

國立交通大學

資訊科學與工程研究所

碩士論文

一個方便應用程式使用 RSS/Atom 的中介軟體

A n E a s y - To - U s e F e e d M i d d l e w a r e f o r

Application Development with RSS/Atom Feeds

研 究 生：脫志曜

指導教授：袁賢銘 教授

中 華 民 國 九 十 六 年 七 月

一個方便應用程式使用 RSS/Atom 的中介軟體

An Easy-To-Use Feed Middleware for Application Development
with RSS/Atom Feeds

研 究 生：脫志曜 Student：Chi-Io Tut

指導教授：袁賢銘 Advisor：Shyan-Ming Yuan

國 立 交 通 大 學
資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

July 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年七月

一個方便應用程式使用 RSS/Atom 的中介軟體

學生：脫志曜 指導教授：袁賢銘

國立交通大學資訊科學與工程研究所

摘要

RSS 和 Atom 網摘是用可擴展置標語言來呈現經常更新的網頁中的項目的一

種形式，這種形式讓使用者可以透過網摘閱讀器來訂閱聯播的內容。隨著網摘因

為部落格的普及而越來越受採用，各式各樣讓網摘包含更多語意資訊的延伸方式

被提出來，只把網摘當作網路上簡單的可擴展置標語言文件來看待的普通工具不

足以用來開發應用程式。

本論文提出一個幫助開發 RSS/Atom 相關應用程式的中介軟體，它為開發者

取得、解析和儲存網摘，並提供一套方便使用的介面讓開發者可以編寫程序化或

事件觸法式的應用程式。對比起視窗 RSS 平台，此中介軟體較具有彈性也較容

易使用。當換去具工業強度的資料庫和伺服器，它可以比組織用來解決現實世界

中的整合問題。

An Easy-To-Use Feed Middleware for Application Development

with RSS/Atom Feeds

Student: Chi-Io Tut Advisor: Shyan-Ming Yuan

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

RSS and Atom feeds are XML representation of the entries in frequently

updating websites, which enable users to subscribe to those syndicated contents using

feed readers. As feeds are gaining more and more adoptions due to the ubiquity of

blogs, various extensions are written for them to carry more semantic information.

Ordinary tools which treat them as simply XML documents on the web are not

sufficient for application development.

In this paper, a middleware is proposed to aid application development involving

RSS/Atom feeds. It handles fetching, parsing and storage of feeds for developers and

provides them with a set of easy-to-use interfaces to write procedural and

event-driven applications. Compared with the Windows RSS Platform, it is more

flexible and easier to work with. When extended with industrial-strength databases

and servers, it can be use by an organization to solve real world integration problems.

 I

Acknowledgements

首先我要感謝袁賢銘教授給我的指導，在我的研究領域裏給我很多的意見，

並且給多我最大的空間來發揮我的創意。也感謝所有幫助我的學長葉秉哲、邱繼

弘、吳端祥、鄭明俊，在我研究的過程中給我不少的指導跟建議。還有感謝實驗

室同學宋牧奇、彭品勻、尢喜夫、熊家媛跟蔡宗穎，在這一年來跟我一起做了很

多研究討論，也激盪出不少的想法。也感謝我的心愛女友楊婷詠，在我最無力的

時候給我打氣，讓我一直有動力來完成我的研究。最後我要感謝我的爸媽和妹

妹，給予我這個良好的環境讓我求學生涯毫無後顧之憂，專心於學業，謹以這篇

小小的學術成就來感謝您們的養育之恩。

 II

Table of Contents

Acknowledgements ... I
Table of Contents .. II
List of Figures... IV
List of Tables...V
1 Introduction..1

1.1 Preface..1
1.2 Motivation..1
1.3 Objectives ..3
1.4 Problems and Solutions..3

2 Background and Related Works...5
2.1 Background..5
2.2 Related Works ..7

3 System Architecture ...11
3.1 Overview..11
3.2 Feed DB, Storer and Retriever...11
3.3 Feed Sweeper, Monitor and Fetcher ..13
3.4 Feed Notifier ..14
3.5 Interfaces..14
3.6 Program Flow...16

4 Implementation Details ...19
4.1 Overview..19
4.2 Feed discovery ...19
4.3 Feed fetching..20
4.4 Feed parsing ...20
4.5 Interfaces..21
4.6 Tools and Libraries ..22

5 Scenario Demonstrations...23
5.1 Ajax Product Spy ...23
5.2 Bug Notifier ...25

6 Comparison and Discussion..30
6.1 Comparison ..30
6.2 Discussion..33

7 Future Works and Conclusion..34
7.1 Future Works..34

 III

7.2 Conclusion ...34
References ..36

 IV

List of Figures

Figure 1-1 Technorati is now tracking over 70 million weblogs2
Figure 2-1 File layout of a RSS (left) and an Atom (right) feed....................6
Figure 2-2 Overview of the feed space ..7
Figure 2-3 Architecture of the Windows RSS Platform [14].........................8
Figure 2-4 Yahoo Pipes ..9
Figure 2-5 Corona Architecture ...10
Figure 3-1 System Architecture ...11
Figure 3-2 Database schema ..12
Figure 3-3 Program flow of Feed Middleware ..18
Figure 5-1 Architecture of the Ajax Product Spy...23
Figure 5-2 Screenshot of the Ajax Product Spy showing product information

..24
Figure 5-3 Screenshot of the Ajax Product Spy after an update24
Figure 5-4 Architecture of the Bug Notifier ..26
Figure 5-5 Screenshot of a tester filling the form to file a bug report27
Figure 5-6 Screenshot of the developer is notified for a bug report via the

MSN Messenger...27
Figure 5-7 Screenshot of the developer clicking the link from the instant

message to see the actual bug report..28

 V

List of Tables

Table 3-1 Retrieve a single feed of entries...15
Table 3-2 Retrieve a set of feeds of entries..15
Table 3-3 Retrieve a set of feeds of entries defined by an OPML file.........15
Table 3-4 Retrieve all subscribed feeds as an OPML file............................16
Table 3-5 Subscribe to a lists of feeds ...16
Table 3-6 Unsubscribe a lists of feeds ...16
Table 4-1 Tools and libraries used ...22
Table 6-1 Qualitative comparison between Feed Middleware and Windows

RSS Platform ...31

 1

1 Introduction

1.1 Preface
During the past few years, we have been experiencing a transition from Web 1.0

to the so-called Web 2.0 era. Instead of being an accurate specification, Web 2.0 is

only a collective concept describing the technical features and social behaviors of

some of the famous Web 2.0 websites [1]. Among them, there are blogs and feeds. A

blog is a website with reverse chronologically-ordered entries, usually news or diaries.

A feed is the XML-formatted content of them. These technologies combined enable

the publish/subscribe semantics of the web and transform it from a static web into a

“live web”.

This paper proposes an easy-to-use feed middleware for application development

involving RSS/Atom feed technology. The following sections explain why such a

system should be built, what capabilities it should have, the problems to face, and

their respective solutions.

1.2 Motivation
According to the quarterly report of Technorati, one of the leading blog search

engines, the number of blogs they are tracking is 70 million, and it keeps growing

rapidly [2]. Nowadays, almost all frequently updating websites have feeds. There are

two reasons for this fast adoption. First, there are many blog hosting services

providing blogging tools with easy-to-use editor for users to publish their thoughts

without having to understand any HTML at all, which allow users to focus on creating

more and more contents. Second, both server and client side feed readers are available

 2

for users to read those contents on many different blogs without having to check them

out one by one constantly. However, for programmers, there are no easy-to-use tools

for them to develop applications based on the underlying feed technology.

Figure 1-1 Technorati is now tracking over 70 million weblogs

Moreover, since feeds are XML documents, they can be extended to include

other semantic data besides titles and descriptions of news, such as stock quotes,

weather forecasts, and multimedia resources. There are already many existing

extension specifications for feeds [3]. Besides, microformats [4] are also embedded in

many feeds to add extra semantics. Regardless of being formatted as RSS or Atom,

feeds are the transitional objects from the web of documents to the web of data. Since

it is in widely used today to hold semantic data, we must have better tools to

manipulate them before we actually turn into the Semantic Web era [5].

For enterprises, there is a growing need for feed technology because they

produce and consume a large amount of information every day. While emails are

 3

filled with spam and portals are hard to integrate with, internal systems begin to use

feeds as the data carrier for information. For example, bug reports, software updates

and code revisions are good candidates to be unified using feed formats. There are

already enterprise solutions for feed subscription and reading in heterogeneous

environment, but tools for integration and application development are yet to be built.

1.3 Objectives
The most important things for application developers are APIs, the interfaces to

interact with a library or another system. For feeds, two sets of interfaces should be

provided. One of them is a pulled-based interface for procedural applications. The

other one is a pushed-based interface for event-driven applications.

Feeds provided by websites usually contain only about 10 to 40 of the most

recently updated data. But for applications to do some significant things, they may

need more than that. Therefore, outdated feeds must also be available for applications

to retrieved. Besides, feeds from different content sources may be of the same interest

to some specific applications, retrieving them one by one and mixing them manually

is a tedious task. It is better to have a way to specify a number of feed sources and

then get the entries of all of them.

Last but not least, the resulting tool should be platform and language neutral

since different systems often employ different technologies and they will keep on

changing. Attributes such as simplicity and extensibility are very much desired

because a simple and open tool means a bigger chance of being integrated with

existing systems and greater possibility to be put into practical use.

1.4 Problems and Solutions
One of the problems of feed technology is formats. There are two families of

 4

feed formats, RSS and Atom. For RSS, there are nine incompatible versions. Atom, on

the contrary, is an IETF-backed standard format [6]. Although RSS 2.0 and Atom 1.0

are the most prevalent ones, many of them are still heavily in use. But thanks to the

open source community, there are already some good feed parsers available. The

problem left is to choose a suitable one.

There are two issues to be solved in order to keep outdated feed available for

applications to retrieve: bandwidth and storage. Although feeds enable the

publish/subscribe model of the web, the underlying technology is polling, i.e., clients

have to keep asking for the same feed to see if there is an update. Therefore, various

HTTP caching, conditional retrieval, and compression techniques must be

implemented [7]. To store a large number of feed entries with frequent updates and

retrieval, a database with efficient caching mechanism is the simple answer. We will

discuss more in details on the chapter of implementation.

After feeds are parsed and stored, the final problem left is to expose an interface

for others to use. Since the proposed tool is positioned as a middleware instead of

simply a set of library functions, REST and XML-RPC are used as pull and push

interfaces respectively. The reason for this choice is that they are simple and every

major language has good implementations for them.

 5

2 Background and Related Works

2.1 Background

2.1.1 Blogging and Syndication

Blog is the combination of the two words, ‘web’ and ‘log’, meaning to write

chronologically on the web [8]. The blogging phenomenon started at late 90’s and

took off around 2000, when hosted blogging platforms became widely available.

Today, blogs are so ubiquitous and influential that some high profile blogs have more

visitors than many main stream media websites. Besides the chronological nature, a

blog is a special type of websites with some more technical characteristics. First,

every entry can be access by a unique URL – Permalink. Second, a blog provides a

feed of recently added content for others to subscribe – Syndication, which

revolutionizes user experiences of the web by shifting the task to check websites for

updates from users to the machines via unified and machine-understandable

representations of those websites.

2.1.2 Feed Formats

Throughout this paper, the term feed refers to both the RSS and Atom XML feed

formats. RSS (RDF Site Summary) is originally created by Netscape to describe news

stories in RDF (Resource Description Framework), which in turn is defined using

XML (eXtensible Markup Language). That version is known as RSS 0.9. After minor

modifications to remove RDF elements to make it 0.91, it split into two branches, the

 6

RDF branch and the simple branch. The RDF branch is advocated by RSS-DEV

Group, where RSS means Rich Site Summary (RSS 1.0). The simple branch is

advocated by famous blogger Dave Winer, where RSS means Really Simple

Syndication (RSS 0.92, 0.93, 094, and 2.0) [9].

Daunted by the incompatibilities of RSS, a group of people started to re-invent a

completely new and open feed format and get it through the IETF standardization

process, which later becomes an RFC standard – the Atom Syndication Format [11]. It

is accompanied by a draft on a REST-based protocol called Atom Publishing Protocol

to further specify the message exchange mechanism between blog servers and clients.

No matter what format a feed use, a feed is composed of the same things

conceptually: a header section describing the whole feed and a list of entries having

similar attributes, such as unique identifier, title, description, published date and time.

It is illustrated on the figure below:

Figure 2-1 File layout of a RSS (left) and an Atom (right) feed

2.1.3 Ping Servers

Many blog publishing systems send an XML-RPC request to one or more ping

 7

servers like those of Technorati and Google when a new post is submitted. The reason

for this is to minimize the time between an actual update and those services’

scheduled crawling of the updated content, thus providing users with fresh search

results as soon as possible. Some of those ping servers like Weblogs.com and Google

make the list of updated blogs available as an XML file with the name changes.xml

usually for other services to leverage. Although there is no official specification of it,

the format is usually as follows [12].

<weblogUpdates version="2" updated="Mon, 10 Oct 2005 14:10:00 GMT"

count="1384779">

 <weblog name="Weblogs.com" url="http://www.weblogs.com" when="1"/>

 <weblog name="My Blog site" url="http://www.myblogsite.com" when="2"/>

 <weblog name="Another site" url="http://www.anothersite.com" when="3"/>

</weblogUpdates>

2.2 Related Works

Figure 2-2 Overview of the feed space

 8

The figure above depicts the feed space, divided by four columns which

represent different tasks to do with feeds. Within it each column there are specific

fields with their respectively players, some of whom will be further described in the

following sections.

2.2.1 Windows RSS Platform

The Windows RSS Platform [13] is Microsoft’s answer to the changing web

experience from pure browsing to searching and subscribing after the release of

Internet Explorer 6.0 in 2001. Though being an integral part of IE7, the Windows RSS

Platform provides APIs for other applications in the same environment to access feeds

and subscriptions, which is a similar idea to the one proposed by this paper, a platform

instead of only a library. More will be discussed on the comparison and discussion

section.

Figure 2-3 Architecture of the Windows RSS Platform [14]

 9

2.2.2 Yahoo Pipes

Yahoo Pipes is a web application for non-programmer to aggregate and

manipulate feeds [15]. It provides users with a GUI editor to connect inputs and

outputs of different functional blocks, each having a specific use like URL building

fetching feeds, or replacing text.

Figure 2-4 Yahoo Pipes

2.2.3 Enterprise Solutions

Enterprises begin to adopt RSS to fight information overload with their portals

and emails. Three commercial products focusing on helping enterprises to take

advantages of the feed technology are Attensa Feed Server [16], NewsGator

Enterprise Server [17], and KnowNow Enterprise Syndication Solution [18]. All of

them share similar features: being a central server aggregating different feed sources

on behalf of the organization, providing an easy-to-use interface for management of

subscriptions, delivering news for reading using email clients, browsers or mobile

 10

devices. However, all of them have the same constraints of being only for feed

consumption rather than development, and integration is hard if not totally impossible.

Besides, they are all proprietary platforms and are selling at the price of over

thousands of US dollars.

2.2.4 Academic Researches

Three researches are directly related to the feed technology. FeedEx [19] is a

feed exchanging system, in which hosts not only fetch feeds but also exchange them

with neighbors of similar interests to reduce time lag and increase coverage. Based on

Scribe and Pastry, FeedTree [20] provides software for subscribers and publishers to

join a structured overlay to let them distribute feeds in a multicast way and poll for

updates cooperatively. Also based on Pastry, Corona [21] does almost same thing as

FeedTree but focus more on load balancing of nodes in the overlay to achieve better

performance. In short, all of them are P2P-related researches which focus on the

scalability of feed dissemination.

Figure 2-5 Corona Architecture

 11

3 System Architecture

3.1 Overview

Figure 3-1 System Architecture

The diagram above depicts the components of Feed Middleware, which will be

described in details in the following sections.

3.2 Feed DB, Storer and Retriever
Feed DB is a database to store all entries of all feeds and other relevant

information. Regardless of what format a feed is in, entries of all subscribed feeds are

stored in two different ways. First they are stored in a normalized form which only

captures the essence of an entry including its unique identifier, title, link, description

and timestamp. Second, they are stored in a serialized form which preserves all of its

attributes. The rationale behind these redundant stores is that both performance and

flexibility are desired, and that storage is inexpensive and it can be easily expanded.

 12

A list of subscribed feeds with their attributes including their last updated time,

fetch frequencies are also stored. The following figure is the database schema.

Figure 3-2 Database schema

Feed Storer has the knowledge of both the object representation and the database

schema. First, it filters out old entries having the same ids. Then, it transforms only

the updated ones into tuples suitable to be inserted into the Feed DB.

Feed Retriever is responsible for retrieving feed entries from database and

formatted them in the form requested by client applications. Frequent retrievals are

alleviated by using a memory caching system so as to provide fast response. Since all

entries are stored in the database, merging different feeds into a single one can be

done but using a SQL SELECT statement with an IN expression constraint test for

inclusion in a specified set of feed IDs. This mechanism also enables the use of

OPML (Outline Processor Markup Language) which is often used as an XML format

of subscription lists.

 13

3.3 Feed Sweeper, Monitor and Fetcher
Feed Sweeper is a scheduled process to constantly examine the status of every

feed, marking it dirty if the current time is later than its last updated time plus its fetch

frequency. Dirty feeds are then put into a queue for Feed Fetcher to re-fetch.

Instead of guessing if there is update for a blog, feed Monitor leverage the

knowledge of ping servers by downloading change logs from them, scan through

them for interested feeds that are updated, and put them into queue for Feed Fetcher to

re-fetch.

Feed Fetcher is responsible for fetching feeds, parsing them into objects, and

storing them into Feed DB using Feed Storer. It contains a pool of worker threads to

do these processes concurrently in order to achieve a higher throughput. Feed Fetcher

begins to fetch a feed when notified by Feed Sweeper of a feed being marked as dirty

or by Feed Monitor of feeds being updated. It uses various HTTP techniques which

will be mentioned in the implementation section later to reduce bandwidth usage. A

hash code is also kept for each feed to compare content freshness besides the HTTP

ETag header to ensure further processing is needed only for updated feeds. A feed

parser is used to parse different XML-based feed formats into a consistent object

model.

Instead of using mathematical or heuristic methods to dictate the fetch

frequencies of feeds, which is complicated and not in the scope of this text, aids are

provided to the users to determine the frequency of the feeds of interest. Fetch

frequency can be divides into different levels. Level 0 is set for those feeds which

updates have been sent to ping servers, and in turn realized by Feed Monitors. The

fetch frequency is 1 day for level 0. Level 1 is the default one for every feeds, which

is 30 minutes. This level is suitable for blogs or non-frequently updating sites. People

 14

normally do not mind if they are 30 minutes late to know some trifles of their friends.

When an update is received from ping servers for level 1 feeds, it is set to level 0

because it can be assumed that subsequent updates will also be received from ping

servers so there is no need to fetch that often. Conversely, if daily fetch for a level 0

feed finds missed updates, the fetch frequency of the respective feed is set to level 1

because ping server may not be reliable for that feed any more. Level 2 is 5 minutes

for news or real-time updating sites. Finally, users can always set the exact fetch

frequency directly to values other than these three levels.

3.4 Feed Notifier
Feed Notifier is initiated by Feed Fetcher with only updated feeds entries. It

checks the subscription tables in the database to see if there is anyone who is

interested in those updates. It one is found, a separated thread is dispatched to push

those entries to the respectively endpoint using XML-RPC. XML-RPC is a simple

way to communicate with a remote entity. It is possible to use more reliable

mechanisms like message-oriented middleware directly or through adapters.

3.5 Interfaces
Applications access feeds by sending simple HTTP requests to the Feed

Middleware similar to retrieving feeds from any web servers. But Feed Middleware

allows developers to specify how feeds should be served using arguments. The

following tables list all operations provided by Feed Middleware with their function

descriptions:

Resource /feed

HTTP Method GET

 15

Description retrieve a single feed of entries

Arguments url a single URL

 type rss, atom, json

 len how many entries to retrieve

Example GET

/feed/?url=http://digg.com/rss/index.xml&type=atom&len=50

Table 3-1 Retrieve a single feed of entries

Resource /feeds

HTTP Method GET

Description retrieve a set of feeds of entries

Arguments url comma-separated list of URLs

 type rss, atom, json

 len how many entries to retrieve

Example GET /feeds/?url=http://digg.com/rss/index.xml,

http://rss.slashdot.org/Slashdot/slashdot&type=json&len=100

Table 3-2 Retrieve a set of feeds of entries

Resource /opml

HTTP Method GET

Description retrieve a set of feeds of entries defined by an OPML file

Arguments url an URL of an OPML file

 type rss, atom, json

 len how many entries to retrieve

Example GET

/opml/?url=http://share.opml.org/opml/top100.opml&type=rss

Table 3-3 Retrieve a set of feeds of entries defined by an OPML file

Resource /sub

 16

HTTP Method GET

Description retrieve all subscribed feeds as an OPML file

Example GET /sub

Table 3-4 Retrieve all subscribed feeds as an OPML file

Resource /sub

HTTP Method POST

Description subscribe to a lists of feeds

Arguments url comma-separated list of URLs

Example POST /sub/?url= http://digg.com/rss/index.xml,

http://rss.slashdot.org/Slashdot/slashdot

Table 3-5 Subscribe to a lists of feeds

Resource /sub

HTTP Method DELETE

Description unsubscribe a lists of feeds

Arguments url comma-separated list of URLs

 id subscription_id

Example DELETE /sub/?url= http://digg.com/rss/index.xml,

http://rss.slashdot.org/Slashdot/slashdot&id=1

Table 3-6 Unsubscribe a lists of feeds

3.6 Program Flow
Assume that there are already some feeds in the database, all with different fetch

frequencies. A work queue is maintained for Sweeper and Monitor to communicate

with Fetcher in the producer-consumer paradigm. Feed Sweeper is scheduled to put

outdated feeds into the queue. By outdated it only means that the feed has not been

fetched for some specific period time. It does not necessary mean that it is updated.

 17

On the contrary, Feed Monitor leverages update logs by ping servers to put actually

updated feeds into the queue. Upon receiving fetch requests from the queue, Feed

Fetcher fetches those feeds, parses them into objects, filters out old entries, stores new

ones into the Feed DB using Feed Storer, and dispatches notification threads using

Feed Notifier.

From the point of the view of the developers, they only have to send HTTP

requests in order to subscribe, unsubscribe to feeds, or retrieving them directly in a

couples of different ways. If they subscribe to a feed, updates will be pushed to them.

 18

Figure 3-3 Program flow of Feed Middleware

 19

4 Implementation Details

4.1 Overview
As mentioned in these two articles on middleware “dark matter” [23] [24],

Python is one of many tools to solve real world integration problems when EAI,

MOM, Corba, and J2EE are just too complex and over killed. Python [25] is a

dynamic object-oriented programming language that can be used for many kinds of

software development. It is well known that Google used Python intensively for many

of its systems. There are also extensive standard libraries and many 3rd party tools

like the brilliant Universal Feed Parser. Besides, Python is available for Windows,

Macintosh, Linux and a lot other platforms. Due to these reasons, Feed Middleware is

developed entirely in Python.

4.2 Feed discovery
Feed discovery is to get the feed URL of a website given its own URL. This

feature can be handy when retrieving a feed for the first time because users will not

need to know the feed URL in advance. Instead of having default names like

index.html or index.php for the entrance of a websites, there is no similar convention

for feeds. However, webmasters use a way similar to referencing external stylesheets

and scripts to associate a feed with a website by adding a link tag within the head

section of a webpage. Therefore, the following steps can be used to get the feed URL:

 retrieve the HTML file of a website

 use regular expression to find all link tags

 20

 for each link tag if its type is “application/rss+xml”, get its href attribute

 use the href attribute and the original URL to form a feed URL

4.3 Feed fetching
A feed is just yet another object transferred over HTTP like a HTML document.

Techniques used by browser and other HTTP clients can be directly employed to

speed up fetching and reduce bandwidth usage. One of them is caching with

validation. For example, a client issues a request for a feed and the server responds

with the XML document in the payload and optional ETag (entity tag) and/or

Last-Modified headers. The client may cache the document so when it wants to

request for the same feed next time, it can attaches If-None-Match and/or

If-Modified-Since headers with previous values to check if its cached version is still

valid. If it is, a status code 304 Not Modified is returned without payload; otherwise, a

normal response is returned. ETag is a strong content hash validator which will

change accordingly with the content itself. Last-Modified is a weak validator derived

implicitly from the last modified time of the content. They both serve as good

mechanisms to reduce unnecessary requests.

4.4 Feed parsing
There are a number of feed parsers available to tackle the problem of the chaotic

feed formats. The Windows RSS Platform can be used for .Net environments. For

Java, Rome [26] is probably the most promising one with a strong community and

sub-projects to handle other issues such as fetch and store. Jakarta FeedParser [27] is

an alternative for Java with a SAX instead of DOM-based API. For Python, Universal

Feed Parser [28] is the one to use. UFP is chosen not only because the middleware is

written in Python, but also because UFP is the most liberal parser of all. Being liberal

 21

is very important because feed publishers, being spoiled by browsers accepting all

kinds of HTML documents, tend to produce ill-formatted feeds. Besides, they may

also mix up entities of different formats which will fail parsers that are completely

conforming to the specifications.

Universal Feed Parser tries to expose all values of non-standard extensions as

possible. For example, each entry of the feed of the famous Web 2.0 news site Digg

[29] comes with a digg count (<digg:diggCount>42</digg:diggCount>), that is, the

number of votes it gets from the users of Digg. The value can simply be accessed by

directly d.entries[i].digg_diggcount. However, as of the latest release of UFP,

attribute values are not preserved. Therefore, a modification must be made for

extension like the Buy.com RSS 2.0 Product Module Definition [30], which product

information is formatted as attributes (<product:content price="$2,021.99"/>), so

that values are stored in a dictionary that be accessed by a key composed of the tag

name and an under scroll (d.entries[i].product_content_['price']).

4.5 Interfaces
The pull interface follows the REST style and is implemented using the web.py

framework. REST (Representational State Transfer) [31] is an architecture style to

design network-based software. The principle of REST is to model application states

and functionalities as resources which can be addressed using a universal syntax and

be interacted with by exchanging representations via a simple and uniform interface

(often HTTP). web.py [32] is a framework written in Python for developing web

applications with REST in mind. It uses Python classes and member functions to

define resources and their respectively HTTP method interfaces. A Python tuple is

used to map URLs to resources.

Feeds output formats can be RSS 2.0 or Atom 1.0 regardless of them originally

 22

formats. Other kinds of formats can be easily supported by simply defining respective

templates. For object output, JSON (Javascript Object Notation) [33] is used to

facilitate object exchange across different languages.

XML-RPC is used for the push interface for its simplicity and many

implementations for different languages. XML-RPC [34] is simple a way to encode

and decode method calls, arguments and return values in XML and transfer them over

HTTP. A client registers its XML-RPC endpoint, interested feeds and attributes with

Feed Middleware. When updates are available for those feeds, only updated entries

are sent to the client by an XML-RPC method call with those entries being

XML-formatted object arguments.

These two interfaces are put into use by two demo applications written in

different languages as show in the demo chapter.

4.6 Tools and Libraries
Many open source tools and libraries are used in Feed Middleware. They are

listed below:

Name Usage License

Python Core Python license

Universal Feed Parser Parsing feeds MIT

SQLite Embedded database Public domain

memcahed Memory cache BSD

web.py Web framework Public domain

Table 4-1 Tools and libraries used

 23

5 Scenario Demonstrations

5.1 Ajax Product Spy
Ajax (Asynchronous Javascript and XML) is a term defined by Jesse James

Garrett [35] referring to the combination of techniques, including the Javascript

XMLHttpRequest (XHR) object, DOM manipulation and XHTML, involved in the

development of interactive web applications. The core of Ajax is XHR [36], which

enables Javascript embedded in a webpage to issue asynchronous HTTP requests

without the needs to refresh the whole page, thus resulting in a fluid user experience.

Figure 5-1 Architecture of the Ajax Product Spy

This demo is a single webpage which contains product information updating

automatically without refreshes. Such an application can be integrated into an existing

internal portal of an enterprise to show the inventory of itself or its competitors.

The webpage contains an Ajax Request object from the Prototype Javascript

Framework [37] to make repeated requests to Feed Middleware asking for entries of

the interested products serialized in JSON. The callback function of the request inserts

new products to the webpage by updating the DOM tree. Also demonstrated is the

flexibility of Feed Middleware directly returning elements like product prices and

 24

images of the Buy.com RSS 2.0 Product Module Definition [29]without any

modifications.

Figure 5-2 Screenshot of the Ajax Product Spy showing product information

Figure 5-3 Screenshot of the Ajax Product Spy after an update

<script>

function fetch() {

 25

 new Ajax.Request('/feed?url=http://localhost:8080/’+

 ’demo/buy.xml&type=json&len=50&obj', {

 method: 'get',

 onSuccess: function(t) {

 entries = eval('('+t.responseText+')')

 for (var i=0; i<entries.length; ++i) {

 if (!$(entries[i].link)) {

 new Insertion.Top('container',

 '<div id="' + entries[i].link + '">' +

 '' +

 entries[i].title + '' +

 entries[i].product_content_['price'] + '
' +

 '<img src="' + entries[i].product_content_['imageurl'] +

 '"/>' + '</div>');

 }

 }

 }

 });

 setTimeout(fetch, 5000)

</script>

<script>fetch();</script>

5.2 Bug Notifier
As mentioned above, polling is used as the underlying technique to enable

publish/subscribe semantics of feeds. In order to receive timely notification for urgent

 26

stuff like system outage reports, an event notifier is written to send feed updates to

users via instant messages, emails or SMS messages.

Figure 5-4 Architecture of the Bug Notifier

The Bug Notifier is written in Java to demonstrate that applications using Feed

Middleware can be language neutral. It contains a simple XML-RPC server offered

by Apache XML-RPC implementation [38] for Java to listen for new entries of

subscribed feeds. Besides, it also leverages JMSN [39], a Java Microsoft MSN

Messenger clone, to communicate with the MSN network and send feed entries as

instant messages to users.

The following scenario shows that when a tester of a system reports a bug, the

developer of that system, having subscribed to the bug feed, will be notified by a

MSN robot with relevant information to lead him to that bug report page. Moreover,

since the bug reporting system and its corresponding feed are password protected, this

program also shows the capability to handle security feeds which is not supported by

Windows RSS Platform.

 27

Figure 5-5 Screenshot of a tester filling the form to file a bug report

Figure 5-6 Screenshot of the developer is notified for a bug report via the MSN Messenger

 28

Figure 5-7 Screenshot of the developer clicking the link from the instant message to see the actual

bug report

public int feedReceived(int subscriptionId, String url, Vector entries) {

 StringBuffer buffer = new StringBuffer();

 buffer.append(subscriptionId+" "+url+"\r\n");

 for (Iterator i=v.iterator(); i.hasNext();) {

 Hashtable h = (Hashtable)i.next();

 buffer.append(h.get("title")+"\r\n");

 }

 try {

 SwitchboardSession ss = null;

 if (!switchMap.containsKey(recipient)) msn.doCallWait(recipient);

 if (switchMap.containsKey(recipient)) {

 ss = (SwitchboardSession)switchMap.get(recipient);

 ss.sendInstantMessage(new MimeMessage(buffer.toString()));

 29

 } catch (IOException e) {}

 return 1;

}

 30

6 Comparison and Discussion

6.1 Comparison

6.1.1 Qualitative

Both Feed Middleware and the Windows RSS Platform aimed at providing

developers with a tool to work with feeds, which is more than a feed parser, but there

are some significant differences between them. First, the Windows RSS Platform is

for personal use only, whereas Feed Middleware can be used both personally and by

an organization because it has a web service interface. An enterprise may use Feed

Middleware as a hub to internal and external information. Second, the Windows RSS

Platform is tightly-coupled with Microsoft’s proprietary technologies like IE and .Net,

which is not available to use by open source developers for Linux or Java. Even

for .Net developers, there is no way for them to extend its functionalities to keep up

with the changing feed space. Third, the Windows RSS Platform is more difficult to

use with a more complex API and there no support for fundamental things like feed

auto-discovery, password-protected or ill-formatted feeds.

However, the Windows RSS Platform has a good feature which is to download

enclosures, embedded reference to multimedia resources like MP3 files, automatically

in the background and replace the foreign URLs with local file system ones.

The following table summarizes the difference between Feed Middleware and

Windows RSS Platform.

 Feed Middleware Windows RSS Platform

 31

Style Middleware API

Scope Personal, Organizational Personal

Language Neutral .Net Languages only

Source Open Closed

Feed parsing Liberal Strict

Feed discovery Yes No

Extensions Supports a lot of standards

and flexible with

non-standards

Parse XML by oneself,

invent two new extensions

Security feeds Yes No

Enclosure downloading No Yes

Table 6-1 Qualitative comparison between Feed Middleware and Windows RSS Platform

6.1.2 Quantitative

In this section, two groups of code fragments are listed. One of them uses

Windows RSS Platform. The other one uses Feed Middleware. The first group of code

fragment is simply printing the titles for a specific feed. The second group subscribes

to a feed, and print titles of it when notified for updates.

Procedural feed printing using Windows RSS Platform:

string url = "http://www.digg.com/rss/index.xml";

FeedsManager fm = new FeedsManager();

IFeedFolder rootFolder = (IFeedFolder)fm.RootFolder;

IFeed feed = (IFeed)rootFolder.CreateFeed(url, url);

foreach (IFeedItem item in (IFeedsEnum)feed.Items)

Console.Out.WriteLine(item.Title);

Procedural feed printing using Feed Middleware:

 32

d = urllib.urlopen('http://localhost:8080/feed/\

?url=http://digg.com/&type=json').read()

o = simplejson.loads(d)

for e in o['entries'] : print e['title']

Event-driven feed printing using Windows RSS Platform:

FeedsManager fm = new FeedsManager();

IFeedFolder rootFolder = (IFeedFolder)fm.RootFolder;

FeedFolderEvents_Event fw = (IFeedFolderEvents_Event)rootFolder.GetWatcher(

FEEDS_EVENTS_SCOPE.FES_ALL, FEEDS_EVENTS_MASK.FEM_FEEDEVENTS);

fw.FeedItemCountChanged += new

IFeedFolderEvents_FeedItemCountChangedEventHandler(FeedItemCountChanged);

void FeedItemCountChanged(String path, int itemCountType) {

 IFeed feed = (IFeed) fm.GetFeed(path);

 if (feed.url != "http://www.digg.com/rss/index.xml") return;

 foreach (IFeedItem item in (IFeedsEnum)feed.Items)

Console.Out.WriteLine(item.Title);

}

Console.In.ReadLine();

Event-driven feed printing using Feed Middleware:

postdata = urllib.urlencode({'endpoint':'http://localhost:8000/',\

'url':'http://digg.com/'})

urllib.urlopen('http://localhost:8080/sub/', postdata)

def feedReceived(self, subscription_id, url, entries):

 for e in entries : print e['title']

server = SimpleXMLRPCServer(("localhost", 8000))

 33

server.register_function(feedReceived)

server.serve_forever()

The number of lines of codes for the first group is 6 to 3 and the second group is

10 to 7. Although the Windows RSS Platform versions of both groups of code

fragments have been reduced to its essence, which is not runnable codes compared to

those using Feed Middleware, they already exhibit the complexity of the API. It is

almost impossible to make use of it with before consulting the reference. On the

contrary, the Feed Middleware version only comprises of standard library usage like

the urllib and the SimpleXMLRPCServer modules, with the only exception being the

simplejson library.

6.2 Discussion
According to the analysis above, Feed Middleware has achieved the objectives

stated in 1.3. It is easy-to-use, flexible, liberal and open. It can be shown that by

designing with simplicity in mind and using existing open source tools, a system can

be built to meet the needs of certain people who want to tackle the problem at hand

and do a rapid integration without having to set a lot up things up and learn a complex

API with excessive and obscure functions.

 34

7 Future Works and Conclusion

7.1 Future Works
Since Feed Middleware is a proof of concept prototype, there are several things

that could be done to make it a better tool. First, Feed Middleware uses SQLite

database and the embedded web server of web.py, which may not scale very well for

production environments. Fortunately, it can be easily swapped with industry-strength

counterparts like MySQL and Apache. Second, automatically enclosures downloading

provided by the Windows RSS Platform should be implemented because it can further

reduce bandwidth in scenarios such as syndication of e-learning video clips across

different schools while each of them has a Feed Middleware to download those clips

on behalf of the whole school for their students. Third, with the growing use of RSS

and Atom feeds, more extensions will be developed to embed more semantics to them,

parsing them one by one with plug-ins will be too tedious. Sooner or later, a

specification of a format lying between RSS/Atom and RDF, which it is more general

than the former and less general than the latter, will be needed.

7.2 Conclusion
In this paper, a tool for developing applications to take advantages of feed

technologies like RSS and Atom is proposed. After reviewing the backgrounds and

related works in the this space and what is lacking, Feed Middleware is proposed to

treat feeds as streams of information instead of discrete XML documents that only a

parser cannot solve the whole problem. Besides, learning from the simplicity of RSS,

 35

Feed Middleware has easy-to-use interfaces built with existing open source tools. To

demonstrate its capabilities, two simple but practical applications are written in

different languages and different styles. Finally, Feed Middleware is compared with

Windows RSS Platform to show its advantages and future works that should be done

to further improve it.

 36

References

[1] Tim O’Reilly, What is Web 2.0, Sept 2005

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.ht

ml

[2] David Sifry, The State of the Live Web, April 2007

http://www.sifry.com/alerts/archives/000493.html

[3] RSS Extensions

http://rss-extensions.org/

[4] Microformats

http://microformats.org/

[5] Danny Ayers, From Here to There, IEEE Internet Computing, Volume 11, Issue 1,

Jan-Feb 2007

[6] Dave Johnson, RSS and Atom In Action, Aug 2006

[7] Randy Charles Morin, HowTo RSS Feed State

http://www.kbcafe.com/rss/rssfeedstate.html

[8] Blog, Wikipedia

http://en.wikipedia.org/wiki/Blog

[9] Mark Pilgrim, The Myth of RSS compatibility, Feb 2004

[10] http://diveintomark.org/archives/2004/02/04/incompatible-rss

[11] Mark Nottingham and Robert Sayre, The Atom Syndication Format, IETF RFC

4287, Dec 2005

[12] Weblogs.com API

http://weblogs.com/api.html

 37

[13] Windows RSS Platform

http://msdn2.microsoft.com/en-us/library/ms684701.aspx

[14] Amar Gandhi, RSS in Windows Vista, Microsoft Professional Developers

Conference (PDC), 2005

[15] Yahoo Pipes

http://pipes.yahoo.com/pipes/

[16] Attensa Feed Server

http://www.attensa.com/products/server/

[17] NewsGator Enterprise Server

http://www.newsgator.com/Business/EnterpriseServer/

[18] KnowNow Enterprise Syndication Solution

http://www.knownow.com/article/?id=140

[19] Seung Jun and Mustaque Ahamad, FeedEx: collaborative exchange of news

feeds, Proceedings of the 15th International Conference on World Wide Web

(ACM WWW’06), 2006

[20] Dan Sandler, Alan Mislove, Ansley Post and Peter Druschel, FeedTree: Sharing

Web Micronews with Peer-to-Peer Event Notification, Proceedings of the 4th

International Workshop on Peer-to-Peer Systems (IPTPS'05), 2005

[21] Venugopalan Ramasubramanian, Ryan Peterson and Emin Gun Sirer, Corona: A

High Performance Publish-Subscribe System for the World Wide Web,

Proceedings of Networked System Design and Implementation (NSDI’06), May

2006

[22] OPML (Outline Processor Markup Language)

http://www.opml.org/

[23] Steve Vinoski, Middleware “Dark Matter”, IEEE Internet Computing, Volume 6,

Issue 5, Sept-Oct 2002

 38

[24] Steve Vinoski, Dark Matter Revisited, IEEE Internet Computing, Volume 8,

Issue 4, July-Aug 2004

[25] Python

http://python.org/

[26] Rome

https://rome.dev.java.net/

[27] Jakarta FeedParser

http://jakarta.apache.org/commons/sandbox/feedparser/

[28] Universal Feed Parser

http://www.feedparser.org/

[29] Digg.com

http://digg.com/

[30] Buy.com RSS 2.0 Product Module Definition Version 1.0

http://www.buy.com/rss/module/product/

[31] Roy Fielding, Architectural Styles and the Design of Network-based Software

Architectures, PhD dissertation, UC Irvine, 2000

[32] web.py

http://webpy.org/

[33] JSON (Javascript Object Notation)

http://www.json.org/

[34] XML-RPC

http://www.xmlrpc.com/

[35] Jesse James Garrett, Ajax: A New Approach to Web Applications

http://www.adaptivepath.com/publications/essays/archives/000385.php

[36] XMLHttpRequest

http://www.w3.org/TR/XMLHttpRequest/

 39

[37] Prototype Javascript Framework

http://www.prototypejs.org/

[38] Apache XML-RPC

http://ws.apache.org/xmlrpc/xmlrpc2/

[39] JMSN

http://sourceforge.net/projects/jmsn/

