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Abstract

In order to correctly and fast render the transparent effect of a scene, some
hardware oriented algorithms with additional transparent fragment storage
supports for order-independent transparency are proposed in current computer
graphics. However, as the scene complexity.is constantly increasing, the number
of transparent fragments and the Size of transparent fragment storage support
also increase significantly. To lower-the-demand for memory, in this thesis, we
propose a transparent fragment storage system design for order-independent
transparency. Within our fragment storage system, transparent fragments are
stored in a corresponding location based on their x-y coordinate, and connected
with the other fragments that has the same x-y coordinate by pointer indexing.
The objective of our design is to reduce the memory requirement and the

memory access frequency of the transparent fragment storage system.
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Chapter 1 Introduction

In order to support realistic scene in computer graphics, a special purpose processor,
called Graphics Processing Unit or GPU, is required for high performance 3D graphics
rendering. As the demand for high quality realistically rendering in computer graphics is
continuously increasing, the support for transparent effect becomes more important for visual
reality. Current GPUs provide the capability to generate the effect of transparency. The
operation implemented in GPU to generate the transparent effect is called alpha blending:
combining a translucent foreground with a background. Due to the alpha blending operation,
rendering a scene with transparent objects realistic requires rendering in correct depth order—
from back to front or front to back with respectto the viewpoint. It implies that the rendering
order of transparent objects depends on their depth order with respect to the viewpoint, that is,
order-dependent transparency. Traditionally, the transparent objects are sorted to get the
correct depth order in the application level. However, it is difficult for software application
developers to sort transparent objects since objects may intersect each other. In addition, as
the number of transparent primitives increases rapidly, the application sorting becomes more
and more complicated. Therefore, order-independent transparency, rendering transparent
objects without application depth sorting, becomes an important issue for high performance

rendering systems.

Order-independent transparency is a difficult architectural problem to solve and many
researches have been investigated on it. There are several different kinds of order-independent
transparency algorithms. Some algorithms model the alpha value as a probability measure
such as alpha-dithering [Will]. Other multi-pass rendering algorithms [Ever01] pass fragments
several times to blend them and produce the correct results. For the reason of fast rendering,

most order-independent transparency algorithms modified the traditional GPU architecture



with the additional hardware support for storing these transparent fragments. R-buffer(RB)
proposal [Witt01] implements A-buffer [Carp84] software algorithm into hardware by adding
an extra storage system to store transparent fragments in their arrival order. WF (Weight
Factor) hardware oriented algorithm [Amor06] precomputes the contribution factor of each
fragment to the final color of a pixel and sequentially stores transparent fragments based on

their x-y coordinate into storage system.

As the scene complexity arises, the number of transparent fragments and the storage
space for transparent fragments increase significantly. How to store these transparent
fragments to lower the demand for memory becomes more and more important. In addition,
current fragment storage support techniques for order-independent transparency [Amor06]
[Witt01] still have some defects to be improved such as large storage requirement and high
memory access frequency. Therefore, our.objective IS to design a transparent fragment storage
system which places order-independent-arrival transparent fragments in such an organized
way that reduces the memory requirement and-memory access frequency in comparison with
previous works. In addition, for the purpose to further reduce the memory requirement of
proposed transparent fragment storage system, we also use leading Os elimination technique to

strip the redundant part of fragment data.

The rest of this thesis is organized as follows: In Chapter 2, we introduce an overview of
graphics pipeline, transparency rendering operation and problem, and related works of
fragment storage system for order-independent transparency. In Chapter 3, we propose the
design of our transparent fragment storage system and the utilization of leading Os elimination
technique. In Chapter 4 we discuss and show our simulation environment and results. In

chapter 5, we summarize our conclusions and future work.



Chapter 2 Background and Related work

In this chapter, we will give an overview of graphics pipeline. Then, we will introduce
the definition of transparency, alpha blending operation, explain the transparency rendering
problem, and expatiate on order-independent transparency. At the end of this chapter, we will
present the details of two previous works related to hardware support techniques for

order-independent transparency.

2.1 Graphics pipeline

Vertex Rasteriz- ' Depth / \
A | Pxer | P ~ Scene

vertices —» ) ) i _
Processing ation Processing Processing

LA £ £ -E 4

fragment

Figure 2-1 3D graphics pipeline

Graphics pipeline can be roughly divided into four stages: vertex processing,
rasterizarion, pixel (fragment) processing, and depth processing, as shown in Figure 2-1.
At vertex processing stage, vertices undergo coordinate transformation, lighting, and clipping
operations. After vertex processing stage, these calculated vertices are sent into rasterization
stage, which consists of two parts. The first part, called triangle setup, is to combine three
vertices into a triangle, and the second part is to determine which squares of an integer grid in
screen coordinate are occupied by the triangle and to assign a color and a depth value to each
such square. Such generated image square is called fragment, which is defined as a pre-pixel

before being sent to a screen. Fragments are then sent into pixel processing stage. At pixel



processing stage, the color of fragments are calculated based on values interpolated from the
vertices or determined by texture mapping [Watt00]. Finally, fragments occluded by other

fragments and invisible at the final screen are discarded at depth processing.

The graphics pipeline is implemented on GPUs, designed with high parallel structure
which makes it more efficient than CPU, and the two describe stages —vertex processing and
pixel processing— are implemented as programmable stages, named vertex shading and pixel

shading, on GPUs..

Since our system is designed for storing fragments, which are generated after
rasterization; therefore, we are only concerned about the process between rasterization stage

and pixel processing in graphics pipeline in this thesis.
2.2 Transparency and alpha blending

Translucent objects can be_rendered by specifying the degree of transparency with a
color. The value to represent the degree of transparency is defined as an alpha (a) value,
which ranges from 0.0(completely transparent) to 1.0(completely opaque). Each fragment has
its alpha value with its RGB color components. To obtain the final color of a pixel, the
translucent fragments belonging to the pixel (i.e., fragments have the same x-y coordinate) are
typically assumed to be rendered from back to front in visibility order, or depth order. The
process of blending a translucent foreground with a background color to generate the effect of
transparency is called alpha blending. Normally, the alpha blending equation (1) [Port84] is

used for alpha blending, as shown below:

c=a,c, +(1-a)c, Eq. (1)

, where ¢ is the final color of a pixel, and «, are the color and the alpha value of

Cy

foreground transparent fragment, and ¢, is the color of background fragment.



To clarify, consider an example shown in Figure 2-2. In Figure 2-2, six fragments are
belonging to the same pixel, two of them are opaque (O; and O3) and four of them are
transparent (T, T4, Ts, T, and T7). The suffixes of fragments indicate the sequential order
where the fragments are received. The fragments are viewed from the left. The final color of
the pixel is obtained by the combination of the closest opaque fragment O3 and the blending
result of the transparent fragments processing from back to front: first T, second T, and
finally Te. That is, assume ¢; and o; represent the color and the alpha value of fragments,
where i is fragment’s received order, according to Eq. (1), the final color ¢ of the pixel is

equal to

c=agcs + (1—ag)lae, + (1-a,)a,c, + - a,)e, |}

9_.

Viewer

QIS

e T4 T7 O3 5 T2

Figure 2-2 Example of fragment blending processing

2.3 Transparency rendering problem

The blending equation (1) is order-dependent, which means that transparent fragments
require to be processed in their depth order, not in their arrival order. Thus, if we render
transparent fragments in arbitrary order, it will produce an artificial result. For example, in

Figure 2-2, fragment T, and T¢ come before fragment T+, if we blend T4and Tg with opaque



fragment Og first, the blend T+ later, according to Eq. (1), the final color ¢ will be

c=a;c; +(1- a?){a!SCG +(1- 0(6)[0{46‘4 +(1- 0‘4)03]}
=a;¢, + (- o)ages + (- )L - a5) e, + (- a7 )1 - o) (1 - ay)cs

But the correct final color should be

c=agc, +(1- ae){a4c4 +(1- 0’4)[05707 +(1- a7)c3]}

=g +(1-ag)aye, + (1—ag )L —a)a,e; + (- )1 - )L - o),
Thus, the incorrect result is produced due to the incorrect rendering order.

Since fragments are generated in arbitrary order at rasterization, not in depth order,
several algorithms are proposed for correct transparent rendering. These algorithms can be
classified as sorting based algorithms and order-independent transparency algorithms. Sorting
based algorithms require the primitives. (polygons) to be sorted from back to front with
respect to the viewpoint. These sorting algorithms can further be classified into application
sorting [Mamma89, Snyd98], hardware assistant sorting [Ever0l], and hardware sorting
[Amor06, Winn97] algorithms based on.the-method they use to sort the primitives. However,
for application sorting algorithms, it 1s‘difficult to do depth sorting since objects in a scene
may intersect each other and intersected parts need to be divided into several polygons. Even
for those hardware assistant sorting algorithms, it is very time-consuming. Therefore, it comes

out order-independent transparency.

2.4 Order-independent transparency

Order-independent transparency is defined as a process which renders transparent
fragment in arbitrary order instead of sorting them in advance. There are several different

kinds of order-independent transparency algorithms.

Some algorithms model the alpha value as a probability measure such as alpha-dithering

[Will] [Muld98], or alpha-to-coverage. These algorithms sample the alpha value and interpret



it as how much it covers the pixel to produce dithering-like transparent effect in images.
These algorithms are single-pass rendering, do not require depth sorting, and do not handle
intersected polygons in advance. However, since they are probability-measure algorithms,
they also have chance to produce artificial results. Other order-independent transparency
algorithms [Ever01] use multi-pass rendering method to process transparent fragments several
times that render them in correct depth order. These multi-pass rendering algorithms are some
kinds of fragment-level depth sorting technique; therefore, in general cases, they have the

same defect as sorting algorithms have, that is, time consuming.

Thus, most order-independent transparency algorithms modified the traditional GPU
architecture to solve time-consuming problem. Z* hardware technique [Joup99] is one of these
modified hardware architecture which only. renders a fixed number of transparency layers
correctly. R-buffer(RB) [Witt01}. s .a modified hardware architecture which implements
A-buffer [Carp84] software algorithm into-hardware by adding an extra storage system to
store transparent fragments associated-with-each pixel. WF (Weight Factor) hardware oriented
algorithms [Amor06] precomputes the‘contribution factor of each fragment to the final color
of pixel and propose an organized strategy to sequentially store transparent fragments
corresponding to the same pixel. Since our research focuses on hardware storage support for
order-independent transparency, we will introduce more details of R-buffer hardware
architecture and WF hardware oriented algorithm, which are more related to our system

design.

2.5 Related works

2.5.1 R-Buffer hardware architecture

R-buffer (RB) [Witt01] is a graphics hardware architecture which implements A-buffer

software algorithm [Carp84]. Figure 2-3 shows the R-buffer graphics architecture. The



R-buffer architecture is a standard graphics pipeline with additional hardware support: a
proposed recirculating fragment buffer, called R-buffer, pixel state memory, and a second
z-buffer. In rasterization stage, the objects are rasterized into fragments in arbitrary
depth-order. After rasterization, a transparent fragment is sent to the R-buffer, and the depth
value of an opaque fragment is compared with the depth value in z-buffer to find the closest
opaque fragment which needs to be placed into frame buffer. The transparent fragments
behind the closest opaque one are discarded. Then, each transparent fragment in R-buffer is

read out iteratively to find the furthest one to be blended with the fragment in frame buffer.

X.Y.ZRGBA
X,Y,Z.RGBA

Geometr . Fragment Compare /
! -y Rasterization © P Pl
— Processing (R) — and P
' (G) N Compositing \‘ Z buffer | _

Losic | | and
oste . | Color buffer

2nd Z Buffer
Pixel State

Memory

Figure 2-3  R-buffer graphics architecture scheme [Witt01]

Figure 2-4 shows the high level R-buffer algorithm. Phase 1 rasterizes the primitives into
fragments and places the closest opaque fragment into frame buffer, the furthest transparent
fragment’s depth value into second z-buffer. Phase 1 is equivalent to early z test with the
exception that unoccluded transparent fragments are sent into R-buffer and second z-buffer is
updated with the depth value of the furthest visible transparent fragment. After all fragments
are generated, in phase2, the transparent fragments in R-buffer are discarded if they are

occluded by the opaque fragments in frame buffer. If the R-buffer is not empty, the phase3 is



processed iteratively to find the transparent fragment whose depth value matches the depth in
the second z-buffer from R-buffer and blend that transparent fragment with the fragment in
frame buffer, and then, drop that transparent fragment from R-buffer. When the R-buffer is

empty, the whole process is finished.

mitialize frame buffer

Phasel(geometry, framebuffer, R-bufferNext)

While( lempty(R-bufferNext))

{
swap(R-bufferNext, R-buffercurrent)
Phase2/phase3X(R-bufferCurrent, framebuffer, R-bufferNext)

i

Figure 2-4 R-buffer high level algorithm [Witt01]

The R-buffer is a FIFO (first-in-first-out) memory which stores transparent fragments in
the sequence that they arrive. The-information of each transparent fragment —the location (x,
y), the depth value (z), the color value (RGB) with alpha value(A or a)— needs to be stored
in the R-buffer. Pixel state memory. stores each pixel’s current state. The second z-buffer
stores the depth value of the furthest visible transparent fragments per pixel. The memory size
of the R-buffer is proportional to the number of transparent fragments after early z test. The
memory size of the second z-buffer is equivalent to the original z-buffer. In pixel state
memory, each pixel needs three bits to record its current value; thus, the memory size of the
pixel state memory is equal to three multiplied by the screen size. To sum up the memory
requirement of R-buffer architecture, we list the R-buffer memory requirement equation as

follow:

IVI(:—‘morytotaI = MR-buffer + Man-z-buffer + I\/Istate-memory

2.5.2 Hardware oriented algorithm based on weight factors computations

For the convenience of explaining this algorithm [Amor06], we called it WF (Weight



Factor) hardware oriented algorithm in brief. WF hardware oriented algorithm is based on the
precomputation of the contribution of each fragment to the final color of the pixel with the
specialized storage scheme. Figure 2-5 shows the generic structure of WF hardware oriented
algorithm. Phase 1 and phase 2 of WF hardware oriented algorithm are similar to those of
R-buffer high level algorithm, shown in Figure 2-4. In phase 1, fragments are sequentially
generated and the current closest opaque transparent is placed into frame buffer while the
transparent fragments are stored into another buffer, called M,z In phase 2, all transparent
fragments stored in M,z are analyzed and discarded if they are occluded by the closest
opaque fragment stored in frame buffer. In phase 3, each transparent fragment in M,z is
compared with other fragments belonging to the same pixel in order to compute its weight

factor and the blending of the fragment is performed.

Weigth Factor
opaque —* aque
o Frime bufer Occluded =7 Rncer Computation
— Rz(lsllenza;i)on Fragment Transparent Fragment and »pixel
phase Fragments '
transparent — 1; 2 “atransparent — Blending
M-buffer (phase 2) M-buffer (phase 3)

Figure 2-5 Generic structure of WF hardware oriented algorithm

The weight factor computation is based on the analysis of the blending equation (1). By

breaking the recursivity of the blending equation (1), the equation can be revised as:
c= Zwiaicl. Eq. (2)
i=0

, Where there are n transparent fragments and one opaque fragment belonging to the pixel
which has the final color ¢, ¢, is the color of the transparent fragment 7, ¢, is the alpha value
of fragment 7, and w, is the weight factor of the transparent fragment i. The weight factor
w, is computed by the accumulative contribution of all transparent fragments ; in front of the

1

transparent fragment i (Z; < Z;). The equation of w, can be written as:

10



with

l-a, ifZ;<Z,
a. =
1 otherwise.

/* SETUP ¥/
o= 9
for(i=0 ; i=n; i++){
fZ, < Zp )i
il a; <D} B, = My w=c*a,; }
e, =1){ Zyygo =2, ; =65 }

}
/* OCCLUDED TRANSPARENT FRAGMENTS */
for all E, in M,z {

ii(zl' < z‘bu r) { Mbuﬁr - EJ' ;}

elsef{ ¢*=(1-a ), }

[T R NP O S

—
Wik — O

* WEIGHT FACTOR COMPUTATION #*/
for all E, in Mbw{
forallEjithuferwiﬂaj > 1§
HUZ<Z) € w*=(1-ar )i}
else {w,*=(1-ay)}
H
/* additional of contributions */
o=, o
l\[buﬁr > El' .

b b
EB\DN\IO\MA

B

Figure 2-6  WHF hardware oriented algorithm

The WF hardware oriented algorithm is outlined in Figure 2-6. It can be basically
divided into three stages: SETUP (line 1-6), OCCLUDED TRANSPARENT FRAGMENTS
(line 9-12), WEIGHT FACTOR COMPUTATION (line 14-22). Assume that there are n+1
fragments are processed sequentially to the same pixel. In SETUP stage, if a fragment is
transparent, it is placed into My, otherwise, if a fragment is opaque and closest to the view
point at the time, it is stored into frame buffer and Z-buffer is updated by its depth value. Note
that some transparent fragments are visible when they are compared to the front-most opaque
fragment at the time they arrive, but a closer opaque fragment may arrive later and occlude
them. Therefore, in the second stage, OCCLUDED TRANSPARENT FRAGMENTS, those

transparent fragments in M,z are discarded for the reason that they are occluded by the

11

Eq. (3)

Eq. (4)



closest opaque fragment. In the last stage, WEIGHT FACTOR COMPUTATION, each
fragment is compared with all those following in the My, in order to compute its weight

factor. Obviously, these three stages in Figure 2-6 are the same as the three phases in Figure

2-5.
Mbuﬂ‘er POINTER MEMORY
Section 0
. Section 1
Section 0 Davg Section 2
e o o
Section 1
Section 2
o e @

Figure 2-7  Organized memory scheme of WF algorithm

The organized memory scheme of WF algorithm is shown in Figure 2-7. It suggests that
transparent fragments belonging to the same pixel are stored sequentially and connectedly in
the Mpyger. Mpyger IS Organized in sections of D,,, words, where D, is the average number of
fragments per pixel. Each pixel has it corresponding storage section, with capacity for D,,,
fragments; that is, for a system with WxH pixels, WxH sections would be required and a
pixel i in a system has a corresponding section i in My, To extend the storage capabilities, a
pointer memory is added so that more than one section can be dynamically assigned to a
given pixel. The information stored per section of a pointer memory indicates that whether
one section is sufficient (by storing a NULL pointer) or whether the following-coming

fragments are stored in another section (by storing the section index). For example, if there

12



are F transparent fragments belonging to a pixel i, where F is larger than D, the first D,,,
fragments are stored in section i of My, and the following F- D,,, fragments are stored in
another section j (; = WxH). The section i of a pointer memory stores the section ; index. If
section j is still insufficient to store F- D, fragments (i.e., F- Daye> Dayg), the rest F-2xDge

fragments are stored to another section & (k>;), and so on.
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Chapter 3 Design

In this chapter, our transparent fragment storage system is proposed. The objective of our
transparent fragment storage system is to reduce the memory requirement and memory access
of transparent fragments for order-independent transparency. In addition, we also propose a
leading Os elimination technique to compress fragment data size and further reduce the
memory requirement of the proposed transparent fragment storage system. This chapter is
organized as follows: in section 3.1, the system design overview is introduced; in section 3.2
our transparent fragment storage system is proposed; in the last section of this chapter (section

3.3), we present the leading 0s elimination technique.

3.1 Design overview

The overview of our proposed. transparent fragment storage system is shown in Figure
3-1. There are three components in our transparent fragment storage system: start-section
address table (SSA Table), T-buffer, and next-section address (NSA Table). After
rasterization stage, the polygons are segmented into several fragments in arbitrary order. Then,
opaque fragments continue the pixel processing procedure while transparent fragments are
stored into our transparent fragment storage system (TFSS). The details of our transparent
fragment storage system will be introduced in section 3.2. In addition, we also design leading
Os elimination, which is the process that reduces a fragment data size by eliminate the leading
Os of fragment’s color components (RGB). The details of leading Os elimination will be

introduced in section 3.3.
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7. Buffer

opaque
Pﬂm. . T'ragmentsar Pixel
Rasterization .
Processing
Fal
Transparent
fragments Order-Independent [
' Transparency Rendering Frame Buffer
r
Transparent Fragment Storage System
T-buffer NSA Table
SSA Table / Section O ILllLllTl 01 Next section addr
(0,0) [Start section addr .
(0,1) Section 1 [ 1
(W-1II-1)
Sestonn [

Figure 3-1  the design.diagram of-transparent fragment storage system

3.2 Transparent Fragment Storage System

3.2.1 Statistics and observation for the distribution of transparent fragment

Figure 3-2 shows a frame image in DOOMS3. We analysis the number of transparent
fragments of each pixel in this frame and obtain the result in Figure 3-3 and Figure 3-4.
Figure 3-3 is a gray-level image, and black color indicates that the number of transparent
fragments of a pixel is 0, while white color indicates that the number of transparent fragments
of a pixel is 7, that is, the maximum number of transparent fragments of a pixel in the frame.
The transparent fragment numbers of a pixel between 0 and 7 and their corresponding colors
are shown at right side of Figure 3-3. More detail of statistics of the transparent fragment

number in the frame is shown in Figure 3-4. We find that not all pixels in a frame have
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transparent fragments. However, in WF proposal, each pixel is assigned the same size of
memory space, no matter whether the pixel has transparent fragments or not. Thus, if we use a
transparent storage support proposed in WF proposal, it needs a large memory space and parts

of them are unused resulting in unnecessary memory cost.

Figure 3-2  frame in DOOM3
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Figure 3-3 number of transparent fragments per pixel expressed by grayscale image
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Figure 3-4  statistics of the number of transparent fragments per pixel

3.2.2 The structure of transparent fragment storage system

In this section, we will introduce the structure of TFSS. As the section 3.1 is described,
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the design diagram of transparent fragment storage system (TFSS) is shown in Figure 3-1.
The storage scheme of TFSS is to store transparent fragments in an organized way based on
their coordinate; that is, transparent fragments belonging to a pixel are stored serially in TFSS.
The transparent fragment storage system (TFSS) is composed of three components: SSA
Table, T-buffer, and NSA Table. The structure and the function of each component in TFSS

will be described in 3.2.2.1 t0 3.2.2.3.

3.2.2.1 SSA(Start-Section Address) Table

SSA Table
(0,0) Start section addr
(0,1)
(W-1,H-1)

Figure 3-5  diagram of SSA Table

As shown in Figure 3-5, SSA Table has W times H entries, where W is defined as the
width of a screen, and H is defined as the height of a screen. Each pixel p in a screen has a
corresponding entry e, in SSA Table and each entry in SSA Table stores the address of start
section for pixel p. Namely, pixel p has assigned the entry e, in SSA Table. If a pixel does not

have the start section— the pixel does not have transparent fragments— a nullified address

is stored in the corresponding entry in SSA Table.
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3.2.2.2 T-Buffer

T-buffer is a storage space for transparent fragments. As shown in Figure 3-6, T-buffer is
organized in sections of L,m, where Lnm represents the maximum number of transparent
fragments that can be stored in a section. Each section stores transparent fragments with the
same Xx-y coordinate; that is, fragments belonging to the same pixel are stored gregarious
within one section in T-buffer. There might be more than L.y transparent fragments which
have the same x-y coordinate. Thus, more than one section should be assigned to a pixel to
extend the capability for storing variable number of fragments. We use NSA Table to record

the address of next section which is assigned to store the following fragments.

T-buffer

L

Section 0 ——

Section 1

Section n

Figure 3-6  the structure of T-buffer

3.2.2.3  NSA(Next-Section Address) Table

If the number of transparent fragments is more than the number that one section is
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capable of storing, the excess fragments will be stored in another section. Then, the address of
the section is recorded as the next-section address in NSA Table. Figure 3-7 shows the
diagram of NSA Table. The number of entries in NSA Table is equivalent to the number of
sections in T-buffer and there is a one-to-one correspondence between entries in NSA table
and sections in T-buffer. However, if one section is sufficient to store transparent fragments of
a pixel, there is no need to assign another section, and thus, the NULL pointer is stored

instead of the section address.

NSA Table

0| Next section addr

n

Figure 3-7  diagram of NSA Table

3.2.3 The access process of transparent fragment storage system

In this section, the access process of transparent fragment storage system is described.
The process for storing fragments into TFSS is described in 3.2.3.1; the process for reading

fragments from TFSS is described in 3.2.3.2.

3.2.3.1 The process for storing transparent fragments into TFSS

First of all, before a transparent fragment with the location (x;,);) is stored into T-buffer,
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the address of start section s, is read from the corresponding entry e in SSA Table. If s
of T-buffer the start section, is full, the address of next section n,; which is available (not full)
for storing fragments is read from the entry e; of NSA Table. After the address of section #; is
obtained, the fragment is eventually stored into section n, of T-buffer. If there is no start
section or no next section for a given pixel, the new empty section in T-buffer is assigned for
that pixel, and the address of the new section is recorded in SSA Table as the start-section
address or in NSA Table as the next-section address for the pixel. Figure 3-8 shows the

flowchart of the process for storing fragments into TFSS.

i v
Transpar ent fragment
(X.Y,Z.R.G,B,A)
Check SSA Table Entryixy)  ses 1o
X (O [Rutti ]
@y
. Does entry(X,Y) havé —
' start adress? o
(W-1H-1]
Y
-
Write the new start address SA l
to entry(X,Y) in SSA Table Lookup the SA from Entrys
addr= NxtAddr
Y
Lookup the section(addr)’ s NxtAddr ! . .
! from NSA Table Find the section( SA ) in T-buffer
[s NXtAddreeionagart v e
NULL ? ddr=SA sIiniini
= Is section(SA) full ?
N L4
S Allocate
Find the new section(NewNxtAddr) b
section(NXtAddreecrionadan) for storing fragment Write fragment data into section(SA).
Update NSA Table.
¥ section(NxtAddr
full ? l
54 Talle
: — (1)Write fragment data into
N——rsection(NewNxtAddr). Processing next transparent fragment
(2)Update NSA Table.

Figure 3-8  flowchart of the process for storing fragments into TFSS
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3.2.3.2 The process for reading transparent fragments from TFSS

For each pixel p;;y in a screen, the start-section address is read from its corresponding
entry e,y in SSA Table. If there is no start-section address for a pixel, the process is continued
to read the start-section address from the next entry eg,+, for the next pixel. Otherwise,
transparent fragments belonging to p,;) are accessed from the start section s;; of T-buffer
and the address of next section n, can be read simultaneously from the entry s of NSA Table.
If there is no next section for p;;), instead, the NULL is stored in entry s of NSA Table, the
process is continued for the next pixel. Otherwise, the fragments in the next section »n are
accessed from T-buffer and the address of the next section »n’ of section » can be looked up
simultaneously from the entry » of NSA Table. This process is recursively done until there is

no next section for pixel (x;y;). Figure 3-9-shows the flowchart of the whole process for

reading fragments from TFSS.
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next pixel
i+
it

addr=NxtAddr

v

For pixel (0,0) to (W-1,H-1)

Bl

Find the start addres SA of pixel(i.j)
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(WLHAY
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Figure 3-9
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3.3 Leading Os elimination

3.3.1 Statistics and observation of fragment data length

£ 70000 100%
IS

2 60000 0%
L‘é 50000

= 40000 60%
§ 30000 A0%
5 20000

é 10000 20%
= 0 0%

0 1 2 3 4 5 6 7
number of leading Os
Il R G I B
cumulative percentage of R cumulative percentage of G —*— cumulative percentage of B

Figure 3-10  distribution of the humber of leading Os of fragments

Figure 3-10 shows the distribution of the number of leading Os of fragments before
multiplied by alpha value in framel30. In Figure 3-10, the horizontal axis represents the
number of leading Os of a fragment, ranging from 0 to 7 for each 8-bit color component; the
vertical axis represent the number of transparent fragments. The yellow, light blue, and purple
curves in Figure 3-10 represent the cumulative percentage of fragments in accordance with
the number of leading 0s. As we can see, about 80% fragments, their effective value of each

color component only use less than 4 bits.

When RGB color components of a fragment are multiplied by fragment’s alpha value,
the number of leading Os of each of RGB color components will increase, as shown in Figure

3-11. This phenomenon gives us a thought that it does not need full 8-bit memory space to
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store each color component of a transparent fragment; that is, we can eliminate leading Os of
each color component of a transparent fragment before it is stored into T-buffer to further

reduce the memory requirement of transparent fragment storage system.

160,000 100%
_ 140,000 S
o
= 120,000 80% %n
o s
é % 100,000 60% @
o & 80,000 2
&b J o)
55 60,00 40% 2
£ =
5 40000 0% E
20,000 5
0 0%
0 1 2 3 4 5 6 7
number of leading Os
Il R e B B
cumulative percentage of R cumulative percentage of G —%— cumulative percentage of B

Figure 3-11 the number of leading Os:of fragments after multiplied by alpha value

The original cumulative percentage curve of transparent fragments is compared with the
cumulative percentage curve after multiplied by alpha value, as shown in Figure 3-12, where
linel-R,G,B represent the former and line2-R,G,B represent the latter. Line3-R,G,B in Figure
3-12 represent the cumulative curve of transparent fragments when we choose the minimum
number of leading Os among RGB color components as the number of leading Os of each
color component. We observe that there is a little difference between line2 and line3, and it
implies that perhaps a fixed-length leading Os elimination to RGB color component of a
fragment can achieve approximate memory reduction ratio as variable-length leading 0s

elimination.
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Figure 3-12 cumulative percentage.curves of transparent fragments

3.3.2 Main idea of leading Os elimination

According to the statistics and observation in 3.3.2, we decide to use a leading 0s

elimination to further reduce the memory requirement for transparent fragments. Leading 0s

elimination is a simple and quick process that eliminates the leading zero bits of three color

component data(RGB) simultaneously until leading 1 occurs in any one of the three color

components. Notice that we do not eliminate all leading zero bits from each color component,

instead, we just eliminate the minimum number of leading Os among RGB color components;

that is, fixed-length leading Os elimination for each RGB color component of a transparent

fragment.

The operation of leading Os elimination is simple. First, eliminate leading zero bits of

three color components (RGB) simultaneously until leading 1 occurs in any one of the three
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color components. Then, shift the RGB color component data to the right by several bits
based on fragment’s alpha value. Finally, record the length of RGB color component after

elimination.

As shown in Figure 3-13, for leading Os elimination, an additional design component,
called Length Table, is added into our transparent fragment storage system to support
variable-length fragment data retrievals. Length Table records the length of RGB color
components of a fragment after leading Os elimination. There is a one-to-one correspondence
between entries in Length Table and sections in T-buffer; that is, each entry in Length Table
records the lengths of fragments in its corresponding section and each entry in Length Table
can record at most L,um lengths of fragments, where L,,m represents the maximum number of

transparent fragment that can be stored‘in‘a section.
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Transparent d
fra ts
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. o . Transparency Renderin Frame Buffer
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Figure 3-13 transparent fragment storage system with leading Os elimination
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3.3.3 Example of leading Os elimination

Figure 3-14 shows an example of leading Os elimination. Assume that each color
component of a fragment is 8 bits, fragment’s alpha value is 0.125, and the value of each color
component is represented in binary format. First, the minimum number of leading 0s among
RGB color components is two; thus, we eliminate two leading zero bits from each of three
color components (RGB) simultaneously. Then, shift the RGB color component data to the
right by 3 bits based on fragment’s alpha value. Finally, record the length of RGB color

component after elimination.

R G B A (a =0.125)
@ 8600 1111 | -86010010 | 46100101 | 00100000 |

Preserve these leading Os

‘ oo 11 | [T 0p10 ‘ 10 a101 ‘ 0010 0000 | Shift right 3 bit positions
N N N R B A
| 001 | 010 | 100__| 00100000 |[>| 11111010 1100{ 0010 0000

3 bits per RGB color component

Figure 3-14  example of leading Os elimination
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Chapter 4 Evaluation Results

In this chapter, we first show our evaluation environment and the characteristic of input

frame data (in section 4.1 and 4.2). Then, we show and analyze simulation results of memory

requirement and execution time during rendering of each method: R-buffer, WF hardware

oriented algorithm, and our TFSS design in section 4.3. In the last section, we briefly

summarize our conclusion from the results.

4.1 Evaluation environment

a

Tracefile
Fragment, (x,y.zZRGBA)
Fragment,(x,v,2,RGBA)

[ertex cache fg——*{Vertex Raquest Buffer-———

Primitiva Atea mihly

Triangle Setup

K2

Transparent Fragment
Storage System
Software Behavioral Simulator

% ; : Shader
1
= 1

3 ! ! ’_+_‘
‘MCLJ‘ ‘MLI‘ ‘Mt.z‘ MC3

ATTILA simulator Architecture

Figure 4-1

28

simulation flow and ATTILA architecture [Moya06]




Figure 4-1 shows the architecture of ATTILA simulator and when we dump trace of
fragment data from ATTILA simulator for our simulator. We implemented a behavioral
simulator of the architecture with the transparent fragment storage system in C++, and
modified ATTILA simulator [Moya06] to output fragment information to a tracefile. The
benchmark used in ATTILA simulator is QUAKE4 [Rave05], a modern graphics application.
Figure 4-2 shows one frame appearing in QUAKE4. The tracefile outputted from ATTILA
simulator contains the coordinates and RGBA color components of fragments in frames. Our

simulator reads the tracefile and evaluates the memory requirement and access frequency time

of transparent fragment storage system.

The simulation parameters are listed below:
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RGBA color components is 8 bits, and modulate the value of Lnym and Msgction to 0bserve the

B Display resolution: the number of distinct pixels in each dimension that can be

displayed.

B Color component bit-width: the bit-width of each of the RGBA color components

B L, : the maximum number of transparent fragments that a section in T-buffer can

stores.

B Mceiion: the memory size of a section in T-buffer

In our simulator, we assume the display resolution is 640x480, the bit-width of each of

memory requirements.

4.2 Test frame data

No. of wansparent No. of pixels whose no. of transparent
No. of No. of transparent Transparency
Frame fragments per ) fragments = N
fragments fragments , density

N transpdrent pixel 1 ) 3 4 5
Frame60 | 2,377,518 37,684 2.37 5%| 5,812 956| 6,633| 2,279 189|
Frame120 746,943 37,594 2.38 5%| 5,723 956| 6,634| 2,278 189|
Frame180 516,464 40,584 2.16 6%| 8,713 956| 6,634| 2,278 189|
Frame240 488,112 88,434 1.63 18%|32,588(12,040| 7,235| 2,279 189I
Frame300 623,531 60,769 1.61 12%|26,082| 2,729| 6,636 2,179 121
Frame360 587,617 69,768 1.61 14%|27,421| 7,094, 7,006 1,569 173
Frame420 530,258 47,877 1.77 9%]15,728| 3,290| 6,770| 1,296 15
Frame480 605,927 135,475 1.22 36%195,226| 8,716| 6,711 671 O|

Table 4-1 statistics of test frames

interval of 60 frames, as shown in Table 4-1. In Table 4-1, the second column indicates the

In this section, we provide statistics of eight test frames, which are dumped at the
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total number of opaque and transparent fragments in each frame; the third column shows the
number of transparent fragments in each frame; the fourth column shows the number of
transparent fragments per transparent pixel; the fifth column shows the transparency density,
which is defined as the percentage of transparent pixels in a frame (i.e. #transparent
pixel/display resolution). The last column shows the distribution of transparent fragment
layers per pixel in each frame. For example, in frame 120, 5723 pixels have 1 transparent
fragment layer, 956 pixels have 2 transparent fragment layers, 6634 pixels have 3 transparent
fragment layers, 2278 pixels have 4 transparent fragment layers, 189 pixels have 5 transparent

fragment layers, and no pixel have more than or equal to 6 transparent fragment layers.

4.3 Simulation results

In this section, we show the simulation results of memory requirements and access
frequency time of fragments storage system. We compare the results of our design with two

related works: R-buffer and WF hardware oriented algorithm.

43.1 Memory requirement

In order to evaluate our transparent fragment storage system (TFSS), we compare our
storage design with two related works: R-buffer [Witt01] and WF hardware oriented
algorithm [Amor06]. We list the memory requirements of each method in Table 4-2. The
second column shows the name and the size of a transparent fragment storage space in each
technique and the third column shows the name and the size of other storage supports in each
storage system. In Table 4-2, N;is defined as the number of transparent fragments, N, is
defined as the number of dynamic allocated sections in WF algorithm, and Ny is defined as the
number of sections in T-buffer in our design; Sy is defined as the size of a fragment data

(XYZ,RGBA), Sais defined as the size of an address; My is defined as the memory size per
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section in M-buffer in WF algorithm, and Myxss is defined as the memory size per section in

T-buffer in our TFSS; W and H are defined as the width and the height of a display screen.

Transparent fragment storage system

techniques transparent fragment memory other storage supports
Name size Name Size
= Z buffer size
2" Z buffer
R-buffer R-buffer NrxSr (WxHXZ’s bytes)

state memory 3(bits) xWxH

WEF algorithm M-buffer (WXH+N4) XMy pointer memory | Sy X (WxH+N,)

SSA Table SAXWxH

TESS T-buffer MrrssXNg

NSA Table S4XNy

Table 4-2 memory requirements of each of transparent storage systems

Based on the memory requirements listedn Table 4-2, we obtained the simulation result
of memory requirement of each technigue,-as-shown-in Figure 4-3. We find that in average,

our TFSS has the lowest memory requirement than two related works.

10
2 3
56 F I RBUF
: i B WEQ)
= :
5 WF(2)
S 2
- O WF(1)
’ B TFSS(3)
N N N N O N N S -
q&’b @W DUy &89 &@b &@» &ﬁo @g TFSS(2)
frame

Figure 4-3 memory requirement comparison®

Y WF(D,,,) represents WF algorithm has the capability for storing D,,,, fragments per section in M-buffer
TFSS(L,...) represents TFSS has the capability for storing L,,,, fragments per section in T-buffer
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Notice that in frame480, the memory requirements of our TFSS with Lnum=3 are larger
than those of R-buffer technique. We conjecture that this result is occurred by the weakly
utilization of a section, which has the capability for storing three transparent fragments but
only stores fewer than three fragments. As shown in Table 4-1, the proportion of pixels which
have one transparent fragment in frame480 is much larger than those in other frames. In fact,
the percentage of pixels with one transparent fragment in frame480 is about 30%, while it is
only 2% to 10% in other frames. It indicates that about 30% of sections in T-buffer are weakly
utilized in frame480. Therefore, it results in unnecessary memory cost and larger memory

requirement of TFSS with Lnum=3 than of R-buffer.

90%

0% I
Y ——

70%
60% [ .\
——
0% | TFSS(3)

memory reduction rate (%)

ot —=— TESS(2)
w / TFSS(1)
20% ¥
10%
0%
RBUF WEQ) WEQ) WE(1)

fragment sotrage systems

Figure 4-4  average memory reduction rate of TFSS

The average memory reduction rate of our TFSS is presented in Figure 4-4. As shown in
Figure 4-4, our TFSS can achieve 18% to 41% memory reduction rate in comparison with
R-buffer architecture, and 40% to 81% reduction rate in comparison with WF algorithms. It

shows that our TFSS has great advantage over other related works.
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Since the size of each fragment is reduced after leading Os elimination, the memory size
of each section within T-buffer in TFSS does not need as large as before. In our TFSS, without
leadingOs elimination, each section within T-buffer is L,m*8bytes large (Figure 4-3). We
suppose that with leadingOs elimination, each section is smaller than L,,,*8bytes. Thus, we
reduce the section size to evaluate the memory reduction ratio by leading Os elimination. As
we expect, the memory requirement of transparent fragment storage system will be further
reduced by leading Os elimination. We evaluate the memory requirement of our TFSS design
with leading Os elimination and compare the result with other related works, as shown in
Figure 4-5. We notice that in each frame cases, including frame480, our design has the lowest

memory requirement.

10
=
5 60 f E RBUF
z 4 B WEQ)
§ ) CJWEQ)
0 CWE(D)
B TFSS(3,20)
D Q N\ Q Q D Q N\ S}
S P S S mTESSQ4)

& & &S
X

Figure 4-5 memory requirement comparison2

As we can see in Figure 4-6, in average, TFSS with leading Os elimination can reduce
23% to 29% memory requirement in comparison with R-buffer, and reduce 44% to 79%

memory requirement in comparison with WF algorithm.

2 TFSS(Lyum Mecrion) represents each section of T-buffer is M,...,, bytes and has the capability for storing L.,
transparent fragments.
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Figure 4-6  average memory,teduction rate of TFSS with leading Os elimination
4.3.2 time requirement

In First, we analyzed the memaery-access frequency of each technique. Suppose in one
frame, N; pixels have i transparent fragment, where i =0,1,2,3,.....Nmax, Nmax IS the maximum

number of transparent fragments that a pixel have in the frame. It infers that the number of

Mmax

pixels which have at least one transparent fragment is equal to ZNZ. , and the total number of
i=1

Mmax

transparent fragments is equal to Z(Nl. X1i).
i=1

Mmax

In R-buffer proposal, after rasterizing all fragments, sz xi transparent fragments
i=1

Mmax

are stored in R-buffer. In the first pass of reading R-buffer, ZNZ. x i transparent fragments
i=1
are accessed and ZN,. transparent fragments are removed from R-buffer. In the second
i=1

pass, ZNI. Xi— ZNI. transparent fragments need to be accessed and ZN,. fragments are
i=1 i=1 i=2
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removed from R-buffer. In the p, pass, D N,xi—» > N, need to be accessed and
i=1 j=l i=j

ZN,. fragments are removed from R-buffer. Therefore, the total access frequency of R-buffer,

i=p

denoted as fz-puper, 1S equal to

DN Xi+(Q N, xi=Y N)+(Q N, xi=Y N, =D N)+...+(Q N, xi—Y DN,

i=1 i=1 i=1 i=1 i=1 i=2 i=1 j=1 i=j

After a fragment accessed from R-buffer, its depth value needs to be compared with the
depth value stored in second z-buffer, and thus, the access frequency of second z-buffer,

denoted as foua-muger 1S €qual to that of R-buffer. Moreover, each transparent fragment is

eventually blended with the background fragment stored in frame buffer, and thus, the access

Mmax

frequency of frame buffer, denoted as,fidmesige- 1S equal toZ(Nl. x 7). The total memory
i=1

access frequency of storage system in R-buffer architecture is equal to fz-suger + fond-zbugert
Srrame-bugrer- 1t IMplies that the more transparent fragments in a frame or the more transparent
fragments per pixel, the more memory access frequency of R-buffer architecture. We defined
the execution time for order-independent transparency rendering is equal to the sum of
memory access time and computation time. Assume that each memory access takes one cycle
and as observed by [Amor06], the computation time during rendering for a pixel which has i

. i(i+1 - . .
transparent fragments is % cycles, we can easily figure out the execution time of

R-buffer architecture.

In WF proposal, we assume that the pointer memory can be accessed simultaneously
with M-buffer, and does not wait for being accessed after M-buffer access. Therefore, the
access frequency of the pointer memory will not affect the time requirement of memory
access and can be ignored. Since transparent fragments with the same x-y coordinate are

stored sequentially and connectedly, we can access these transparent fragments at one pass
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from M-buffer and blend these fragments based on weight factor computation stage in Figure

M max

2-6. Thus, the access frequency of M-buffer is equal to ZN,. x 1, and the memory access time
i=1

IS ZN,. xi cycles. As proposed by [Amor06], the computation time during rendering is

i=1

Q +1 cycles, for a pixel with i transparent fragments.

In our approach, we adopt the weight factor computation algorithm proposed in
[Amor06]. Thus, the access frequency of T-buffer is the same as the access frequency of
M-buffer in WF proposal, and the computation time is also the same as that in WF proposal.
However, in our approach, SSA Table needs to be accessed before accessing T-buffer in order
to find the start section in T-buffer. Thus, SSA Table cannot be accessed simultaneously with

T-buffer and the access frequency of SSA Table should be considered.
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Figure 4-7  execution time comparison

Figure 4-7 shows the execution time during order-independent transparency rendering of

each technique. As we expect, the execution time of R-buffer proposal is the higher than WF

37



proposal and our approach, and WF proposal has the lowest access frequency. The execution
time of our approach is just a little higher than WF proposal but is much lower than R-buffer

architecture.

Overall, the results of our TFSS have been very positive, since TFSS significantly
outperforms R-buffer in terms of time requirements and significantly outperforms WF

algorithm in terms of memory requirements.
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Chapter 5 Conclusion and Future Work

5.1 Conclusion

In this thesis, we propose a transparent fragment storage system for order-independent
transparency, which fragments are stored in based on their x-y coordinate and supports pointer
indexing to connect fragments belonging to the same pixel. The proposed transparent
fragment storage system costs less memory requirement than other related works (R-buffer
and WF proposals). Also, the execution time of the proposed storage system in this thesis is

much lower than R-buffer.

For QUAKE4 benchmark, our transparent fragment storage system, in comparison with
R-buffer architecture, reduces -29% memory requirement in average, and reduces 45%
execution time. In comparison with. WFE. proposal, although the execution time of our storage
system is higher than WF proposal, our transparent storage system reduces 67% memory
requirement in average. Moreover, with leading Os elimination technique, our system can
further achieve 72% reduction rate in comparison with WF algorithm. From the evaluation
result, we find that as the number of transparent fragments per pixel increases, our storage

system has more advantages on memory requirements and execution time for rendering.

5.2 Future work

In our observation, the utilization of leading Os elimination can reduce 5% memory
requirement of storage system. However, this leading elimination only eliminates fixed-length
leading zero bits from RGB color components of a fragment. If we can eliminate

variable-length leading zero bits—each color component of a fragment can have variable
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length after leading Os elimination—perhaps more memory space can be reduced.
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Appendix A. Simulation Test Frame Images

Figure A-1. frame60

Figure A-2  framel20
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Figure A-3 7-frame180

Figure A-4  frame240
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Figure A-5 7-frame300

Figure A-6  frame360
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Figure A-7 1-frame420

Figure A-8  frame480
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