fiact it

- B> R f2;% 2 RSS/IAtom v 4 Y
An Easy-To-Use,Feed Middleware for
Application Developmentrwith RSS/Atom Feeds

BogoA i mAm

hERE I RTHE K®

(s Wl Je A A F o=k

- B> R f258 % * RSS/Atom P 4 # A
An Easy-To-Use Feed Middleware for Application Development
with RSS/Atom Feeds

Boyo4 imEm Student : Chi-lo Tut

R R Advisor : Shyan-Ming Yuan
Bz~ F
A - e A S
ML W
A Thesis

Submitted to Institute of Computer Science and Engineering
College of*Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Computer Science
July 2007

Hsinchu, Taiwan, Republic of China

PEARAY LA ES

- B & A255 @ % RSS/Atom ¢ 4 f R
CERREY SR AT
SERTIRE SR T RN T
&

RSS A1 AtOM SHREL i M e L T 2R AT 10 1
FER)ZS o SETEY S B P T AR B BRI O - B Ay
PRI ASTOFT W [R @ HRA | 1 28 S AR & (R SRRl 2
LR o Uil T riﬁ?ﬂ (N R T [e R
LI P] g e R

ey i (RIS ROSHMOMAR T PH =[O 1/ TR < KRR
VI~ TSR :ﬁﬁ—ﬁfvﬂwﬂwﬁﬁggﬂﬁﬁﬁwmﬂW@ﬁWﬁg
PR BRE SO PR RS o SHESE RSS o (A R
POIRIH = Higd, ”igﬂyﬁ“ﬂﬂ?—‘lﬂ'lﬁ %%’S DT e BRI] P
FIF/REE TR -

An Easy-To-Use Feed Middleware for Application Development
with RSS/Atom Feeds

Student: Chi-lo Tut Advisor: Shyan-Ming Yuan

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

RSS and Atom feeds are XML representation of the entries in frequently
updating websites, which enable users to subscribe.to those syndicated contents using
feed readers. As feeds are gaining more and maore adoptions due to the ubiquity of
blogs, various extensions are written for-them-to.carry more semantic information.
Ordinary tools which treat them as simply XML documents on the web are not
sufficient for application development.

In this paper, a middleware is proposed to aid application development involving
RSS/Atom feeds. It handles fetching, parsing and storage of feeds for developers and
provides them with a set of easy-to-use interfaces to write procedural and
event-driven applications. Compared with the Windows RSS Platform, it is more
flexible and easier to work with. When extended with industrial-strength databases

and servers, it can be use by an organization to solve real world integration problems.

Acknowledgements

PSRRI GRS i & S PO UG SO
e #f SR [T] e B O QAL - R R R R R fﬁﬁﬂ%

~ SURE ST TSP G T DO L - R R R
FFAR Ffh - B EFEREEEA > g R ES - E
aﬁmﬁuﬁjﬁﬁﬁ’“ﬁﬁrﬁt'ﬂ DRORERE o S RGBTV EY S A AR TR Y
[PRAGE57 3 GBS~ [E (] R SIS PO o TS RS S IR FIEE
B RIS A AR R R R R Y B
opof ﬁd%wﬁ‘ymﬂé BBV ET VR

lla;;’ﬁﬁ

Table of Contents

ACKNOWIEAGEMENTS ...t I
Table Of CONTENTSocviiiicie e I
LIST OF FIQUIES....ee ittt v
LISt Of TaDIES......eeiiieie e e \
R o 4 (oo [¥ Tod £ o] o SRS 1
1.1 PIETACE. . e ———————— 1
1.2 o] A7 LA o] o OSSPSR 1
I N O o] 1= ox £\ 1SS SRS 3
1.4 Problems and SOIULIONS...........cceiiiiiiiciec e 3
2 Background and Related WOrKS.........cccccoeiviiiiciiiiic e, 5
2.1 BacKgroUNd........ccooiiiiie e e 5
2.2 REIALED WOTKS ... i sttt ste et ste et ste e e e nns 7
3 System ArchiteCture..... i it 11
31 OVEIVIEW. .o e i e i e 11
3.2 Feed DB, Storer and RetrIEVer.ciii..t 11
3.3 Feed Sweeper, Monitor and-Feteher,......cu.....cccovveieiieiiee e 13
3.4 Feed NOLTIEr ... i st e 14
35 INEEITACES ... e e s 14
3.6 Program FIOW........cccooiiiiiiii ettt 16
4 Implementation Detailscccoevviiiiiii i 19
St I @ VT VT OSSR 19
4.2 FEEU AISCOVEIY ..oiiiiiieiie ettt ettt e sre e e 19
4.3 Feed fetChiNg......cccc i 20
N 1Yo I o 1] 1o o OSSR 20
4.5 IO ACES ... it 21
4.6 Tools and LIDrariescccoveieiieii i 22
5 Scenario DemMONSIFatioNnsS..........cccveiveiieiiieiieese e 23
51 AJaX ProdUCE SPY ..oveeieiicii ettt 23
5.2 BUG NOLTIEE .o 25
6 Comparison and DISCUSSIONc.c.civueiiueerieeieesieeie e see e eee s 30
6.1 COMPAIISON ...cuviiieie ettt te e te et e e esraenreaneeaneenne s 30
6.2 DISCUSSION ...ttt ettt re e sae et e esreenbeeneesneenreas 33
7 Future Works and ConcluSIoNccccoeeveiieeieciiiee e 34
7.1 FULUFE WWOTKS ...ttt snaene s 34

7.2 CONCIUSTON <.t e e et e e e e e e e e e e e e e

References

List of Figures

Figure 1-1 Technorati is now tracking over 70 million weblogs.................... 2
Figure 2-1 File layout of a RSS (left) and an Atom (right) feed................... 6
Figure 2-2 Overview of the feed SPace.........ccceveiveii i 7
Figure 2-3 Architecture of the Windows RSS Platform [14].......c..cccccoeeneeee. 8
FIgUre 2-4 Yahoo PIPES.......coviiiiieiieie sttt 9
Figure 2-5 Corona ArChiteCtUIeccccveieiiie e 10
Figure 3-1 System ArChiteCturecccoveieieeee e 11
Figure 3-2 Database SChEMAc.ccveiieiieie e 12
Figure 3-3 Program flow of Feed Middlewareccccceevvevveveieeiinennenn, 18
Figure 5-1 Architecture of the Ajax Product SpY.........cccceeveveiieveeiccienenn, 23
Figure 5-2 Screenshot of the Ajax Product Spy showing product information

.. 24
Figure 5-3 Screenshot of:the Ajax Product Spy after an update.................. 24
Figure 5-4 Architecture of the Bug NOUTIEr..............c.coevviiiicice e, 26
Figure 5-5 Screenshot of a tester filling the form to file a bug report......... 27

Figure 5-6 Screenshot-of the developer is notified for a bug report via the
MSN MBS SBNGET ... ikiin e vvreerireesscaioantenesireesteeesbeeesbeeesbeeesnbeeesnreesnaneas 27

Figure 5-7 Screenshot of the developer clicking the link from the instant
message to see the actual bug report..........cccccoveveiieiicie e 28

v

List of Tables

Table 3-1 Retrieve a single feed Of €Ntries........ccocviveivereiieneee e 15
Table 3-2 Retrieve a set of feeds Of entries..........cccovevveverievcenie e 15
Table 3-3 Retrieve a set of feeds of entries defined by an OPML file......... 15
Table 3-4 Retrieve all subscribed feeds as an OPML file..........ccccccevvenennne. 16
Table 3-5 Subscribe to a lists of feedScccevviieviiniie e 16
Table 3-6 Unsubscribe a lists 0f feedscccovvieiiieiiiin e 16
Table 4-1 Tools and lIbraries USedccccveveeiieeiie e 22
Table 6-1 Qualitative comparison between Feed Middleware and Windows
RSS PIAtfOrM ... 31

1 Introduction

1.1 Preface

During the past few years, we have been experiencing a transition from Web 1.0
to the so-called Web 2.0 era. Instead of being an accurate specification, Web 2.0 is
only a collective concept describing the technical features and social behaviors of
some of the famous Web 2.0 websites [1]. Among them, there are blogs and feeds. A
blog is a website with reverse chronologically-ordered entries, usually news or diaries.
A feed is the XML-formatted content of them. These technologies combined enable
the publish/subscribe semantics of the'web and fransform it from a static web into a
“live web”.

This paper proposes an easy-to-usefeed middleware for application development
involving RSS/Atom feed technology: The following sections explain why such a
system should be built, what capabilities it should have, the problems to face, and

their respective solutions.

1.2 Motivation

According to the quarterly report of Technorati, one of the leading blog search
engines, the number of blogs they are tracking is 70 million, and it keeps growing
rapidly [2]. Nowadays, almost all frequently updating websites have feeds. There are
two reasons for this fast adoption. First, there are many blog hosting services
providing blogging tools with easy-to-use editor for users to publish their thoughts
without having to understand any HTML at all, which allow users to focus on creating

more and more contents. Second, both server and client side feed readers are available

1

for users to read those contents on many different blogs without having to check them
out one by one constantly. However, for programmers, there are no easy-to-use tools

for them to develop applications based on the underlying feed technology.

L® Technorati

Weblogs Cumulative: March 2003 - March 2007

78,200,000

76,000,000 -

74,000,000 ¢

FZ,000.000 ——

70,000,000 ¢

6B,000.000 -

66,000,000 s

54,000,000 ———

62,000,000 AN 7
80,000,000 i
se.con000 ——Ower 70 Million Weblogs Tracked.
56,000,000

54,000,000

o monaon Blogosphere growth remains strong with over
48,000,000 i

a.o0n.000 120k blogs being created every day.
157000000 T G
42,000,000

40,000,000 -

38,000,000

36,000,000

34,000,000

32000000

30,000,000

28,000,000

26,000,000

24,000,000

22,000,000

0,000,000

1EB.000.000

16,000,000

14,000,000

12,000,000

10,000,000

E.C00,000

Blogs

6,000,000
4,000,000
2,000,000

o

wé"‘ S \‘5“&;"\"\;&\0 & @ 01\ W, \?ﬁé’\} Q\ocje\ & o C.\a = \\J%,é’fn vv.\a] \a({\ N 0'5 a*’\} Q'ooe e
Date

Figure 1-1 Technorati is now tracking over 70 million weblogs

Moreover, since feeds are XML documents, they can be extended to include
other semantic data besides titles and descriptions of news, such as stock quotes,
weather forecasts, and multimedia resources. There are already many existing
extension specifications for feeds [3]. Besides, microformats [4] are also embedded in
many feeds to add extra semantics. Regardless of being formatted as RSS or Atom,
feeds are the transitional objects from the web of documents to the web of data. Since
it is in widely used today to hold semantic data, we must have better tools to
manipulate them before we actually turn into the Semantic Web era [5].

For enterprises, there is a growing need for feed technology because they

produce and consume a large amount of information every day. While emails are

filled with spam and portals are hard to integrate with, internal systems begin to use
feeds as the data carrier for information. For example, bug reports, software updates
and code revisions are good candidates to be unified using feed formats. There are
already enterprise solutions for feed subscription and reading in heterogeneous

environment, but tools for integration and application development are yet to be built.

1.3 Objectives

The most important things for application developers are APIs, the interfaces to
interact with a library or another system. For feeds, two sets of interfaces should be
provided. One of them is a pulled-based interface for procedural applications. The
other one is a pushed-based interface for event-driven applications.

Feeds provided by websites usually contain'enly about 10 to 40 of the most
recently updated data. But for applications to do some significant things, they may
need more than that. Therefore, gutdated-feeds-must also be available for applications
to retrieved. Besides, feeds from different content sources may be of the same interest
to some specific applications, retrieving them one by one and mixing them manually
is a tedious task. It is better to have a way to specify a number of feed sources and
then get the entries of all of them.

Last but not least, the resulting tool should be platform and language neutral
since different systems often employ different technologies and they will keep on
changing. Attributes such as simplicity and extensibility are very much desired
because a simple and open tool means a bigger chance of being integrated with

existing systems and greater possibility to be put into practical use.

1.4 Problems and Solutions

One of the problems of feed technology is formats. There are two families of

3

feed formats, RSS and Atom. For RSS, there are nine incompatible versions. Atom, on
the contrary, is an IETF-backed standard format [6]. Although RSS 2.0 and Atom 1.0
are the most prevalent ones, many of them are still heavily in use. But thanks to the
open source community, there are already some good feed parsers available. The
problem left is to choose a suitable one.

There are two issues to be solved in order to keep outdated feed available for
applications to retrieve: bandwidth and storage. Although feeds enable the
publish/subscribe model of the web, the underlying technology is polling, i.e., clients
have to keep asking for the same feed to see if there is an update. Therefore, various
HTTP caching, conditional retrieval, and compression techniques must be
implemented [7]. To store a large number of feed entries with frequent updates and
retrieval, a database with efficient caching mechanism is the simple answer. We will
discuss more in details on the chapter of implementation.

After feeds are parsed and stored,-the-final-problem left is to expose an interface
for others to use. Since the proposed tool.is positioned as a middleware instead of
simply a set of library functions, REST and XML-RPC are used as pull and push
interfaces respectively. The reason for this choice is that they are simple and every

major language has good implementations for them.

2 Background and Related Works

2.1 Background

2.1.1 Blogging and Syndication

Blog is the combination of the two words, ‘web’ and ‘log’, meaning to write
chronologically on the web [8]. The blogging phenomenon started at late 90°s and
took off around 2000, when hosted blogging platforms became widely available.
Today, blogs are so ubiquitous and influential that some high profile blogs have more
visitors than many main stream media websites. Besides the chronological nature, a
blog is a special type of websites with some more technical characteristics. First,
every entry can be access by a unique URL =Permalink. Second, a blog provides a
feed of recently added content for others ta-subscribe — Syndication, which
revolutionizes user experiences of the web by shifting the task to check websites for
updates from users to the machines via unified and machine-understandable

representations of those websites.

2.1.2 Feed Formats

Throughout this paper, the term feed refers to both the RSS and Atom XML feed
formats. RSS (RDF Site Summary) is originally created by Netscape to describe news
stories in RDF (Resource Description Framework), which in turn is defined using
XML (eXtensible Markup Language). That version is known as RSS 0.9. After minor

modifications to remove RDF elements to make it 0.91, it split into two branches, the

RDF branch and the simple branch. The RDF branch is advocated by RSS-DEV
Group, where RSS means Rich Site Summary (RSS 1.0). The simple branch is
advocated by famous blogger Dave Winer, where RSS means Really Simple
Syndication (RSS 0.92, 0.93, 094, and 2.0) [9].

Daunted by the incompatibilities of RSS, a group of people started to re-invent a
completely new and open feed format and get it through the IETF standardization
process, which later becomes an RFC standard — the Atom Syndication Format [11]. It
is accompanied by a draft on a REST-based protocol called Atom Publishing Protocol
to further specify the message exchange mechanism between blog servers and clients.

No matter what format a feed use, a feed is composed of the same things
conceptually: a header section describing the whole feed and a list of entries having

similar attributes, such as unique identifier, title, description, published date and time.

It is illustrated on the figure below:

<?xmlversion="1.0"?>
<rss version="2.0">
<channel>
<title>Liftoff News</title>
<link>http://liftoff.msfc.nasa.gov/</link>
<description>Liftoff to Space Exploration.</description>
<pubDate>Tue, 10 Jun 2003 04:00:00 GMT</pubDate>

<item>
<title>Star City</title>
<link>http://liftoff.msfc.nasa.gov/news/2003/news-starcity.asp</link>

<description>How do Americans get ready to work with Russians
aboard the
International Space Station? They take a crash course in culture,
language
and protocol at Russia's Star City.</description>
<pubDate>Tue, 03 Jun 2003 09:39:21 GMT</pubDate>
<guid=http://liftoff.msfc.nasa.gov/2003/06/03. html#item573</guid>
</[item>

<item> ...</item>
<item> ...</item>

<fchannel>

</rss>

<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.0rg/2005/Atom">

<title>Example Feed</title>
<subtitle>A subtitle.</subtitle>
<link href="http://example.org/"/>
<updated>2003-12-13T18:30:02Z</updated>
<author>
<name>John Doe</name>
<email>johndoe @example.com</email>
<fauthor>
<id>urn:uuid:60a76c80-d399-11d9-b91C-0003939e0afb</id>

<entry>
<title>Atom-Powered Robots Run Amok</title>
<link href="http://example.org/2003/12/13/atom03"/>
<id>urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efaba</id>
<updated>2003-12-13T18:30:02Z</updated>
<summary>Some text.</summary>

<fentry>

<entry>..</entry>

<entry>..<fentry>

</feed>

Figure 2-1 File layout of a RSS (left) and an Atom (right) feed

2.1.3 Ping Servers

Many blog publishing systems send an XML-RPC request to one or more ping

servers like those of Technorati and Google when a new post is submitted. The reason
for this is to minimize the time between an actual update and those services’
scheduled crawling of the updated content, thus providing users with fresh search
results as soon as possible. Some of those ping servers like Weblogs.com and Google
make the list of updated blogs available as an XML file with the name changes.xml
usually for other services to leverage. Although there is no official specification of it,

the format is usually as follows [12].

<weblogUpdates version="2" updated="Mon, 10 Oct 2005 14:10:00 GMT*

count="'1384779"">

<weblog name="My Blog site" url="http://www.myblogsite.com" when="2"/>

<weblog name="‘Another site" url="http://www.anothersite.com” when="3"/>

</weblogUpdates>

2.2 Related Works

server
L platform
LiVEJOURNAL Bloglines &
(i:)WORDPRESS
e P2P GQ&)SAQ parser
: m commons
FeedEx . feedparser
client
Corona FeedDemon
client
Q ectO ; NetNewsWire
serving = remixer
: [(Word || ||| & FeedBurner vl || 00
ws eedburner | .
V< 12007 &pipes
publishing distribution reading development

Figure 2-2 Overview of the feed space

The figure above depicts the feed space, divided by four columns which
represent different tasks to do with feeds. Within it each column there are specific
fields with their respectively players, some of whom will be further described in the

following sections.

2.2.1 Windows RSS Platform

The Windows RSS Platform [13] is Microsoft’s answer to the changing web
experience from pure browsing to searching and subscribing after the release of
Internet Explorer 6.0 in 2001. Though being an integral part of IE7, the Windows RSS
Platform provides APIs for other applications in the same environment to access feeds

and subscriptions, which is a similar idea to the one proposed by this paper, a platform
instead of only a library. More Wi!lﬂﬁé:'dis_cju'sseg-draﬂthe comparison and discussion

section. o b b TR,

RSS Platform

i Browsers ‘I Photos

Contacts | |

RSS Object Model API

Com”TO” [tems Enclosures Store
Feedlist

RSS 0.9x
RSS 1.0

g RSS2.0
i Atofr,_[] .

News Blogs Photos Audio Calendars Lists More

(Download

_ Merge ‘ Service
Engine

. Processor

Figure 2-3 Architecture of the Windows RSS Platform [14]

2.2.2 Yahoo Pipes

Yahoo Pipes is a web application for non-programmer to aggregate and
manipulate feeds [15]. It provides users with a GUI editor to connect inputs and
outputs of different functional blocks, each having a specific use like URL building

fetching feeds, or replacing text.

0.
1P95 del.icio.us flavored weh search® P
Layout Expand All Collapse All Back to My Pipes | New Save a copy

¥ Sources
(Fetch Feed = Del.icio.us usemame {te = = kd
LTI o Name: usermname
Flickr &

)
)
y

["URL Builder e =)

Base: http:/del.icio usfre

Prompt: Del.icio.us usemame

Path elements:
et [wired]

Yahoo! Local [5]
‘fahoo! Search =

Position: 1

Query parameters Default: joshua

» User inputs
Deb h:
» Operators ebug: pasha
» Url Fetch Feed ~-
» String URL
» Date url [wired]
» Location & Query (text)
» Number Narne: query
» My pipes
v ['For Each: Replace e~ Prompt: Query
Replace each item in input feed with Position: 2
all iterns || output from Default: rss
Yahool Search i Debug!tort

Search for text [wirad]
Site restriction
item title >

e . [Unique - nE)|

Filter non-unigue items based on item title »
&
[—— reere—
Pipe 6u1put

3 Debugger: Pipe Output {20 items)
Time taken: 0.58119s Refrech i’
XHL com: What Is RSS
RSS - Vikipedia, the free encyclopedia
Hy Yahoo! — Featuring RSS

Figure 2-4 Yahoo Pipes
2.2.3 Enterprise Solutions

Enterprises begin to adopt RSS to fight information overload with their portals
and emails. Three commercial products focusing on helping enterprises to take
advantages of the feed technology are Attensa Feed Server [16], NewsGator
Enterprise Server [17], and KnowNow Enterprise Syndication Solution [18]. All of
them share similar features: being a central server aggregating different feed sources
on behalf of the organization, providing an easy-to-use interface for management of

subscriptions, delivering news for reading using email clients, browsers or mobile

devices. However, all of them have the same constraints of being only for feed
consumption rather than development, and integration is hard if not totally impossible.
Besides, they are all proprietary platforms and are selling at the price of over

thousands of US dollars.

2.2.4 Academic Researches

Three researches are directly related to the feed technology. FeedEx [19] is a
feed exchanging system, in which hosts not only fetch feeds but also exchange them
with neighbors of similar interests to reduce time lag and increase coverage. Based on
Scribe and Pastry, FeedTree [20] provides software for subscribers and publishers to
join a structured overlay to let them distribute feeds in a multicast way and poll for
updates cooperatively. Also based on Pastry, Corona [21] does almost same thing as
FeedTree but focus more on load balancing of-nodes in the overlay to achieve better
performance. In short, all of them are:P2P-related researches which focus on the

scalability of feed dissemination.

Figure 2-5 Corona Architecture

10

3 System Architecture

3.1 Overview

e | . fippiication
Jo
. o]
ji i ﬂ Sweeper Retriever =
- :
v
L
o

Ping server

Persistence Layer

Figﬁ re 3-i'§ystém Architectu re
The diagram above depicts the components of Feed Middleware, which will be

described in details in the following sections.

3.2 Feed DB, Storer and Retriever

Feed DB is a database to store all entries of all feeds and other relevant
information. Regardless of what format a feed is in, entries of all subscribed feeds are
stored in two different ways. First they are stored in a normalized form which only
captures the essence of an entry including its unique identifier, title, link, description
and timestamp. Second, they are stored in a serialized form which preserves all of its
attributes. The rationale behind these redundant stores is that both performance and

flexibility are desired, and that storage is inexpensive and it can be easily expanded.

11

A list of subscribed feeds with their attributes including their last updated time,

fetch frequencies are also stored. The following figure is the database schema.

feed
PK | feed_id
subscription_feed feed_namespace
url
PK,FK1 | subscription_id : PK,FK2 | feed_id
] ' title ‘_ ’
PK,FK2 | feed_id link PK,FK1 | namespace_id
obj
frequency name
stamp
hash
entry
PK |entry_id
v
v title
subscription link namespace
: description PK | namespace
PK | endpoint X namespace
endpoin obj
bscrintion id stamp namespace_id
subscription i FK1 | feed id

Figure 3-2/Database schema

Feed Storer has the knowledge-of both the object representation and the database
schema. First, it filters out old entries having the same ids. Then, it transforms only
the updated ones into tuples suitable to be inserted into the Feed DB.

Feed Retriever is responsible for retrieving feed entries from database and
formatted them in the form requested by client applications. Frequent retrievals are
alleviated by using a memory caching system so as to provide fast response. Since all
entries are stored in the database, merging different feeds into a single one can be
done but using a SQL SELECT statement with an IN expression constraint test for
inclusion in a specified set of feed IDs. This mechanism also enables the use of
OPML (Outline Processor Markup Language) which is often used as an XML format

of subscription lists.

12

3.3 Feed Sweeper, Monitor and Fetcher

Feed Sweeper is a scheduled process to constantly examine the status of every
feed, marking it dirty if the current time is later than its last updated time plus its fetch
frequency. Dirty feeds are then put into a queue for Feed Fetcher to re-fetch.

Instead of guessing if there is update for a blog, feed Monitor leverage the
knowledge of ping servers by downloading change logs from them, scan through
them for interested feeds that are updated, and put them into queue for Feed Fetcher to
re-fetch.

Feed Fetcher is responsible for fetching feeds, parsing them into objects, and
storing them into Feed DB using Feed Storer. It contains a pool of worker threads to
do these processes concurrently in.order to achieve.a higher throughput. Feed Fetcher
begins to fetch a feed when notified.by Feed Sweeperof a feed being marked as dirty
or by Feed Monitor of feeds being updated.-lt-uses various HTTP techniques which
will be mentioned in the implementation.section later to reduce bandwidth usage. A
hash code is also kept for each feed to compare content freshness besides the HTTP
ETag header to ensure further processing is needed only for updated feeds. A feed
parser is used to parse different XML-based feed formats into a consistent object
model.

Instead of using mathematical or heuristic methods to dictate the fetch
frequencies of feeds, which is complicated and not in the scope of this text, aids are
provided to the users to determine the frequency of the feeds of interest. Fetch
frequency can be divides into different levels. Level 0 is set for those feeds which
updates have been sent to ping servers, and in turn realized by Feed Monitors. The
fetch frequency is 1 day for level 0. Level 1 is the default one for every feeds, which

is 30 minutes. This level is suitable for blogs or non-frequently updating sites. People

13

normally do not mind if they are 30 minutes late to know some trifles of their friends.
When an update is received from ping servers for level 1 feeds, it is set to level 0
because it can be assumed that subsequent updates will also be received from ping
servers so there is no need to fetch that often. Conversely, if daily fetch for a level 0
feed finds missed updates, the fetch frequency of the respective feed is set to level 1
because ping server may not be reliable for that feed any more. Level 2 is 5 minutes
for news or real-time updating sites. Finally, users can always set the exact fetch

frequency directly to values other than these three levels.

3.4 Feed Notifier

Feed Notifier is initiated by Feed Fetcher with only updated feeds entries. It
checks the subscription tables in the database to'see if there is anyone who is
interested in those updates. It one is.found, a separated thread is dispatched to push
those entries to the respectively endpoint-usingXML=RPC. XML-RPC is a simple
way to communicate with a remote entity. It.is-possible to use more reliable

mechanisms like message-oriented middleware directly or through adapters.

3.5 Interfaces

Applications access feeds by sending simple HTTP requests to the Feed
Middleware similar to retrieving feeds from any web servers. But Feed Middleware
allows developers to specify how feeds should be served using arguments. The
following tables list all operations provided by Feed Middleware with their function

descriptions:

Resource [feed

HTTP Method | GET

14

Description retrieve a single feed of entries

Arguments url a single URL
type rss, atom, json
len how many entries to retrieve

Example GET
[feed/?url=http://digg.com/rss/index.xml&type=atom&len=50

Table 3-1 Retrieve a single feed of entries
Resource [feeds
HTTP Method | GET

Description retrieve a set of feeds of entries
Arguments url comma-separated list of URLS
type rss;;atom, json
len how marniy entries to-retrieve
Example GET /feeds/?url=http:/fdigg.com/rss/index.xml,
http://rss.slashdot.org/Slashdet/slashdot&type=json&len=100
Table 3-2 Retrieve a set of feeds of entries
Resource /opml
HTTP Method | GET
Description retrieve a set of feeds of entries defined by an OPML file
Arguments url an URL of an OPML file
type rss, atom, json
len how many entries to retrieve
Example GET
lopml/?url=http://share.opml.org/opmi/top100.opml&type=rss
Table 3-3 Retrieve a set of feeds of entries defined by an OPML file
Resource /sub

15

HTTP Method

GET

Description retrieve all subscribed feeds as an OPML file
Example GET /sub

Table 3-4 Retrieve all subscribed feeds as an OPML file
Resource /sub
HTTP Method | POST
Description subscribe to a lists of feeds
Arguments url comma-separated list of URLS
Example POST /sub/?url= http://digg.com/rss/index.xml,

http://rss.slashdot.org/Slashdot/slashdot

Table 3-5 Subscribe to a lists of feeds

Resource /sub
HTTP Method | DELETE

Description unsubscribe a-lists of feeds
Arguments url comma-separated list of URLs
id subscription_id
Example DELETE /sub/?url= http://digg.com/rss/index.xml,

http://rss.slashdot.org/Slashdot/slashdot&id=1

Table 3-6 Unsubscribe a lists of feeds

3.6 Program Flow

Assume that there are already some feeds in the database, all with different fetch

frequencies. A work queue is maintained for Sweeper and Monitor to communicate

with Fetcher in the producer-consumer paradigm. Feed Sweeper is scheduled to put

outdated feeds into the queue. By outdated it only means that the feed has not been

fetched for some specific period time. It does not necessary mean that it is updated.

16

On the contrary, Feed Monitor leverages update logs by ping servers to put actually
updated feeds into the queue. Upon receiving fetch requests from the queue, Feed
Fetcher fetches those feeds, parses them into objects, filters out old entries, stores new
ones into the Feed DB using Feed Storer, and dispatches notification threads using
Feed Notifier.

From the point of the view of the developers, they only have to send HTTP
requests in order to subscribe, unsubscribe to feeds, or retrieving them directly in a

couples of different ways. If they subscribe to a feed, updates will be pushed to them.

17

e
Websites

Weblogs.com
Ping server

Google.com
Ping server

Application

Figure 3-3 Program flow of Feed Middleware

18

4 Implementation Details

4.1 Overview

As mentioned in these two articles on middleware “dark matter” [23] [24],
Python is one of many tools to solve real world integration problems when EAI,
MOM, Corba, and J2EE are just too complex and over Killed. Python [25] is a
dynamic object-oriented programming language that can be used for many kinds of
software development. It is well known that Google used Python intensively for many
of its systems. There are also extensive standard libraries and many 3rd party tools
like the brilliant Universal Feed Parser. Besides, Python is available for Windows,
Macintosh, Linux and a lot other platforms. Due to these reasons, Feed Middleware is

developed entirely in Python.

4.2 Feed discovery

Feed discovery is to get the feed URL of a website given its own URL. This
feature can be handy when retrieving a feed for the first time because users will not
need to know the feed URL in advance. Instead of having default names like
index.html or index.php for the entrance of a websites, there is no similar convention
for feeds. However, webmasters use a way similar to referencing external stylesheets
and scripts to associate a feed with a website by adding a link tag within the head
section of a webpage. Therefore, the following steps can be used to get the feed URL.:

® retrieve the HTML file of a website

@® use regular expression to find all link tags

® for each link tag if its type is “application/rss+xml”, get its href attribute

® use the href attribute and the original URL to form a feed URL

4.3 Feed fetching

A feed is just yet another object transferred over HTTP like a HTML document.
Techniques used by browser and other HTTP clients can be directly employed to
speed up fetching and reduce bandwidth usage. One of them is caching with
validation. For example, a client issues a request for a feed and the server responds
with the XML document in the payload and optional ETag (entity tag) and/or
Last-Modified headers. The client may cache the document so when it wants to
request for the same feed next time, it can attaches If-None-Match and/or
If-Modified-Since headers with previous valuesto.check if its cached version is still
valid. If it is, a status code 304 Not.Modified is returned without payload; otherwise, a
normal response is returned. ETag is @ strong-content-hash validator which will
change accordingly with the content itself. Last-Modified is a weak validator derived
implicitly from the last modified time of the content. They both serve as good

mechanisms to reduce unnecessary requests.

4.4 Feed parsing

There are a number of feed parsers available to tackle the problem of the chaotic
feed formats. The Windows RSS Platform can be used for .Net environments. For
Java, Rome [26] is probably the most promising one with a strong community and
sub-projects to handle other issues such as fetch and store. Jakarta FeedParser [27] is
an alternative for Java with a SAX instead of DOM-based API. For Python, Universal
Feed Parser [28] is the one to use. UFP is chosen not only because the middleware is

written in Python, but also because UFP is the most liberal parser of all. Being liberal

20

is very important because feed publishers, being spoiled by browsers accepting all
kinds of HTML documents, tend to produce ill-formatted feeds. Besides, they may
also mix up entities of different formats which will fail parsers that are completely
conforming to the specifications.

Universal Feed Parser tries to expose all values of non-standard extensions as
possible. For example, each entry of the feed of the famous Web 2.0 news site Digg
[29] comes with a digg count (<digg:diggCount>42</digg:diggCount>), that is, the
number of votes it gets from the users of Digg. The value can simply be accessed by
directly d.entries[i].digg_diggcount. However, as of the latest release of UFP,
attribute values are not preserved. Therefore, a modification must be made for
extension like the Buy.com RSS 2.0 Product Module Definition [30], which product
information is formatted as attributes (<product:content price="$2,021.99"/>), so
that values are stored in a dictionary.that be accessed-by a key composed of the tag

name and an under scroll (d.entries[i}.product_content_['price']).

4.5 Interfaces

The pull interface follows the REST style and is implemented using the web.py
framework. REST (Representational State Transfer) [31] is an architecture style to
design network-based software. The principle of REST is to model application states
and functionalities as resources which can be addressed using a universal syntax and
be interacted with by exchanging representations via a simple and uniform interface
(often HTTP). web.py [32] is a framework written in Python for developing web
applications with REST in mind. It uses Python classes and member functions to
define resources and their respectively HTTP method interfaces. A Python tuple is
used to map URLS to resources.

Feeds output formats can be RSS 2.0 or Atom 1.0 regardless of them originally

21

formats. Other kinds of formats can be easily supported by simply defining respective
templates. For object output, JSON (Javascript Object Notation) [33] is used to
facilitate object exchange across different languages.

XML-RPC is used for the push interface for its simplicity and many
implementations for different languages. XML-RPC [34] is simple a way to encode
and decode method calls, arguments and return values in XML and transfer them over
HTTP. A client registers its XML-RPC endpoint, interested feeds and attributes with
Feed Middleware. When updates are available for those feeds, only updated entries
are sent to the client by an XML-RPC method call with those entries being
XML-formatted object arguments.

These two interfaces are put into use by two demo applications written in

different languages as show in the.demo chapter.

4.6 Tools and Libraries

Many open source tools and libraries are-used in Feed Middleware. They are

listed below:

Name Usage License
Python Core Python license
Universal Feed Parser Parsing feeds MIT

SQLite Embedded database Public domain
memcahed Memory cache BSD

web.py Web framework Public domain

Table 4-1 Tools and libraries used

22

5 Scenario Demonstrations

5.1 Ajax Product Spy

Ajax (Asynchronous Javascript and XML) is a term defined by Jesse James
Garrett [35] referring to the combination of techniques, including the Javascript
XMLHttpRequest (XHR) object, DOM manipulation and XHTML, involved in the
development of interactive web applications. The core of Ajax is XHR [36], which
enables Javascript embedded in a webpage to issue asynchronous HTTP requests

without the needs to refresh the whole page, thus resulting in a fluid user experience.

XMLHttpRequest

Feed

Middleware

Website DOM

updates

(Javascript)

JSON objects

Figure 5-1 Architecture of the Ajax Product Spy

This demo is a single webpage which contains product information updating

automatically without refreshes. Such an application can be integrated into an existing

internal portal of an enterprise to show the inventory of itself or its competitors.

The webpage contains an Ajax Request object from the Prototype Javascript

Framework [37] to make repeated requests to Feed Middleware asking for entries of

the interested products serialized in JSON. The callback function of the request inserts

new products to the webpage by updating the DOM tree. Also demonstrated is the

flexibility of Feed Middleware directly returning elements like product prices and

23

images of the Buy.com RSS 2.0 Product Module Definition [29]without any

modifications.

refox

BEEO RED BRO FELE SO IRD SHEW

-0 - @ L Gh O e aceostaIED emo/buy him]

|| hétpiocelhost B080eed Lt | [} hitpsiflacalhost...0/dema/buy himl (5 |

Kingston Technology 2GB Secure Digital Card$39 94

AT Allkin-Wonder 2006 Edition 256MB PCI Express Video Card$138.99

mr"-’ a AOIE |

el
e ALLIN-LIOMDER
AR D

Western Digital Passport Portable Hard Drive 2.5" 120GB$99.95

y

Figure 5-2 Screenshot of the Ajax Product Spy shewing product information

BEF HEE #H0 BFs@ SEE I8RO HEAW

-0 - @ () D1 nptocalhest 8004 emoduy bl

[hitpocelhosta080sedlis | [hitp:Aflocalhast._ 0/ emofbuy himl (5 |

Molda M91$300

Philips S0PF7320A - 50" Widescreen DCR Plasma HDTY with Pixel Plus$2,021.99

I
™ |

Figure 5-3 Screenshot of the Ajax Product Spy after an update

<script>

function fetch() {

24

new Ajax.Request("/feed?url=http://localhost:8080/"+
>demo/buy . xml&type=json&len=50&obj ", {
method: "get”,
onSuccess: function(t) {
entries = eval("("+t.responseText+")")
for (var i1=0; i<entries.length; ++i) {
if (I$(entries[i]-link)) {
new Insertion.Top("container-®,
"<div i1d="" + entries[i].link + *">" +
"" +
entries[i]-title + "" +
entries[i].product_content_["price®] + “
" +

"<img src= + entries[i].-product_content_["imageurl®] +

/> + t</diveT);

:
setTimeout(fetch, 5000)
</script>

<script>fetch();</script>

5.2 Bug Notifier

As mentioned above, polling is used as the underlying technique to enable

publish/subscribe semantics of feeds. In order to receive timely notification for urgent

25

stuff like system outage reports, an event notifier is written to send feed updates to

users via instant messages, emails or SMS messages.

Email client

subscribe

Feed . Cellphone
Middleware qu Appﬂéatlon :w::

feed objects
(only new entries)

Figure 5-4 Architecture of the Bug Notifier

The Bug Notifier is written in Java to demonstrate that applications using Feed

L 33 FJ
Middleware can be language neutr@f,aifcontaln Q’\ﬁlmple XML-RPC server offered
Q"_;"

E
by Apache XML-RPC |mplemenfatl n [Bg]hf‘pf,JaVa fg) listen for new entries of

'-‘.-;:-"' [

1SI !;35’] a Java Microsoft MSN

subscribed feeds. Besides, it alseievgﬁr

R L%
'5"": "

Messenger clone, to communicate WﬁhMSN ffetwork and send feed entries as
instant messages to users.

The following scenario shows that when a tester of a system reports a bug, the
developer of that system, having subscribed to the bug feed, will be notified by a
MSN robot with relevant information to lead him to that bug report page. Moreover,
since the bug reporting system and its corresponding feed are password protected, this
program also shows the capability to handle security feeds which is not supported by

Windows RSS Platform.

26

@:_:' v &) htp it pmsmn oo tiskeyan

File Edit View Favorles Tools Help
Y- 16 hous swved SEiE

iy i gg[-| (3 New Tickst - PushFunco.. % | & nitpifocalhost B0 b [|
FCTEdlE NeW TICKET

Your email or username:

tippy

Short summary:
ABUG

Type: |defecl hd

Full description {you may use WikiFormatting here):

B IAlwvE—

very serious bug, very urgent -

Ticket Properties
Priarity: [major ¥ Component: |comment =
Version: vl Keywords:

£ssign to: CC:

- ‘ P et

MNote: See TracTickets for help on using tickets

s trac

Figure 5-5 Screenshat of a tester filling the fofm to file a bug report

]

WRE RHWE WiTW IED HAMm
5 Bug Notitier 20

& B o S By 4 &

L) rak s BRI RITRE - <
Bug Notifier Qf'f;ﬁ
1 hitp!/# @frac.pushiun.com/trac/report/8?

format=rss 8USER=tippy
#90° A BUG hito: trac.nushfun.cumiftrac ticket/90

G- G- @ P L SF- @
| T2 B

2007643 F4F 1116 WEISE—RIERE - £ A ks

Don” tHave Enough Time to go 1o School? - Eam a Degres Online!

Figure 5-6 Screenshot of the developer is notified for a bug report via the MSN Messenger

27

shFun com - Trac - nternet Explorer

|g hitp:tirac pushfun.comftrac/ticke9 0 j || X IL'we Bearch 2 -

Fil: Edit Wiew Favorites Tools Help

-
$F @ () #30 (A BUG) - PushFun com - Trac I | - B v v kB - (i Toos - @ B B 3
5
[
logged in == tippy | Logout | Settings | Help/Guids | About Trac
[| wiki | Timeline | Rosdmap Erovss Source Wew Ticket | Search
Ticket #90 (defect)
ABUG I
Reported by: tippy Assigned to: tippy |
Priority: major Component: comment
Version: Keyvaords:
Cei
very serious bug, very urgent
Attachments
Attach File
[
[Waiting for hitp-Atras poshtun comracicket90... || T rdaeen Zone [me -

Figure 5-7 Screenshot of the developer clicking.the.link from the instant message to see the actual

bug:report

public int feedReceived(int subscriptionld, String url, Vector entries) {

StringBuffer buffer = new StringBuffer();

buffer.append(subscriptionld+" "+url+"\r\n");

for (lterator i=v.iterator(); i.-hasNext();) {
Hashtable h = (Hashtable)i.next();

buffer.append(h.get(*'title™)+"\r\n");

}

try {

SwitchboardSession ss = null;

it (IswitchMap.containsKey(recipient)) msn.doCallWait(recipient);
if (switchMap.containsKey(recipient)) {

ss = (SwitchboardSession)switchMap.get(recipient);

ss.sendInstantMessage(new MimeMessage(buffer.toString()));

28

} catch (10Exception e) {}

return 1;

29

6 Comparison and Discussion

6.1 Comparison

6.1.1 Qualitative

Both Feed Middleware and the Windows RSS Platform aimed at providing
developers with a tool to work with feeds, which is more than a feed parser, but there
are some significant differences between them. First, the Windows RSS Platform is
for personal use only, whereas Feed Middleware can be used both personally and by
an organization because it has a web service.interface. An enterprise may use Feed
Middleware as a hub to internal-and external thformation. Second, the Windows RSS
Platform is tightly-coupled with-Microsoft’s proprietary technologies like IE and .Net,
which is not available to use by open‘source developers for Linux or Java. Even
for .Net developers, there is no way for them to extend its functionalities to keep up
with the changing feed space. Third, the Windows RSS Platform is more difficult to
use with a more complex API and there no support for fundamental things like feed
auto-discovery, password-protected or ill-formatted feeds.

However, the Windows RSS Platform has a good feature which is to download
enclosures, embedded reference to multimedia resources like MP3 files, automatically
in the background and replace the foreign URLs with local file system ones.

The following table summarizes the difference between Feed Middleware and

Windows RSS Platform.

Feed Middleware Windows RSS Platform

Style Middleware API

Scope Personal, Organizational Personal

Language Neutral .Net Languages only

Source Open Closed

Feed parsing Liberal Strict

Feed discovery Yes No

Extensions Supports a lot of standards | Parse XML by oneself,
and flexible with invent two new extensions

non-standards

Security feeds Yes No

Enclosure downloading No Yes

Table 6-1 Qualitative comparison between Feed Middleware and Windows RSS Platform
6.1.2 Quantitative

In this section, two groups of code fragments-are listed. One of them uses
Windows RSS Platform. The other one uses Feed Middleware. The first group of code
fragment is simply printing the titles for a specific feed. The second group subscribes
to a feed, and print titles of it when notified for updates.

Procedural feed printing using Windows RSS Platform:

string url = "http://www.digg.com/rss/index.xml";

FeedsManager fm = new FeedsManager();

IFeedFolder rootFolder = (lFeedFolder)fm.RootFolder;

IFeed feed = (IFeed)rootFolder.CreateFeed(url, url);

foreach (IFeedltem item in (IFeedsEnum)feed. ltems)

Console.Out_WriteLine(item.Title);

Procedural feed printing using Feed Middleware:

31

d = urllib.urlopen("http://localhost:8080/feed/\

?url=http://digg.-com/&type=json®).read()

o = simplejson.loads(d)

for e in o["entries™] : print e["title"]

Event-driven feed printing using Windows RSS Platform:

FeedsManager fm = new FeedsManager();
IFeedFolder rootFolder = (lFeedFolder)fm.RootFolder;
FeedFolderEvents_Event fw = (IFeedFolderEvents_Event)rootFolder.GetWatcher(
FEEDS_EVENTS_SCOPE.FES_ALL, FEEDS_EVENTS_MASK.FEM_FEEDEVENTS) ;
fw.FeedltemCountChanged += new
IFeedFolderEvents_FeedltemCountChangedEventHandler (Feedl temCountChanged);
void FeedltemCountChanged(String path, int itemCountType) {

IFeed feed = (IFeed) fm.GetFeed(path);

if (feed.url != "http://www.digg.-com/rss/index.xml') return;

foreach (IFeedltem item in (lIFeedsEnum)feed. ltems)
Console.Out.WriteLine(item.Title);

}

Console.In.ReadLine();

Event-driven feed printing using Feed Middleware:

postdata = urllib.urlencode({"endpoint®:"http://localhost:8000/",\

"url®:"http://digg.com/"})

urllib.urlopen(*http://1ocalhost:8080/sub/", postdata)

def feedReceived(self, subscription_id, url, entries):

for e in entries : print e["title™]

server = SimpleXMLRPCServer((*'localhost', 8000))

32

server.register_function(feedReceived)

server.serve_forever()

The number of lines of codes for the first group is 6 to 3 and the second group is
10 to 7. Although the Windows RSS Platform versions of both groups of code
fragments have been reduced to its essence, which is not runnable codes compared to
those using Feed Middleware, they already exhibit the complexity of the API. Itis
almost impossible to make use of it with before consulting the reference. On the
contrary, the Feed Middleware version only comprises of standard library usage like
the urllib and the SimpleXMLRPCServer modules, with the only exception being the

simplejson library.

6.2 Discussion

According to the analysis above, Feed Middleware has achieved the objectives
stated in 1.3. It is easy-to-use, flexible; liberaliand open. It can be shown that by
designing with simplicity in mind and using-existing open source tools, a system can
be built to meet the needs of certain people who want to tackle the problem at hand
and do a rapid integration without having to set a lot up things up and learn a complex

API with excessive and obscure functions.

33

7 Future Works and Conclusion

7.1 Future Works

Since Feed Middleware is a proof of concept prototype, there are several things
that could be done to make it a better tool. First, Feed Middleware uses SQL.ite
database and the embedded web server of web.py, which may not scale very well for
production environments. Fortunately, it can be easily swapped with industry-strength
counterparts like MySQL and Apache. Second, automatically enclosures downloading
provided by the Windows RSS Platform should be implemented because it can further
reduce bandwidth in scenarios such as syndication of e-learning video clips across
different schools while each of them has a Feed Middleware to download those clips
on behalf of the whole school for thelr students: Third, with the growing use of RSS
and Atom feeds, more extensions will'be developed to embed more semantics to them,
parsing them one by one with plug-ins will be too tedious. Sooner or later, a
specification of a format lying between RSS/Atom and RDF, which it is more general

than the former and less general than the latter, will be needed.

7.2 Conclusion

In this paper, a tool for developing applications to take advantages of feed
technologies like RSS and Atom is proposed. After reviewing the backgrounds and
related works in the this space and what is lacking, Feed Middleware is proposed to
treat feeds as streams of information instead of discrete XML documents that only a

parser cannot solve the whole problem. Besides, learning from the simplicity of RSS,

Feed Middleware has easy-to-use interfaces built with existing open source tools. To
demonstrate its capabilities, two simple but practical applications are written in
different languages and different styles. Finally, Feed Middleware is compared with
Windows RSS Platform to show its advantages and future works that should be done

to further improve it.

35

References

[1]

[2]

3]

[4]

[5]

[6]
[7]

[8]

[9]

Tim O’Reilly, What is Web 2.0, Sept 2005
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.ht
ml

David Sifry, The State of the Live Web, April 2007
http://www.sifry.com/alerts/archives/000493.html

RSS Extensions

http://rss-extensions.org/

Microformats

http://microformats.org/

Danny Ayers, From Here to There, IEEE Internet Computing, Volume 11, Issue 1,
Jan-Feb 2007

Dave Johnson, RSS and Atom In‘Action, Aug 2006

Randy Charles Morin, HowTo RSS Feed State
http://www.kbcafe.com/rss/rssfeedstate.html

Blog, Wikipedia

http://en.wikipedia.org/wiki/Blog

Mark Pilgrim, The Myth of RSS compatibility, Feb 2004

[10] http://diveintomark.org/archives/2004/02/04/incompatible-rss

[11] Mark Nottingham and Robert Sayre, The Atom Syndication Format, IETF RFC

4287, Dec 2005

[12] Weblogs.com API

http://weblogs.com/api.html

[13] Windows RSS Platform
http://msdn2.microsoft.com/en-us/library/ms684701.aspx

[14] Amar Gandhi, RSS in Windows Vista, Microsoft Professional Developers
Conference (PDC), 2005

[15] Yahoo Pipes
http://pipes.yahoo.com/pipes/

[16] Attensa Feed Server
http://www.attensa.com/products/server/

[17] NewsGator Enterprise Server
http://www.newsgator.com/Business/EnterpriseServer/

[18] KnowNow Enterprise Syndication Solution
http://www.knownow.com/article/?id=140

[19] Seung Jun and Mustaque Ahamad, FeedEx: collaborative exchange of news
feeds, Proceedings of the 15th International Conference on World Wide Web
(ACM WWW’06), 2006

[20] Dan Sandler, Alan Mislove, Ansley Post and Peter Druschel, FeedTree: Sharing
Web Micronews with Peer-to-Peer Event Notification, Proceedings of the 4th
International Workshop on Peer-to-Peer Systems (IPTPS'05), 2005

[21] Venugopalan Ramasubramanian, Ryan Peterson and Emin Gun Sirer, Corona: A
High Performance Publish-Subscribe System for the World Wide Web,
Proceedings of Networked System Design and Implementation (NSDI1°06), May
2006

[22] OPML (Qutline Processor Markup Language)
http://www.opml.org/

[23] Steve Vinoski, Middleware “Dark Matter”, IEEE Internet Computing, Volume 6,

Issue 5, Sept-Oct 2002

37

[24] Steve Vinoski, Dark Matter Revisited, IEEE Internet Computing, Volume 8,
Issue 4, July-Aug 2004

[25] Python
http://python.org/

[26] Rome
https://rome.dev.java.net/

[27] Jakarta FeedParser
http://jakarta.apache.org/commons/sandbox/feedparser/

[28] Universal Feed Parser
http://www.feedparser.org/

[29] Digg.com
http://digg.com/

[30] Buy.com RSS 2.0 Product Module Definition.\ersion 1.0
http://www.buy.com/rss/moedule/product/

[31] Roy Fielding, Architectural Styles.and the Design of Network-based Software
Architectures, PhD dissertation, UC Irvine, 2000

[32] web.py
http://webpy.org/

[33] JSON (Javascript Object Notation)
http://www.json.org/

[34] XML-RPC
http://www.xmlrpc.com/

[35] Jesse James Garrett, Ajax: A New Approach to Web Applications
http://www.adaptivepath.com/publications/essays/archives/000385.php

[36] XMLHttpRequest

http://www.w3.0rg/TR/XMLHttpRequest/

38

[37] Prototype Javascript Framework
http://www.prototypejs.org/

[38] Apache XML-RPC
http://ws.apache.org/xmlrpc/xmlrpc2/

[39] IMSN

http://sourceforge.net/projects/jmsn/

39

