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繪圖處理器中順序獨立透明畫素片段儲存系統之設計 
學生：林慧榛          指導教授：單智君 教授 

 
國立交通大學資訊科學與工程研究所 碩士班 

 

摘  要 

為了能正確且迅速繪製出場景透明度的效果，現今電腦圖學領域中提出

了順序獨立透明計算之演算法，並配以額外透明畫素片段儲存系統之支

援，以進一步降低演算法所需執行時間。然而，隨著現今對於高畫質場景

的要求愈來愈高的情況下，場景中具透明度像素片段之數目亦日漸增加，

其所需儲存空間亦日漸增大。如何能降低該儲存容量之需求，成為值得研

究之議題。本論文針對順序獨立透明計算，提出一畫素片段儲存系統之設

計：依畫素片段之螢幕座標位置，將畫素片段擺放至儲存系統中相對應的

位址，並利用指標索引方式，將具相同螢幕座標之畫素片段串連起來，達

到節省系統儲存空間、降低對儲存系統存取之次數、快速存取同螢幕座標

畫素片段及之目的。 
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Transparent Fragment Storage System for Order-Independent 

Transparency in GPU 
 

Student：Hui-Chen Lin            Advisor：Jyh-Jiun Shann 
 

Institute of Computer Science and Engineering  
National Chiao-Tung University 

 

Abstract 
In order to correctly and fast render the transparent effect of a scene, some 

hardware oriented algorithms with additional transparent fragment storage 

supports for order-independent transparency are proposed in current computer 

graphics. However, as the scene complexity is constantly increasing, the number 

of transparent fragments and the size of transparent fragment storage support 

also increase significantly. To lower the demand for memory, in this thesis, we 

propose a transparent fragment storage system design for order-independent 

transparency. Within our fragment storage system, transparent fragments are 

stored in a corresponding location based on their x-y coordinate, and connected 

with the other fragments that has the same x-y coordinate by pointer indexing. 

The objective of our design is to reduce the memory requirement and the 

memory access frequency of the transparent fragment storage system. 
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Chapter 1 Introduction 

In order to support realistic scene in computer graphics, a special purpose processor, 

called Graphics Processing Unit or GPU, is required for high performance 3D graphics 

rendering. As the demand for high quality realistically rendering in computer graphics is 

continuously increasing, the support for transparent effect becomes more important for visual 

reality. Current GPUs provide the capability to generate the effect of transparency. The 

operation implemented in GPU to generate the transparent effect is called alpha blending: 

combining a translucent foreground with a background. Due to the alpha blending operation, 

rendering a scene with transparent objects realistic requires rendering in correct depth order— 

from back to front or front to back with respect to the viewpoint. It implies that the rendering 

order of transparent objects depends on their depth order with respect to the viewpoint, that is, 

order-dependent transparency. Traditionally, the transparent objects are sorted to get the 

correct depth order in the application level. However, it is difficult for software application 

developers to sort transparent objects since objects may intersect each other. In addition, as 

the number of transparent primitives increases rapidly, the application sorting becomes more 

and more complicated. Therefore, order-independent transparency, rendering transparent 

objects without application depth sorting, becomes an important issue for high performance 

rendering systems. 

Order-independent transparency is a difficult architectural problem to solve and many 

researches have been investigated on it. There are several different kinds of order-independent 

transparency algorithms. Some algorithms model the alpha value as a probability measure 

such as alpha-dithering [Will]. Other multi-pass rendering algorithms [Ever01] pass fragments 

several times to blend them and produce the correct results. For the reason of fast rendering, 

most order-independent transparency algorithms modified the traditional GPU architecture 
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with the additional hardware support for storing these transparent fragments. R-buffer(RB) 

proposal [Witt01] implements A-buffer [Carp84] software algorithm into hardware by adding 

an extra storage system to store transparent fragments in their arrival order. WF (Weight 

Factor) hardware oriented algorithm [Amor06] precomputes the contribution factor of each 

fragment to the final color of a pixel and sequentially stores transparent fragments based on 

their x-y coordinate into storage system. 

As the scene complexity arises, the number of transparent fragments and the storage 

space for transparent fragments increase significantly. How to store these transparent 

fragments to lower the demand for memory becomes more and more important. In addition, 

current fragment storage support techniques for order-independent transparency [Amor06] 

[Witt01] still have some defects to be improved such as large storage requirement and high 

memory access frequency. Therefore, our objective is to design a transparent fragment storage 

system which places order-independent-arrival transparent fragments in such an organized 

way that reduces the memory requirement and memory access frequency in comparison with 

previous works. In addition, for the purpose to further reduce the memory requirement of 

proposed transparent fragment storage system, we also use leading 0s elimination technique to 

strip the redundant part of fragment data. 

 The rest of this thesis is organized as follows: In Chapter 2, we introduce an overview of 

graphics pipeline, transparency rendering operation and problem, and related works of 

fragment storage system for order-independent transparency. In Chapter 3, we propose the 

design of our transparent fragment storage system and the utilization of leading 0s elimination 

technique. In Chapter 4 we discuss and show our simulation environment and results. In 

chapter 5, we summarize our conclusions and future work.  
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Chapter 2 Background and Related work 

In this chapter, we will give an overview of graphics pipeline. Then, we will introduce 

the definition of transparency, alpha blending operation, explain the transparency rendering 

problem, and expatiate on order-independent transparency. At the end of this chapter, we will 

present the details of two previous works related to hardware support techniques for 

order-independent transparency. 

2.1 Graphics pipeline  

 

Figure 2-1 3D graphics pipeline 

Graphics pipeline can be roughly divided into four stages: vertex processing, 

rasterizarion, pixel (fragment) processing, and depth processing, as shown in Figure 2-1. 

At vertex processing stage, vertices undergo coordinate transformation, lighting, and clipping 

operations. After vertex processing stage, these calculated vertices are sent into rasterization 

stage, which consists of two parts. The first part, called triangle setup, is to combine three 

vertices into a triangle, and the second part is to determine which squares of an integer grid in 

screen coordinate are occupied by the triangle and to assign a color and a depth value to each 

such square. Such generated image square is called fragment, which is defined as a pre-pixel 

before being sent to a screen. Fragments are then sent into pixel processing stage. At pixel 
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processing stage, the color of fragments are calculated based on values interpolated from the 

vertices or determined by texture mapping [Watt00]. Finally, fragments occluded by other 

fragments and invisible at the final screen are discarded at depth processing.  

The graphics pipeline is implemented on GPUs, designed with high parallel structure 

which makes it more efficient than CPU, and the two describe stages —vertex processing and 

pixel processing— are implemented as programmable stages, named vertex shading and pixel 

shading, on GPUs..  

Since our system is designed for storing fragments, which are generated after 

rasterization; therefore, we are only concerned about the process between rasterization stage 

and pixel processing in graphics pipeline in this thesis. 

2.2 Transparency and alpha blending 

Translucent objects can be rendered by specifying the degree of transparency with a 

color. The value to represent the degree of transparency is defined as an alpha (α) value, 

which ranges from 0.0(completely transparent) to 1.0(completely opaque). Each fragment has 

its alpha value with its RGB color components. To obtain the final color of a pixel, the 

translucent fragments belonging to the pixel (i.e., fragments have the same x-y coordinate) are 

typically assumed to be rendered from back to front in visibility order, or depth order. The 

process of blending a translucent foreground with a background color to generate the effect of 

transparency is called alpha blending. Normally, the alpha blending equation (1) [Port84] is 

used for alpha blending, as shown below: 

bfff ccc )1( αα −+=         Eq. (1) 

, where c  is the final color of a pixel, fc  and fα  are the color and the alpha value of 

foreground transparent fragment, and bc  is the color of background fragment. 
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 To clarify, consider an example shown in Figure 2-2. In Figure 2-2, six fragments are 

belonging to the same pixel, two of them are opaque (O1 and O3) and four of them are 

transparent (T2, T4, T5, T6, and T7). The suffixes of fragments indicate the sequential order 

where the fragments are received. The fragments are viewed from the left. The final color of 

the pixel is obtained by the combination of the closest opaque fragment O3 and the blending 

result of the transparent fragments processing from back to front: first T7, second T4 and 

finally T6. That is, assume ci and αi represent the color and the alpha value of fragments, 

where i is fragment’s received order, according to Eq. (1), the final color c of the pixel is 

equal to  

[ ]{ }3777444666 )1()1()1( ccccc αααααα −+−+−+= . 

 

Figure 2-2 Example of fragment blending processing 

2.3 Transparency rendering problem 

The blending equation (1) is order-dependent, which means that transparent fragments 

require to be processed in their depth order, not in their arrival order. Thus, if we render 

transparent fragments in arbitrary order, it will produce an artificial result. For example, in 

Figure 2-2, fragment T4 and T6 come before fragment T7, if we blend T4 and T6 with opaque 
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fragment O3 first, the blend T7 later, according to Eq. (1), the final color c  will be 

[ ]{ }
3467446766777

3444666777

)1)(1)(1()1)(1()1(  
)1()1()1( 

cccc
ccccc

ααααααααα
αααααα

−−−+−−+−+=
−+−+−+=

 

But the correct final color should be  

[ ]{ }
3746774644666

3777444666

)1)(1)(1()1)(1()1(  
)1()1()1( 

cccc
ccccc

ααααααααα
αααααα

−−−+−−+−+=
−+−+−+=

 

Thus, the incorrect result is produced due to the incorrect rendering order. 

Since fragments are generated in arbitrary order at rasterization, not in depth order, 

several algorithms are proposed for correct transparent rendering. These algorithms can be 

classified as sorting based algorithms and order-independent transparency algorithms. Sorting 

based algorithms require the primitives (polygons) to be sorted from back to front with 

respect to the viewpoint. These sorting algorithms can further be classified into application 

sorting [Mamm89, Snyd98], hardware assistant sorting [Ever01], and hardware sorting 

[Amor06, Winn97] algorithms based on the method they use to sort the primitives. However, 

for application sorting algorithms, it is difficult to do depth sorting since objects in a scene 

may intersect each other and intersected parts need to be divided into several polygons. Even 

for those hardware assistant sorting algorithms, it is very time-consuming. Therefore, it comes 

out order-independent transparency.  

2.4 Order-independent transparency 

Order-independent transparency is defined as a process which renders transparent 

fragment in arbitrary order instead of sorting them in advance. There are several different 

kinds of order-independent transparency algorithms.  

Some algorithms model the alpha value as a probability measure such as alpha-dithering 

[Will] [Muld98], or alpha-to-coverage. These algorithms sample the alpha value and interpret 
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it as how much it covers the pixel to produce dithering-like transparent effect in images. 

These algorithms are single-pass rendering, do not require depth sorting, and do not handle 

intersected polygons in advance. However, since they are probability-measure algorithms, 

they also have chance to produce artificial results. Other order-independent transparency 

algorithms [Ever01] use multi-pass rendering method to process transparent fragments several 

times that render them in correct depth order. These multi-pass rendering algorithms are some 

kinds of fragment-level depth sorting technique; therefore, in general cases, they have the 

same defect as sorting algorithms have, that is, time consuming. 

Thus, most order-independent transparency algorithms modified the traditional GPU 

architecture to solve time-consuming problem. Z3 hardware technique [Joup99] is one of these 

modified hardware architecture which only renders a fixed number of transparency layers 

correctly. R-buffer(RB) [Witt01] is a modified hardware architecture which implements 

A-buffer [Carp84] software algorithm into hardware by adding an extra storage system to 

store transparent fragments associated with each pixel. WF (Weight Factor) hardware oriented 

algorithms [Amor06] precomputes the contribution factor of each fragment to the final color 

of pixel and propose an organized strategy to sequentially store transparent fragments 

corresponding to the same pixel. Since our research focuses on hardware storage support for 

order-independent transparency, we will introduce more details of R-buffer hardware 

architecture and WF hardware oriented algorithm, which are more related to our system 

design. 

2.5 Related works 

2.5.1  R-Buffer hardware architecture 

R-buffer (RB) [Witt01] is a graphics hardware architecture which implements A-buffer 

software algorithm [Carp84]. Figure 2-3 shows the R-buffer graphics architecture. The 
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R-buffer architecture is a standard graphics pipeline with additional hardware support: a 

proposed recirculating fragment buffer, called R-buffer, pixel state memory, and a second 

z-buffer. In rasterization stage, the objects are rasterized into fragments in arbitrary 

depth-order. After rasterization, a transparent fragment is sent to the R-buffer, and the depth 

value of an opaque fragment is compared with the depth value in z-buffer to find the closest 

opaque fragment which needs to be placed into frame buffer. The transparent fragments 

behind the closest opaque one are discarded. Then, each transparent fragment in R-buffer is 

read out iteratively to find the furthest one to be blended with the fragment in frame buffer.  

 

Figure 2-3 R-buffer graphics architecture scheme [Witt01] 

Figure 2-4 shows the high level R-buffer algorithm. Phase 1 rasterizes the primitives into 

fragments and places the closest opaque fragment into frame buffer, the furthest transparent 

fragment’s depth value into second z-buffer. Phase 1 is equivalent to early z test with the 

exception that unoccluded transparent fragments are sent into R-buffer and second z-buffer is 

updated with the depth value of the furthest visible transparent fragment. After all fragments 

are generated, in phase2, the transparent fragments in R-buffer are discarded if they are 

occluded by the opaque fragments in frame buffer. If the R-buffer is not empty, the phase3 is 



 9

processed iteratively to find the transparent fragment whose depth value matches the depth in 

the second z-buffer from R-buffer and blend that transparent fragment with the fragment in 

frame buffer, and then, drop that transparent fragment from R-buffer. When the R-buffer is 

empty, the whole process is finished.  

 

Figure 2-4 R-buffer high level algorithm [Witt01] 

The R-buffer is a FIFO (first-in-first-out) memory which stores transparent fragments in 

the sequence that they arrive. The information of each transparent fragment —the location (x, 

y), the depth value (z), the color value (RGB) with alpha value(A or α)— needs to be stored 

in the R-buffer. Pixel state memory stores each pixel’s current state. The second z-buffer 

stores the depth value of the furthest visible transparent fragments per pixel. The memory size 

of the R-buffer is proportional to the number of transparent fragments after early z test. The 

memory size of the second z-buffer is equivalent to the original z-buffer. In pixel state 

memory, each pixel needs three bits to record its current value; thus, the memory size of the 

pixel state memory is equal to three multiplied by the screen size. To sum up the memory 

requirement of R-buffer architecture, we list the R-buffer memory requirement equation as 

follow:  

Memorytotal = MR-buffer + M2nd-z-buffer + Mstate-memory 

2.5.2  Hardware oriented algorithm based on weight factors computations 

For the convenience of explaining this algorithm [Amor06], we called it WF (Weight 
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Factor) hardware oriented algorithm in brief. WF hardware oriented algorithm is based on the 

precomputation of the contribution of each fragment to the final color of the pixel with the 

specialized storage scheme. Figure 2-5 shows the generic structure of WF hardware oriented 

algorithm. Phase 1 and phase 2 of WF hardware oriented algorithm are similar to those of 

R-buffer high level algorithm, shown in Figure 2-4. In phase 1, fragments are sequentially 

generated and the current closest opaque transparent is placed into frame buffer while the 

transparent fragments are stored into another buffer, called Mbuffer. In phase 2, all transparent 

fragments stored in Mbuffer are analyzed and discarded if they are occluded by the closest 

opaque fragment stored in frame buffer. In phase 3, each transparent fragment in Mbuffer is 

compared with other fragments belonging to the same pixel in order to compute its weight 

factor and the blending of the fragment is performed. 

 

Figure 2-5 Generic structure of WF hardware oriented algorithm 

The weight factor computation is based on the analysis of the blending equation (1). By 

breaking the recursivity of the blending equation (1), the equation can be revised as: 

∑
=

=
n

i
iii cwc

0

α           Eq. (2) 

, where there are n transparent fragments and one opaque fragment belonging to the pixel 

which has the final color c, ic  is the color of the transparent fragment i, iα  is the alpha value 

of fragment i, and iw  is the weight factor of the transparent fragment i. The weight factor 

iw  is computed by the accumulative contribution of all transparent fragments j in front of the 

transparent fragment i (Zj < Zi). The equation of iw  can be written as: 
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∏
=

=
n

j
ji aw

0

          Eq. (3) 

with   

⎩
⎨
⎧ <−

=
otherwise.           1

Z if   1 j ij
j

Z
a

α
       Eq. (4) 

 

Figure 2-6 WF hardware oriented algorithm 

The WF hardware oriented algorithm is outlined in Figure 2-6. It can be basically 

divided into three stages: SETUP (line 1-6), OCCLUDED TRANSPARENT FRAGMENTS 

(line 9-12), WEIGHT FACTOR COMPUTATION (line 14-22). Assume that there are n+1 

fragments are processed sequentially to the same pixel. In SETUP stage, if a fragment is 

transparent, it is placed into Mbuffer; otherwise, if a fragment is opaque and closest to the view 

point at the time, it is stored into frame buffer and Z-buffer is updated by its depth value. Note 

that some transparent fragments are visible when they are compared to the front-most opaque 

fragment at the time they arrive, but a closer opaque fragment may arrive later and occlude 

them. Therefore, in the second stage, OCCLUDED TRANSPARENT FRAGMENTS, those 

transparent fragments in Mbuffer are discarded for the reason that they are occluded by the 
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closest opaque fragment. In the last stage, WEIGHT FACTOR COMPUTATION, each 

fragment is compared with all those following in the Mbuffer in order to compute its weight 

factor. Obviously, these three stages in Figure 2-6 are the same as the three phases in Figure 

2-5. 

 

Figure 2-7 Organized memory scheme of WF algorithm 

The organized memory scheme of WF algorithm is shown in Figure 2-7. It suggests that 

transparent fragments belonging to the same pixel are stored sequentially and connectedly in 

the Mbuffer. Mbuffer is organized in sections of Davg words, where Davg is the average number of 

fragments per pixel. Each pixel has it corresponding storage section, with capacity for Davg 

fragments; that is, for a system with W×H pixels, W×H sections would be required and a 

pixel i in a system has a corresponding section i in Mbuffer. To extend the storage capabilities, a 

pointer memory is added so that more than one section can be dynamically assigned to a 

given pixel. The information stored per section of a pointer memory indicates that whether 

one section is sufficient (by storing a NULL pointer) or whether the following-coming 

fragments are stored in another section (by storing the section index). For example, if there 
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are F transparent fragments belonging to a pixel i, where F is larger than Davg, the first Davg 

fragments are stored in section i of Mbuffer, and the following F- Davg fragments are stored in 

another section j (j ≧ W×H). The section i of a pointer memory stores the section j index. If 

section j is still insufficient to store F- Davg fragments (i.e., F- Davg > Davg), the rest F-2×Davg 

fragments are stored to another section k (k>j), and so on. 
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Chapter 3 Design  

 In this chapter, our transparent fragment storage system is proposed. The objective of our 

transparent fragment storage system is to reduce the memory requirement and memory access 

of transparent fragments for order-independent transparency. In addition, we also propose a 

leading 0s elimination technique to compress fragment data size and further reduce the 

memory requirement of the proposed transparent fragment storage system. This chapter is 

organized as follows: in section 3.1, the system design overview is introduced; in section 3.2 

our transparent fragment storage system is proposed; in the last section of this chapter (section 

3.3), we present the leading 0s elimination technique. 

3.1 Design overview 

The overview of our proposed transparent fragment storage system is shown in Figure 

3-1. There are three components in our transparent fragment storage system:  start-section 

address table (SSA Table), T-buffer, and next-section address (NSA Table). After 

rasterization stage, the polygons are segmented into several fragments in arbitrary order. Then, 

opaque fragments continue the pixel processing procedure while transparent fragments are 

stored into our transparent fragment storage system (TFSS). The details of our transparent 

fragment storage system will be introduced in section 3.2. In addition, we also design leading 

0s elimination, which is the process that reduces a fragment data size by eliminate the leading 

0s of fragment’s color components (RGB). The details of leading 0s elimination will be 

introduced in section 3.3. 
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Figure 3-1 the design diagram of transparent fragment storage system 

3.2 Transparent Fragment Storage System 

3.2.1 Statistics and observation for the distribution of transparent fragment 

Figure 3-2 shows a frame image in DOOM3. We analysis the number of transparent 

fragments of each pixel in this frame and obtain the result in Figure 3-3 and Figure 3-4. 

Figure 3-3 is a gray-level image, and black color indicates that the number of transparent 

fragments of a pixel is 0, while white color indicates that the number of transparent fragments 

of a pixel is 7, that is, the maximum number of transparent fragments of a pixel in the frame. 

The transparent fragment numbers of a pixel between 0 and 7 and their corresponding colors 

are shown at right side of Figure 3-3. More detail of statistics of the transparent fragment 

number in the frame is shown in Figure 3-4. We find that not all pixels in a frame have 
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transparent fragments. However, in WF proposal, each pixel is assigned the same size of 

memory space, no matter whether the pixel has transparent fragments or not. Thus, if we use a 

transparent storage support proposed in WF proposal, it needs a large memory space and parts 

of them are unused resulting in unnecessary memory cost.  

 

Figure 3-2 frame in DOOM3 



 17

 

Figure 3-3 number of transparent fragments per pixel expressed by grayscale image 
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Figure 3-4 statistics of the number of transparent fragments per pixel 

3.2.2 The structure of transparent fragment storage system 

In this section, we will introduce the structure of TFSS. As the section 3.1 is described, 
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the design diagram of transparent fragment storage system (TFSS) is shown in Figure 3-1. 

The storage scheme of TFSS is to store transparent fragments in an organized way based on 

their coordinate; that is, transparent fragments belonging to a pixel are stored serially in TFSS. 

The transparent fragment storage system (TFSS) is composed of three components: SSA 

Table, T-buffer, and NSA Table. The structure and the function of each component in TFSS 

will be described in 3.2.2.1 to 3.2.2.3. 

3.2.2.1 SSA(Start-Section Address) Table 

 

Figure 3-5 diagram of SSA Table 

As shown in Figure 3-5, SSA Table has W times H entries, where W is defined as the 

width of a screen, and H is defined as the height of a screen. Each pixel p in a screen has a 

corresponding entry ep in SSA Table and each entry in SSA Table stores the address of start 

section for pixel p. Namely, pixel p has assigned the entry ep in SSA Table. If a pixel does not 

have the start section— the pixel does not have transparent fragments— a nullified address 

is stored in the corresponding entry in SSA Table. 
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3.2.2.2 T-Buffer 

T-buffer is a storage space for transparent fragments. As shown in Figure 3-6, T-buffer is 

organized in sections of Lnum, where Lnum represents the maximum number of transparent 

fragments that can be stored in a section. Each section stores transparent fragments with the 

same x-y coordinate; that is, fragments belonging to the same pixel are stored gregarious 

within one section in T-buffer. There might be more than Lnum transparent fragments which 

have the same x-y coordinate. Thus, more than one section should be assigned to a pixel to 

extend the capability for storing variable number of fragments. We use NSA Table to record 

the address of next section which is assigned to store the following fragments.  

 

Figure 3-6 the structure of T-buffer 

3.2.2.3 NSA(Next-Section Address) Table 

If the number of transparent fragments is more than the number that one section is 
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capable of storing, the excess fragments will be stored in another section. Then, the address of 

the section is recorded as the next-section address in NSA Table. Figure 3-7 shows the 

diagram of NSA Table. The number of entries in NSA Table is equivalent to the number of 

sections in T-buffer and there is a one-to-one correspondence between entries in NSA table 

and sections in T-buffer. However, if one section is sufficient to store transparent fragments of 

a pixel, there is no need to assign another section, and thus, the NULL pointer is stored 

instead of the section address. 

 

Figure 3-7 diagram of NSA Table 

3.2.3 The access process of transparent fragment storage system 

In this section, the access process of transparent fragment storage system is described. 

The process for storing fragments into TFSS is described in 3.2.3.1; the process for reading 

fragments from TFSS is described in 3.2.3.2. 

3.2.3.1 The process for storing transparent fragments into TFSS 

First of all, before a transparent fragment with the location (xi,yj) is stored into T-buffer, 
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the address of start section s(i,j) is read from the corresponding entry e(i,j) in SSA Table. If s(i,j) 

of T-buffer, the start section, is full, the address of next section ns which is available (not full) 

for storing fragments is read from the entry es of NSA Table. After the address of section ns is 

obtained, the fragment is eventually stored into section ns of T-buffer. If there is no start 

section or no next section for a given pixel, the new empty section in T-buffer is assigned for 

that pixel, and the address of the new section is recorded in SSA Table as the start-section 

address or in NSA Table as the next-section address for the pixel. Figure 3-8 shows the 

flowchart of the process for storing fragments into TFSS. 

 

Figure 3-8 flowchart of the process for storing fragments into TFSS 
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3.2.3.2 The process for reading transparent fragments from TFSS 

For each pixel p(i,j ) in a screen, the start-section address is read from its corresponding 

entry e(i,j) in SSA Table. If there is no start-section address for a pixel, the process is continued 

to read the start-section address from the next entry e(i,j+1) for the next pixel. Otherwise, 

transparent fragments belonging to p(i,j )  are accessed from the start section s(i,j) of T-buffer 

and the address of next section ns can be read simultaneously from the entry s of NSA Table. 

If there is no next section for p(i,j ), instead, the NULL is stored in entry s of NSA Table, the 

process is continued for the next pixel. Otherwise, the fragments in the next section n are 

accessed from T-buffer and the address of the next section n’ of section n can be looked up 

simultaneously from the entry n of NSA Table. This process is recursively done until there is 

no next section for pixel (xi,yi). Figure 3-9 shows the flowchart of the whole process for 

reading fragments from TFSS. 

 
Figure 3-9 flowchart of the process for reading fragments from TFSS 
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3.3 Leading 0s elimination 

3.3.1 Statistics and observation of fragment data length 
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Figure 3-10 distribution of the number of leading 0s of fragments 

Figure 3-10 shows the distribution of the number of leading 0s of fragments before 

multiplied by alpha value in frame130. In Figure 3-10, the horizontal axis represents the 

number of leading 0s of a fragment, ranging from 0 to 7 for each 8-bit color component; the 

vertical axis represent the number of transparent fragments. The yellow, light blue, and purple 

curves in Figure 3-10 represent the cumulative percentage of fragments in accordance with 

the number of leading 0s. As we can see, about 80% fragments, their effective value of each 

color component only use less than 4 bits. 

When RGB color components of a fragment are multiplied by fragment’s alpha value, 

the number of leading 0s of each of RGB color components will increase, as shown in Figure 

3-11. This phenomenon gives us a thought that it does not need full 8-bit memory space to 
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store each color component of a transparent fragment; that is, we can eliminate leading 0s of 

each color component of a transparent fragment before it is stored into T-buffer to further 

reduce the memory requirement of transparent fragment storage system. 
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Figure 3-11 the number of leading 0s of fragments after multiplied by alpha value 

The original cumulative percentage curve of transparent fragments is compared with the 

cumulative percentage curve after multiplied by alpha value, as shown in Figure 3-12, where 

line1-R,G,B represent the former and line2-R,G,B represent the latter. Line3-R,G,B in Figure 

3-12 represent the cumulative curve of transparent fragments when we choose the minimum 

number of leading 0s among RGB color components as the number of leading 0s of each 

color component. We observe that there is a little difference between line2 and line3, and it 

implies that perhaps a fixed-length leading 0s elimination to RGB color component of a 

fragment can achieve approximate memory reduction ratio as variable-length leading 0s 

elimination. 
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Figure 3-12 cumulative percentage curves of transparent fragments  

3.3.2 Main idea of leading 0s elimination 

According to the statistics and observation in 3.3.2, we decide to use a leading 0s 

elimination to further reduce the memory requirement for transparent fragments. Leading 0s 

elimination is a simple and quick process that eliminates the leading zero bits of three color 

component data(RGB) simultaneously until leading 1 occurs in any one of the three color 

components. Notice that we do not eliminate all leading zero bits from each color component, 

instead, we just eliminate the minimum number of leading 0s among RGB color components; 

that is, fixed-length leading 0s elimination for each RGB color component of a transparent 

fragment. 

The operation of leading 0s elimination is simple. First, eliminate leading zero bits of 

three color components (RGB) simultaneously until leading 1 occurs in any one of the three 
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color components. Then, shift the RGB color component data to the right by several bits 

based on fragment’s alpha value. Finally, record the length of RGB color component after 

elimination.  

As shown in Figure 3-13, for leading 0s elimination, an additional design component, 

called Length Table, is added into our transparent fragment storage system to support 

variable-length fragment data retrievals. Length Table records the length of RGB color 

components of a fragment after leading 0s elimination. There is a one-to-one correspondence 

between entries in Length Table and sections in T-buffer; that is, each entry in Length Table 

records the lengths of fragments in its corresponding section and each entry in Length Table 

can record at most Lnum lengths of fragments, where Lnum represents the maximum number of 

transparent fragment that can be stored in a section. 

 

Figure 3-13 transparent fragment storage system with leading 0s elimination 
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3.3.3  Example of leading 0s elimination 

Figure 3-14 shows an example of leading 0s elimination. Assume that each color 

component of a fragment is 8 bits, fragment’s alpha value is 0.125, and the value of each color 

component is represented in binary format. First, the minimum number of leading 0s among 

RGB color components is two; thus, we eliminate two leading zero bits from each of three 

color components (RGB) simultaneously. Then, shift the RGB color component data to the 

right by 3 bits based on fragment’s alpha value. Finally, record the length of RGB color 

component after elimination. 

 

Figure 3-14 example of leading 0s elimination 
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Chapter 4 Evaluation Results 

In this chapter, we first show our evaluation environment and the characteristic of input 

frame data (in section 4.1 and 4.2). Then, we show and analyze simulation results of memory 

requirement and execution time during rendering of each method: R-buffer, WF hardware 

oriented algorithm, and our TFSS design in section 4.3. In the last section, we briefly 

summarize our conclusion from the results. 

4.1 Evaluation environment 

 

Figure 4-1 simulation flow and ATTILA architecture [Moya06]  
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Figure 4-1 shows the architecture of ATTILA simulator and when we dump trace of 

fragment data from ATTILA simulator for our simulator. We implemented a behavioral 

simulator of the architecture with the transparent fragment storage system in C++, and 

modified ATTILA simulator [Moya06] to output fragment information to a tracefile. The 

benchmark used in ATTILA simulator is QUAKE4 [Rave05], a modern graphics application. 

Figure 4-2 shows one frame appearing in QUAKE4. The tracefile outputted from ATTILA 

simulator contains the coordinates and RGBA color components of fragments in frames. Our 

simulator reads the tracefile and evaluates the memory requirement and access frequency time 

of transparent fragment storage system.  

 
Figure 4-2 a frame appearing in QUAKE4 

The simulation parameters are listed below: 
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 Display resolution: the number of distinct pixels in each dimension that can be 

displayed. 

 Color component bit-width: the bit-width of each of the RGBA color components  

 Lnum : the maximum number of transparent fragments that a section in T-buffer can 

stores. 

 Msection: the memory size of a section in T-buffer 

In our simulator, we assume the display resolution is 640×480, the bit-width of each of 

RGBA color components is 8 bits, and modulate the value of Lnum and Msection to observe the 

memory requirements. 

4.2 Test frame data 

Table 4-1  statistics of test frames 

In this section, we provide statistics of eight test frames, which are dumped at the 

interval of 60 frames, as shown in Table 4-1. In Table 4-1, the second column indicates the 

Frame 

No. of pixels whose no. of transparent 

fragments = N 

N 

No. of 

fragments 

No. of transparent 

fragments 

No. of transparent 

fragments per 

transparent pixel

Transparency 

density 
1 2 3 4 5 

Frame60 2,377,518 37,684 2.37 5% 5,812 956 6,633 2,279 189 
Frame120 746,943 37,594 2.38 5% 5,723 956 6,634 2,278 189 
Frame180 516,464 40,584 2.16 6% 8,713 956 6,634 2,278 189 
Frame240 488,112 88,434 1.63 18% 32,588 12,040 7,235 2,279 189 
Frame300 623,531 60,769 1.61 12% 26,082 2,729 6,636 2,179 121 
Frame360 587,617 69,768 1.61 14% 27,421 7,094 7,006 1,569 173 
Frame420 530,258 47,877 1.77 9% 15,728 3,290 6,770 1,296 15 
Frame480 605,927 135,475 1.22 36% 95,226 8,716 6,711 671 0 
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total number of opaque and transparent fragments in each frame; the third column shows the 

number of transparent fragments in each frame; the fourth column shows the number of 

transparent fragments per transparent pixel; the fifth column shows the transparency density, 

which is defined as the percentage of transparent pixels in a frame (i.e. #transparent 

pixel/display resolution). The last column shows the distribution of transparent fragment 

layers per pixel in each frame. For example, in frame 120, 5723 pixels have 1 transparent 

fragment layer, 956 pixels have 2 transparent fragment layers, 6634 pixels have 3 transparent 

fragment layers, 2278 pixels have 4 transparent fragment layers, 189 pixels have 5 transparent 

fragment layers, and no pixel have more than or equal to 6 transparent fragment layers. 

4.3 Simulation results 

In this section, we show the simulation results of memory requirements and access 

frequency time of fragments storage system. We compare the results of our design with two 

related works: R-buffer and WF hardware oriented algorithm.  

4.3.1 Memory requirement  

In order to evaluate our transparent fragment storage system (TFSS), we compare our 

storage design with two related works: R-buffer [Witt01] and WF hardware oriented 

algorithm [Amor06]. We list the memory requirements of each method in Table 4-2. The 

second column shows the name and the size of a transparent fragment storage space in each 

technique and the third column shows the name and the size of other storage supports in each 

storage system. In Table 4-2, Nf is defined as the number of transparent fragments, NA is 

defined as the number of dynamic allocated sections in WF algorithm, and NS is defined as the 

number of sections in T-buffer in our design; Sf is defined as the size of a fragment data 

(XYZ,RGBA), SA is defined as the size of an address; MWF is defined as the memory size per 



 32

section in M-buffer in WF algorithm, and MTFSS is defined as the memory size per section in 

T-buffer in our TFSS; W and H are defined as the width and the height of a display screen. 

Transparent fragment storage system 

transparent fragment memory other storage supports techniques 

Name size Name Size 

2nd Z buffer 
= Z buffer size 

(W×H×Z’s bytes)R-buffer R-buffer Nf ×Sf 

state memory 3(bits) ×W×H 
WF algorithm M-buffer (W×H+NA) ×MWF pointer memory SA × (W×H+NA) 

SSA Table SA×W×H 
TFSS T-buffer MTFSS×NS 

NSA Table SA×NS 

Table 4-2  memory requirements of each of transparent storage systems 

Based on the memory requirements listed in Table 4-2, we obtained the simulation result 

of memory requirement of each technique, as shown in Figure 4-3. We find that in average, 

our TFSS has the lowest memory requirement than two related works.  
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Figure 4-3 memory requirement comparison1 

                                                 
1 WF(Davg) represents WF algorithm has the capability for storing Davg fragments per section in M-buffer 
 TFSS(Lnum) represents TFSS has the capability for storing Lnum fragments per section in T-buffer 
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Notice that in frame480, the memory requirements of our TFSS with Lnum=3 are larger 

than those of R-buffer technique. We conjecture that this result is occurred by the weakly 

utilization of a section, which has the capability for storing three transparent fragments but 

only stores fewer than three fragments. As shown in Table 4-1, the proportion of pixels which 

have one transparent fragment in frame480 is much larger than those in other frames. In fact, 

the percentage of pixels with one transparent fragment in frame480 is about 30%, while it is 

only 2% to 10% in other frames. It indicates that about 30% of sections in T-buffer are weakly 

utilized in frame480. Therefore, it results in unnecessary memory cost and larger memory 

requirement of TFSS with Lnum=3 than of R-buffer.  
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Figure 4-4 average memory reduction rate of TFSS 

The average memory reduction rate of our TFSS is presented in Figure 4-4. As shown in 

Figure 4-4, our TFSS can achieve 18% to 41% memory reduction rate in comparison with 

R-buffer architecture, and 40% to 81% reduction rate in comparison with WF algorithms. It 

shows that our TFSS has great advantage over other related works. 
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Since the size of each fragment is reduced after leading 0s elimination, the memory size 

of each section within T-buffer in TFSS does not need as large as before. In our TFSS, without 

leading0s elimination, each section within T-buffer is Lnum×8bytes large (Figure 4-3). We 

suppose that with leading0s elimination, each section is smaller than Lnum×8bytes. Thus, we 

reduce the section size to evaluate the memory reduction ratio by leading 0s elimination. As 

we expect, the memory requirement of transparent fragment storage system will be further 

reduced by leading 0s elimination. We evaluate the memory requirement of our TFSS design 

with leading 0s elimination and compare the result with other related works, as shown in 

Figure 4-5. We notice that in each frame cases, including frame480, our design has the lowest 

memory requirement.  
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Figure 4-5 memory requirement comparison2 

As we can see in Figure 4-6, in average, TFSS with leading 0s elimination can reduce 

23% to 29% memory requirement in comparison with R-buffer, and reduce 44% to 79% 

memory requirement in comparison with WF algorithm. 

                                                 
2 TFSS(Lnum,Msection) represents each section of T-buffer is Msection bytes and has the capability for storing Lnum 
transparent fragments. 
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Figure 4-6 average memory reduction rate of TFSS with leading 0s elimination 

4.3.2 time requirement 

In First, we analyzed the memory access frequency of each technique. Suppose in one 

frame, Ni pixels have i transparent fragment, where i =0,1,2,3,…..nmax, nmax is the maximum 

number of transparent fragments that a pixel have in the frame. It infers that the number of 

pixels which have at least one transparent fragment is equal to∑
=

max

1

n

i
iN , and the total number of 

transparent fragments is equal to∑
=

×
max

1

)(
n

i
i iN .  

In R-buffer proposal, after rasterizing all fragments, ∑
=

×
max

1

n

i
i iN  transparent fragments 

are stored in R-buffer. In the first pass of reading R-buffer, ∑
=

×
max

1

n

i
i iN  transparent fragments 

are accessed and ∑
=

max

1

n

i
iN  transparent fragments are removed from R-buffer. In the second 

pass, ∑∑
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maxmax
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i NiN transparent fragments need to be accessed and ∑
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i
iN fragments are 
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removed from R-buffer. In the pth pass, ∑∑∑
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iN fragments are removed from R-buffer. Therefore, the total access frequency of R-buffer, 

denoted as fR-buffer, is equal to  
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After a fragment accessed from R-buffer, its depth value needs to be compared with the 

depth value stored in second z-buffer, and thus, the access frequency of second z-buffer, 

denoted as f2nd-zbuffer, is equal to that of R-buffer. Moreover, each transparent fragment is 

eventually blended with the background fragment stored in frame buffer, and thus, the access 

frequency of frame buffer, denoted as fframe-buffer, is equal to∑
=

×
max

1

)(
n

i
i iN . The total memory 

access frequency of storage system in R-buffer architecture is equal to fR-buffer + f2nd-zbuffer+ 

fframe-buffer. It implies that the more transparent fragments in a frame or the more transparent 

fragments per pixel, the more memory access frequency of R-buffer architecture. We defined 

the execution time for order-independent transparency rendering is equal to the sum of 

memory access time and computation time. Assume that each memory access takes one cycle 

and as observed by [Amor06], the computation time during rendering for a pixel which has i 

transparent fragments is 
2

)1( +ii  cycles, we can easily figure out the execution time of 

R-buffer architecture. 

In WF proposal, we assume that the pointer memory can be accessed simultaneously 

with M-buffer, and does not wait for being accessed after M-buffer access. Therefore, the 

access frequency of the pointer memory will not affect the time requirement of memory 

access and can be ignored. Since transparent fragments with the same x-y coordinate are 

stored sequentially and connectedly, we can access these transparent fragments at one pass 
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from M-buffer and blend these fragments based on weight factor computation stage in Figure 

2-6. Thus, the access frequency of M-buffer is equal to∑
=

×
max

1

n

i
i iN , and the memory access time 

is ∑
=

×
max

1

n

i
i iN  cycles. As proposed by [Amor06], the computation time during rendering is 

1
2

)1(
+

−ii  cycles, for a pixel with i transparent fragments.  

In our approach, we adopt the weight factor computation algorithm proposed in 

[Amor06]. Thus, the access frequency of T-buffer is the same as the access frequency of 

M-buffer in WF proposal, and the computation time is also the same as that in WF proposal. 

However, in our approach, SSA Table needs to be accessed before accessing T-buffer in order 

to find the start section in T-buffer. Thus, SSA Table cannot be accessed simultaneously with 

T-buffer and the access frequency of SSA Table should be considered. 

 

Figure 4-7 execution time comparison 

Figure 4-7 shows the execution time during order-independent transparency rendering of 

each technique. As we expect, the execution time of R-buffer proposal is the higher than WF 
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proposal and our approach, and WF proposal has the lowest access frequency. The execution 

time of our approach is just a little higher than WF proposal but is much lower than R-buffer 

architecture. 

Overall, the results of our TFSS have been very positive, since TFSS significantly 

outperforms R-buffer in terms of time requirements and significantly outperforms WF 

algorithm in terms of memory requirements.  
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Chapter 5 Conclusion and Future Work 

5.1 Conclusion 

In this thesis, we propose a transparent fragment storage system for order-independent 

transparency, which fragments are stored in based on their x-y coordinate and supports pointer 

indexing to connect fragments belonging to the same pixel. The proposed transparent 

fragment storage system costs less memory requirement than other related works (R-buffer 

and WF proposals). Also, the execution time of the proposed storage system in this thesis is 

much lower than R-buffer.  

For QUAKE4 benchmark, our transparent fragment storage system, in comparison with 

R-buffer architecture, reduces 29% memory requirement in average, and reduces 45% 

execution time. In comparison with WF proposal, although the execution time of our storage 

system is higher than WF proposal, our transparent storage system reduces 67% memory 

requirement in average. Moreover, with leading 0s elimination technique, our system can 

further achieve 72% reduction rate in comparison with WF algorithm. From the evaluation 

result, we find that as the number of transparent fragments per pixel increases, our storage 

system has more advantages on memory requirements and execution time for rendering.  

5.2 Future work 

In our observation, the utilization of leading 0s elimination can reduce 5% memory 

requirement of storage system. However, this leading elimination only eliminates fixed-length 

leading zero bits from RGB color components of a fragment. If we can eliminate 

variable-length leading zero bits—each color component of a fragment can have variable 
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length after leading 0s elimination—perhaps more memory space can be reduced. 
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Appendix A. Simulation Test Frame Images 

 
Figure A-1 frame60 

\ 

Figure A-2 frame120 
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Figure A-3 frame180 

 

 

Figure A-4 frame240 
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Figure A-5 frame300 

 

 

Figure A-6 frame360 
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Figure A-7 frame420 

 

 

Figure A-8 frame480 

 


