Utility Itemsets b, bd, be b, bd, be
(itemsets generated after second
scan)

3.3 The Proposed Method: MHUI_TimeSW

Based on MHUI TransSW, an efficient method-to mine high utility itemsets over a data
stream with a time-sensitive sliding-window, denotedas MHUI TimeSW, is proposed in this
Section. In section 3.3.1, we describe the-time-unit in time-sensitive sliding window and the
item information maintained. We adopt the sliding window model. MHUI TimeSW consists
of three phases, window initialization phase, window sliding phase, and high utility itemsets

generation phase, is described from section 3.3.2 to 3.3.4, respectively.

3.3.1 Item Information and Time Unit List

A time-sensitive sliding window (7imeSW) in the transaction data stream is a window that

slides forward for every time unit (TU).The transaction in the time-sensitive sliding window
is denoted as T=(7U ,, TID, itemset), where 7U ,, 1is the identifier of the time unit, and TID is
the identifier of the transaction. Each time unit consists of variable number, |7U,|, of

transactions, and |7U, | is called the size of the time unit. As the window size is changed as

29

time advances, MHUI TimeSW needs to maintain the minimum utility each window
required.
Assume the size of time-sensitive sliding window is three and the minimum utility for nine

transactions is 120. Figure 3-13 shows the transactions that arrive in the stream in two
successive windows, TimeSW, = [TU,,TU,,TU,1=[T1, T2,..., T6] and TimeSW, =[TU,,TU,
,TU,1=[T3, T4,..., T11]. Table 3-6 shows the transactions contained in each time unit and the
size of each time unit. The size of first window is| TimeSW, |=| TU, |+ |TU, | +|TU, |= 6 so

its minimum utility is 120%*(6/9)=80, whereas the size of second window is |7imeSW, |

=|TU, |+|TU, |+|TU, |=9 so its minimum utility is 120. In this example, the deleted
portion of an ongoing database, denoted as A, is TU,; the added portion of an ongoing

database, denoted asA", is TU, ; the unchanged portion of an ongoing database is 7U, and

TU, .

Time | TID | a b c d| e
Unit

.577717 TUL | T1 |0 |0 |26 |0]1

g 2lTUL | T2 |0 |6 | 0 |1]O

E slToz |13 (12|00 |1|0]|1] =

§§ g|lTUZ |T4 |0 |1] 0 |7]|0]2 :g

£%|s|TU2 |15 [0 |0 |12]|0|2[|3] 3 Ttem | Profit

&l [twre |1 4]0 o]l] B)

| tua | 7|0 |10 0 |o|1]|s5] B a 3

TU4 | T8 | 1 | 1|1 |3]|1]|s g‘ b 10
TU4 | T9 |2 |1 |27 |02]7| § c 1
TU4 |[T10| O | 6 o|lo|s| & d 6
TU4 |T11| 0 [3 [0 |2]| 0|0 _3 e 5
(a) Transaction table (b) Utility table

Figure 3-13. An example of transaction database and utility table in

a time-sensitive sliding window

30

Table 3-7. The transactions contained in each time unit

and the size of each time unit

Time Transactions Size of Time
units contained Unit
TU, TILT2 2

TU, T3,T4,T5 3

TU, T6 1

TU, T7,18,T9,T10,T11 5

The representation of item information maintained in MHUI TimeSW is the same as
MHUI TransSW. Table 3-7 shows the item information in each window. Noted that the value
of TIDlist is less than window size, w, and the Bitvector contains w bits. Take a as example, a
appears in T3, T6 in TimeSW and thus TIDlist(a)={3,6} and Bitvector(a)=<001001> in
TimeSW;,. a appears in T3, T6, T8 and T9.in_ZLimeSW, and their corresponding placement is

first, fourth, sixth and seventh. Hence TIDlist(a)={1,4,6,7}}and Bitvector(A)=<100101100> in

TimeSW, .
Table 3-8. The item information in the first two windows
IDlist(x) TimeSW, | TimeSW, Bitvectoxx TimeSW. TimeSW,
Item Item
a {3,6} {1,4,6,7} a <001001> | <100101100=
b {246} | {2,4,5,6,7.8.9 b <010101> | <010111111=
. £1,5) £3,6,7.8} c <100010> | <001001110=
d §2.3,4} §1,2,6,9} d <011100> | <110001001=>
e 156 | §3,456,7} e <100011> | <001111100>

31

3.3.2 Window Initialization Phase

The window initialization phase of MHUI TimeSW is activated while the number of time
units generated so far in a transaction data stream is less than or equal to a user-specified
time-sensitive sliding window size w (i.e. w time units). In this phase, first we maintain item
information and the transaction utility as reading transactions. The item information is shown
in Table 3-7. The transaction utility table is shown in Figure 3-2.

Next, MHUI TimeSW builds the Ilexicographical tree in the same way as
MHUI TransSW. Candidate 2-itemsets are generated by the htwu I-itemsets:{a b, d, e}and we
use their corresponding item information to verify their validity. Figure 3-14 shows the tree

built in 7imeSW,. The potential candidate 2-itemsets is {bd}.

4/ '

bd

Figure 3-14. The tree built in TimeSW,

3.3.3 Window Sliding Phase

The window sliding phase of MHUI TimeSW algorithm is activated while the window
becomes full. At this time, the oldest time unit is removed from the window, and then a newly
one is appended to the time-sensitive sliding window.

In this phase, firstly, we update the ifem information and record some extra information.

32

Secondly, we update the tree of candidate 2-itemsets. The procedure is the same as
MHUI TransSW except that the minimum utility changes as the window size changes. We
describe these two steps as follows.
1. update TIDIist and Bitvector of items

Let |A | is the size of deleted portion and |A" | is the size of added portion. TIDlist is
decremented by |A | and Bitvector is left shift |A™ | bits for removing the oldest
transactions. Next, TIDIlist and Bitvector of items in newly time unit need updating. The
deleted portion contains two transactions .Take ¢ as an example. TIDlist(c) changes from {1,
5} to {3} and Bitvector(c) changes from <100010> to <001000> after 7U, is deleted. c is in
T8, T9 and T10 which is the sixth, seventh and eighth placement in TimeSW, respectively.
TIDlist(c)={3, 6, 7, 8}and Bitvector(c)=<001001110> after TU, is added. Table 3-7, shows
the item information in each sliding window. Besides updating item information, we also need
to record Deleteltem, and Insertltem, the same.as MHUI TransSW. Deleteltem = {b, c, d, e}
and Insertltem={a, b, c, d, e}.
2. update lexicographical tree

After modification of TIDlist of items, MHUI TransSW begins to modify the tree. Only the
sub-trees of the items in the Deleteltem or Insertltem need to be checked. This can be
decomposed into three parts the same as MHUI TransSW: OnlyDeleltem, Onlylnsertitem,
and Intersecltem. The operation in each set is the same as MHUI TransSW mentioned above.

(1) Since there are no elements in OnlyDeleltem, we don’t do anything.

(2) The item in Onlylnsertltem: Onlylnsertitem is {a}. Take item a as an example. We
check the candidate 2-itemsets {ab, ac, ad, ae} with item information. Itemsets {ac, ad}
are low transaction-weighted utilization 2-itemsets. On the contrary, itemsets {ab, ae}
are htwu 2-itemsets and thus are inserted into the tree. Figure 3-15 shows the tree after
checking the sub-trees of all items in Onlylnsertitem.

(3) The item in Intersecltem: Intersecltem is {b, c, d, e}. Take item b as an example.

33

Itemset {bd} is an existing node. We check whether it becomes a non Arwu 2-itemset.
On the contrary, itemsets {bc, be} are non-existing nodes. We check whether they
become htwu 2-itemsets. After verification, bd is kept and {bc, be} are inserted. The
sub-trees of ¢, d and e are maintained in the same way. Figure 3-16 shows the tree after

checking the sub-trees of all items in Intersecltem.

¢
7
ROV

Figure 3-15. After checking the sub-trees of all items in Onlylnsertltem

bl

2N

b
¢ bd be

e
ab ae
Figure 3-16. After checking the sub-trees of all items in Intersecltem

3.3.4 High Utility Itemsets Generation Phase

In the high utility itemsets generation phase, MHUI TimeSW performs the same as
MHUI TransSW except the minimum utility changes as the window size changes. For
example, Table 3-9 shows there are five htwu 2-itemsets generated in7TimeSW,. Only one
candidate 3-itemsets {abe} are generated. The TIDlist(abe)={4,6,7}and Bitvector(abe)=

34

<000101100>. That is itemset abe occurs in T6, T8 and T9 so twu(abe)=tu(T6)+tu(T8)+
tu(T9)=138>120. Itemset abe is a htwu 3-itemset. Because no new candidates are generated,
the generation-then-test process stops. After all candidate itemsets are generated, one more
scan is needed to find the high utility itemsets. Table 3-9 shows the itemsets generated after

first and second scan.

Table 3-9. The itemsets generated after first and second scan in each window

TimeSW, TimeSW,
High transaction-weighted a,b,d,e a,b,c.d,e
utilization itemsets (itemsets bd ab, ae, bc, bd, be
generated after first scan) abe
High utility itemsets b, bd b, bd, be
(itemsets generated after
second scan)

35

Chapter 4

Performance Measurement

We perform some experiments to compare our proposed work with THUI-Mine. All the
programs are implemented in C++ STL and compiled with Visual C++.NET compiler. All the
programs are performed on AMD Athlon(tm) 64 Processor 3000+ 1.8GHz with 1GB memory
and running on Windows XP system.

All testing data was generated by the synthetic data generator provided by Agrawal et al
in [2]. However, the IBM generator only generates the quantity of 0 or 1 for each item in a
transaction. In order to adapt the databases.into the scenario of utility mining, the quantity of
each item and the utility of each'item issrandomly. generated. The meaning of symbols is
shown in Table 4-1.

Table 4-1. Meanings of symbols used

|W| Window size

|P| Partition size

ut Minimum utility threshold

0, The quantity of each item in each transaction

U, Utility of each item

A The added portion of ongoing database

A The deleted portion of ongoing database

Item_freq | The frequent of item, i.e., the average number of TIDlist of
all items. That is the average number of transactions each
item contained.

36

In our programs, we randomly generate Q,, , ranging from 1 to 5. U, , stored in utility table,

is also synthetically created by assigning a utility value to each item randomly, ranging from 1
to 1000. Observed from real world databases that most items are in the low profit range, the
utility value generated using a log normal distribution, as is similar to the model used in
THUI-Mine. We use several sets of synthetic databases from IBM generator. Table 4-2 shows
the names and parameter settings for each data set. Our testing metric includes the number of

candidate itemsets generated, execution time and memory consumed.

Table 4-2. The names and parameter settings for each data set.

Average items per | Average length | Number of Number
transaction (T) of maximal transactions(D) of items
pattern(l)
T514D100K 5 4 100K 1000
T10I6D100K 10 0 100K 1000
T15110D100K | 15 10 100K 1000
T20I15D100K | 20 15 100K 1000

4.1 Experiments of MHUI_TransSW Method

In this section, we compare the mining results of MHUI TransSW and THUI-Mine using
the same dataset TSI4D100K. The number of item types is fixed to 1,000. The sliding window

is fixed to 5,000 transactions and the partition size is fixed to 1 transaction.

4.1.1 Different Minimum Utility Threshold

In this section, we test the execution time, memory usage and number of candidate itemsets

37

generated under different minimum utility thresholds where ut is changed from 0.9% to
6.0%.

1. Execution time: Figure 4-1 shows the result of execution time. Observe that MHUI

TransSW runs efficiently faster than THUI-Mine in a transaction-sensitive sliding

window.

T5I4D100K,IWI=5K,[PI=1

16000

14000

12000 N
\

10000
\ —=— MHUIL_TransSW
—a— THUI-Mine

8000 \

Execution time(sec)

6000 \
4000 &\A

2000

O —l m | -\—‘—‘ |

09 30 40 50 60

Minimum utility threhold(%)

Figure 4-1. The execution time of MHUI TransSW and THUI-Mine
under different minimum utility thresholds
2. Memory usage: Figure 4-2 shows the result of memory usage .Observe that the memory
used in MHUI TransSW is almost the same (this is obvious from that the number of
candidate itemsets generated increases little under these different utility thresholds).
However, the memory used in THUI-Mine increases dramatically as the minimum utility

threshold decreases.

38

16000
14000
12000
10000
8000
6000
4000
2000

Memory(KB)

T5I4D100K,WI=5K,IPl=1

—®— MHUI_TransSW
—4&— THUI-Mine

09 1.0 30 40 50 6.0
Minimum utility threhold(%)

Figure 4-2. The memory usage of MHUI TransSW and THUI-Mine

under different minimum utility thresholds

3. The number of candidates generated after 1 scan: Observe that the smaller the

minimum utility threshold-1is.the larger the number of the candidates THUI-Mine

generates. Table 4-3 shows the number of candidates generated.

Table 4-3. The number of candidates generated by MHUI TransSW and

THUI-Mine with different minimum utility thresholds

Minimum utility
THUI-Mine MHUI TransSW
threshold (%)
0.9 218521 15
1.0 217162 8
2.0 138062 0
3.0 98203 0
4.0 87019 0
5.0 20885 0

From previous experiments, we verify that MHUI TransSW generates less candidate

itemsets so that MHUI TransSW runs significant faster and consumes less memory when

using transaction-sensitive sliding window.

39

4.2 Experiments of MHUI_TimeSW Method

In this section, we compare the mining results of MHUI TimeSW and THUI-Mine using
the same dataset T10I6D100K. The number of item types is fixed to 1,000. The sliding
window 1is fixed to 30,000 transactions. The partition size is fixed to 10,000 transactions.
Without loss of generality, we set | P|=| A" |=| A~ |=10,000 for simplicity, where |P| denotes
the partition size, | A" | denotes the size of added portion, and | A |denotes the size of

deleted portion.

4.2.1 Different Minimum Utility Threshold

In this section, we test the execution time, memory usage and the number of candidate
itemsets generated under different minimum utility thresholds where ut is changed from 0.3%
to 1.0%.

1. Execution time: Figure 4-3 shows the result of execution time. As minimum utility
threshold is larger than 0.5%, MHUI TimeSW in average is two times faster than
THUI-Mine. However, as the minimum utility threshold is less than 0.5%, the
performance difference becomes prominent in that MHUI TimeSW significantly

outperforms THUI-Mine.

40

T10I6D100K,IWI=30K,IPI=10K

140

120 X\
100

—=— MHUIL_TimeSW
—&— THUI-Mine

Execution time(sec)
o0
o
L

IN o)
o o)
/

|

o

02 03 05 06 08 1.0
Minimum utility threshold(%)

Figure 4-3. The execution time of MHUI TimeSW and THUI-Mine with
different minimum utility thresholds
Memory usage: Figure 4-4 shows theiresult of memory usage. Observe that the memory
usage of MHUI TimeSW is almost the 'same (this is obvious from that the number of
candidate itemsets generateéd increases little under these different utility thresholds).
However, the memory used in THUI-Mine is getting larger as the minimum utility

threshold decreases.

T10I6D100K,[WI=30K,[PI=10K

20000
& 15000 S
= \‘\‘\ —=— MHUL TimeSW
510000 —a ,
£ - - _ _ - - —&— THUI-Mine
= 5000 -
0

02 03 05 06 08 10

Minimum utility threshold(%)

Figure 4-4. The memory usage of MHUI TimeSW and THUI-Mine with different
minimum utility thresholds

41

3. The number of candidates generated after 1* scan: Observe that the smaller the
minimum utility threshold is the larger the number of the candidates THUI-Mine
generates. Table 4-4 shows the number of candidates generated by MHUI TimeSW and

THUI-Mine with different minimum utility thresholds.

Table 4-4. The number of candidates generated of MHUI TimeSW and

THUI-Mine with different minimum utility thresholds

Minimum utility
THUI-Mine MHUI TimeSW
threshold (%)

0.3 10788 672

0.5 102 38

0.6 18 7

0.8 | 1

1.0 0 0

We conclude that the execution time, memory.usage and the number of candidate itemsets

of THUI-Mine will increase significantly as minimum utility threshold decreases.

4.2.2. Different Partition Size

In this section, we compare the mining results of MHUI TimeSW and THUI-Mine using the
same dataset as Section 4.2.1 except that ut is fixed and partition size is variable in this
Section. The minimum utility threshold is fixed to 0.5%.

We test the execution time, memory usage and the number of candidate itemsets generated
under different partition size where |P| is changed from 1 to 15,000.
1. Execution time: Figure 4-5 shows the result of execution time. When partition size is

larger than 5K, MHUI TimeSW in average is two to three times faster than THUI-Mine.

42

As the partition size is less than 5K, the performance difference becomes prominent in
that MHUI TimeSW significantly outperforms THUI-Mine. The reason is that as the
partition size decreases, the number of false candidates becomes larger. Hence, it will

need much more time to process.

T10I6D100K,[WI=30K,ut=0.5%
70
60 X
3 50
Py
£40 —&— MHUI_TimeSW
é 30 - —=— THUI-Mine
g
5 20
10 L,=F
* ——0¢—0o— ¢ —¢
O | | | | |
1 100 1K 5K 10K 15K
Partition Size

Figure 4-5. The execution time of MHUI TimeSW and THUI-Mine with
different partition sizes
Memory usage: Figure 4-6 shows'the result of memory usage. Observe that as partition
size is larger than 1K, the memory required in MHUI TimeSW in average is two to three
times larger than THUI-Mine. As partition size is less than 1K, the memory required in
THUI-Mine increases dramatically. The mainly memory usage depends on two factors,
one is the extra resource each algorithm maintained; the other is the candidate itemsets
generated. For the former, THUI-Mine maintains 7UP, (/) which varies with the
number of candidate 2-itemsets, whereas MHUI TimeSW maintains item information
which is fixed under the same dataset and window size. For the latter, the number of
candidate itemsets THUI-Mine generated is much more than MHUI TimeSW, especially

when partition size decreases (see Table 4-5).

43

T10I6D100K,IWI=30K,ut=0.5%

200000
@ 150000
= —— 1
£ 100000 F MHUI_Tlmesw
qu —=— THUI-Mine
=

50000 \
0

100 1K 5K 10K 15K

Partition size

Figure 4-6. The memory usage of MHUI TimeSW and THUI-Mine with

different partition sizes

3. The number of candidate itemsets generated after 1** scan: Table 4-5 shows the result
of candidates generated. MHUI TimeSW is.not*a partition-based method, so change of
partition size doesn’t affect the|number of candidates generated. On the contrary,
THUI-Mine is deeply influericed. Observe that as the partition size is less than 1K, the

number of candidates THUI-Mine generated increase significantly.

We conclude that the execution time, memory usage and the number of candidate itemsets

of THUI-Mine will increase dramatically as partition size decreases.

Table 4-5. The number of candidates generated of MHUI TimeSW and
THUI-Mine with different partition sizes.

Partition size THUI-Mine MHUI TransSW
1K 8269 37
SK 181 37
10K 102 38
15K 71 39

44

4.3 The Performance between TIDlist and Bitvector

We can use TIDlist or Bitvector, to store item information as mentioned in Section 3.2.1. In
Section 4.1 and 4.2, our method chooses TIDlist representation, because the performance of
TIDlist is better than Bitvector under those datasets. In this section, we compare our proposed
method using TIDlist and Bitvector, denoted as MHUI(TID) and MHUI(BIT) respectively,
with THUI-Mine. We show the execution time of different methods with different minimum
utility thresholds.

The first experiment, we use dataset T10I6D100K to compare the performance of these
three methods. The parameter setting is the same as in Section 4.2.1. Figure 4-7 shows the

execution time of these three methods under different minimum utility thresholds.

T10I6D100K,IWI=30K,IPI=10K

150
Ll
2 100 —=— MHUK(TID)
E \ —+— THUI-Mine
5 50 —&— MHUI(BIT)
&

0 1

02 03 05 06 08 1.0
Minimum utility threshold(%)

Figure 4-7. The execution time of these three methods under different minimum

utility thresholds

Observe that MHUI(TID) always performs better than THUI-Mine, especially when utility
threshold is small. MHUI(BIT) runs a little slowly than THUI-Mine when utility threshold 1s
larger than 0.5%, however, MHUI(BIT) runs significantly faster than THUI-Mine when utility

threshold is less than 0.5%.

45

Next, we use three datasets, T15110D100K, T20115D100K and T30120D100K, to compare
the performance of these three methods. The window size is fixed to 30,000. The partition
size is fixed to 10,000. The minimum utility threshold is fixed to 1%. Figure 4-8 shows the
execution time of these three methods. THUI-Mine only runs successfully in dataset
T15110D100K. However, THUI-Mine cannot draw in the picture since that it needs much
more time corresponding than the MHUI(TID) and MHUI(BIT). Observe that in these three
datasets, the execution time needed is MHUI(TID) << MHUI(BIT) << THUI-Mine. Although
MHUI(BIT) does not completely win THUI-Mine in dataset T10I6D100K, but it completely
beats THUI-Mine in larger dataset, such as T15110D100K, T20I115D100 and T30120D100K.
In other words, MHUI(BIT) maybe runs a little slower than THUI-Mine in a smaller dataset,

it maybe runs significantly faster than THUI-Mine in a larger dataset.

IWI=30K,[PI=10K,ut=1%

3 120
2 100 .
R — —— MHUI(BIT)
s 60 —=— MHUI(TID)
E 38 I // —— THUI-Mine
(&)
—
i 0 ‘ ‘
@“LV \617 @QV dataset
& &
& > o

Figure 4-8.The execution time of these three methods under different datasets

Table 4-6 shows the ltem_freq, the average number of transactions containing each item.
Observe that Item_freq increases a little as the dataset become larger. The ratio of ltem freq to
window size 1is from 480/30,000=1.6% to 750/30,000=2.5% in TI5I10D100K to

T30I120D100K respectively. Since the ratio is apparently small, we can obtain that the

46

performance of MHUI(TID) is better that MHUI(BIT). Figure 4-7 and Figure 4-8 verified the

conclusion.

Table 4-6. The ltem_freq in each dataset

Dataset Item_freq
T15110D100K 480
T20115D100K 550
T30120D100K 750

4.4. The Stability of Our Proposed Work

In this experiment, we examine the two primary factors, execution time and memory usage,
to discovery high utility itemsets in a' data stream environment. We use there datasets,
T1016D100K, T15120D100K and T20I15D100K, and change one parameter at a time to prove
the stability of our proposed work.“Each is describéd as follows:

1. Different Minimum Utility Thresholds: In the first experiment, the window size is
fixed to 30,000 and the partition size is fixed to 10,000. We test the execution time and
memory usage under different minimum utility thresholds where ut is changed from
0.5% to 1.0%. Figure 4-9 and Figure 4-10 show the execution time and memory usage,

respectively.

47

N
(a)

MHUIL_TimeSW(IWI=30K,[PI=10K)

N
S

o~
(]
T

DO
S

Execution time(sec)
o
(@]
T

—
o

(]

T
. A ——a—

I I I

0.5 0.6 0.8 1.0

Minimum utility threshold(%)

—=—TI0I6D100K
—4—TI5I10D100K
——T20I15D100K

Figure 4-9. The execution time of MHUI TimeSW under different minimum

utility thresholds

15000

10000

5000

Memory usage(KB)

MHUIL TimeSW(IWI=30K,|PI=10K)

—=—T10I6D100K
——T15110D100K
——T20I15D100K

0.5 0.6 0.8 1.0
Minimum utility threshold(%)

Figure 4-10. The memory usage of MHUI TimeSW under different

Different Partition Size: In the second experiment, the window size is fixed to 30,000
and the minimum utility threshold is fixed to 0.5%. We test the execution time and
memory usage under different partition sizes where |P| is changed from 100 to 15,000.

Figure 4-11 and Figure 4-12 show the execution time and memory usage respectively.

minimum utility thresholds

48

MHUL TimeSW(WI=30K,ut=0.5%)

60

40 r ——T10I6D100K
30 —=—TI15110D100K

20 ¢ ——T20115D100K
10 e84

N ®
L A g A g

Execution time(sec)

L

>

100 1K 5K 10K 15K

Partition Size

Figure 4-11. The execution time of MHUI TimeSW under different partition

sizes

MHUI_TimeSW(Ilwl=30K,ut=0.5%)

15000

m

S A——A———————

5 10000 . . . | |=+=TI0I6D100K
= L —=—TI5110D100K
= A G S S

g5000 —— T20115D100K
()

= 0

100 1K 5K 10K 15K

Partition Size

Figure 4-12. The memory usage of MHUI TimeSW under different partition

sizes

Different Window Size: In the third experiment, the partition size is fixed to 10,000 and
the minimum utility threshold is fixed to 1.0%. We test the execution time and memory
usage under different window sizes where |W| is changed from to 20,000 to 60,000.

Figure 4-13 and Figure 4-14 show the execution time and memory usage, respectively.

49

MHUI_TimeSW(IPI=10K,ut=1.0%)

40

2

< 30 .

g ——T15110D100K
= 20

S . — | [=-T20u5DIOOK
2 10 *

<

[aa)]

O 1 1
20K 30K 40K 50K 60K

Window size

Figure 4-13. The execution time of MHUI TimeSW under different window sizes

MHUI_TimeSW([PI=30K,ut=1.0%)

= 25000

20000 —

[}

g 15000 }//-;:/// ——T15110D100K
o

= 10000 V —=— T20115D100K
o

£ 5000 f

= 0

20K 30K 40K 50K 60K

Window size

Figure 4-14. The memory usage of MHUI TimeSW under different window sizes

Observe that the execution time and memory usage goes smoothly as time advances no
matter we change what kind of parameters. This result indicates that our proposed work is

stable and fit for all kinds of datasets.

50

Chapter 5

Conclusion and future work

5.1 Conclusion of Our Proposed Work

Due to the limitation of data streams and the complexity of computing utility itemsets,
mining of high utility itemsets in a data stream is more complicated than in static database. In
this thesis we propose two methods: MHUI TransSW and MHUI TimeSW to mine the high
utility itemsets with the transaction-sensitive and time-sensitive sliding window respectively.

THUI-Mine is the first algorithm proposed to find high utility itemsets in a data stream.
THUI-Mine uses partition-based to find the candidate itemsets, and thus it generates too many
candidate itemsets and need more time and memory. to find the high utility itemsets. The goal
of our work is to improve on mining high utility itemsets in execution time, memory usage
and the number of candidates generatéd. Our-work is based on the transaction-weighted
downward closure property and utilizes efficient ‘item information, i.e, TIDlist or Bitvector,
and additionally builds a lexicographical tree to maintain the candidate 2-itemsets.

Experiments show that execution time and memory usage of MHUI TransSW significantly
outperforms THUI-Mine in a transaction-sensitive sliding window. Next, we extend MHUI
TransSW to MHUI TimeSW. Experiments validate the efficiency. For smaller datasets and
smaller item_freq/window, MHUI TimeSW using TIDlist as item information runs averagely
two times faster than THUI-Mine, and the margin grows as the minimum utility threshold
decreases or the partition size decreases. MHUI TimeSW using Bitvector as item information
runs a little slower than THUI-Mine, whereas it runs significantly faster as the partition size
decreases or the minimum utility threshold decreases. For larger datasets and smaller
item_freq/window size, no matter MHUI TimeSW uses TIDlist or Bitvector as the ifem
information, it runs significantly faster and consumes less memory space than THUI-Mine

51

especially when the partition size is small or the minimum utility threshold is small.

5.2 Future Work

Our work uses the transaction-weighted utilization property to filter out the candidate
itemsets, so it needs two scans, the first scan to find high transaction-weighted utilization
itemsets and the second scan to find the high utility itemsets. However, one of the
characteristics of data streams is expiration, which means data can be read only once. Because
of the complicated calculation of utility itemsets it is challenging to mine high utility itemsets

on data streams in one-pass scan.

52

Bibliography

R. Agrawal, T. Imielinski, A. Swami, Mining associations rules between sets of items in
large Databases, In Proc. of ACM SIGMOD Intel. Conf. on Management of Data, pp.
207-216, 1993.

R. Agrawal and R. Srikant, Fast Algorithms for Mining Association Rules in Large
Database, In Proc. of the 20th Intel. Conf. on Very Large Databases (VLDB), pp. 487-
499, 1994.

A. Savasere, E. Omiecinski and S. Navathe, An Efficient Algorithm for Mining
Association Rules in Large Database, In Proc. of the 21th Intel. Conf. on Very Large
Databases (VLDB), pp. 432-444, 1995.

R. Agrawal, H. Mannila, R. Srikant, H. Toivenen, and A. I. Verkamo, Fast Discovery of
Associations Rules, Advanees in Knowledge Discovery and Data Mining, pp. 307-328.
AAAI/MIT Press, 1996.

J. S. Park, M. S. Chen, P. S. Yu,Using a Hash-Based Method with Transaction Trimming
for Mining Association Rules, IEEE Trans. on Knowledge and Data Engineering, 9(5):
pp. 813-825, 1997.

J. Han, J. Pei, and Y. Yin, Mining Frequent Patterns without Candidate Generation, In
Proc. of ACM SIGMOD Intel. Conf. on Management of Data, pp. 1-12, 2000.

C. H. Lee, C. R. Lin and M. S. Chen, Sliding-Window Filtering: An Efficient Algorithm
for Incremental Mining, In Proc. of the ACM 10th Intel. Conf. on Information and
Knowledge Management (CIKM), pp. 263-270, 2001.

Y. Zhu, D. Shasha, StatStream: Statistical Monitoring of Thousands of Data Stream in
Real Time, In Proc. of the 28th Intel. Conf. on Very Large Databases (VLDB), pp.
358-369, 2002.

G. Manku and R. Motwani, Approximate Frequency Counts over Data Streams, In Proc.

53

10.

11.

12.

13.

14.

15.

16.

17.

18.

of the 28th Intel. Conf. on Very Large Databases (VLDB), pp.346-357, 2002.

C. Jin, W. Qian, C. Sha, J. Yu, A. Zhou, Dynamically Maintaining Frequent Items over a
Data Stream, In Proc. of the ACM 12th Intel. Conf. on Information and Knowledge
Management (CIKM), pp. 287 - 294, 2003.

L. Golab and M. T. Ozsu, Issues in Data Stream Management, In ACM SIGMOD Record,
32(2): pp. 5-14, 2003.

R. Chan, Q. Yang, Y. D. Shen, Mining High utility Itemsets, In Proc. of the 3rd IEEE
Intel. Conf. on Data Mining (ICDM), 2003

J. H. Chang and W. S. Lee, Finding Recent Frequent Itemsets Adaptively over online
Data Streams, In Proc. of Intel. Conf. on Knowledge Discovery and Data Mining
(SIGKDD), pp.487-492, 2003.

J. Chang and W. Lee, “A Shding Window.Method for Finding Recently Frequent
Itemsets over online Data Streams”, Journal .of-Information Science and Engineering,
20(4): pp. 753 - 762, 2004.

H. F. Li, S. Y. Lee and M. K. Shan, DSM-FI: An Efficient Algorithm for Mining
Frequent Itemsets over the Entire History of Data Streams, In 1st Intel. Workshop on
Knowledge Discovery in Data Streams, 2004.

Y. Chi, H. Wang, P. S. Yu, R. Muntz, Moment: Maintaining Closed Frequent Itemsets
over a Stream Sliding Window, In Proc. IEEE Intel. Conf. on Data Mining (ICDM), pp.
59-66, 2004.

H. Yao, H. J. Hamilton, and C. J. Butz, A Foundational Approach to Mining Itemset
Utilities from Databases, In Proc. of 4th SIAM Intel. Conf. on Data Mining (SDM),
2004.

C. H. Lin, D. Y. Chiu, Y. H. Wu, A. L. P. Chen, Mining Frequent Itemsets from Data
Streams with A Time-Sensitive Sliding Window, In Proc. of SIAM Conf. on Data Mining
(SDM), 2005.

54

19.

20.

21.

Y. Liu, W. Liao, and A. Choudhary, A Fast High Utility Itemsets Mining Algorithm, In
Proc. of the ACM Intel. Conf. on Utility-Based Data Mining Workshop (UBDM), 2005.
V. S. Tseng, C. J. Chu, and T. Liang, Efficient Mining of Temporal High Utility Itemsets
from Data Streams, In Proc. of the ACM Intel. Conf. on Utility-Based Data Mining
Workshop (UBDM), 2006.

H. Yao, H. Hamilton and L. Geng, A Unified Framework for Utilty-Based Measures for
Mining Itemsets, In Proc. of the ACM Intel. Conf. on Utility-Based Data Mining

Workshop (UBDM), pp. 28-37, 2006.

55

