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Abstract

Dummy-based anonymization techniques for protecting location privacy of mobile
users have been proposed in the literature. By generating dummies that move in
human-like trajectories, this method shows that location privacy of mobile users
can be preserved. However, by monitoring long-term movement patterns of users,
the trajectories of mobile users can still be exposed. We argue that, once the
trajectory of a user is identified, locations of the user is exposed. Thus, it’s critical
to protect the moving trajectories of mobile users in order to preserve user location
privacy. We propose two schemes_that ‘generate consistent movement patterns in
a long run. Guided by three patameters in user specified privacy profile, namely,
short-term disclosure, long-term discélosure and “distance deviation, the proposed
schemes derive movement trajeetories fordummies. Moreover, since a user may
has multiple frequent trajecteries, we.proposed several schemes to deal with this
scenario. Experimental results show thatour proposed schemes are more effective
than existing work in protecting moving trajectories of mobile users and their
location privacy.

Keywords —Location privacy, user movement patterns, location-based services.
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Chapter 1

Introduction

Location-based services (LLBSs) have emerged as one of the killer applications for
mobile computing and wireless data services. These LBSs are critical to public
safety, transportation, emergency respemnsesand disaster management, while pro-
viding great market values to companies and industries. Due to the unrestricted
mobility of users in the mobile computingenvironments, users are often interested
in acquiring information or servicesrelated to their current locations. Thus, very
frequently locations information of users are submitted along with queries to the
LBS servers. Examples of such queries include finding the nearest restaurants to a
user (k nearest neighbor query) and finding ATMs within 500 meters from a user’s
current location (range query). While LBSs have shown to be valuable to users’
daily life, on the other hand, they also expose extraordinary threats to user privacy.
If not well protected, the location information of users may be misused by some
untrustworthy service providers or stolen by hackers. Once the location informa-
tion is exposed, adversaries may dig for cues to invades user privacy. Obviously, it
is important to protect location privacy.

Recently, the problem of location privacy preserving has received growing in-

1



terests from the research community [2] [5] [15] [21] [18] [3] [16]. These studies aim
at protecting exact location information of users from the potential abuse of LBS
providers and hackers. Two primary approaches have been considered, including
1) trusted anonymizer based approach; and 2) client based approach. In the for-
mer, users submit their queries to the LBSs via a trusted server (which is different
from the LBS server), such as a base station in the cellular networks. This trusted
anonymizer transforms the exact locations of a number of users into a cloaked spa-
tial area in accordance with privacy requirements set by users in order to obtain
data or services from the LBSs [10] [21] [11]. The second approach assumes no
trusted server. Thus, clients are responsible for anonymizing their own location
information before transmitting queries to the LBS servers. By issuing several fake
locations along with its true location to the'LLBSs, clients may obtain redundant
information or services corresponding to-the subtnitted locations while preserving
their location information [18} [19]. Unwanted information is filtered locally to ob-
tain the final query results. In Both approaches,sthe true location of a user is either
1) not distinguishable from other users (the trusted anonymizer based approach),
or 2) not distinguishable from the fake locations (the client based approach). Since
a trusted server is not always available, in this paper, we tackle some issues faced
in the client based approach.

Motivation and Problems. Without relying on a trusted server, generating fake
user locations (called dummies!) for location-dependent queries has been shown
to be an effective way to preserve location privacy [18]. In addition to generate

dummies based on the user locations, these prior works propose to generate dum-

We follow the terminology used in [18] to name the fake user locations as dummy locations

and dummies in short.



mies based on realistic user movements. However, prior works don’t consider a
well-recognized observation, i.e., moving behaviors of users usually follow certain
patterns [22] [23]. To demonstrate user moving patterns of users, Table 1.1 shows
an example of real log data from INFATT [17]. INFATT is the first Intelligent Speed
Adaptation development project in Denmark. The project is carried out by Aal-
borg University. In this project, every car was equipped with a Global Positioning
System(GPS) and collects day to day movements of 20 private cars on the road
network of Aalborg during two months. The log data contains several attributes,
such as car’s id, driver’s id(one car may be driven by more than one person), data
and time, XY coordinate received from GPS receiver, speed and street code. Figure
1.1 shows one car’s trajectories, where the XY coordinate are the position coor-
dinates received from GPS receiver. By exploring data mining techniques such as
spatial-temporal sequential pattern minmg [4] or'moving pattern mining [22] [23],
adversaries only need to colleet enoughuser’s moving logs and can get the frequent
moving patterns of user easily. WNotice that onéetrajectories of users are disclosed,
adversaries are able to utilize external databases to find even user identity, which
incurs more serious disclose of location privacy. The above scenario is referred to
the linking attack problem in location privacy, showing the justification of protect-
ing user trajectories. Thus, generating dummies should consider not only realistic
user movements but also follow certain patterns.

The problem we study in this paper could be best understood by an example
shown in Figure 1.2. In the figure, the solid line denotes the moving trajectory
of a true user (denoted as T') and the dotted lines are generated trajectories of
dummies (denoted as d1 and d2). Since true users usually exhibit certain human

moving behavior, one is able to identify the solid line as a true user based on the



id carid | driverid | rdate | rtime xcoord | ycoord | SPD | strtcord
991 | 12 0 91200 | 130310 | 553570 | 6315889 | 44 5490
992 | 12 0 91200 | 130311 | 553562 | 6315859 | 42 5490
993 | 12 0 91200 | 130312 | 553554 | 6315833 | 43 5490
994 | 12 0 91200 | 130313 | 553547 | 6315806 | 38 5490
995 | 12 0 91200 | 130314 | 553541 | 6315779 | 42 5490
996 | 12 0 91200 | 130315 | 553535 | 6315752 | 44 5490
Table 1.1;.The real:GPS log data

6322800

6321600

6320400

6319200

6318000

6316800

555000 555500 556000 556500 557000 557500

Figure 1.1: Moving trajectory of one example car.




typical moving behavior of humans (as shown in Fig. 1.2(a)). Thus, it’s impor-
tant to generate dummy trajectories based on human moving behavior (as shown
in Fig. 1.2(b)). Even though this effort may reduce the chance of the true mov-
ing trajectory being identified, a long-term movement pattern can be collected to
filter inconsistent trajectories. For example, comparing the current trajectories
(in Fig. 1.2(c)) and trajectories collected in a different day (e.g., Fig. 1.2(b)), one
can tell T is the true trajectory of user. Once the moving trajectory of true user
is identified, locations (i.e., not only the current location but also the past loca-
tions) of the user is disclosed. Thus, it’s important to generate dummies that not
only demonstrate moving behavior of users but also follow consistent, long-term
movement patterns.

Given that the adversaries obtain a set of trajectories, they will have difficulty
determining the true trajectory of a uset if uisers génerate dummies following certain
movement patterns. However; the usertrajectory:is still disclosed to a certain de-
gree. Therefore, we use disclosure to denote the probability that the user trajectory
may be correctly identified by the adversaries. For example, in Fig. 1.2(c), three

trajectories are collected and thus the disclosure is To reduce the disclosure,

Wl

a naive approach is to simply increase the number of dummies, which however
incurs overhead in terms of query message length and thus communication and
client processing costs. Thus, in this paper, we propose to generate intersecting
dummy trajectories aiming at increasing the number of possible trajectories from
the adversaries’ perspective and thus decreasing disclosure of the user trajectory.
Nevertheless, an issue exists with this intersecting trajectories. When the gen-
erated trajectories are too close to the true trajectory, the locations of a user may

still be exposed, e.g., Fig. 1.2(d) shows an example where the user’s moving trajec-
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Figure 1.2: Moving trajectories of user and dummies.

tory (the shadowed path) can be identified. Thus, our design of dummy generation
schemes also take the factor of distance deviation among trajectories into consid-
eration. Our approach is to allowjusers to set up their privacy profile in terms of
disclosures (both short-term and leng-term) and distance deviation (more details to
be discussed in Section 2). We propese two schemes, namely, random pattern and
intersection pattern, to generate dummy ‘trajectories based on the privacy profile.
Furthermore, since a user may have more than one moving trajectories, we develop
several schemes to protect multiple user moving trajectories with the purpose of
using minimal number of dummies. Performance of proposed schemes is compara-
tively analyzed and sensitivity analysis on several design parameters is conducted.
Experimental results show that by generating dummies based on moving patterns,
our schemes perform better than the existing techniques.

Organization. The rest of this paper is organized as follows. We first describe
some related works in Section 2. Section 3 presents preliminaries, including attacker

model and user profile. Our proposal of dummy trajectory generation schemes and



the selection of multiple path are presented in Section 4. Section 5 shows our

performance study. Section 6 concludes this paper.




Chapter 2

Related works

A significant amount of research efforts have been elaborated on location pri-
vacy. Generally speaking, methods of guaranteeing location privacy could protect
either user’s identification or user’s lecatien. -Because most Location Informa-
tion(LocInfo) can be a variation of the définition introduced in [8], the triple of
the following form: Position, Time; IDaThus, LocInfo is defined as a combination
of the “Position” that the entity with-identifiecr “ID” maintained at time “Time”,
within a given coordinate system. Position and ID are considered as the most
important part in LocInfo. Protecting identifier is to hide user’s identifier that
attacker cannot take apart who is exactly in this position at this time. Different
from ID, Protecting position is to protect user’s location from being disclosed that
the attacker cannot recognize the user’s exactly position at this time.

Specifically, to protect ID in LocInfo, the authors in [2] [5] proposed the con-
cept of the mix zone [2] [5]. They assumed the LBS application providers are
hostile adversaries, and suggested that application users hide their own identifier
from providers [3]. So they proposed the mix zone concept in which a trust third

party removes all samples before is passes location samples to the LBS application
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providers. Instead of static mix zones, the authors in [16] implemented a mix zone
concept by exploring a silent period. That protects user from correlation attack
which means a method of utilizing the temporal and spatial correlation between
the old and new pseudonym of nodes.

To protect user location, a consider amount of research works are conducted [15]
[21] [18] [19]. As described before, these works could be further classified according
to the architecture of location privacy. With trusted servers, the authors in [13] [12]
[11] proposed a cloaking algorithm to blur the resolution of location information
along spatial and temporal dimensions. The above algorithm exploits k-anonymity
concept. Based on k-anonymity, the authors in [10] [9] devised a personalized and
customized k-anonymity model which assume a different k-anonymity requirement
for each user. A framework Casper was déveloped in [21], where a grid-based
pyramid structure is implemehted to index all user locations. Moreover, privacy-
aware query processing is developed when cloaked spatial areas are used as query
predicates. Without trusted servers,the authors«in [7] proposed 1 P2P structure to
protect user’s privacy. Explicitly, before issuing any location-based service queries,
mobile users will form a group from his/her neighboring peers via multi-hop routing.
Then, the spatial cloaked area is computed as the region that covers the entire
group of peers. In addition, the authors in [18] [19] proposed an algorithm to
generate dummy locations to protect not only location privacy but also true user
identifications.

To the best of our knowledge, prior works neither address location privacy
issues from long-term observation nor emphasize the necessity of protecting user
moving patterns, let alone generating dummies with moving patterns. This paper

differentiates from other papers.



Chapter 3

Preliminaries

In this section, some preliminaries are given. In Section 3.1, assumptions and
notations used in this paper are presented. The attacker model and user privacy

profiles are described in Section 3.2.

3.1 Assumptions and Notations

We assume no trusted server available for location anonymization. Wireless net-
works are only responsible for communication and will not reveal locations of mo-
bile users. Mobile clients are location aware (via GPS or network based positioning
techniques). To facilitate the presentation of our paper, suppose that users are free
to move in the space divided into grid cells. Each grid cell has a cell identifier (x, y)
indicating that this cell is located at the x column and the y row of the space. The
granularity of this representation is determined by the number of grid cells. With
larger number of grid cells, finer granularity we have. Note that using cell identi-
fication could achieve a certain level of location privacy even if adversaries guess

the true location among a set of location data.
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Upon a user query message, the mobile client U, first sends to the LBSs through
an authenticated and encrypted connection that adversary cannot hijack the mes-
sage. A query message issued by a mobile user U; to a LBS server at time slot
t is defined as M = {wid, (L., LY, L}y...LY, ) Q}, where uid is the pseudonym
user identification, L! is the true user location, L, Lk, ..., L, are n dummy lo-
cations, respectively, and () is the location-dependent query issued. Therefore,
given m consecutive queries, we define the trajectory of a moving client in 2-
dimensional (2D) spaces as a sequence {L}, L? ..., L}, while the trajectory of
dummy « is { L}, L3,,..., L. }) where L% € R? (a = 1, ..., m) describe locations in
ty, t1 <ty < ... < t, €T are irregularly spaced but temporally ordered time in-

stances, i.e., gaps are allowed. Here, Lg (and L7, respectively) denotes the location

of user U; (and dummy d,), respectively at the jth time slot. Denote a trajectory

of mobile user U; as P; = {PLE, PL2, .5 PL"}, where PL! is the location of mobile

user U; at the jth time slot. Suppose‘that the length of trajectories is m and the

maximum user’s moving velocity is.defined as'V;,,q..

3.2 Attacker model

In this section, we describe how adversaries collect and utilize data mining tech-
niques to mine user moving patterns. Explicitly, adversaries can sequential pat-
tern mining to discover user moving patterns, thereby disclosing user trajecto-
ries. [1] [14] [4]. Consider an example shown in Figure 3.1, where Table 3.1 is the
moving log. As can be seen in Table 3.1, there are five movement sequences, where
each location in a movement sequence is the cell identification defined in Section

3.1. Given the minimum support 2, it can be verified that a moving pattern (i.e.,

11
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Figure 3.1: Mobile behavior of mobile user A and his dummies (i.e., X and Y )

(7,3)=(6,3)=(5,2)=(4,2)=(3,2)) is discovered.

Once moving patterns are discovered, one could easilyidentify true user posi-
tions, no matter how dummies atreé generated. The main theme of this paper is
to prevent a privacy threat resulting in long term movement observations. Three
formal definitions of privacy preservation are given as follows:

Definition 1.  Given an area'size A € R+ .a mobile user’s trajectory P; and
n dummies, the probability of successfully identifying the true user’s trajectory is
smaller than the profile user define.

Definition 2. Given an area size A € R, a mobile user’s current location L
and n dummies, the probability of successfully identifying the true user’s current
location is smaller than the profile user define.

Definition 3. Given an area size A € R™, a mobile user’s trajectory P; and n
dummies, the average distance difference among trajectories of dummies and the
user must be larger than the profile user define.

By these definitions, an adversary cannot distinguish user’s trajectory or loca-

tions. As such, both location and trajectory privacy can be preserved. Users may

12



User Id T1 T2 T3 T4 T 5

Day 1 | User A (7,3) | (6,3) | (5,2) | (4,2) | (3,2)

Dummy X | (6,1) | (6,2) | (5,2) | (4,1) | (3,1)

Dummy Y | (3,4) | (2,4) | (14) | (1,3) | (1,2)

Day 2 | User A (7,3) | (6,3) | (5,2) | (4,2) | (3,2)

Dummy X | (2,2) | (2,1) | (3,1) | (4,1) | (5,1)

Dummy Y | (54) | (53) | (4,3) | (3,3) | (2,3)

Table 3.1: An example of query log for mobile user A

set up their privacy profile, which is specified by the following three parameters:

1. Short-term Disclosure:(SD): This parameter specifies requirement for
protecting the current user location,» Thus;-given a set of current locations

(including true and durhmy loeations); SD-s the probability of successfully

1

D where m is the
k3

identifying the true user location, i.eq SD = % S

number of time slots in a trajectory, D; is the set of true and dummy locations

at the ith time slot, and |D;| is the size of D;.

2. Long-term Disclosure (LD): This parameter specifies requirement for pro-
tecting the user trajectory. Given n trajectories, among which k trajectories
have intersected with other trajectories and (n — k) trajectories do not have
any intersection. Thus, for those (n — k) trajectories, we have exactly (n — k)
possible trajectories. For those k trajectories, we may enumerate all possible
trajectories by exhaustively traversing intersections from the start point of
each trajectory to the end point. In order not to distract readers from the

main theme of this paper, we simply denote the number of possible trajecto-
13



Time slot 1 2 3 4 5 6

True user | (7,3) | (6,3) | (5,2) | (4,2) | (3,2) | (2,2)

Dummy X | (6,1) | (6,2) | (5,2) | (5,3) | (6,4) | (7,4)

Dummy Y | (1,4) | (2.4) | (3.4) | (3,3) | 3.2) | (3,1)

D;| 3 3 2 3 2 3

Dist 4.2 2.6 1.4 1.4 1.8 3.4

Table 3.2: Privacy measurement of dummy trajectories.

ries by BFS(Breadth-First-Search) among k trajectories as Tj. Consequently,

1

we have LD as m

. Distance deviation: The distance deviation (dst) is the average of distance
difference among trajectories of duminies and the user. As a result, dst of
mobile user U; is formulated s Ssamed /0 > e dist(PLi L)), where dist
is distance between the true miser-docation and dummy locations in unit of

cell size.

Figure 3.2 shows an example of generated dummy trajectories with intersec-

tions, while Table 3.2 shows the trajectories as well as the number of current

locations (D;) and distance deviation at different time slots. Thus, we can de-

rive SD = ¢(3 + 5+ 3+ 5+ 3 +3) = 15. Furthermore, for each time slot, we

could derive distance differences between dummy and true trajectories to obtain

the average distance deviation as 2.47. To facilitate the derivation of total possible

trajectories, Figure 3.2(a) is transformed into Figure 3.2(b), where intersection

points (i.e., cell (5, 2) and (3, 2)) are marked. Since these three trajectories have

two intersection points, it can be verified that we have 8 possible trajectories (i.e.,

14
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Figure 3.2: Trajectories with Intersections.
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ad, aLe, al.f, bd, bLe, bLf, ce, cf). As such, we could have long-term disclosure

1

— 1 —
LD =55 = &
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Chapter 4

Generating Dummies with

Patterns

Given a privacy profile, our goal is toigenerate dummy trajectories that satisfy the
user-define parameters in privacy profile (D, LD, dst). In this section, we propose
several schemes, namely, random™pattern~schéme and intersection pattern-based

schemes to generate dummies that exhibit long-term user movement patterns.

4.1 Random Pattern Scheme

In this scheme, the starting point and the destination of a dummy are first selected.
Then, the grid cells between the starting point and the destination are determined
based on the speed of a dummy and four movement types, including horizontal
movement, vertical movement, both and stay in the current position. Because the
humans moving speed is limited, the velocity of dummies should also be limited
(i.e. smaller than V,,,,). Figure 4.1(b) is an easy example with random dummy

generation.

17



In this scheme, a dummy will move randomly from the starting point towards
the destination. This naive scheme demonstrates that even after a long term obser-
vation, it’s difficult for adversaries to identify true user since dummies also exhibits
long term, consistent movement patterns. Given the original user moving trajec-
tory in Figure 4.1(a). Figure 4.1 shows a dummy trajectory generated by random
pattern scheme. However, without taking into account factors such as distance de-
viation, this scheme simply include more dummies when the privacy requirements

are not satisfied.

T

(a)

Figure 4.1: (a)original pattern:(b)random pattern

4.2 Intersection Pattern-based Scheme

The main idea in this scheme is to have some intersections between trajectories of
dummies and the real user that can generate more possible trajectories. Adversaries
are harder to identify a true user trajectory from a set of possible trajectories. The
benefits of using intersection pattern scheme are described below. First, if the num-
ber of intersections among a user trajectory dummy and trajectories are increased,
one can use smaller number of dummies to satisfy the LD in user profile. Second,

it is hard for adversaries to tell which trajectories are made by dummies. Third, if
18



dummies have some intersections with true user by using caching technique, data
requested by dummies are used by a true user in his future movement.

In this intersection pattern scheme, generated dummy trajectories should ful-
fil the privacy profile of the user. Since there are three requirements in privacy
profiles, our approach is to first select intersections from the candidate set. The
candidate set depends on some constraints(i.e., important place, query cost) which
we will discuss later. Afterward, our approach derive the solution space for the
requirement of distance derivation. Then, within this solution space, we obtain
the short-term and long-term disclosures (i.e., SD and LD). The trajectories with
disclosures smaller than what specified are selected as dummy trajectories. With
proper selection of dummy trajectories, we can minimize the number of dummies
so as to satisfy the user privacy requirements: In view of the concept we mentioned
above, we proposed two kindsof intersection dummy generation: rotation dummy

generation and k-intersect dummy generation.

4.2.1 Rotation Dummy Generation

Given a user trajectory, we generate a new trajectory for a dummy by rotating
the known user trajectory in the rotation pattern scheme. To perform a rotation
on a user’s sequential pattern, the rotating point and the rotating angle must be
decided. Clearly, the rotation point of user trajectory is an intersection point.
Consider Figure 4.2 as an example, where the dotted point is the rotate point and
0 is the rotate angle.

In order to derive the solution space for the distance derivation (i.e., dst), both
the rotation angle and the rotation point within a true user trajectory have a great
impact on the distance deviation. To simplify the derivation of distance deviation,
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Figure 4.2: An example of executing rotate pattern scheme

+ Solution space

Figure 4.3: Solution space for distance derivation
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assume that we have a true user trajectory in Figure 4.3(a), we assume the real
user’s moving speed is v and the distance between two consecutive movements can
be represented as vt. The rotation point is the location at the ith time slot in a true
user trajectory, denoted as (X;, Y;), and the rotation angle is 6. d is the distance

difference between the location of a true user and that of a dummy at the (i + 1)th

time slot. According to the cosine theorem, we have d = v/2|vt|\/1 — cos . Hence,

we could derive that the distance deviation of these two trajectories as follows:

dst” = % * ((d+...+id)+ (d+ ...+ (m —i)d))

SRt Nrr ) SRS Bh)
5=0 j=0
If user trajectories are not ‘straight lines, the above derivation is still held.
Consider two realistic trajectories in-Figure®.3(b). In order to make the distance
of two corresponding points at (¢*+ I)th-time slot be d, we could dynamically set
up the dummy’s speed to v'(0 = v < Vj4). The distance of the following points
along these two trajectories is the multiple of d. Similarly, we can get the following

formulas:

d = \/(vt)2 + (v't)2 — 2u0't2 cos f

Because v and v’ are also constant, we can derive to the following formula.

dst" =/ Cy — Cycos b * (Z] + Zj), whereCrandCsareconstraints
=0 j=0
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Figure 4.4: An example of the rotation pattern scheme.

From the above derivation, we could conclude that both the rotation angle (i.e.,
) and the rotation point (i.e., i) have an impact on the distance deviation. As-
sume that we have n dummies trajectories and-the distance deviation of n dummy
trajectories is dst,,. If one dummy!is added into the set of n dummies, the (n + 1)
dummies should be larger or-equal 'to-the requirement of distance deviation (i.e.,

dst). Thus, we have the following formula:

n

dst,, +

dst” > dst
n+1 n+18 =49

Consequently, when one dummy is added into the current set of dummies, this
dummy should have a constraint on dst” > (n + 1)dst — n(dst,). Therefore, we
could have a solution space shown in Figure 4.3(c). For each point (expressed
by (0,4)) in the solution space, we should calculate the corresponding disclosure.
Hence, a solution point with the minimal hit probabilities is selected. If the hit
probabilities are still larger than the required hit probabilities, one should repeat
the above procedure to add one additional dummy until the all privacy criteria are

satisfied.
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For example, consider a true trajectory (the line marked with T) in Figure 4.4(a)
and a user privacy profile (i.e., SD = 40%, LD = 10%, dst = 2.1). Initially, there
is no dummy (i.e., n = 0) and dsty = 0. As such, we could have dst” > (0+1)*2.1.
Table 4.1(a) show some selected possible solution space when the number of dummy
is 0. In Table 4.1(a), the solution (i.e., (120°,5)) is selected and then n is increased
to 1. The value of dst; is updated accordingly. However, since disclosures are still
larger than the required values (i.e., 56.25% > 40% and 25% > 10%), we should
add one more dummy to reduce the disclosures. Following the same procedure, we
have dst” > (1 + 1) % 2.1 — 1 % 2.8 and Table 4.1(b) is the solution space when the
number of dummy is one. From Table 4.1(b), one could select (80°,6) since the
corresponding disclosures is smaller than the required values and it needn’t to add
one more dummy. Hence, Figure 4:4(b) shows the final dummy trajectories.

If we can generate more inferseetions hetweeneach trajectory!, we can use less
dummies to generate more possible trajéctories for lower disclosures. Assume we
add one dummy d2 in Figure 4.5, dummy d2'has intersecttions with real user T
and dummy d1. The intersection of trajectory ¢ and j denotes as I, ;. We can
indicate the distance between Ir 4 and Ig 40 is L, and the distance between Iz 4o
and Ig; 42 is D in Figure 4.5. Assume the rotation angle between 7' and d1 is «
and rotation angle between T and d2 is (3, we want to find the suitable rotation
point and rotation angle that can make d2 intersect with d1 and 7. We use sine

theorem in Figure 4.5.

D L
sin(3—a)  sin(180° — )

Then we can derive the following formula.

!Note that: not only between user and dummy
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0 i|SD LD

120 | 5 | 56.25% | 25%*

50 | 3] 56.25% | 25%

180 | 1 | 56.25% | 25%

(a). Solution space when n=0

0 i|SD LD

170 | 8 | 37.5% | 16.67%

120 | 7 | 37.5% | 12.5%

80 |.6139.6%4.8.33%*

(b)=Solution space when n=1

Table 4.1: A solution space.

Figure 4.5: Generate more intersections between dummy trajectories.
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|

L sin(180°—-3)  sinfg
D D~ sin(B—a) sin(B—a)

Ifg<a

sin(180° — «) sin «

m—i> L
D —D sin(fe — 3)  sin(a — f)

From the above derivation, we could reduce the candidate sets of rotation point
1 and rotation angle # because ¢ and  must satisfy the formula to make another
intersection. Consequentially, the solution space is further reduces. Based on
achieving user’s all requirements, when adding one dummy each time, we intend

to generate more intersections to reduce the total number of dummies.

4.2.2 K-intersect Dummy, Generation

Rotation dummy generation“only has‘one intersection between user’s trajectory
and dummies. If the number of.intersections between a user and the dummies are
increased, it is more difficult for adversaries to figure out the user’s true trajectory
and LD is thus decreased. But the dst is also influence a lot. Besides, in the
situation that attackers has some background knowledge of users, the intersections
between a user and the dummies can decrease the exposure of users’ trajectory
and thus protect users’ location privacy. In this scheme, we increase the number
of intersections between user trajectory and the dummy trajectories.

This scheme selects k points from the intersection candidate set to be the inter-
section points. Then the paths between the intersection points by the randomized
dummy generation. The intersection points can be represented as C' = Cf, Cs, ..., Cy

where C; is the ith intersection point. The trajectory not included by the intersec-
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Figure 4.6: An example of 2-intersect pattern scheme

Figure 4.7: The problem of multiple intersections

tion points, the rotation dummy generation is used. Explicitly, C; and C}, can be

regards as the rotation points and the following formula is used:

(m —%k) *dst, +&* dst* > dst

7

m. o« dst'—dst® x k
m—k

= dst, =

dst* means the distance deviation and a means the length of trajectory between
the cutting points C; and Cj. The combinations of the paths describe above
will be outputted as the dummy’s moving pattern. An example of 2-intersect
dummy generation example is shown in Figure 4.6, where the dotted circles are the
intersection points. The trajectory in dotted square is generated by randomized
dummy approach and beyond the square is generated by rotation dummy approach.

Note that increasing the number of intersection points is not always good. Be-
cause the more intersections between user’s and dummy’s trajectories the less dis-

tance derivation the user has. For example, in Figure 4.7, the dummy’s trajectory
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is too closed to user trajectory. That will cause the injury of dst and attacker
may break user’s privacy level. In this paper, we set the value of k is two to make
more intersection than the rotation dummy generation and not hurt the quality of
privacy in value dst.

As mentioned before, the selection of intersection candidate sets depends on
several factors. We explore two factors to select candidate sets. First, the candidate
sets should not be an important place to the user. For example, if we choose a users
home as the intersection point, dummies and the user will stay in the same cell for
a long period of time. Therefore the dummy cannot effectively protect the users
location privacy. Second, in order to increase the cache utilization, we develop a
cache scheme to determine intersection points in which users are likely to visit.

To determine which places areimportanti,we should consider the staying time
and sensitive places. Obviously, choosing a place that the user stays for a long
time as the intersection point will deérease the location anonymity. The other
type of important place is sensitive area [6], sémsitive area means the places(e.g.,
hospital, nightclub) user don’t want people know that he is inside. For example,
when shopping in a mall, most people may not be very concerned even if their
locations are known. However, users may worry about their locations exposed (e,g,
hospital). Our method will exclude those important places, which including the
place that user stayed for more than threshold slots T;,,., and user-specific sensitive
area S;, to form the remainder for candidate position set.

In dummy techniques, communication cost increases are generated as a side
effect. Since, the service provider must create a reply message not only for the
true position data but also for the dummy. In dummy methods, LBSs will return

both users’ and dummies’ data, user will filter out the dummies requests. That

27



Figure 4.8: An example of knn query caching.

is undoubtedly a waste of resource. Caching dummy data for future use is possi-
ble, if select intersection points before that a user is likely to stay. Not only the
intersection but also the area néar the intersection could be cached. Adding a
dummy trajectory intersects uiser’s trajectory at different time slots in the gener-
ating dummy scheme. Consider Figure4.8 as an example, where KNN queries are
issued. Initially, we retrieve mére.than k data sources and let dummy X arrive
the intersection (2,5) before the arrival of this user. Thus, the data returned for
dummy X when X is used to arrive at intersection (2,5).

Based on the above concept, we employ query cost to evaluate the performance.

The query cost QCy is defined as:

m k
QCa=(n+1)+ Y SZi— ((n+ VDl + I+ L) = Y SZ;
i=1 =1

The first term represents the query cost of dummy method. SZ; and SZ; mean
the size of answer messages, n and m mean the total number of dummies and the

total time slot respectively. The second term represents the saved query cost of
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cache. I, are the intersection points before the user arrive, I,; are the intersection
points which dummy and user arrive at the same time and Iy, are the intersection
points after the user arrive. Because I;; are beneficial for the cache scheme, user
and dummy needn’t query when user arrive the I;. If we want to lower the query
cost, one should increase the number of Ij;.

Dummies should arrive to the PL; early, we can derive that PLY = PL" and
t1 < ¢2, where PLY is the dummy’s location at time slot t1 and PL® is the user’s
location at time slot 2. Figure 4.8 shows an example of query cost, dummy X
arrives the position (2,5) before user and there are two dummies and five time
slots. Assume that the size of answer messages(SZ) are 10, it can be verified that

QCy=(12+1)*«50— (3% 1+ 0+ 1)*20 = 70 in this example.

4.3 Generating Dummies with Multiple Trajec-

tories

According to the research in [23], a user in general has multiple moving trajec-
tories. Consider Figure 4.9(a) as an example, where a userhas four frequent tra-
jectories and each has different probabilities. This user goes to his office with
A%, B% to the hospital, to the gas station with C% and the park with D%.
Every person has different static frequent trajectories and each trajectories has
distinct probability. Our method should also guarantee the user profile if user
is on his frequent trajectories. KFach user has k moving trajectories with cor-
responding with probabilities pi, ps,...pr and these trajectories are denoted as
{(PLi(p1), PLi(p2).- -, PLi(pr)), (PLi(p1), PLE(p2),. -, PLi(px)).- - - ,(PL" (1),

PL"™(py),...,PL™(py))}, where (PL!(py) is the location of mobile user U; at the
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jth time slot with the probability p,. Notice that Zle p; may not be 100% because
we only consider about frequent trajectories. Trajectories with smaller probabil-
ities are not considered. We propose two schemes, namely, Multiple Path Selec-
tion(MPS) and Multiple Path without Selection(M PwS). In the M PS scheme,
we also present two types of dummy generation, named Multiple Random Dummy

Generation(M RAN DG) and Multiple Rotation Dummy Generation(M ROT DG).

4.3.1 Multiple Path without Selection (M PwS)

Given user trajectories with probability p1, ps, ...pr and user profile, scheme M PwS
generates dummy trajectories for each trajectory. Suppose that each trajectories
will generate n dummies, we will have k£ x n dummy trajectories, where n is the
number of dummies.

Although this method certainly guarantees for-each trajectories for the privacy
profile, the number of dummies is‘huge-—~As-a vesult, the query cost will increase
as well. Therefore, we proposed Multiple Path with Selection(M PS) that consider

the probabilities of trajectories for dummy generation of each trajectories.

4.3.2 Multiple Random Dummy Generation (M RANDG)

In multiple random dummy method(M RAN DG), each dummy creates k& dummy
patterns with probability pi, po, ...pr, which is the same as user’s trajectories. So it
should generate k * n dummy trajectories, where n is the number of dummies se-
lects dummy trajectories with each probability. Take Figure 4.9 for an illustration,
Figure 4.9(a) shows the original user’s four trajectories with different probabil-
ity (A%, B%, C%, D%) respectively. Using the random dummy algorithm to add

one dummy in Figure 4.9(b), it is obviously to see that dummy X generates four
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Figure 4.9: An example of multiple patterns.
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dummy trajectories with the probability A%, B%, C%, D% respectively. Note
that the privacy profile is not guaranteed, since the selection of dummy patterns is
accordance with the probabilities. The other problem is user people’s trajectories
usually have partial similarity in that user’s moving trajectories are also have some
common sub-trajectories [20] [4]. In Figure 4.9(a), user’s moving trajectories are
also have some common sub-trajectories, but the dummy X’s trajectories have no

similar portions of the trajectories.

4.3.3 Multiple Rotation Dummy Generation (M ROTDG)

Considering about that patterns usually has partial similarity, it is defined ¢ to
measure the similarity of dummy trajectories and user trajectory. If 6 = 0%, these
two trajectories don’t have any everlap, if 6 = 100%, these two patterns are totally
the same. Let B denote a user moving behavior set that we can represent B(U;) =
01,09, ..., 0 where §; means the similarity-of trajectory i with probability p;. All
the moving behavior §; are compare to the most frequent trajectory. Considering
in rotation dummy generation, we try to make all the trajectories satisfy user’s
profile. Our key idea is that we rotate the whole trajectories with the same angle
0 at the rotation point i to solve the selection problem. If a user is on the branch
point, dummy will be able to select the suitable dummy trajectory. Figure 4.9(c)
shows an example of selection rotation point as . The selection of the rotation
point ¢ and rotation angle # are proposed as follows:

Possibility Based Method(PBM): FEach dummy will generate k different
dummy trajectories with different probability. These & dummy trajectories have
its own solution space. We can divide it into two situation - rotation angle selec-

tion and rotation point selection. The key idea of this method is to find out the

32



Probability Pattern
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9,
o0 10% 30% 70%
90% 10% 30% 70%
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70% 20% 10% 20%
70% 20% 10% 20%
10% 10% 10% 10%
(a) (b)

Figure 4.10: Two methods of select intersection point in multiple patterns.

most probability in the sub-trajectories. In other words, we want to find out the
intersection ¢ which can calculate the maximum of Z?:o PL'(p;). a is the sum of
the location in each trajectory probability. Ewvery trajectory has its own solution
space about # and i, so we ¢an find out' the.overlap of rotation angles 6 easily.
First at all, we find out the rotation 'pént 4, whichrmakes Z?:o PL!(p;) maximum.
Depend on the rotation point, we find filtezrout some rotation angles in solution
space. The remaining rotation angles are 6.

Figure 4.9 shows a multiple trajectories of a real user. The candidate of rotation
point is in the whole trajectories. We sort the candidate positions in order of time
and position are shown in Figure 4.10(a), which probabilities with A = 70%, B =
10%,C = 10%, D = 30%. First at all, we exclude the important place(i.e., home)
and find out the highest probability to be the rotation point, in this example is the
position with 90% probability. Then we use this constraint to find out the suitable
rotation angle #. This method can guarantee most quality of user’s trajectory
privacy. In the method, selection will not be a problem. User and dummy will

have same sub-trajectories, so dummy also has the graph like 4.10(a) and know
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which trajectory should be chosen.

Trajectory Based Method (T'BM): The approach is different from the
possibility based method in rotation point selection. Possibility based method is
based on selection highest probability location for the intersection. Trajectory
based method is based on the number of trajectories. The intersection i selects the
largest number of trajectories pass through.

Assume that A = 10%, B = 10%,C = 10%,D = 70%, and we exclude the
important place and find out the location which has most trajectories pass through.
In Figure 4.10(b), the position with 30% probability will be chosen, not the position
with 70% probability. This method will guarantee most trajectories but not highest

probability.
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Chapter 5

Performance Study

In this section, we evaluate the performance of our proposed schemes and conduct
experiments to evaluate our dummy generation scheme. We first describe the
simulation model in Section 5.1 and we;will show the experimental results in Section

0.2

5.1 Simulation Model

In our simulation, we use two kinds of trajectory sets, one is the real data - INFATI
[17] data set and the other one is our trajectory generator. The INFATI data derive
from the INFATT Project, which was day to day movements of several private cars
on the road network of Aalborg. We select one car’s moving log for the real data
set. In order to discuss conveniently. We use integer as unit time instance and
set the whole time period from 0 to 50. The entire area within which the car has
been moving is divided into grid of size 100*100. Because the data set is sampling
every second when car drove, we assume the moving object send his request every
k seconds. k is default to be 30.
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Our trajectory generater is divided the space into 50*50 grid cells which size
is 10m*10m. Assume that the number of time slots is 20. Moreover, We sim-
ply assume that there exists k moving trajectories for each user with probability
p1, P2, ---pr and partial similarity dy, da, ..., 0, (i-e., the pattern has a starting point
and a destination point). Then, those grid cells between the starting point and the
destination are selected based on the nature of movements, (i.e., the next move is a
neighboring cell of the current location). Three movement types are implemented,
the horizontal movement, the vertical movement, and both. To emphasize the pri-
vacy threat of long-term observation, we implemented the prior work in [18] [19] as
scheme dummy. Suppose that adversaries are able to collect the query log in which
the movements of dummies and true users are recorded. Adversaries may explore
data mining techniques [23] to dis@over movement patterns of users.

To evaluate the simulationresult, pérformance metrics are Number of dummies,
Pattern Ezposure Rate, Corréct Rate ahd Query Cost for the evaluation.
Number of dummies: Number of dummies is the number of dummies needed to
satisfy the privacy profile
Pattern Exposure Rate:Pattern Ezposure Rate can be represented as the for-

The trajectory exposed by the attacker

mula Pattern Erposure Rate=
P The total time slots of trajectory

Correct Rate:Correct Rate is that the proportion of dummy selected the right
trajectory.

Query Cost:Query Cost is the communication cost defined in Section 4.2.2.
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5.2 Experimental Results

We will discuss the settings and prove that long term observation will expose user’s
trajectory and compare with the the Kido’s dummy [18] under different settings in
Section 5.2.1. In Section 5.2.2, we will compare our method in several aspects the
number of dummy and the saving of resource. Finally, we present the correct rate

of different approaches in multiple trajectories.

5.2.1 Comparison to Dummy

We use the INFATI data set for the real data. In first experiment, we will show
that how many days of query logs if the attacker collects will exposure the whole
trajectory. We pick up one car which data swas collected during December 2000
and January 2001 and our trajectory generator for the experiment. We control the
coefficient of variation of query’s sampling. Assume that user’s query is discrete
uniform distribution, then compare“with different query probability is 20%, 50%,
80%, 100%. We assume the adversaries user the sequential pattern mining and
the support is set to two and the confidence is set to 50%. Figure 5.1 shows the
experimental results. The needed days is shown on the X-axis and the pattern
exposure rate is on the Y-axis. pattern exposure rate represents the total pattern
guessed by the adversaries. If the pattern exposure rate is closed to 100% that means
the attacker has high probability to hit the real trajectory. We can see the result
in Figure 5.1 that user’s moving trajectory can be exposed as long as the attacker
get enough moving logs. If we assume the attacker set the minimum support 2 and
the minimum confidence 50%, we can see the result in Figure 5.1(a)and(b) that the

lower the query sample the more the attacker should collect. If the query sampling

37



100

80
S
°
> 60
o
o
x
L
£ 40
g
&
o
20
0
100
80
S
e
> 60
o
o
X
1]
£ 40
g
&
[a

20

Figure 5.1: The needed day of exposure a user’s whole trajectory.
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arrives to 100%, the attacker only need 3 days and 6 days moving logs to exposure
the user’s whole trajectory in our pattern generator and INFATI data, respectively.

We now investigate the impact of movement patterns. Suppose a privacy profile
is set to SD = 20%, LD = 10%, and dst = 2.8. We compare our rotation pattern
scheme with the dummy scheme. Figure 5.2 shows the experimental result. In
Figure 5.2(a), it can be seen that when the amount of data collected increases
with the time, both SD and LD of the dummy scheme increase. This agrees with
our claim that long-term privacy threat exists if dummies do not follow long-term,
consistent movement patterns. Once collected a sufficient amount of data, the true
user trajectory is completely exposed, that results in 100% disclosure in term of SD
and LD. On the other hand, our scheme is able to satisfy the specified disclosures
(i.e., SD = 20%,LD = 10%), showing that, generating dummies with patterns

could prevent both short-termi*and long-term location privacy.

5.2.2 Sensitive Analysis of Dummy Generation Scheme

Next, the performance of our two proposed schemes is compared. We also use
the real data for this experiment. The proposed random pattern scheme, rotation
pattern scheme and k-intersect scheme are denoted as Random, Rotate and k-
intersect, respectively. As mentioned earlier, when the privacy requirements are not
satisfied, additional dummies are included. However, a larger number of dummies
increases query message lengths, leading to a considerable cost in communication
and client processing. Thus, one should use as minimum number of dummies as
possible to satisfy user privacy profiles or use the cache scheme. The performance
of schemes Random, Rotate and 2-intersect with the value of SD varied is shown
in Figure 5.3(a), where LD = 50% and dst = 2.8. Since SD is related to short-
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Figure 5.4: The exposure rate of scheme Dummy, Random, Rotate and k-intersect
with the number of dummies varied.

term disclosure, these scheme Random, Rotate and 2-intersect use almost the same
number of dummies to meet the requirement, of SD. Furthermore, an experiment
of varying LD is conducted with D = 50%. and dst = 2.8. Figure 5.3(b) shows
the experimental result. It can be seen that if we make an intersection between
two trajectories that may uses & smaller number ¢f dummies than scheme Random.
By intersecting trajectories, scheme Rotate and k-intersect are able to increase the
number of possible trajectories. Hence, these two scheme could generate smaller
number of dummies to meet the privacy requirement.

One of the benefits in generating intersection dummy pattern is that even if
some position exposed by the attacker, the whole trajectory is still not exposed.
When some place is disclosed, it also means the positions nearby these place are
exposure. We can use the intersection dummy to solve this problem. See the result
in Figure 5.4, we can clearly see that if some position exposed, Dummy will expose
the whole pattern. Provided that dummy has intersections, we can clearly find

that the Pattern Ezposure Rate disclose the least percentage in the user’s whole
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pattern. The more intersection dummy has, the least pattern exposed.

Another issue is the waste of resource. Considering in the communication cost
of our method, we proposed a evaluation function - Query Cost and compare our
methods in Figure 5.5. We set the answer message size - SZ to be 10. We compare
into two situation - with cache and without ¢ache to see the result. Figure 5.5(a)
and (b) represent dummy without caching and Figure 5.5(c) and (d) represent
dummy with caching. In Figure 5.5, we observe that if user want to keep highly
privacy, the query cost will be higher. All of our methods only have slightly differ-
ence in Figure 5.5(a) and (c¢). However, in Figure 5.5(b) and (d), both intersection
dummy schemes have a better performance than random scheme in terms of LD,
especially in 2-intersect dummy. That is because the intersections can reduce the
total number of dummies. If we cache the data for re-use, we can compare 5.5(a)(c)
and Figure 5.5(b)(d) and get the calculation that cache can bring a little benefit
depending on the number of intersections. If dummy has more intersections, the

cache scheme can re-use more.
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5.2.3 Experimental Results of Dummy Generation Schemes

for Multiple Trajectories

In this experiment, we discuss about the situation that user has more than one
frequent patterns. We investigate the influence of the different frequent pattern
probability p1,ps...,pr and the partial similarity 1,9, ...0,. We propose correct
rate that means the probability of selecting accurate dummy trajectory.

First of all, we discuss the different frequent pattern probability. Assume the
user has several frequent trajectories with probability which obey zipf-like [24]
distribution. Use our trajectory generator to generate several trajectories with

different probability, every trajectory’s probability describe as follows:

3 k=1..a
P.=y= ; )’ (5.1)
0 otheérwise

which means the different user’s moving-habits. We can modify the value of # and
a to control the bias of user’s moving behavior. The value of § means the exponent.
If theta = 1, user will has a higher probability to move on frequent trajectory. In
the other hand, if theta = 0, zipf-like distribution will obey an uniform-distribution
that user will has the same probability on each trajectory. The value of a represents
the number of user’s frequent trajectories. We assume these frequent trajectories
has partial similarity 06 = 50% to the highest possible trajectory. Compared with
the four methods(M PwS, MRANDG, PBM, TBM) we proposed before and
discuss the two evaluation of Correct Rate and Query Cost.

First of all, we discuss the influence of §. The amount of user’s frequent tra-

jectories is set to 5 and the size of package SZ is set to 10. We can observe the
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result in Figure 5.7, M PwS can keep the quality of privacy to the 100% but the
Query Cost is also too high to be apply. The selection method M P.S proposed for
lower the Query Cost and try to keep the quality of privacy as high as possible.
PBM has a better performance in all the selection methods, especially in people
whose highest possible trajectory are more frequent trajectory than other trajec-
tories. Although it cannot guarantee the 100% user privacy, but the Query Cost
is less than the method M PwS. If user has many uniform frequent patterns, the
performance of all the method are about the same.

Then we debate the different number of frequent trajectories(a). Considering
about the real situation - user has a frequent trajectory, we set the value of § to be 1
and the size of package SZ is also set to 10. We can see the result clearly in Figure
5.8, the more patterns will causesthe higher ‘Query Cost in method M PwS. The
selection methods can guarantee the higher quality of privacy, if user’s frequent
trajectories are less and the Query Cost are still lower than the method M PwS.
Especially, the method TTBM ¢an ensure high quality of privacy. Method PBM
are similar to the method T"BM when the amount of patterns are less because it
consider about the most patterns not the most possibly. When patterns become
less, these two method are always the same meanings.

Finally, we consider the partial similarity. We divide these trajectories into the
following situations: highly partial similarity S(H), low partial similarity S(L), no
partial similarity S(0). S(H) means the other trajectories have about 90% to the
most frequent trajectory, S(L) have 30% and S(0) have no similarity. We gen-
erate three trajectories with probability obey by uniform distribution(33%). The
simulation result are shown in Figure 5.9. If each trajectory has highly similarity,

the performance of TBM and PBM will better than others and it can guarantee
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almost 100% quality of privacy. If the similarity become lower or no similarity,
these methods’ performance will tend to change into the same. Using the method
MROTDG, Query Cost will become lower. If each trajectory has highly partial

similarity, it is more suitable to using M ROT DG.
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Chapter 6

Conclusions

We observed that existing works using dummies to protect location privacy are
still exposed to privacy threat in a long run. Explicitly, by exploring data mining
techniques, adversaries may beable to.determine user movement patterns, thereby
invading user location privacy. To deal with this problem, we proposed two schemes
to derive dummy trajectoriesy they arerrandom scheme and intersection scheme.
Specifically, random pattern scheme randemly generates dummies with consistent
movement patterns, while the rotation pattern and k-intersect explore the idea of
creating intersections among moving trajectories. We also consider about lower
the communication cost and the problem of multiple path. Our preliminary per-
formance study shows that by generating dummies with movement patterns, our
proposal outperforms the existing dummy-based scheme for protecting trajectory

and locations of mobile users.

51



Bibliography

[1]

R. Agrawal and R. Srikant. Mining sequential patterns. Proc. of the 11th

IEEFE International Conference on Data Engineering (ICDE), 00:3-14, 1995.

A. R. Beresford and F. Stajano. Location privacy in pervasive computing.

IEEFE Pervasive Computing, 2(1):46-55, 2003.

A. R. Beresford and F. Stajano. Mix zenes: User privacy in location-aware
services. In Proc. of the-2nd IEEE Workshop on Pervasive Computing and

Communication Security-(PenSec), 2004.

H. Cao, N. Mamoulis, and D."W, Cheung. Mining Frequent Spatio-Temporal
Sequential Patterns. In Proc. of the 5th IEEE International Conference on

Data Mining (ICDM), pages 82-89, 2005.

D. L. Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. Communications of the ACM, 24(2):84-90, 1981.

R. Cheng, Y. Zhang, E. Bertino, and S. Prabhakar. Preserving user location
privacy in mobile data management infrastructures. In Proc. of the 6th inter-
nation workshop on Privacy Enhancing Technologies (PET), pages 393-412,

2006.

52



[7]

[10]

[11]

[12]

C.-Y. Chow, M. F. Mokbel, and X. Liu. A peer-to-peer spatial cloaking algo-
rithm for anonymous location-based services. In Proc. of the 14th ACM Inter-

national Symposium on Advances in Geographic Information Systems (ACM-

GIS), 2006.

A. Friday. A Lightweight Approach to Managing Privacy in Location-Based

Services. In Proc. of the Equator Annual Conference (EAC), 2002.

B. Gedik and L. Liu. A Customizable k-Anonymity Model for Protecting
Location Privacy. In Proc. of the 25th IEEE International Conference on

Distributed Computing Systems (ICDCS), 2005.

B. Gedik and L. Liu. Location privacy in mobile systems: A personalized
anonymization model. In Prde. of the 25th IEEE International Conference on

Distributed Computing Systems (IODCS); pages 620-629, 2005.

M. Gruteser and D. Grunwald. “Amonymous usage of location-based services
through spatial and temporal /¢loaking.” In Proc. of the First International
Conference on Mobile Systems, Applications, and Services (MobiSys), pages

31-42, 2003.

M. Gruteser and D. Grunwald. A methodological assessment of location pri-
vacy risks in wireless hotspot networks. In Proc. of the First International
Conference on Security in Pervasive Computing (SPC), volume 2802, pages

10-24, 2003.

M. Gruteser and D. Grunwald. Enhancing location privacy in wireless lan
through disposable interface identifiers: A quantitative analysis. ACM Mobile
Networks and Applications (MONET), 10(3):315-325, 2005.

53



[14]

[16]

[17]

[18]

[19]

[20]

[21]

J. Han and M. Kamber. Data Mining: Concepts and Techniques. Academic

Press, 2001.

J. I. Hong and J. A. Landay. An Architecture for Privacy-Sensitive Ubiqui-
tous Computing. In Proc. of the Second International Conference on Mobile

Systems, Applications, and Services (MobiSys), pages 177-189, 2004.

L. Huang, K. Matsuura, H. Yamane, and K. Sezaki. Enhancing wireless loca-

tion privacy using silent period. In Proc. of IEEE Wireless Communications

and Networking Conference (WCNC), pages 11871192, 2005.
C. Jensen, H. Lahrmann, S. Pakalnis, and J. Runge. The infati data, 2005.

H. Kido, Y. Yanagisawa, and T. Satoh. An Anonymous Communication Tech-
nique using Dummies forslocationsbased Services. In Proc. of the Second

International Conference on Pervasive Services (ICPS), pages 88-97, 2005.

H. Kido, Y. Yanagisawa, and T Satoh. Protection of Location Privacy using
Dummies for Location-based Services. In Proc. of the 21th IEEFE International

Conference on Data Engineering Workshop (ICDEW), page 1248, 2005.

J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: a partition-and-
group framework. In Proc. of the 26th ACM Conference on Management of

Data (SIGMOD), pages 593-604, 2007,

M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The New Casper: Query Pro-
cessing for Location Services without Compromising Privacy. In Proc. of the
32nd International Conference on Very Large Data Bases (VLDB), pages 763

— 774, 2006.

o4



[22] W.-C. Peng and M.-S. Chen. Developing data allocation schemes by incremen-
tal mining of user moving patterns in a mobile computing system. IEEFE Trans-

actions on Knowledge and Data Engineering (TKDE), 15(1):70-85, 2003.

[23] W.-C. Peng, Y.-Z. Ko, and W.-C. Lee. On mining moving patterns for object

tracking sensor networks. In Proc. of the 7th International Conference on

Mobile Data Management (MDM), pages 41-44, 2006.

[24] G. K. Zipf. Human Behavior and the Principle of Least Effort. Addison-Wesley

(Reading MA), 1949.

95



