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摘    要 

在本篇論文中探討了利用假人的技術(Dummy-based anonymization 

techniques)來保護在行動環境中的使用者位置隱私權。利用製造移動方式接近

真人的假人可以保護到在行動環境中的使用者位置隱私權。然而，透過監控使用

者的長期的移動行為，他的移動路徑仍然會被暴露出來。我們認為當使用者的移

動路徑被暴露出來之後，他的位置也同時被暴露出來了。因此，為了保護用戶位

置隱私，保護使用者的移動路徑是關鍵的。我們提出了兩個製造一致的路徑的方

法，並且提出了三個測量的變數，分別是短期暴露率(short-term disclosure)、

長期暴露率(long-term disclosure)和距離差異(distance deviation)。除此之

外，我們也考慮到了使用者可能會有多條的習慣移動路徑，並提出方法加以保

護。實驗的結果證明我們所提出的方法能比目前的方法更能保護在行動環境中使

用者的位置隱私權。 

 

關鍵字：位置隱私權，使用者移動路徑，行動位置感知服務 

 



Abstract

Dummy-based anonymization techniques for protecting location privacy of mobile
users have been proposed in the literature. By generating dummies that move in
human-like trajectories, this method shows that location privacy of mobile users
can be preserved. However, by monitoring long-term movement patterns of users,
the trajectories of mobile users can still be exposed. We argue that, once the
trajectory of a user is identified, locations of the user is exposed. Thus, it’s critical
to protect the moving trajectories of mobile users in order to preserve user location
privacy. We propose two schemes that generate consistent movement patterns in
a long run. Guided by three parameters in user specified privacy profile, namely,
short-term disclosure, long-term disclosure and distance deviation, the proposed
schemes derive movement trajectories for dummies. Moreover, since a user may
has multiple frequent trajectories, we proposed several schemes to deal with this
scenario. Experimental results show that our proposed schemes are more effective
than existing work in protecting moving trajectories of mobile users and their
location privacy.
Keywords —Location privacy, user movement patterns, location-based services.
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Chapter 1

Introduction

Location-based services (LBSs) have emerged as one of the killer applications for

mobile computing and wireless data services. These LBSs are critical to public

safety, transportation, emergency response, and disaster management, while pro-

viding great market values to companies and industries. Due to the unrestricted

mobility of users in the mobile computing environments, users are often interested

in acquiring information or services related to their current locations. Thus, very

frequently locations information of users are submitted along with queries to the

LBS servers. Examples of such queries include finding the nearest restaurants to a

user (k nearest neighbor query) and finding ATMs within 500 meters from a user’s

current location (range query). While LBSs have shown to be valuable to users’

daily life, on the other hand, they also expose extraordinary threats to user privacy.

If not well protected, the location information of users may be misused by some

untrustworthy service providers or stolen by hackers. Once the location informa-

tion is exposed, adversaries may dig for cues to invades user privacy. Obviously, it

is important to protect location privacy.

Recently, the problem of location privacy preserving has received growing in-
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terests from the research community [2] [5] [15] [21] [18] [3] [16]. These studies aim

at protecting exact location information of users from the potential abuse of LBS

providers and hackers. Two primary approaches have been considered, including

1) trusted anonymizer based approach; and 2) client based approach. In the for-

mer, users submit their queries to the LBSs via a trusted server (which is different

from the LBS server), such as a base station in the cellular networks. This trusted

anonymizer transforms the exact locations of a number of users into a cloaked spa-

tial area in accordance with privacy requirements set by users in order to obtain

data or services from the LBSs [10] [21] [11]. The second approach assumes no

trusted server. Thus, clients are responsible for anonymizing their own location

information before transmitting queries to the LBS servers. By issuing several fake

locations along with its true location to the LBSs, clients may obtain redundant

information or services corresponding to the submitted locations while preserving

their location information [18] [19]. Unwanted information is filtered locally to ob-

tain the final query results. In both approaches, the true location of a user is either

1) not distinguishable from other users (the trusted anonymizer based approach),

or 2) not distinguishable from the fake locations (the client based approach). Since

a trusted server is not always available, in this paper, we tackle some issues faced

in the client based approach.

Motivation and Problems. Without relying on a trusted server, generating fake

user locations (called dummies1) for location-dependent queries has been shown

to be an effective way to preserve location privacy [18]. In addition to generate

dummies based on the user locations, these prior works propose to generate dum-

1We follow the terminology used in [18] to name the fake user locations as dummy locations

and dummies in short.
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mies based on realistic user movements. However, prior works don’t consider a

well-recognized observation, i.e., moving behaviors of users usually follow certain

patterns [22] [23]. To demonstrate user moving patterns of users, Table 1.1 shows

an example of real log data from INFATI [17]. INFATI is the first Intelligent Speed

Adaptation development project in Denmark. The project is carried out by Aal-

borg University. In this project, every car was equipped with a Global Positioning

System(GPS) and collects day to day movements of 20 private cars on the road

network of Aalborg during two months. The log data contains several attributes,

such as car’s id, driver’s id(one car may be driven by more than one person), data

and time, XY coordinate received from GPS receiver, speed and street code. Figure

1.1 shows one car’s trajectories, where the XY coordinate are the position coor-

dinates received from GPS receiver. By exploring data mining techniques such as

spatial-temporal sequential pattern mining [4] or moving pattern mining [22] [23],

adversaries only need to collect enough user’s moving logs and can get the frequent

moving patterns of user easily. Notice that once trajectories of users are disclosed,

adversaries are able to utilize external databases to find even user identity, which

incurs more serious disclose of location privacy. The above scenario is referred to

the linking attack problem in location privacy, showing the justification of protect-

ing user trajectories. Thus, generating dummies should consider not only realistic

user movements but also follow certain patterns.

The problem we study in this paper could be best understood by an example

shown in Figure 1.2. In the figure, the solid line denotes the moving trajectory

of a true user (denoted as T ) and the dotted lines are generated trajectories of

dummies (denoted as d1 and d2). Since true users usually exhibit certain human

moving behavior, one is able to identify the solid line as a true user based on the

3



id carid driverid rdate rtime xcoord ycoord SPD strtcord

991 12 0 91200 130310 553570 6315889 44 5490

992 12 0 91200 130311 553562 6315859 42 5490

993 12 0 91200 130312 553554 6315833 43 5490

994 12 0 91200 130313 553547 6315806 38 5490

995 12 0 91200 130314 553541 6315779 42 5490

996 12 0 91200 130315 553535 6315752 44 5490

Table 1.1: The real GPS log data

6316800

6318000

6319200

6320400

6321600

6322800

555000 555500 556000 556500 557000 557500

Figure 1.1: Moving trajectory of one example car.
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typical moving behavior of humans (as shown in Fig. 1.2(a)). Thus, it’s impor-

tant to generate dummy trajectories based on human moving behavior (as shown

in Fig. 1.2(b)). Even though this effort may reduce the chance of the true mov-

ing trajectory being identified, a long-term movement pattern can be collected to

filter inconsistent trajectories. For example, comparing the current trajectories

(in Fig. 1.2(c)) and trajectories collected in a different day (e.g., Fig. 1.2(b)), one

can tell T is the true trajectory of user. Once the moving trajectory of true user

is identified, locations (i.e., not only the current location but also the past loca-

tions) of the user is disclosed. Thus, it’s important to generate dummies that not

only demonstrate moving behavior of users but also follow consistent, long-term

movement patterns.

Given that the adversaries obtain a set of trajectories, they will have difficulty

determining the true trajectory of a user if users generate dummies following certain

movement patterns. However, the user trajectory is still disclosed to a certain de-

gree. Therefore, we use disclosure to denote the probability that the user trajectory

may be correctly identified by the adversaries. For example, in Fig. 1.2(c), three

trajectories are collected and thus the disclosure is 1
3
. To reduce the disclosure,

a naive approach is to simply increase the number of dummies, which however

incurs overhead in terms of query message length and thus communication and

client processing costs. Thus, in this paper, we propose to generate intersecting

dummy trajectories aiming at increasing the number of possible trajectories from

the adversaries’ perspective and thus decreasing disclosure of the user trajectory.

Nevertheless, an issue exists with this intersecting trajectories. When the gen-

erated trajectories are too close to the true trajectory, the locations of a user may

still be exposed, e.g., Fig. 1.2(d) shows an example where the user’s moving trajec-
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d1 d2
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T

d1 d2

T

d1 d2

Figure 1.2: Moving trajectories of user and dummies.

tory (the shadowed path) can be identified. Thus, our design of dummy generation

schemes also take the factor of distance deviation among trajectories into consid-

eration. Our approach is to allow users to set up their privacy profile in terms of

disclosures (both short-term and long-term) and distance deviation (more details to

be discussed in Section 2). We propose two schemes, namely, random pattern and

intersection pattern, to generate dummy trajectories based on the privacy profile.

Furthermore, since a user may have more than one moving trajectories, we develop

several schemes to protect multiple user moving trajectories with the purpose of

using minimal number of dummies. Performance of proposed schemes is compara-

tively analyzed and sensitivity analysis on several design parameters is conducted.

Experimental results show that by generating dummies based on moving patterns,

our schemes perform better than the existing techniques.

Organization. The rest of this paper is organized as follows. We first describe

some related works in Section 2. Section 3 presents preliminaries, including attacker

model and user profile. Our proposal of dummy trajectory generation schemes and

6



the selection of multiple path are presented in Section 4. Section 5 shows our

performance study. Section 6 concludes this paper.
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Chapter 2

Related works

A significant amount of research efforts have been elaborated on location pri-

vacy. Generally speaking, methods of guaranteeing location privacy could protect

either user’s identification or user’s location. Because most Location Informa-

tion(LocInfo) can be a variation of the definition introduced in [8], the triple of

the following form: Position, Time, ID. Thus, LocInfo is defined as a combination

of the “Position” that the entity with identifier “ID” maintained at time “Time”,

within a given coordinate system. Position and ID are considered as the most

important part in LocInfo. Protecting identifier is to hide user’s identifier that

attacker cannot take apart who is exactly in this position at this time. Different

from ID, Protecting position is to protect user’s location from being disclosed that

the attacker cannot recognize the user’s exactly position at this time.

Specifically, to protect ID in LocInfo, the authors in [2] [5] proposed the con-

cept of the mix zone [2] [5]. They assumed the LBS application providers are

hostile adversaries, and suggested that application users hide their own identifier

from providers [3]. So they proposed the mix zone concept in which a trust third

party removes all samples before is passes location samples to the LBS application

8



providers. Instead of static mix zones, the authors in [16] implemented a mix zone

concept by exploring a silent period. That protects user from correlation attack

which means a method of utilizing the temporal and spatial correlation between

the old and new pseudonym of nodes.

To protect user location, a consider amount of research works are conducted [15]

[21] [18] [19]. As described before, these works could be further classified according

to the architecture of location privacy. With trusted servers, the authors in [13] [12]

[11] proposed a cloaking algorithm to blur the resolution of location information

along spatial and temporal dimensions. The above algorithm exploits k-anonymity

concept. Based on k-anonymity, the authors in [10] [9] devised a personalized and

customized k-anonymity model which assume a different k-anonymity requirement

for each user. A framework Casper was developed in [21], where a grid-based

pyramid structure is implemented to index all user locations. Moreover, privacy-

aware query processing is developed when cloaked spatial areas are used as query

predicates. Without trusted servers,the authors in [7] proposed 1 P2P structure to

protect user’s privacy. Explicitly, before issuing any location-based service queries,

mobile users will form a group from his/her neighboring peers via multi-hop routing.

Then, the spatial cloaked area is computed as the region that covers the entire

group of peers. In addition, the authors in [18] [19] proposed an algorithm to

generate dummy locations to protect not only location privacy but also true user

identifications.

To the best of our knowledge, prior works neither address location privacy

issues from long-term observation nor emphasize the necessity of protecting user

moving patterns, let alone generating dummies with moving patterns. This paper

differentiates from other papers.
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Chapter 3

Preliminaries

In this section, some preliminaries are given. In Section 3.1, assumptions and

notations used in this paper are presented. The attacker model and user privacy

profiles are described in Section 3.2.

3.1 Assumptions and Notations

We assume no trusted server available for location anonymization. Wireless net-

works are only responsible for communication and will not reveal locations of mo-

bile users. Mobile clients are location aware (via GPS or network based positioning

techniques). To facilitate the presentation of our paper, suppose that users are free

to move in the space divided into grid cells. Each grid cell has a cell identifier (x, y)

indicating that this cell is located at the x column and the y row of the space. The

granularity of this representation is determined by the number of grid cells. With

larger number of grid cells, finer granularity we have. Note that using cell identi-

fication could achieve a certain level of location privacy even if adversaries guess

the true location among a set of location data.

10



Upon a user query message, the mobile client Ui first sends to the LBSs through

an authenticated and encrypted connection that adversary cannot hijack the mes-

sage. A query message issued by a mobile user Ui to a LBS server at time slot

t is defined as M = {uid, 〈Lt
i, L

t
d1, L

t
d2...L

t
dn〉Q}, where uid is the pseudonym

user identification, Lt
i is the true user location, Lt

d1, L
t
d2, ..., L

t
dn are n dummy lo-

cations, respectively, and Q is the location-dependent query issued. Therefore,

given m consecutive queries, we define the trajectory of a moving client in 2-

dimensional (2D) spaces as a sequence {L1
i , L

2
i , ..., L

m
i }, while the trajectory of

dummy x is { L1
dx, L

2
dx, ..., L

m
dx}) where La

i ∈ R2 (a = 1, ..., m) describe locations in

ta, t1 < t2 < ... < tm ∈ T are irregularly spaced but temporally ordered time in-

stances, i.e., gaps are allowed. Here, Lj
i (and Lm

dx, respectively) denotes the location

of user Ui (and dummy dx), respectively at the jth time slot. Denote a trajectory

of mobile user Ui as Pi = {PL1
i,, PL2

i , ..., PLm
i }, where PLj

i is the location of mobile

user Ui at the jth time slot. Suppose that the length of trajectories is m and the

maximum user’s moving velocity is defined as Vmax.

3.2 Attacker model

In this section, we describe how adversaries collect and utilize data mining tech-

niques to mine user moving patterns. Explicitly, adversaries can sequential pat-

tern mining to discover user moving patterns, thereby disclosing user trajecto-

ries. [1] [14] [4]. Consider an example shown in Figure 3.1, where Table 3.1 is the

moving log. As can be seen in Table 3.1, there are five movement sequences, where

each location in a movement sequence is the cell identification defined in Section

3.1. Given the minimum support 2, it can be verified that a moving pattern (i.e.,

11



Figure 3.1: Mobile behavior of mobile user A and his dummies (i.e., X and Y )

(7,3)⇒(6,3)⇒(5,2)⇒(4,2)⇒(3,2)) is discovered.

Once moving patterns are discovered, one could easilyidentify true user posi-

tions, no matter how dummies are generated. The main theme of this paper is

to prevent a privacy threat resulting in long term movement observations. Three

formal definitions of privacy preservation are given as follows:

Definition 1. Given an area size A ∈ R+, a mobile user’s trajectory Pi and

n dummies, the probability of successfully identifying the true user’s trajectory is

smaller than the profile user define.

Definition 2. Given an area size A ∈ R+, a mobile user’s current location L

and n dummies, the probability of successfully identifying the true user’s current

location is smaller than the profile user define.

Definition 3. Given an area size A ∈ R+, a mobile user’s trajectory Pi and n

dummies, the average distance difference among trajectories of dummies and the

user must be larger than the profile user define.

By these definitions, an adversary cannot distinguish user’s trajectory or loca-

tions. As such, both location and trajectory privacy can be preserved. Users may

12



User Id T1 T2 T3 T4 T5

Day 1 User A (7,3) (6,3) (5,2) (4,2) (3,2)

Dummy X (6,1) (6,2) (5,2) (4,1) (3,1)

Dummy Y (3,4) (2,4) (1,4) (1,3) (1,2)

Day 2 User A (7,3) (6,3) (5,2) (4,2) (3,2)

Dummy X (2,2) (2,1) (3,1) (4,1) (5,1)

Dummy Y (5,4) (5,3) (4,3) (3,3) (2,3)

Table 3.1: An example of query log for mobile user A

set up their privacy profile, which is specified by the following three parameters:

1. Short-term Disclosure (SD): This parameter specifies requirement for

protecting the current user location. Thus, given a set of current locations

(including true and dummy locations), SD is the probability of successfully

identifying the true user location, i.e., SD = 1
m

∑m
i=1

1
|Di| , where m is the

number of time slots in a trajectory, Di is the set of true and dummy locations

at the ith time slot, and |Di| is the size of Di.

2. Long-term Disclosure (LD): This parameter specifies requirement for pro-

tecting the user trajectory. Given n trajectories, among which k trajectories

have intersected with other trajectories and (n− k) trajectories do not have

any intersection. Thus, for those (n−k) trajectories, we have exactly (n−k)

possible trajectories. For those k trajectories, we may enumerate all possible

trajectories by exhaustively traversing intersections from the start point of

each trajectory to the end point. In order not to distract readers from the

main theme of this paper, we simply denote the number of possible trajecto-
13



Time slot 1 2 3 4 5 6

True user (7,3) (6,3) (5,2) (4,2) (3,2) (2,2)

Dummy X (6,1) (6,2) (5,2) (5,3) (6,4) (7,4)

Dummy Y (1,4) (2,4) (3,4) (3,3) (3,2) (3,1)

|Di| 3 3 2 3 2 3

Dist 4.2 2.6 1.4 1.4 1.8 3.4

Table 3.2: Privacy measurement of dummy trajectories.

ries by BFS(Breadth-First-Search) among k trajectories as Tk. Consequently,

we have LD as 1
Tk+(n−k)

.

3. Distance deviation: The distance deviation (dst) is the average of distance

difference among trajectories of dummies and the user. As a result, dst of

mobile user Ui is formulated as 1
m
∗ 1

n
∗∑n

k=1

∑m
j=1 dist(PLj

i, Lj
dk), where dist

is distance between the true user location and dummy locations in unit of

cell size.

Figure 3.2 shows an example of generated dummy trajectories with intersec-

tions, while Table 3.2 shows the trajectories as well as the number of current

locations (Di) and distance deviation at different time slots. Thus, we can de-

rive SD = 1
6
(1

3
+ 1

3
+ 1

2
+ 1

3
+ 1

2
+ 1

3
) = 7

18
. Furthermore, for each time slot, we

could derive distance differences between dummy and true trajectories to obtain

the average distance deviation as 2.47. To facilitate the derivation of total possible

trajectories, Figure 3.2(a) is transformed into Figure 3.2(b), where intersection

points (i.e., cell (5, 2) and (3, 2)) are marked. Since these three trajectories have

two intersection points, it can be verified that we have 8 possible trajectories (i.e.,
14



(a)

(b)

Figure 3.2: Trajectories with Intersections.
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ad, aLe, aLf, bd, bLe, bLf, ce, cf). As such, we could have long-term disclosure

LD = 1
8+(3−3)

= 1
8
.
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Chapter 4

Generating Dummies with

Patterns

Given a privacy profile, our goal is to generate dummy trajectories that satisfy the

user-define parameters in privacy profile (SD, LD, dst). In this section, we propose

several schemes, namely, random pattern scheme and intersection pattern-based

schemes to generate dummies that exhibit long-term user movement patterns.

4.1 Random Pattern Scheme

In this scheme, the starting point and the destination of a dummy are first selected.

Then, the grid cells between the starting point and the destination are determined

based on the speed of a dummy and four movement types, including horizontal

movement, vertical movement, both and stay in the current position. Because the

humans moving speed is limited, the velocity of dummies should also be limited

(i.e. smaller than Vmax). Figure 4.1(b) is an easy example with random dummy

generation.
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In this scheme, a dummy will move randomly from the starting point towards

the destination. This naive scheme demonstrates that even after a long term obser-

vation, it’s difficult for adversaries to identify true user since dummies also exhibits

long term, consistent movement patterns. Given the original user moving trajec-

tory in Figure 4.1(a). Figure 4.1 shows a dummy trajectory generated by random

pattern scheme. However, without taking into account factors such as distance de-

viation, this scheme simply include more dummies when the privacy requirements

are not satisfied.

(a) (b)

T T

D

Figure 4.1: (a)original pattern (b)random pattern

4.2 Intersection Pattern-based Scheme

The main idea in this scheme is to have some intersections between trajectories of

dummies and the real user that can generate more possible trajectories. Adversaries

are harder to identify a true user trajectory from a set of possible trajectories. The

benefits of using intersection pattern scheme are described below. First, if the num-

ber of intersections among a user trajectory dummy and trajectories are increased,

one can use smaller number of dummies to satisfy the LD in user profile. Second,

it is hard for adversaries to tell which trajectories are made by dummies. Third, if
18



dummies have some intersections with true user by using caching technique, data

requested by dummies are used by a true user in his future movement.

In this intersection pattern scheme, generated dummy trajectories should ful-

fil the privacy profile of the user. Since there are three requirements in privacy

profiles, our approach is to first select intersections from the candidate set. The

candidate set depends on some constraints(i.e., important place, query cost) which

we will discuss later. Afterward, our approach derive the solution space for the

requirement of distance derivation. Then, within this solution space, we obtain

the short-term and long-term disclosures (i.e., SD and LD). The trajectories with

disclosures smaller than what specified are selected as dummy trajectories. With

proper selection of dummy trajectories, we can minimize the number of dummies

so as to satisfy the user privacy requirements. In view of the concept we mentioned

above, we proposed two kinds of intersection dummy generation: rotation dummy

generation and k-intersect dummy generation.

4.2.1 Rotation Dummy Generation

Given a user trajectory, we generate a new trajectory for a dummy by rotating

the known user trajectory in the rotation pattern scheme. To perform a rotation

on a user’s sequential pattern, the rotating point and the rotating angle must be

decided. Clearly, the rotation point of user trajectory is an intersection point.

Consider Figure 4.2 as an example, where the dotted point is the rotate point and

θ is the rotate angle.

In order to derive the solution space for the distance derivation (i.e., dst), both

the rotation angle and the rotation point within a true user trajectory have a great

impact on the distance deviation. To simplify the derivation of distance deviation,
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Figure 4.2: An example of executing rotate pattern scheme
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Figure 4.3: Solution space for distance derivation
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assume that we have a true user trajectory in Figure 4.3(a), we assume the real

user’s moving speed is v and the distance between two consecutive movements can

be represented as vt. The rotation point is the location at the ith time slot in a true

user trajectory, denoted as (Xi, Yi), and the rotation angle is θ. d is the distance

difference between the location of a true user and that of a dummy at the (i+1)th

time slot. According to the cosine theorem, we have d =
√

2|vt|√1− cos θ. Hence,

we could derive that the distance deviation of these two trajectories as follows:

dstr =
1

m
∗ ((d + ... + id) + (d + ... + (m− i)d))

=
√

2|vt|
√

1− cos θ ∗ (
i∑

j=0

j +
m−i∑
j=0

j)

If user trajectories are not straight lines, the above derivation is still held.

Consider two realistic trajectories in Figure 4.3(b). In order to make the distance

of two corresponding points at (i + 1)th time slot be d, we could dynamically set

up the dummy’s speed to v′(0 5 v′ 5 Vmax). The distance of the following points

along these two trajectories is the multiple of d. Similarly, we can get the following

formulas:

d =
√

(vt)2 + (v′t)2 − 2vv′t2 cos θ

Because v and v′ are also constant, we can derive to the following formula.

dstr =
√

C1 − C2 cos θ ∗ (
i∑

j=0

j +
m−i∑
j=0

j), whereC1andC2areconstraints
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Figure 4.4: An example of the rotation pattern scheme.

From the above derivation, we could conclude that both the rotation angle (i.e.,

θ) and the rotation point (i.e., i) have an impact on the distance deviation. As-

sume that we have n dummies trajectories and the distance deviation of n dummy

trajectories is dstn. If one dummy is added into the set of n dummies, the (n + 1)

dummies should be larger or equal to the requirement of distance deviation (i.e.,

dst). Thus, we have the following formula:

n

n + 1
dstn +

1

n + 1
dstr ≥ dst

Consequently, when one dummy is added into the current set of dummies, this

dummy should have a constraint on dstr ≥ (n + 1)dst − n(dstn). Therefore, we

could have a solution space shown in Figure 4.3(c). For each point (expressed

by (θ, i)) in the solution space, we should calculate the corresponding disclosure.

Hence, a solution point with the minimal hit probabilities is selected. If the hit

probabilities are still larger than the required hit probabilities, one should repeat

the above procedure to add one additional dummy until the all privacy criteria are

satisfied.
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For example, consider a true trajectory (the line marked with T) in Figure 4.4(a)

and a user privacy profile (i.e., SD = 40%, LD = 10%, dst = 2.1). Initially, there

is no dummy (i.e., n = 0) and dst0 = 0. As such, we could have dstr ≥ (0+1)∗2.1.

Table 4.1(a) show some selected possible solution space when the number of dummy

is 0. In Table 4.1(a), the solution (i.e., (120o, 5)) is selected and then n is increased

to 1. The value of dst1 is updated accordingly. However, since disclosures are still

larger than the required values (i.e., 56.25% ≥ 40% and 25% ≥ 10%), we should

add one more dummy to reduce the disclosures. Following the same procedure, we

have dstr ≥ (1 + 1) ∗ 2.1− 1 ∗ 2.8 and Table 4.1(b) is the solution space when the

number of dummy is one. From Table 4.1(b), one could select (80o, 6) since the

corresponding disclosures is smaller than the required values and it needn’t to add

one more dummy. Hence, Figure 4.4(b) shows the final dummy trajectories.

If we can generate more intersections between each trajectory1, we can use less

dummies to generate more possible trajectories for lower disclosures. Assume we

add one dummy d2 in Figure 4.5, dummy d2 has intersecttions with real user T

and dummy d1. The intersection of trajectory i and j denotes as Ii,j. We can

indicate the distance between IT,d1 and Id1,d2 is L, and the distance between IT,d2

and Id1,d2 is D in Figure 4.5. Assume the rotation angle between T and d1 is α

and rotation angle between T and d2 is β, we want to find the suitable rotation

point and rotation angle that can make d2 intersect with d1 and T . We use sine

theorem in Figure 4.5.

D

sin(β − α)
=

L

sin(180◦ − β)

Then we can derive the following formula.

1Note that: not only between user and dummy
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θ i SD LD

120 5 56.25% 25%*

50 3 56.25% 25%

180 1 56.25% 25%

(a). Solution space when n=0

θ i SD LD

170 8 37.5% 16.67%

120 7 37.5% 12.5%

80 6 39.6% 8.33%*

(b). Solution space when n=1

Table 4.1: A solution space.

Θ β

Θ β α

Θ α

Θ β

Θ β α

Θ α

Figure 4.5: Generate more intersections between dummy trajectories.
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If β ≥ α

m− i

D
≥ L

D
=

sin(180◦ − β)

sin(β − α)
=

sin β

sin(β − α)

If β < α

m− i

D
≥ L

D
=

sin(180◦ − α)

sin(α− β)
=

sin α

sin(α− β)

From the above derivation, we could reduce the candidate sets of rotation point

i and rotation angle β because i and β must satisfy the formula to make another

intersection. Consequentially, the solution space is further reduces. Based on

achieving user’s all requirements, when adding one dummy each time, we intend

to generate more intersections to reduce the total number of dummies.

4.2.2 K-intersect Dummy Generation

Rotation dummy generation only has one intersection between user’s trajectory

and dummies. If the number of intersections between a user and the dummies are

increased, it is more difficult for adversaries to figure out the user’s true trajectory

and LD is thus decreased. But the dst is also influence a lot. Besides, in the

situation that attackers has some background knowledge of users, the intersections

between a user and the dummies can decrease the exposure of users’ trajectory

and thus protect users’ location privacy. In this scheme, we increase the number

of intersections between user trajectory and the dummy trajectories.

This scheme selects k points from the intersection candidate set to be the inter-

section points. Then the paths between the intersection points by the randomized

dummy generation. The intersection points can be represented as C = C1, C2, ..., Ck

where Ci is the ith intersection point. The trajectory not included by the intersec-
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T

D

Figure 4.6: An example of 2-intersect pattern scheme

Figure 4.7: The problem of multiple intersections

tion points, the rotation dummy generation is used. Explicitly, C1 and Ck can be

regards as the rotation points and the following formula is used:

(m− k) ∗ dstr + k ∗ dstk

m
= dst

=⇒ dstr = m ∗ dst− dstk ∗ k

m− k

dstk means the distance deviation and a means the length of trajectory between

the cutting points C1 and Ck. The combinations of the paths describe above

will be outputted as the dummy’s moving pattern. An example of 2-intersect

dummy generation example is shown in Figure 4.6, where the dotted circles are the

intersection points. The trajectory in dotted square is generated by randomized

dummy approach and beyond the square is generated by rotation dummy approach.

Note that increasing the number of intersection points is not always good. Be-

cause the more intersections between user’s and dummy’s trajectories the less dis-

tance derivation the user has. For example, in Figure 4.7, the dummy’s trajectory
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is too closed to user trajectory. That will cause the injury of dst and attacker

may break user’s privacy level. In this paper, we set the value of k is two to make

more intersection than the rotation dummy generation and not hurt the quality of

privacy in value dst.

As mentioned before, the selection of intersection candidate sets depends on

several factors. We explore two factors to select candidate sets. First, the candidate

sets should not be an important place to the user. For example, if we choose a users

home as the intersection point, dummies and the user will stay in the same cell for

a long period of time. Therefore the dummy cannot effectively protect the users

location privacy. Second, in order to increase the cache utilization, we develop a

cache scheme to determine intersection points in which users are likely to visit.

To determine which places are important, we should consider the staying time

and sensitive places. Obviously, choosing a place that the user stays for a long

time as the intersection point will decrease the location anonymity. The other

type of important place is sensitive area [6], sensitive area means the places(e.g.,

hospital, nightclub) user don’t want people know that he is inside. For example,

when shopping in a mall, most people may not be very concerned even if their

locations are known. However, users may worry about their locations exposed (e,g,

hospital). Our method will exclude those important places, which including the

place that user stayed for more than threshold slots Tmax and user-specific sensitive

area Si, to form the remainder for candidate position set.

In dummy techniques, communication cost increases are generated as a side

effect. Since, the service provider must create a reply message not only for the

true position data but also for the dummy. In dummy methods, LBSs will return

both users’ and dummies’ data, user will filter out the dummies requests. That
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Figure 4.8: An example of knn query caching.

is undoubtedly a waste of resource. Caching dummy data for future use is possi-

ble, if select intersection points before that a user is likely to stay. Not only the

intersection but also the area near the intersection could be cached. Adding a

dummy trajectory intersects user’s trajectory at different time slots in the gener-

ating dummy scheme. Consider Figure 4.8 as an example, where KNN queries are

issued. Initially, we retrieve more than k data sources and let dummy X arrive

the intersection (2,5) before the arrival of this user. Thus, the data returned for

dummy X when X is used to arrive at intersection (2,5).

Based on the above concept, we employ query cost to evaluate the performance.

The query cost QCd is defined as:

QCd = (n + 1) ∗
m∑

i=1

SZi − ((n + 1)Ibt + Ift + Iat) ∗
k∑

j=1

SZj

The first term represents the query cost of dummy method. SZi and SZj mean

the size of answer messages, n and m mean the total number of dummies and the

total time slot respectively. The second term represents the saved query cost of
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cache. Ibt are the intersection points before the user arrive, Iat are the intersection

points which dummy and user arrive at the same time and Ift are the intersection

points after the user arrive. Because Ibt are beneficial for the cache scheme, user

and dummy needn’t query when user arrive the Ibt. If we want to lower the query

cost, one should increase the number of Ibt.

Dummies should arrive to the PLi early, we can derive that PLt1
d = PLt2 and

t1 < t2, where PLt1
d is the dummy’s location at time slot t1 and PLt2 is the user’s

location at time slot t2. Figure 4.8 shows an example of query cost, dummy X

arrives the position (2,5) before user and there are two dummies and five time

slots. Assume that the size of answer messages(SZ) are 10, it can be verified that

QCd=(2 + 1) ∗ 50− (3 ∗ 1 + 0 + 1) ∗ 20 = 70 in this example.

4.3 Generating Dummies with Multiple Trajec-

tories

According to the research in [23], a user in general has multiple moving trajec-

tories. Consider Figure 4.9(a) as an example, where a userhas four frequent tra-

jectories and each has different probabilities. This user goes to his office with

A%, B% to the hospital, to the gas station with C% and the park with D%.

Every person has different static frequent trajectories and each trajectories has

distinct probability. Our method should also guarantee the user profile if user

is on his frequent trajectories. Each user has k moving trajectories with cor-

responding with probabilities p1, p2, ...pk and these trajectories are denoted as

{(PL1
i (p1), PL1

i (p2),. . . , PL1
i (pk)), (PL2

i (p1), PL2
i (p2),. . . , PL2

i (pk)),. . . ,(PLm
i (p1),

PLm
i (p2),. . . ,PLm

i (pk))}, where (PLj
i (pk) is the location of mobile user Ui at the

29



jth time slot with the probability pk. Notice that
∑k

i=1 pi may not be 100% because

we only consider about frequent trajectories. Trajectories with smaller probabil-

ities are not considered. We propose two schemes, namely, Multiple Path Selec-

tion(MPS) and Multiple Path without Selection(MPwS). In the MPS scheme,

we also present two types of dummy generation, named Multiple Random Dummy

Generation(MRANDG) and Multiple Rotation Dummy Generation(MROTDG).

4.3.1 Multiple Path without Selection (MPwS)

Given user trajectories with probability p1, p2, ...pk and user profile, scheme MPwS

generates dummy trajectories for each trajectory. Suppose that each trajectories

will generate n dummies, we will have k ∗ n dummy trajectories, where n is the

number of dummies.

Although this method certainly guarantees for each trajectories for the privacy

profile, the number of dummies is huge. As a result, the query cost will increase

as well. Therefore, we proposed Multiple Path with Selection(MPS) that consider

the probabilities of trajectories for dummy generation of each trajectories.

4.3.2 Multiple Random Dummy Generation (MRANDG)

In multiple random dummy method(MRANDG), each dummy creates k dummy

patterns with probability p1, p2, ...pk, which is the same as user’s trajectories. So it

should generate k ∗ n dummy trajectories, where n is the number of dummies se-

lects dummy trajectories with each probability. Take Figure 4.9 for an illustration,

Figure 4.9(a) shows the original user’s four trajectories with different probabil-

ity(A%, B%, C%, D%) respectively. Using the random dummy algorithm to add

one dummy in Figure 4.9(b), it is obviously to see that dummy X generates four
30



Figure 4.9: An example of multiple patterns.
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dummy trajectories with the probability A%, B%, C%, D% respectively. Note

that the privacy profile is not guaranteed, since the selection of dummy patterns is

accordance with the probabilities. The other problem is user people’s trajectories

usually have partial similarity in that user’s moving trajectories are also have some

common sub-trajectories [20] [4]. In Figure 4.9(a), user’s moving trajectories are

also have some common sub-trajectories, but the dummy X’s trajectories have no

similar portions of the trajectories.

4.3.3 Multiple Rotation Dummy Generation (MROTDG)

Considering about that patterns usually has partial similarity, it is defined δ to

measure the similarity of dummy trajectories and user trajectory. If δ = 0%, these

two trajectories don’t have any overlap, if δ = 100%, these two patterns are totally

the same. Let B denote a user moving behavior set that we can represent B(Ui) =

δ1, δ2, ..., δk where δi means the similarity of trajectory i with probability pi. All

the moving behavior δi are compare to the most frequent trajectory. Considering

in rotation dummy generation, we try to make all the trajectories satisfy user’s

profile. Our key idea is that we rotate the whole trajectories with the same angle

θ at the rotation point i to solve the selection problem. If a user is on the branch

point, dummy will be able to select the suitable dummy trajectory. Figure 4.9(c)

shows an example of selection rotation point as γ. The selection of the rotation

point i and rotation angle θ are proposed as follows:

Possibility Based Method(PBM): Each dummy will generate k different

dummy trajectories with different probability. These k dummy trajectories have

its own solution space. We can divide it into two situation - rotation angle selec-

tion and rotation point selection. The key idea of this method is to find out the
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Figure 4.10: Two methods of select intersection point in multiple patterns.

most probability in the sub-trajectories. In other words, we want to find out the

intersection i which can calculate the maximum of
∑a

j=0 PLi(pj). a is the sum of

the location in each trajectory probability. Every trajectory has its own solution

space about θ and i, so we can find out the overlap of rotation angles θ easily.

First at all, we find out the rotation point i, which makes
∑a

j=0 PLi(pj) maximum.

Depend on the rotation point, we find filter out some rotation angles in solution

space. The remaining rotation angles are θ.

Figure 4.9 shows a multiple trajectories of a real user. The candidate of rotation

point is in the whole trajectories. We sort the candidate positions in order of time

and position are shown in Figure 4.10(a), which probabilities with A = 70%, B =

10%, C = 10%, D = 30%. First at all, we exclude the important place(i.e., home)

and find out the highest probability to be the rotation point, in this example is the

position with 90% probability. Then we use this constraint to find out the suitable

rotation angle θ. This method can guarantee most quality of user’s trajectory

privacy. In the method, selection will not be a problem. User and dummy will

have same sub-trajectories, so dummy also has the graph like 4.10(a) and know
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which trajectory should be chosen.

Trajectory Based Method (TBM): The approach is different from the

possibility based method in rotation point selection. Possibility based method is

based on selection highest probability location for the intersection. Trajectory

based method is based on the number of trajectories. The intersection i selects the

largest number of trajectories pass through.

Assume that A = 10%, B = 10%, C = 10%, D = 70%, and we exclude the

important place and find out the location which has most trajectories pass through.

In Figure 4.10(b), the position with 30% probability will be chosen, not the position

with 70% probability. This method will guarantee most trajectories but not highest

probability.
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Chapter 5

Performance Study

In this section, we evaluate the performance of our proposed schemes and conduct

experiments to evaluate our dummy generation scheme. We first describe the

simulation model in Section 5.1 and we will show the experimental results in Section

5.2.

5.1 Simulation Model

In our simulation, we use two kinds of trajectory sets, one is the real data - INFATI

[17] data set and the other one is our trajectory generator. The INFATI data derive

from the INFATI Project, which was day to day movements of several private cars

on the road network of Aalborg. We select one car’s moving log for the real data

set. In order to discuss conveniently. We use integer as unit time instance and

set the whole time period from 0 to 50. The entire area within which the car has

been moving is divided into grid of size 100*100. Because the data set is sampling

every second when car drove, we assume the moving object send his request every

k seconds. k is default to be 30.
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Our trajectory generater is divided the space into 50*50 grid cells which size

is 10m*10m. Assume that the number of time slots is 20. Moreover, We sim-

ply assume that there exists k moving trajectories for each user with probability

p1, p2, ...pk and partial similarity δ1, δ2, ..., δk, (i.e., the pattern has a starting point

and a destination point). Then, those grid cells between the starting point and the

destination are selected based on the nature of movements, (i.e., the next move is a

neighboring cell of the current location). Three movement types are implemented,

the horizontal movement, the vertical movement, and both. To emphasize the pri-

vacy threat of long-term observation, we implemented the prior work in [18] [19] as

scheme dummy. Suppose that adversaries are able to collect the query log in which

the movements of dummies and true users are recorded. Adversaries may explore

data mining techniques [23] to discover movement patterns of users.

To evaluate the simulation result, performance metrics are Number of dummies,

Pattern Exposure Rate, Correct Rate and Query Cost for the evaluation.

Number of dummies:Number of dummies is the number of dummies needed to

satisfy the privacy profile

Pattern Exposure Rate:Pattern Exposure Rate can be represented as the for-

mula Pattern Exposure Rate=
The trajectory exposed by the attacker

The total time slots of trajectory

Correct Rate:Correct Rate is that the proportion of dummy selected the right

trajectory.

Query Cost:Query Cost is the communication cost defined in Section 4.2.2.
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5.2 Experimental Results

We will discuss the settings and prove that long term observation will expose user’s

trajectory and compare with the the Kido’s dummy [18] under different settings in

Section 5.2.1. In Section 5.2.2, we will compare our method in several aspects the

number of dummy and the saving of resource. Finally, we present the correct rate

of different approaches in multiple trajectories.

5.2.1 Comparison to Dummy

We use the INFATI data set for the real data. In first experiment, we will show

that how many days of query logs if the attacker collects will exposure the whole

trajectory. We pick up one car which data was collected during December 2000

and January 2001 and our trajectory generator for the experiment. We control the

coefficient of variation of query’s sampling. Assume that user’s query is discrete

uniform distribution, then compare with different query probability is 20%, 50%,

80%, 100%. We assume the adversaries user the sequential pattern mining and

the support is set to two and the confidence is set to 50%. Figure 5.1 shows the

experimental results. The needed days is shown on the X-axis and the pattern

exposure rate is on the Y-axis. pattern exposure rate represents the total pattern

guessed by the adversaries. If the pattern exposure rate is closed to 100% that means

the attacker has high probability to hit the real trajectory. We can see the result

in Figure 5.1 that user’s moving trajectory can be exposed as long as the attacker

get enough moving logs. If we assume the attacker set the minimum support 2 and

the minimum confidence 50%, we can see the result in Figure 5.1(a)and(b) that the

lower the query sample the more the attacker should collect. If the query sampling
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Figure 5.1: The needed day of exposure a user’s whole trajectory.
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arrives to 100%, the attacker only need 3 days and 6 days moving logs to exposure

the user’s whole trajectory in our pattern generator and INFATI data, respectively.

We now investigate the impact of movement patterns. Suppose a privacy profile

is set to SD = 20%, LD = 10%, and dst = 2.8. We compare our rotation pattern

scheme with the dummy scheme. Figure 5.2 shows the experimental result. In

Figure 5.2(a), it can be seen that when the amount of data collected increases

with the time, both SD and LD of the dummy scheme increase. This agrees with

our claim that long-term privacy threat exists if dummies do not follow long-term,

consistent movement patterns. Once collected a sufficient amount of data, the true

user trajectory is completely exposed, that results in 100% disclosure in term of SD

and LD. On the other hand, our scheme is able to satisfy the specified disclosures

(i.e., SD = 20%, LD = 10%), showing that generating dummies with patterns

could prevent both short-term and long-term location privacy.

5.2.2 Sensitive Analysis of Dummy Generation Scheme

Next, the performance of our two proposed schemes is compared. We also use

the real data for this experiment. The proposed random pattern scheme, rotation

pattern scheme and k-intersect scheme are denoted as Random, Rotate and k-

intersect, respectively. As mentioned earlier, when the privacy requirements are not

satisfied, additional dummies are included. However, a larger number of dummies

increases query message lengths, leading to a considerable cost in communication

and client processing. Thus, one should use as minimum number of dummies as

possible to satisfy user privacy profiles or use the cache scheme. The performance

of schemes Random, Rotate and 2-intersect with the value of SD varied is shown

in Figure 5.3(a), where LD = 50% and dst = 2.8. Since SD is related to short-
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Figure 5.2: The performance comparison of dummy without moving patterns and

dummy with moving patterns.
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Figure 5.3: The performance of scheme Random, Rotate and k-intersect with LD

varied.
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Figure 5.4: The exposure rate of scheme Dummy, Random, Rotate and k-intersect

with the number of dummies varied.

term disclosure, these scheme Random, Rotate and 2-intersect use almost the same

number of dummies to meet the requirement of SD. Furthermore, an experiment

of varying LD is conducted with SD = 50% and dst = 2.8. Figure 5.3(b) shows

the experimental result. It can be seen that if we make an intersection between

two trajectories that may uses a smaller number of dummies than scheme Random.

By intersecting trajectories, scheme Rotate and k-intersect are able to increase the

number of possible trajectories. Hence, these two scheme could generate smaller

number of dummies to meet the privacy requirement.

One of the benefits in generating intersection dummy pattern is that even if

some position exposed by the attacker, the whole trajectory is still not exposed.

When some place is disclosed, it also means the positions nearby these place are

exposure. We can use the intersection dummy to solve this problem. See the result

in Figure 5.4, we can clearly see that if some position exposed, Dummy will expose

the whole pattern. Provided that dummy has intersections, we can clearly find

that the Pattern Exposure Rate disclose the least percentage in the user’s whole
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Figure 5.5: The query cost of scheme Random, Rotate and k-intersect.
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Figure 5.6: The affect of query cost with the grid size

pattern. The more intersection dummy has, the least pattern exposed.

Another issue is the waste of resource. Considering in the communication cost

of our method, we proposed a evaluation function - Query Cost and compare our

methods in Figure 5.5. We set the answer message size - SZ to be 10. We compare

into two situation - with cache and without cache to see the result. Figure 5.5(a)

and (b) represent dummy without caching and Figure 5.5(c) and (d) represent

dummy with caching. In Figure 5.5, we observe that if user want to keep highly

privacy, the query cost will be higher. All of our methods only have slightly differ-

ence in Figure 5.5(a) and (c). However, in Figure 5.5(b) and (d), both intersection

dummy schemes have a better performance than random scheme in terms of LD,

especially in 2-intersect dummy. That is because the intersections can reduce the

total number of dummies. If we cache the data for re-use, we can compare 5.5(a)(c)

and Figure 5.5(b)(d) and get the calculation that cache can bring a little benefit

depending on the number of intersections. If dummy has more intersections, the

cache scheme can re-use more.
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5.2.3 Experimental Results of Dummy Generation Schemes

for Multiple Trajectories

In this experiment, we discuss about the situation that user has more than one

frequent patterns. We investigate the influence of the different frequent pattern

probability p1, p2..., pk and the partial similarity δ1, δ2, ...δk. We propose correct

rate that means the probability of selecting accurate dummy trajectory.

First of all, we discuss the different frequent pattern probability. Assume the

user has several frequent trajectories with probability which obey zipf-like [24]

distribution. Use our trajectory generator to generate several trajectories with

different probability, every trajectory’s probability describe as follows:

Px=k =





( 1
k
)θ

a∑
i=1

(1
i
)θ

k = 1...a

0 otherwise

(5.1)

which means the different user’s moving habits. We can modify the value of θ and

a to control the bias of user’s moving behavior. The value of θ means the exponent.

If theta = 1, user will has a higher probability to move on frequent trajectory. In

the other hand, if theta = 0, zipf-like distribution will obey an uniform-distribution

that user will has the same probability on each trajectory. The value of a represents

the number of user’s frequent trajectories. We assume these frequent trajectories

has partial similarity δ = 50% to the highest possible trajectory. Compared with

the four methods(MPwS, MRANDG, PBM , TBM) we proposed before and

discuss the two evaluation of Correct Rate and Query Cost.

First of all, we discuss the influence of δ. The amount of user’s frequent tra-

jectories is set to 5 and the size of package SZ is set to 10. We can observe the
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Figure 5.7: The query cost and correct rate in different probability of multiple

path(theta).
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Figure 5.8: The query cost and correct rate in different probability of multiple

path(data object).
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Figure 5.9: The Query Cost and Correct Rate in different similarity of multiple

path(theta).
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result in Figure 5.7, MPwS can keep the quality of privacy to the 100% but the

Query Cost is also too high to be apply. The selection method MPS proposed for

lower the Query Cost and try to keep the quality of privacy as high as possible.

PBM has a better performance in all the selection methods, especially in people

whose highest possible trajectory are more frequent trajectory than other trajec-

tories. Although it cannot guarantee the 100% user privacy, but the Query Cost

is less than the method MPwS. If user has many uniform frequent patterns, the

performance of all the method are about the same.

Then we debate the different number of frequent trajectories(a). Considering

about the real situation - user has a frequent trajectory, we set the value of δ to be 1

and the size of package SZ is also set to 10. We can see the result clearly in Figure

5.8, the more patterns will cause the higher Query Cost in method MPwS. The

selection methods can guarantee the higher quality of privacy, if user’s frequent

trajectories are less and the Query Cost are still lower than the method MPwS.

Especially, the method TBM can ensure high quality of privacy. Method PBM

are similar to the method TBM when the amount of patterns are less because it

consider about the most patterns not the most possibly. When patterns become

less, these two method are always the same meanings.

Finally, we consider the partial similarity. We divide these trajectories into the

following situations: highly partial similarity S(H), low partial similarity S(L), no

partial similarity S(0). S(H) means the other trajectories have about 90% to the

most frequent trajectory, S(L) have 30% and S(0) have no similarity. We gen-

erate three trajectories with probability obey by uniform distribution(33%). The

simulation result are shown in Figure 5.9. If each trajectory has highly similarity,

the performance of TBM and PBM will better than others and it can guarantee
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almost 100% quality of privacy. If the similarity become lower or no similarity,

these methods’ performance will tend to change into the same. Using the method

MROTDG, Query Cost will become lower. If each trajectory has highly partial

similarity, it is more suitable to using MROTDG.
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Chapter 6

Conclusions

We observed that existing works using dummies to protect location privacy are

still exposed to privacy threat in a long run. Explicitly, by exploring data mining

techniques, adversaries may be able to determine user movement patterns, thereby

invading user location privacy. To deal with this problem, we proposed two schemes

to derive dummy trajectories, they are random scheme and intersection scheme.

Specifically, random pattern scheme randomly generates dummies with consistent

movement patterns, while the rotation pattern and k-intersect explore the idea of

creating intersections among moving trajectories. We also consider about lower

the communication cost and the problem of multiple path. Our preliminary per-

formance study shows that by generating dummies with movement patterns, our

proposal outperforms the existing dummy-based scheme for protecting trajectory

and locations of mobile users.
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