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摘  要 
 

 我們的研究目的是提出一個最佳化的可調視訊編碼的位元流擷取方法，主

要是能夠針對不同的播放設備以及網路頻寬調整擷取的位元流內容，使不同頻

寬之下仍能提供最理想的播放畫質。 

我們分析可調視訊編碼的位元流之編碼相依性限制，進而提出兩種方法來

產生的擷取路徑：一、Convex Sets 限制每一步擷取必須包含所有編碼相依的資

料，使位元流可以完整的解碼；二、Wavefront Sets 容許每一步擷取可以包含仍

無法解碼的資料，但擷取路徑仍不違反編碼相依性。另外，針對異質接收端的

各種播放設備的畫面大小與畫率可能不盡相同，我們提出一個模擬不同播放設

備的方法，使量測到的失真值能夠較接近真實播放畫面的失真。 

為了得到最佳化的播放畫質，我們提出兩種方法來選擇最佳擷取路徑：一、

Global Optimal；二、Local Optimal。我們實作出一個位元流擷取路徑的測試平

台，並針對不同的視訊內容、不同的播放設備、和不同的擷取路徑進行測試與

分析。我們從實驗結果得到幾項結論：一、不同的擷取路徑確實會造成不同的

播放品質；二、最佳化的擷取路徑因視訊內容與播放設備而異；三、利用 Convex 

Set 測試時，Local Optimal 與 Global Optimal 可得到相同結果；四、利用 Wavefront 

Sets 與 Convex Sets 所選擇的 Global Optimal 結果是吻合的。 

最後，我們將最佳化之位元流擷取方法運用於異質網路中的視訊傳輸。我

們提出一個分散式視訊群播的系統架構，並探討如何在伺服端以及接收端進行

資源分配。 
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ABSTRACT 
 

Our research goal is to propose an optimized extraction scheme for SVC 

bit-streams for different device types. The basic principle of extraction path 

optimization is to minimize the distortion of the reconstructed frames while the rate 

increases. 

We presented two methods for extracting path permutations: (1) through the use 

of Wavefront Sets that allow incomplete bit-streams, as long as not violating the 

coding dependencies; and (2) through the use of Convex Sets that extract completely 

decodable bit-streams. We also introduced two path optimization methods: (1) via 

global optimization and (2) local optimization. We evaluate the possible extraction 

paths and choose the optimal according to their device-specific rate-distortion 

performances. 

From experimental results, we conclude that: (1) Different device types result 

in different optimal extraction paths; (2) Different content types result in different 

optimal extraction paths; (3) Global optimal provides the same results as local 

method when using the convex method. (4) Convex sets provides the same results as 

wavefront sets when finding the global optimal. 

We propose a SVC-based multisource streaming scheme, applying optimized 

extraction. We present bandwidth request/allocation algorithms for servers and 

clients using heuristic solutions. 
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Chapter 1 Research Overview 

1.1 Introduction 

Nowadays, heterogeneous networks are becoming more popular and 

multimedia streaming services has emerged as one of the most desired applications. 

In such environments, the users are connected to the Internet through a wide range 

of network links, such as 3G, WiMax and WLan. The network condition of each user 

may vary greatly in the bandwidth and reliability. Furthermore, the characteristics of 

pervasive user devices are very diverse, such as cell phones, PDA, PC and HDTV. 

Each device type supports different features in display capabilities, processing 

power, power supplies and storage. Considering such heterogeneous environments, 

how to efficiently provide multimedia services is an interesting research area. 

1.2 Problem Statement 

From source coding perspective, the variation of network bandwidth and the 

population of user devices are unpredictable at the encoding stage. To serve 

diversified clients with traditional video coding techniques, the same video content 

would have to be encoded several times, targeting different bit-rates and resolutions. 

However, distributing multiple bit-streams of the same video content is wasteful, 

because there is a lot of redundancy between the different versions. 

To provide effective video streaming service over heterogeneous networks, 

scalable video coding has become an essential technology in video coding for 

serving the same video content to multiple target user devices using a single 

bit-stream. The goal of scalable video coding is to allow flexible bit-stream 

adaptation and provide decodable bit-streams at different bit-rates and to different 
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target user devices while matching the user preferences. In our research, we will 

focus on how to make the appropriate adaptation decisions to achieve the best 

possible video quality for multiple user devices. 

Next, we consider applying optimized extraction to the video transmission 

scenario depicted in Figure 1. In this scenario, the media server is the source of the 

media stream. Multiple media relays across the network are organized to help 

achieve a higher overall throughput to the clients. Varying numbers of receivers are 

connected to the media streaming service through different network links. Given the 

heterogeneity of the network, how to achieve effective bandwidth usage for video 

transmission is an important issue. 

 

Figure 1: Transmission scenario 

1.3 Research Approach 

Scalable video coding (SVC) has been proposed to serve diversified clients 

with a single bit-stream. SVC allows partial bit-streams to be extracted from a 

scalable bit-stream while achieving reduced temporal, spatial or SNR resolutions. 

We propose an optimized extraction scheme for SVC bit-streams to achieve 
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minimum distortion for different bit-rates and devices. Our approach is to use 

optimal extraction paths to indicate the optimized order of enhancing the spatial, 

temporal or SNR resolution while the bit-rate increases. The optimal extraction 

paths can be pre-processed and later be used to perform on-the-fly adaptation 

decisions. 

The basic principle of extraction path optimization is to minimize the distortion 

of the reconstructed frames while the rate increases. We present two concepts for 

possible path permutation: (1) wavefront sets and (2) convex sets. Then we 

introduce two methods for path optimization: (1) global optimal and (2) local 

optimal. We evaluate all possible extraction paths and choose the optimal according 

to their rate-distortion performances. 

We will apply our results of optimized extraction to propose a flexible 

multisource streaming scheme. We will focus on discussing the bandwidth 

request/allocation algorithms of the media gateways and clients using heuristic 

solutions. 

1.4 Thesis Outline 

In Chapter 2, we will briefly introduce the basics of scalable video coding 

(SVC). In Chapter 3, we will discuss the details of bit-stream extraction optimization. 

In Chapter 4, we will present the experimental results and our analysis. In Chapter 5, 

we will propose a heuristic bandwidth allocation algorithm for SVC multisource 

streaming. In Chapter 6, we will present our conclusion and future work. 



 

Chapter 2 Background 

2.1 Scalable Video Coding 

The scalable video coding (SVC) standard [1] is an extension of the 

H.264/AVC standard [2] developed by the Joint Video Team (JVT) that uses a single 

bit-stream to provide multiple frame rates, frame sizes and quality levels while 

achieving a reasonable coding efficiency. 

SVC provides three types of scalabilities: (1) Spatial scalability allows multiple 

frame sizes. (2) Temporal scalability allows multiple frame rates. (3) SNR scalability 

allows multiple quality levels. SNR scalability consists of coarse grain scalability 

(CGS) and fine grain scalability (FGS), which allows flexible truncation of the 

coded data. SVC supports combined scalability, such that all three types of 

scalability can be easily combined to support a wide range of spatial, temporal and 

SNR scalabilities. 

The coded data of SVC bit-streams are organized as multiple layers. The base 

layer provides the basic video quality at the minimum supported bit rate. The 

enhancement layers successively refine the video quality. SVC provides flexible 

bit-stream extraction to obtain the desired resolutions or bit-rates on-the-fly. 

2.1.1 Encoder Overview 

This section presents an overview of the SVC encoder. The encoding is based 

on a layered approach that uses separate encoder loops for each layer and uses 

adaptive inter-layer prediction techniques to exploit correlations among the layers. 

Spatial scalability and CGS are achieved by multiple layers with a pyramid structure. 

Temporal scalability is achieved by a temporal decomposition using hierarchical B 

 4



 

pictures. FGS is achieved by encoding successive refinements of the transform 

coefficients. 

Figure 2 [3] depicts an example of an SVC encoder with three spatial layers. 

Each layer is encoded with separate encoder loops, as shown in the dotted boxes. 
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Figure 2: SVC encoder structure with three spatial layers [3] 

The input video is spatially scaled to support multiple spatial resolutions. For 

each spatial layer, the prediction comes from either temporally neighbored pictures 

at the same layer or spatially up-sampled pictures from lower layers. The inter-layer 

prediction scheme can reuse the texture, motion and residue information of the 

lower layers to improve the coding efficiency. After the prediction scheme, the 

transform coefficients at each spatial layer are encoded with either a scalable 

entropy coder for FGS or a non-scalable entropy coder for CGS. 
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2.1.2 Hierarchical-B Prediction Structure 

SVC uses hierarchical-B prediction structure to support multilevel temporal 

scalability. Figure 3 depicts a hierarchical-B prediction structure with 4 temporal 

levels and a GOP size of 8. Each key picture (black) is either an intra-coded I-frame 

or a P-frame that uses the previous key picture as the reference picture. Each 

B-frame is bi-directionally predicted using both previously and future displayed 

reference pictures from the lower temporal level. The pictures are hierarchically 

predicted as illustrated. 

I0/P0 B1B2B3 I0/P0 I0/P0B3 B3 B3B3 B3 B3 B3B2 B2 B2B1

0 1221 87 9 153 5 11 136 10 144 16

group of pictures (GOP) group of pictures (GOP)

I0/P0 B1B2B3 I0/P0 I0/P0B3 B3 B3B3 B3 B3 B3B2 B2 B2B1

0 1221 8 167 9 153 5 11 136 10 144display order

group of pictures (GOP) group of pictures (GOP)

 T0 T1T2T3 T0 T0T3 T3 T3T3 T3 T3 T3T2 T2 T2T1Temporal level

Figure 3: Hierarchical-B prediction structure with a GOP size of 8 

The pictures of lower temporal levels are encoded first such that the pictures of 

higher temporal levels can refer to the reconstructed pictures at lower layers. The 

higher temporal levels are not required for the decoding of the lower temporal levels. 

Each GOP can be independently decoded if the preceding key picture is available. 

2.1.3 Inter-layer Prediction Structure 

The inter-layer prediction structure is be configured according to the types of 

layers used. The spatial and CGS layers can flexibly select the reference layer from 

any lower layers while the FGS layers must be predicted from the previous SNR 
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layer at the same resolution. 

Figure 4 [3] depicts an example of inter-layer prediction with three spatial 

layers. Each spatial resolution contains several SNR layers. In the first column, 

BASE_0_0 is the base layer of spatial layer 0. On top, CGS_1_0 and CGS_2_0 are 

encoded as CGS layers, which are predicted from BASE_0_0 and CGS_1_0, 

respectively. 

BASE_0_0

CGS_1_0

CGS_2_0

BASE_3_0

CGS_4_0

FGS_4_1

BASE_5_0

FGS_5_1

FGS_4_2

Spatial layer 0 Spatial layer 1 Spatial layer 2

FGS_5_2

BASE_0_0

CGS_1_0

CGS_2_0

BASE_3_0

CGS_4_0

FGS_4_1

BASE_5_0

FGS_5_1

FGS_4_2

Spatial layer 0 Spatial layer 1 Spatial layer 2

FGS_5_2

 

Figure 4: Inter-layer prediction structure with three spatial layers [3] 

Note that SVC allows flexible selection of reference layers, such that decoding 

a certain layer may not need all of its lower layers. As shown, CGS_4_0 refers to 

CGS_2_0 instead of BASE_3_0, while BASE_3_0 refers to CGS_1_0 instead of 

CGS_2_0. Therefore, CGS_2_0 is not necessary for decoding BASE_3_0, while 

BASE_3_0 is not necessary for decoding CGS_4_0. Such flexibility leaves room for 

further optimizations on performance or error resilience. 

2.1.4 Network Abstraction Layer 

The elementary unit for the output of an SVC encoder and the input of an SVC 

decoder is a network abstraction layer (NAL) unit. The NAL unit structure is 

designed to provide convenient packetization of coded video data for different 
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transport layers or storage media. NAL units can be categorized into two types: 

 Video coding layer (VCL) NAL 

VCL NAL units contain the coded data of video pictures, such as coded 

slice, coded slice data partition and suffix NAL units. A coded slice NAL 

unit contains data of one or more coded macroblocks. A coded slice data 

partition NAL unit contains partitioned data of a coded slice. A suffix NAL 

unit contains descriptive information of the preceding NAL unit. 

 Non-VCL NAL 

Non-VCL NAL units contain associated information such as parameter sets 

and supplemental enhancement information (SEI). Parameter sets contain 

infrequently changing information that is essential for decoding sequences 

of video pictures. SEI messages contain additional information that are not 

required for decoding but assist in related process such as frame output 

timing, error concealment, and resource reservation. Non-VCL NAL units 

can be sent out-of-band using a more reliable transport mechanism. 

The NAL unit consists of a header followed by a byte string of payload data. 

Figure 5 [4] depicts the SVC NAL header, which consists of the one-byte 

H.264/AVC header and the three-byte SVC extension header. 

 

Figure 5: SVC NAL header structure [4] 
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Each NAL unit belongs to certain scalability levels and is tagged with the 

syntax elements dependency_id, temporal_level and quality_level. In SVC, a layer 

is defined as a set of NAL units with the same value of dependency_id. 

 The syntax element dependency_id indicates the layer identifier of spatial 

and CGS layers.  

 The syntax element temporal_level indicates the hierarchical level of 

temporal prediction, which relates to the frame rate. 

 The syntax element quality_level indicates the quality level of FGS layers. 

2.2 Related Work 

2.2.1 Quality Index Optimized Extraction 

The quality index optimized extraction [5] is proposed in a sense that the 

quality index (QI) of an extracted bit-stream is maximized for the given network 

bandwidth constraint. The quality index is an optimality index in terms of 

PSNR-based objective visual quality and MOS-based subjective perceptual quality. 

The total QI is defined as a weighted measure of spatial, temporal and SNR 

scalability QI’s as follows: 

( ) ( ) ( ) ( )kjiPSNRqjFRfiSRskji qfsQIwfQIwsQIwqfsQI ,,,, ⋅+⋅+⋅=  

The parameters ,  and  indicate the weighting factors of the three 

quality indexes QI , 

sw

( iSR s

fw

)

qw

( )jfFRQI  and ( )kjiPSNR qfsQI ,, , respectively. The 

parameters ,  and  indicate that the SVC bistream is extracted at the 

spatial scalability level, the temporal scalability level and the SNR 

scalability level. The optimization-theoretic approach extracts a bit-stream in the 

is jf kq

thi thj thk
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sense that the total QI is maximized without exceeding the maximum bit-rate . maxB

The QI for SNR scalability is measured in terms of PSNR values. The QI for 

spatial scalability is considered as the perceptual quality of different resolutions. To 

simplify the problem, the video pictures with lower spatial resolutions are 

interpolated into the highest spatial resolution and then measured in terms of the 

PSNR values. The QI for temporal scalability is defined as the perceptual quality of 

different frame rates and is measured with a five grade scale. The expo-logarithm 

function shown in Figure 6 [5] is utilized to model the QI for temporal scalability. 

 

Figure 6: Temporal QI modeling with expo-logarithm functions [5] 

 The quality index optimized extraction shows better performance than 

extracting the closest bit-rate at different bit-rates. However, the quality index is not 

capable of modeling playback quality on different target device types. The layer 

switching problem is also an issue, however not mentioned in this paper. 

2.2.2 Perceptual Quality Optimized Extraction 

The perceptual quality optimized extraction [6] performs extraction using 

perceptual quality preference path depending on video class. This work analyzes that 

video segments belonging to the same video class have consistent characteristic of 
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quality preference. The video segments are classified into different classes, namely 

action, crowd, dialog, scenery, and text & graphic. Based on subjective tests on the 

quality preference in these five video classes, quality information tables (QIT) were 

determined. The QITs are applied to bit-stream extraction to maximize the 

perceptual quality according to video class. In Figure 7 [6], the preference paths for 

each video class as bit-rate decreases are shown in three-dimensional scalability. 

 

Figure 7: Preference path: (a) scenery, (b) action, (c) crowd, (d) text & graphic [6] 

From the results of this paper, we consider the video class as an important 

factor for determining the perceptual quality preference paths. We extend this idea 
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by testing different video classes on different device types for optimizing the 

preference paths. 

2.2.3 Quality Layers Optimized Extraction 

Quality Layers optimized extraction [7] is proposed such that the impact on rate 

and distortion of each coded picture is evaluated to help perform optimized 

extraction for SNR enhancement layers. Figure 8 [7] depicts the rate-distortion curve 

with the coordinates representing the rate and distortion values calculated for each 

picture. The points lying on the convex hull of the curve are sorted according to their 

rate-distortion slope. The NAL units are prioritized according to this curve, such that 

the pictures with lower rate-distortion performances are truncated first 

 

Figure 8: Rate-distortion curve [7] 

The distortion of each SNR enhancement picture is computed by two methods: 

 Independent Distortion 

For open-loop coding, it is assumed that the impact of different pictures on 

the distortion of the reconstructed sequence is uncorrelated. The distortion 

for each SNR enhancement picture is calculated by decoding at the 

selected quality_level without the lower temporal layers. The impact on the 
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distortion is measured as the difference of the reconstructed sequence with 

and without a particular SNR layer. 

 Dependent Distortion 

For closed-loop coding, the distortion of each reconstructed picture 

depends on the distortion of its reference pictures. The distortion for each 

picture is calculated by decoding at the selected quality_level with the 

required lower temporal layers. The impact on the distortion is measured as 

the difference of the reconstructed sequence with and without a particular 

temporal layer. 

Figure 9 [7] depicts the truncation orders of NAL units using Quality Layers 

optimized extraction. Each of the big blocks represents a set of NAL units with 

dependency_id i, temporal_level j and quality_level k, labeled as (Ri,Tj,Qk). Each 

of the small blocks represents an NAL unit belonging to an SNR enhancement layer. 

As shown, the NAL units of the base layers (quality_level = 0) are always prioritized 

first. The NAL units of the SNR enhancement layers are ordered according to the 

rate-distortion performance of each picture. Note that the priorities of NAL units are 

not strictly assigned at layer boundaries. Note that pictures of a higher quality_level 

(R0, T2, Q2) may be truncated before pictures of a lower quality_level (R1, T2, Q1). 
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Figure 9: Quality Layers truncation order [7] 

 The Quality Layers extraction shows improvement over the simple truncation 

method in JSVM [8]. However, the distortion is measured in an approximated way, 

not considering the fact that the truncation order will also affect the actual distortion 

of the reconstructed sequence. We suspect that truncating according to the 

rate-distortion performances measured this way may not ensure the optimal 

distortion of the reconstructed sequence. We propose an extension to the idea of 

rate-distortion optimization specifically for non-FGS layers and for different device 

types, while considering the truncation order when evaluating rate-distortion 

performance. 



 

Chapter 3 Optimized Extraction 

3.1 Bit-stream Extraction 

A scalable SVC bit-stream can be organized to support multiple spatial, 

temporal and SNR resolutions. Starting from the global bit-stream with maximum 

spatial, temporal, and SNR resolutions, partial bit-streams can be extracted and 

decoded at reduced resolutions. This section discusses the details of SVC bit-stream 

extraction. 

3.1.1 Extraction Path 

In this article, we use the term extraction path as a sequence of incrementing 

extraction steps. Extraction paths indicate the order of enhancing the spatial, 

temporal or SNR resolution while the bit-rate increases. For a scalable bit-stream 

with combined scalability, there are normally more than one possible extraction 

paths. 

Figure 10 depicts several possible extraction paths for an example bit-stream. 

Each spatio-temporal-quality cube represents a supported spatial, temporal and SNR 

resolution. All extraction paths start from the minimum spatio-temporal resolution at 

the minimum bit-rate. All extraction paths end with the maximum spatio-temporal 

resolution at the maximum bit-rate. Moving through the spatial-temporal-quality 

cubes represents increasing the spatial, temporal or SNR resolution. 

Generally, when the target bit-rate increases, the decoded video quality 

improves. When the target bit-rate decreases, the decoded video quality decreases. 

The decoded video quality should never decrease when the bit-rate increases. 
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Figure 10: Spatio-temporal-quality cube with possible extraction paths 

 

Layer Switching Problem 

Layer switching occurs when the spatial or CGS scalability level of the 

extracted bit-stream either increases or decreases as the bit-rate changes. For 

switching from layer k to layer k-1, the decoder has no problem decoding layer k-1, 

since the lower layers 0 ~ k-1 were already decodable when it was decoding layer k. 

However, for switching from layer k to layer k+1, the decoder may not be able to 

decode the layer k+1. This is because the key pictures of the layer k+1 may refer to 

previous pictures of the layer k+1, which were not provided to the decoder before 

layer switching. 

To solve this problem, SVC allows encoding IDR pictures independently for 

each layer. However, frequent coding of IDR pictures causes reduced coding 

efficiency. We assume that the key pictures of higher layers are coded with IDR 

pictures for every constant number of GOPs, such that layer switching is allowed at 

GOP boundaries. 

 16



 

3.1.2 Basic Unit for Extraction 

In SVC, bit-streams are consisted of NAL units. Each NAL unit belongs to 

certain scalability levels and is tagged with the syntax elements dependency_id, 

temporal_level and quality_level. Bit-stream extraction is to extract NAL units for 

the required scalability levels or bit-rate. 

In this article, we define the term sub-layer as a set of NAL units with the same 

values of dependency_id (D), temporal_level (T) and quality_level (Q). Figure 11 

depicts a three-dimensional sub-layer representation of a fully scalable bit-stream. 

Each cube represents a sub-layer. 

 

Figure 11: Sub-layer representation 

Since the coded data each sub-layer must be completely received in order to 

decode (expect for FGS), we consider sub-layers as the basic unit for extraction. For 

simplicity, we currently do not consider FGS. 
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3.1.3 Coding Dependencies 

To ensure that an extracted bit-stream can be completely decoded, the coding 

dependencies must be satisfied. In SVC, the coded data consists of two types of 

coding dependencies: 

 Temporal Dependency 

Temporal dependency is determined by the motion-compensated prediction 

between video frames. Using the hierarchical-B prediction structure, pictures of 

the temporal level k depends on pictures of temporal level k-1. 

 Inter-layer Dependency 

Inter-layer dependency is determined by the inter-layer prediction between the 

spatial and SNR layers. A typical configuration is to let each layer k depend on 

layer k-1. 

 

Combined Prediction Structure 

Figure 12 depicts an example of a prediction structure for combined scalability 

with a GOP size of 8. The bit-stream contains four layers: (1) a base layer for QCIF 

(176x144) resolution, (2) an SNR layer for QCIF resolution, (3) a spatial layer for 

CIF (352x288) resolution, and (4) an SNR layer for CIF resolution. Every layer is 

provided with four temporal levels. In this example, a total of 16 spatial, temporal 

and SNR resolutions are supported. The pictures are predicted as illustrated. 
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Figure 12: Prediction structure for combined scalability 

 

Sub-layer Representation with Prediction Arrows 

We illustrate the encoded bit-stream of the above prediction structure using the 

sub-layer representation with prediction arrows, as shown in Figure 13. Note that the 

values of quality_level are not considered since FGS is not used. Temporal 

dependencies are illustrated with the horizontal prediction arrows. Inter-layer 

dependencies are illustrated with the vertical prediction arrows. 
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Figure 13: Sub-layer representation with prediction arrows 

 

Required Sub-layers 

By traversing the prediction arrows in Figure 13, we can find out which 

sub-sets of sub-layers are required for decoding at each resolution. For example, to 

achieve the maximum resolution CIF_SNR@30, the corresponding sub-layer (D3, 

T3) needs to be decoded. The sub-layer (D3, T3) is predicted by (D3, T2) and (D2, 

T3). Nevertheless, (D3, T2) and (D2, T3) are predicted by other sub-layers. 

Recursively, we find that all 16 sub-layers are required for decoding (D3, T3). 

If the target resolution is CIF@30, the bit-stream extractor extracts all NAL 

units with a dependency_id value lower than 3. Thus, a total of 12 sub-layers are 

required. If the target resolution is CIF_SNR@7.5, the bit-stream extractor extracts 

all NAL units with a temporal_level value lower than 2. Thus a total of 8 sub-layers 

are required. Table 1 shows the required dependency_id and temporal_level of the 

necessary NAL units for decoding at each spatial, temporal and SNR resolution. 
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Table 1: Required sub-layers for different resolutions 

Resolution Required D(s) Required T(s) Total sub-layers 

QCIF@3.75 0 0 1 

QCIF@7.5 0 0, 1 2 

QCIF@15 0 0, 1, 2 3 

QCIF@30 0 0, 1, 2, 3 4 

QCIF_SNR@3.75 0, 1 0 2 

QCIF_SNR@7.5 0, 1 0, 1 4 

QCIF_SNR@15 0, 1 0, 1, 2 6 

QCIF_SNR@30 0, 1 0, 1, 2, 3 8 

CIF@3.75 0, 1, 2 0 3 

CIF@7.5 0, 1, 2 0, 1 6 

CIF@15 0, 1, 2 0, 1, 2 9 

CIF@30 0, 1, 2 0, 1, 2, 3 12 

CIF_SNR@3.75 0, 1, 2, 3 0 4 

CIF_SNR@7.5 0, 1, 2, 3 0, 1 8 

CIF_SNR@15 0, 1, 2, 3 0, 1, 2 12 

CIF_SNR@30 0, 1, 2, 3 0, 1, 2, 3 16 

 

Incomplete Bit-streams 

For a target resolution, if any of the required sub-layers are missing, the 

bit-stream can not be properly decoded (without error concealment) at that 

resolution. We call this an incomplete bit-stream. However, the incomplete 

bit-stream can still be decoded at a reduced target resolution, if the coding 

dependencies of the reduced resolution can be satisfied. 
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Figure 14 depicts an example of an incomplete bit-stream with a missing 

sub-layer. In the example, the target resolution is QCIF_SNR@7.5, but a required 

sub-layer (D1, T1) is missing. Since the bit-stream contains (D0, T0), (D0, T1) and 

(D1, T0), the bit-stream can still decode at either QCIF@7.5 or QCIF_SNR@3.75. 

However, either (D1, T0) or (D0, T1) is unused. 

 

Figure 14: Incomplete bit-stream with a missing sub-layer (D1, T1) 

Now if the decoder does provide error concealment techniques, it is possible to 

decode incomplete bit-streams at the target resolution even with missing data. 

However, frame loss concealment is non-normative and is currently only supported 

for bit-streams that provide two-layer spatial scalability in the JSVM software. 

Therefore, we will not consider error concealment. 

3.2 Path Permutation 

Given the coding dependencies, our next step is to find all the possible 

extraction paths. Extraction paths that violate the coding order (or dependencies) 

will cause a large portion of the extracted bit-stream not decodable. These 

bit-streams clearly cause inefficiency of bit-rate, therefore are considered as invalid 
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extraction paths. In this section, we will present two concepts for valid path 

permutation, namely wavefront sets and convex sets. 

 

Valid Extraction Paths 

Suppose a sub-layer B is predicted from a sub-layer A. If we extract sub-layer 

B before sub-layer A, then sub-layer B can not be decoded because sub-layer A is 

not provided. Oppositely, if we extract sub-layer A before sub-layer B, then 

sub-layer A is possibly decodable, as long as the depended sub-layers of A are also 

provided. In other words, extracting sub-layer B without sub-layer A can not 

improve the video quality but will only waste bit-rate. Given this reason, if sub-layer 

B depends on A, a valid extraction path should always extract A before B. If the 

coding dependencies of the extracted sub-layers are not satisfied, the extraction path 

is invalid. 

 

3.2.1 Wavefront Sets 

The concept of wavefront sets is to allow incomplete bit-streams, as long as not 

violating the coding dependencies. Figure 15 depicts an example of an extraction 

path using wavefront sets. Starting from the base sub-layer, each sub-layer is 

extracted one by one. The extraction order is like water flooding towards the 

destination at the other end. At each step, the extracted bit-stream may be 

incomplete, but the extraction path always remains valid. For example, after the 

second step, the extracted sub-layers are (D0, T0), (D0, T1) and (D1, T0). This is an 

incomplete bit-stream, but the coding dependencies of the three extracted sub-layers 

are satisfied. Therefore, this extraction path is still valid. 
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Figure 15: Extraction path using wavefront sets 

The concept of wavefront sets allows a very thorough testing of valid extraction 

paths, especially for the case of error concealment allowed. However, the number of 

possible extraction paths becomes very large if the bit-stream contains a lot of 

sub-layers. 

3.2.2 Convex Sets 

The concept of convex sets is to always extract completely decodable 

bit-streams. Figure 16 depicts an example of an extraction path using convex sets. 

Starting from the base sub-layer, this extraction path increases the temporal 

resolution first, and then increases the SNR and spatial resolutions. 
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Figure 16: Extraction path using convex sets 

Table 2 shows the extracted sub-layers for this extraction path. Note that each 

step in the extraction paths may extract more than one sub-layer, due to fulfilling the 

coding dependencies. For example, extraction step #4 adds four sub-layers for 

moving from QCIF@30 to QCIF_SNR@30. This is because the sub-layers with 

dependency_id value of 1 and temporal_level value of 0, 1, 2 and 3 are added in 

order to decode the sub-layer (D1, T3). 

Table 2: Extracted sub-layers 

Step Resolution Extracted D(s) Extracted T(s) Added sub-layers 

#0 QCIF@3.75 0 0 (0,0) 

#1 QCIF@7.5 0 0, 1 (0,1) 

#2 QCIF@15 0 0, 1, 2 (0,2) 

#3 QCIF@30 0 0, 1, 2, 3 (0,3) 

#4 QCIF_SNR@30 0, 1 0, 1, 2, 3 (1,0),(1,1),(1,2),(1,3) 

#5 CIF@30 0, 1, 2 0, 1, 2, 3 (2,0),(2,1),(2,2),(2,3) 

#6 CIF_SNR@30 0, 1, 2, 3 0, 1, 2, 3 (3,0),(3,1),(3,2),(3,3) 
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3.3 Path Optimization 

The main goal of this work is to find the optimal extraction path, such that the 

bit-stream data is extracted to maximize the decoded video quality subject to the 

bit-rate constraint. Due to the unequal size and unequal importance of each sub-layer 

in SVC bit-streams, we expect that different extraction paths should result in 

different rate-distortion performances. We evaluate the overall performance of each 

extraction path using the rate-distortion curves. 

Rate-distortion Curves 

Suppose that the bit-stream contains a total of 4 sub-layers (A, B, C and D), 

while sub-layers B and C are independent of each other. Different orders of 

extracting sub-layers B and C may show different impacts on the distortion. Figure 

17 depicts an example of the rate-distortion curves of two valid extraction paths. 

 

Figure 17: Example of rate-distortion curves 

Lower distortion values indicate better playback quality of the decoded video. 

As more sub-layers are added to the extracted bit-stream, the rate increases while the 

distortion decreases. In this example, the distortion of the extraction path #1 is lower 

than or equal to extraction path #2 at any bit-rate. Therefore, the extraction path #1 

is clearly the optimal in a rate-distortion sense. 

However, if the distortion of one extraction path is not constantly lower than 

 26



 

the other extraction path for all bit-rates, we propose two optimization methods for 

determining the better extraction path. Figure 18 depicts an example of the 

rate-distortion curves showing this situation. 

 

Figure 18: Another example of rate-distortion curves 

3.3.1 Global Optimal 

The global optimization of extraction paths is based on the convexity of the 

rate-distortion curves. The R-D curve that is closest to convex hull means that the 

distortion decreases as quickly as possible while the rate increases. The global 

optimal method is based on an exhaustive search in all possible extraction paths. 

For each extraction path, the rate and distortion values are measured. Then we 

calculate the integral below the rate-distortion curve in the range of minimum and 

maximum supported bit-rate, depicted in Figure 19. The extraction path with the 

smallest area is chosen as the global optimal, meaning that the distortion decreases 

quickly while the rate increases. 

 

Figure 19: Measure for convexity of rate-distortion curves 
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3.3.2 Local Optimal 

The local optimization of extraction paths is based on the rate-distortion slope 

of each sub-layer. The idea is to build the extraction path incrementally, starting 

from the minimum bit-rate and then choosing the next sub-layer to add into 

extracted bit-stream. For each step, the sub-layer with largest slope is selected from 

the available sub-layers. 

The slope of a sub-layer is defined as the delta distortion divided by delta rate. 

The delta rate value is the sum of all NAL unit sizes belonging to that sub-layer. The 

delta distortion is the difference of the measured distortion, of the reconstructed 

sequence with and without that sub-layer. 

3.4 Distortion Measurement 

Distortion is used to indicate the playback quality of the decoded video. We 

measure distortion by calculating the mean square error (MSE) of the reconstructed 

frames against the original frames. 
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nP  is the value of the nth pixel of the original frame.  is value of the nth 

pixel of the reconstructed frame. However, MSE does not perfectly reflect 

differences of the perceptual quality for different device types. Therefore, we 

propose to consider device simulation. 
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3.4.1 Device Simulation 

In order to simulate the perceptual playback quality of the reconstructed 

sequence on different target device types, we propose that distortion should be 
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measured at the actual spatio-temporal resolution of the playback device. 

Spatial Rescaling 

If the spatial resolution of the reconstructed sequence is lower than the screen 

size of the playback device, the reconstructed sequence is spatially up-sampled. This 

makes sense because the playback device usually up-samples the reconstructed 

frames to its screen size before display. If the spatial resolution of the reconstructed 

sequence is larger than the screen size of the playback device, which is not the usual 

case, the reconstructed sequence is spatially down-sampled. 

Temporal Rescaling 

In order to compare the perceptual playback quality of different frame rates, we 

measure distortion at the maximum supported frame rate of the playback device. If 

the temporal resolution of the reconstructed sequence is lower than the frame rate of 

the playback device, then the missing frames are concealed using the picture copy 

method. Picture copy simply duplicates the previous decoded picture in display 

order. This simulates a frame freezing effect, which is reasonable since most 

playback devices actually display the previous frame in buffer instead of displaying 

a black frame when the frame rate drops. The distortion for low frame rates will 

depend on the performance of picture copy. 

3.5 Program Architecture 

 Figure 20 depicts the architecture of the proposed extraction path optimizer. 

The path permutation module generates all possible extraction paths according to the 

coding dependencies. The module contains a checking function that removes the 

invalid extraction paths (causing incomplete bit-streams). A rate limiter module 

controls the target bit-rate for extraction. The target bit-rate is incrementally raised 

to test all the decodable rate points for each extraction path. For each test condition, 
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the SVC extractor and SVC decoder produces the reconstructed sequence using the 

tested extraction path. A device simulation module rescales the decoded video signal 

to match the resolution of the target device type. Then, the rate-distortion curves are 

measured and stored. After testing all conditions, the optimizer evaluates the 

rate-distortion curves and searches for the optimal path. Given a list common device 

types, an optimal path for each device type is be selected, producing a list of optimal 

paths. The optimal paths are calculated for every GOP in the input SVC bit-stream. 

To reduce the amount of storage and signaling for optimal paths, averaged optimal 

paths can be calculated for a sequence of GOPs  

 

Figure 20: Architecture of extraction path optimizer 
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3.6 Extraction Framework 

Figure 21 depicts the conceptual framework of using optimal extraction paths 

for extraction. The SVC encoder is used to encode the global bit-stream. The 

extraction path optimizer analyzes the global bit-stream and finds the optimal 

extraction path for each generic device type. The optimizer outputs a list of optimal 

paths, one optimal path for each device type. The extractor performs bit-stream 

extraction according to the client’s device type and available bit-rate. The bit-rate of 

the extracted bit-stream is controlled not to exceed the client’s available bit-rate. 

Using the device-specific optimal path, the extractor extracts the rate-distortion 

optimized bit-stream for each client. 

 

Figure 21: Framework for extraction using optimal paths 

In this system, the encoder and optimizer process are only run once. The 

resulting global bit-stream and optimal path list can be distributed and stored on 

multiple servers. The extractors on each server can extract bit-streams on-the-fly to 

match each client’s capabilities. 
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Chapter 4 Experiments 

4.1 System Configuration 

For experiments, we use the JSVM 7.0 to encode the scalable bit-streams. Each 

bit-stream is encoded with three layers and a GOP size of 8. The encoder settings are 

configured as follows: 

 The first layer is the base layer for QCIF resolution with a quantization 

parameter (QP) = 32. 

 The second layer is the CGS layer for QCIF resolution with a QP = 26. 

 The third layer is the spatial layer for CIF resolution with a QP = 32. 

 Each layer is encoded with four temporal levels, supporting the frame 

rates of 3.75 fps, 7.5 fps, 15 fps and 30 fps. 

4.2 Experimental Method 

We setup a series of experiments to observe the rate-distortion performances of 

bit-stream extraction with different extraction paths. We will compare the results of 

using different test sequences and different target device types. 

Our testing conditions are configured as follows: 

 Four test sequences are used as input data, including Akiyo, Foreman, 

Football and Mobile. 

 Four target device types are emulated in the extraction path optimizer, 

including CIF30, CIF15, QCIF30 and QCIF15. 

 For each test case, both the local optimal and global optimal methods are 

used to optimize extraction paths. 

 Two concepts for path permutation are tested, namely wavefront sets 
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(allow incomplete bit-streams) and convex sets (always extract completely 

decodable bit-streams). 

4.3 Results and Analysis 

4.3.1 Comparison of Extraction Paths 

 As previously mentioned, we expect that different extraction paths should 

result in different rate-distortion performances due to the unequal size and unequal 

importance of each sub-layer in SVC bit-streams. To verify this assumption, we run 

several tests using the exact same test sequence and target device, but with different 

extraction paths. 

Figure 22 shows the two different extraction paths. Path #1 starts with 

extracting the QCIF base layer and QCIF SNR layer and while increasing the frame 

rate to 15 fps. Then the CIF spatial layer is extracted. Path #2 extracts the QCIF base 

layer, the QCIF SNR layer and the CIF spatial layer while increasing the frame rate. 

At low bit-rates, path #2 will extract high resolution frames but with a very low 

frame rate. Path #1 will extract lower resolution frames but with a higher frame rate. 

 

Figure 22: Extraction path #1 and path #2 
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We compare the results of these two different extraction paths for playing the 

Akiyo sequence on a QCIF15 device. We plot the rate-distortion curves of each 

extraction path in Figure 23, where the y-axis represents the average MSE of all 

frames in a GOP and the x-axis represents the cumulative data size of the extracted 

sub-layers in a GOP for each extraction step. 

 

Figure 23: R-D curve for different extraction paths 

From the R-D curves, we can observe that the measured distortion for each 

extraction path is different at certain rates. When the rate is at 4000 bits, the 

distortion for the path #1 is lower than path #2. The path #1 has smaller area below 

the R-D curve and is more optimal than path #2. 

4.3.2 Comparison of Device Types 

 Now, we compare the rate-distortion performances of the optimal extraction 

paths on difference device types using the same test sequences. For the Foreman 

sequence, the optimal extraction paths for the device types QCIF15 and QCIF30 are 

shown in Figure 24. The results show that the optimal extraction paths for different 
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device types do differ. 

 

Figure 24: Optimal extraction paths for QCIF15 and QCIF30 

 For a QCIF15 device, the optimal extraction path starts with increasing the 

temporal_level until a value of 2. Then it starts to increase the dependency_id. Lastly, 

the temporal_level is increased to 3. For a QCIF30 device, the optimal extraction 

path increases the temporal_level to the maximum value and then increases the 

dependency_id. Comparing the third extraction step, SNR enhancement is chosen 

for a QCIF15 device while temporal enhancement for 30 fps is chosen for a QCIF30 

device. 

Figure 25 shows the R-D curve of the optimal path for the Foreman sequence 

on a QCIF15 device. Notice that no improvement in distortion is observed for the 

last extraction step, which corresponds to increasing the value of temporal_level to 3. 

This reflects the fact that a QCIF15 device does not need the temporal enhancement 

for 30 fps, since the device cannot display at such a high frame rate. 
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Figure 25: R-D curve for QCIF15 

4.3.3 Comparison of Test Sequences 

 We compare the results of different test sequences, using the same device type. 

Figure 26 shows the optimal extraction paths of the Akiyo and Foreman sequence, 

both playing on a CIF30 device. 

 

Figure 26: Optimal extraction paths for Akiyo and Foreman 

 We observe that the optimal extraction paths for the two test sequences are very 

different. For the Akiyo sequence, the dependency_id is increased to the maximum 
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value first. For the Foreman sequence, the temporal_level is increased to the 

maximum value first. These two sequences show completely opposite preferences of 

extraction. This hints that the selection of optimal extraction paths is affected by the 

characteristics of the content. 

The content of the Akiyo sequence is a female reporting the news, which shows 

almost no movement except for some facial expressions. When the sequence is very 

static, the visual difference between high and low frame rates is not significant. 

Therefore, increasing the frame rate is not as important as increasing the SNR or 

spatial resolution for the Akiyo sequence. 

The content of the Foreman sequence is a worker talking energetically while 

the camera is a little bit shaking. When the sequence is dynamic, the visual 

difference between high and low frame rates is significant. Therefore, increasing the 

frame rate is more important than increasing the SNR or spatial resolution for the 

Foreman sequence. 

4.3.4 Comparison of Wavefront and Convex Sets 

 We have mentioned that incomplete bit-streams should result in poor 

performance since the bit-stream contains sub-layers that are not decodable. Convex 

sets do not allow extraction steps that will extract incomplete bit-streams. Wavefront 

sets allow extracting incomplete bit-streams. The client may make use of the 

incomplete bit-streams by simulated error concealment. 

 Figure 27 and Figure 28 shows two test cases of using convex sets and 

wavefront sets. Note that the extraction path of the wavefront sets has as much steps 

as the total number of sub-layers, such that each step adds exactly one sub-layer. The 

comparison results show that the global optimal path of using convex sets always 

follows the global optimal path of using wavefront sets, although using fewer 
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extraction steps. From this result, we believe that it is not necessary to use wavefront 

sets when considering global optimal extraction paths. 

 

Figure 27: Results of convex and wavefront sets for Akiyo on QCIF30 

 

Figure 28: Results of convex and wavefront sets for Foreman on QCIF30 

4.3.5 Comparison of Global and Local Optimal 

 In our experiments, we used both methods to determine the optimal extraction 
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paths. Interestingly, when using convex sets for path permutation, all of the local 

optimal paths are the same as the global optimal paths. 

When using wavefront sets, some cases show different results. Figure 29 shows 

an example of a local optimal path that differs from the global optimal path. 

Comparing the second step of both extraction paths, we observe that local optimal 

chooses a larger R-D slop than global optimal, which sounds like the better choice. 

However, the distortion of global optimal quickly decreases after the third step. 

Local optimization may lead to worse results than global optimization, since local 

optimization only considers the next step when building the extraction path, while 

global optimization performs an exhaustive search. Nevertheless, local optimal paths 

perform as good as global optimal paths when considering convex sets, which we 

believe is the practical situation. 

 

Figure 29: Comparison of local and global optimal paths 

4.3.6 Deduction of Optimal Paths for Different Devices 

 We notice that there are a lot of similarities between the optimal extraction 
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paths for different devices. For devices with the same spatial resolution, the optimal 

paths for 15 fps are similar to the optimal paths for 30 fps, except for the extraction 

of temporal enhancement for 30 fps. In these results, we suspect that by optimizing 

for the device with maximum frame rate, we can deduce the optimal paths for other 

device with lower frame rates. In Figure 30, the optimal path for QCIF15 can be 

deduced from the optimal path for QCIF30 by moving the extraction order of the 

temporal enhancement for 30 fps to the last extraction step. 

 

Figure 30: Deduce 15 fps from 30 fps 

4.3.7 R-D Performance of Sub-layers 

 The R-D performance of sub-layer can be understood as the impact of a 

sub-layer to the rate and distortion at the client. We evaluate this impact as the 

improvement of distortion divided by the increase of rate. 

 Figure 31 shows the R-D curve of the optimal path for the Akiyo sequence on a 

QCIF15 device. The yellow bars indicate the R-D performance of each extraction 

step. Each step may represent extracting one or more sub-layers. As shown, the 
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values for steps 1 ~ 4 are positive but decreasing, which means the extracted 

sub-layers at each step have decreasing amounts of good effect on the reconstructed 

frames. Note that for the last step, the importance for sub-layers with temporal_level 

values of 3 is zero. As mentioned before, this is because the QCIF15 device cannot 

display at 30 fps. 

 

Figure 31: R-D curve of Akiyo on QCIF15 

Figure 32 shows the R-D curve of the optimal path for the Foreman sequence 

on a CIF30 device. We specifically point out the fourth extraction step, where the 

rate is around 60000 bits. This step represents extracting all sub-layers with a 

dependency_id value of 1, which is the QCIF SNR layer. Note that the R-D 

performance of this step is very low, even lower than the last step. We can guess that 

the SNR enhancement for QCIF resolution is not very helpful for playback on a 

CIF30 device. But why is it extracted before the last step, which has a better R-D 

performance? 

The R-D performance of CIF spatial layer is actually dependent of the QCIF 

SNR layer. This is because the QCIF SNR layer is required in order to decode the 
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CIF spatial layer. Without the QCIF SNR layer, the R-D performance of the CIF 

spatial layer would be zero. Therefore, the values of R-D performance of each step 

in an optimal path are not always ordered in a decreasing manner, some required 

sub-layers must be extracted first to satisfy the coding dependencies. 

 

Figure 32: R-D curve of Foreman on CIF30 



 

Chapter 5 Multisource Streaming 

5.1 Introduction 

The considered transmission scenario is video streaming in a network 

consisting of multiple servers and multiple clients, as depicted in Figure 33. Using 

multiple servers help to provide a higher overall throughput while allowing clients to 

retrieve data from diverse paths and servers, thus amortizes the network load. In this 

network, each node may act as a client and a server at the same time. In fact, a single 

physical node may act as multiple virtual servers at the same time, each virtual 

server providing different streams. 

 

Figure 33: Multiple servers and multiple clients 

 To provide expandability, a large amount of servers are required in such 

systems. Using peer-to-peer overlay, each network node joining the service is 

utilized as a virtual server to help relay the video streams. Due to the heterogeneity 

of network bandwidths, each server may provide different amounts of dedicated 

bandwidth for the streaming service. Depending on the requested data of each 
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network node, each server may provide different sub-sets of sub-layers. Note that 

there is no synchronization among servers. Each server schedules and transmits 

video streams independently. 

On the other hand, a larger amount of clients consume these server resources. 

The user device types may differ for each client while the amount of clients is 

time-varying. The clients may have different requests of video data. The total 

request rates of all clients may even exceed the provided server bandwidths. How to 

utilize the limited resources of clients and servers to provide optimal video 

streaming is a major issue. The transmission scenario is depicted in Figure 34. 

 

Figure 34: Transmission scenario 

For SVC-based multisource streaming, we propose a client-server scheme for 

bandwidth allocation. We suppose that optimal extraction paths are known to servers 

and clients. When a client suffers poor bandwidth or high packet loss rate, receiving 

all the layers is no longer possible due to the client’s limited throughput. In our 

system, clients have control over the requested rate of each layer. In other words, 

clients are allowed to selected the set of requested layers and determine the rate of 
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each layer. Given the rate-distortion optimized extraction path, clients can perform 

layer selection that is optimal for its device type under different bit-rates. 

We will focus on the bandwidth request and allocation strategies of the client 

and the server. 

5.2 Coding Scheme 

Rateless Codes 

Erasure correcting codes are commonly applied to video transmission over 

lossy channels to avoid retransmissions. Fountain codes [10], or rateless codes, are 

erasure correcting codes that have the following properties: 

 Allows generating unlimited number of encoding symbols, without 

predetermined coding rates. 

 Allows independent generation of each encoding symbol using separate 

encoders. 

 Any k (1+є) of the encoding symbols can be used by the decoder to 

reconstruct the original k source symbols. 

The concept of receiving fountain encoded data relates to filling a glass of 

water from a fountain. Once the glass is full, the data is received, no matter which 

specific water drop is obtained. The water may even be obtained at different 

fountains, as long as the input source symbols are the same. 

 

Combining Video and Channel Coding 

In our multisource streaming scheme, we propose to send SVC video data 

encoded with rateless erasure correction codes. In SVC, multiple sub-layers are 

coded per GOP as depicted in Figure 35. We encode each sub-layer of each GOP 

separately to allow independent subscription of sub-layers according to client 
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preferences. 

 

Figure 35: Multiple layers are coded per GOP 

Figure 36 depicts the coding scheme of applying rateless codes to SVC. For 

each coded sub-layer per GOP, unlimited encoding symbols are distributed on 

multiple servers, while the client only needs to receive any k (1+є) of them. 

 

Figure 36: Scalable video coding with rateless channel coding 

This coding scheme gives us two important properties: 

 Feasible server decentralization 

Since rateless codes allow independent generation of encoding symbols, 

multiple servers can provide unlimited symbols on-the-fly. Most 

importantly, no coordination between servers is needed to prevent 

duplicated packets. Every encoding symbol is unique. 
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 Flexible erasure protection 

Serving multiple clients in heterogeneous networks requires dealing with 

unpredictable packet losses. A robust video transmission system not only 

needs to adapt to channel-specific bandwidth and loss rates but also 

provide device-specific unequal layer protection. Using traditional erasure 

codes, such requirements would require adjusting the coding rate. Using 

rateless codes, such resiliency scalability is achieved by adjusting the 

number of encoding symbols sent. 

5.3 Negotiation Protocol 

The proposed bandwidth allocation is based on a three-way negotiation 

protocol between each client-server pair. This application layer negotiation protocol 

has three types of control signals, namely REQUEST, REPLY and CONFIRM. 

 REQUEST 

This signal is sent from the client to the server. The client specifies a list of 

requested layers and the requested bit-rates corresponding to each layer. 

 REPLY 

This signal is sent from the server to the client. The server specifies a list 

of reserved layers and the reserved bit-rates corresponding to each layer. 

The values of reserved bit-rates depend on the availability of the server’s 

bandwidth, ranging from zero (completely denied) to the client’s requested 

bit-rate (completely accepted). 

 CONFIRM 

This signal is sent from the client to the server. The client specifies a list of 

reserved layers and a final confirmation to the server. The signal may be an 

ACK or a NACK, depending on the client’s allocation strategy. 
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Figure 37 depicts an example of the negotiation protocol of one client and two 

servers. The server provides reserved bandwidths to clients for durations in terms of 

GOPs, called sessions. Before every session, the client determines the requested 

servers and the corresponding requested rates for the next session. In each 

negotiation round, the client first sends the REQUEST signals to all requested 

servers. Note that clients may ask more requested servers than required. The servers 

may also receive requests from one or more clients during its decision time window. 

The server determines the reserved rates for each requesting client and sends a 

REPLY signal to each requesting client. The client must send a CONFIRM signal 

back to the server to acknowledge the reservation, or else the server will release the 

reserved bandwidth. The client will determine from the received REPLY signals 

whether more servers need to be requested. 

 

Figure 37: Negotiation Protocol 

5.4 Server Scheme 

Each server multicasts video streams to the clients according to its own time. 

We assume that explicit time markers of video data are available to servers (similar 

to RTP timestamps, for example). No synchronization between servers are assumed 

nor required. Different servers may be multicasting different GOPs at the same 

moment, but we assume that client buffers are capable of aligning the received data 
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according to explicit GOP markers. 

We have a system-wide parameter called RateStepSize, which refers to the 

minimum reserved rate per request. Such a setting is to simplify the management of 

rate allocation, though may be extended to be a server-dependent parameter in the 

future. For a server with a dedicated server bandwidth of Rs, the server provides as 

many as (Rs / RateStepSize) user slots per session. Client requests will try to fill in 

unoccupied slots for the next session. For each accepted client, the server will 

reserve bandwidth of the next session for the client. However, when the total request 

rate exceeds the server available bandwidth, the server must deny some of the 

requests, starting from the relatively unimportant requests. This may result in 

accepting a portion of a client’s request while denying the other portion. 

For fairness, client requests are prioritized according to layer priorities for the 

device type of the client. A decision time window at the server will allow multiple 

clients that requested during the duration to be compared at once. The server 

allocation refreshes each session, thus clients are responsible to actively subscribe 

for resources every session. 

5.5 Client Scheme 

Figure 38 depicts the client scheme of our proposed protocol. There are two 

levels of client updates, namely service update and session update. Service update is 

to fetch the server list from the P2P overlay (provided by DHT or tracker, for 

example), normally once per 15 minutes. The server list specifies the network 

address and dedicated service bandwidth of each server. Each server may contain 

different layers, so the served layers of each server are also specified. Session 

updates are triggered every session, normally once per 30 seconds. The server list is 

not fetched each session. The actual loss rates of connected servers are recorded 
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after each session. 

 

Figure 38: Client Scheme 

The client algorithm includes the rate allocation method and server selection 

method. The rate allocation method determines the total requested rate of each 

sub-layer. The server selection method determines which servers to request for each 

sub-layer. Multiple negotiation rounds are needed if some requests are not accepted. 

For such cases, the server selection method picks other servers for each round. If the 

session is about to begin and there is no more negotiation time, the client will try to 

request the next session. In the following sections, we will introduce the client 

algorithms. 

5.5.1 Rate Allocation 

The rate allocation method determines the total requested rate r(layer ID)of 

each sub-layer using the following equations: 
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The parameters include the data length kl, coding overhead ε, symbol size Tl, 

actual loss rate e and layer protection factor xD(l). The coding overhead and symbol 

size are the encoding settings for erasure correction coding. The actual loss rate is 

obtained from connection records, initially zero before transmission. The layer 
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The layer protection factor for device type D and layer l is calculated according 

to the layer priorities PD(l). The important layers are encoded with extra redundancy 

while the most unimportant layer is encoded with no redundancy. The values of xD 

are in the range of 1.0 and 2.0. We use a heuristic solution as the following equation: 
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Once the quantized request rate for each layer is determined, the next step is to 

select the requested layers according to client bandwidth. If not enough bandwidth is 

available, the client will request the most important layers first (with lowest layer 

priority values). 

Each layer will be requested from multiple servers, therefore the requested rate 

per server depends on the number of requested servers. To amortize network load, 
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we propose to use as many servers as possible, each requested with the minimum 

rate (RateStepSize). If the number of available servers is too low, then the requested 

rate per server increases by a rate step. 

 

Obtain Layer Priorities from Extraction Paths 

Layer priorities can be simply converted from optimal extraction paths. Note 

that layer priorities are device-specific, as extraction paths are. The layer at 

extraction step #0 is assigned a priority value of 1. For each increasing extraction 

step, the priority values of the extracted layer increase by 1. The layers that belong 

to the same extraction step are assigned the same priority value. 

For example, suppose the extraction path is A → C → B, D. The layer 

importance should be A > C > B = D. Therefore, the layer priority values are PD (A) 

= 1; PD (B) = 3; PD (C) = 2; PD (D) = 3. 

5.5.2 Server Selection 

Once the requested rates are determined, the remaining question is how to 

select servers. Our approach first prioritizes all available servers according to their 

goodput GS. The goodput represents the effective throughput, calculated with the 

following equation: 

( )sss ERG −⋅= 1  

The parameter Rs is the dedicated server bandwidth of the server S, and Es is 

the estimated loss rate of the client link. We assume that the estimated loss rate can 

be obtained from the local network service providers, while clients may be 

connected to multiple links. 

We consider that servers have a rate quota that limits the amount of requested 
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rate of each individual client. Since the availability of good servers is limited and 

will likely be requested by most clients, the client’s selection method should prevent 

requesting every layer from the same few servers. 

The proposed approach is to utilize good servers for sending the most crucial 

data. The prioritization of encoding symbols is prioritized according to the layer 

priorities and whether it is redundant or not. Essential symbols are prioritized higher 

than redundant symbols. Note that the essential symbols of unimportant layers are 

still prioritized higher than the redundant symbols of important layers. 

We use an example to explain the server selection, depicted in Figure 39. In this 

case, there are five available servers, labeled S1, S2, S3, S4 and S5, ordered according 

to their goodput. The client’s requested rate for layers A, C, B and D are 4, 3, 2 and 

1, respectively. The best servers S1 and S2 are firstly determined to send the essential 

symbols of the most important layers A and C. Then, server S3 is utilized to send 

essential symbols of the less important layers B and D. Then, server S4 is utilized to 

send the last essential symbol of layer B and the redundant symbols of layer A. 

Finally, server S5 is utilized to send the remaining redundant symbols. 

 

Figure 39: Example of server selection 



 

Chapter 6 Conclusion 

6.1 Accomplishment 

In our research, the accomplishments are: 

 We proposed an optimized extraction framework to achieve minimum 

distortion for different bit-rates and devices. 

 We have explored the relations between extraction paths and coding 

dependencies. The concept of wavefront sets and convex sets for path 

selection are introduced. 

 Global optimal and local optimal methods are presented for rate-distortion 

optimization. 

 A device simulation module is introduced to achieve more realistic 

distortion measurements. 

 We implemented the extraction path optimizer using C++ and the JSVM 

reference software. 

 We performed extraction experiments with different test sequences and 

different device types. The observed results are described below: 

 Different extraction paths result in different rate-distortion performances 

due to the unequal size and unequal importance of each sub-layer in SVC 

bit-streams. 

 Different device types result in different optimal extraction paths due to 

device-specific preferences. 

 Different content types result in different optimal extraction paths. 

Dynamic sequences prefer temporal enhancements while static sequences 

prefer SNR and spatial enhancements. 
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 Although convex is reduced, the global optimal path of using convex sets 

always follows the global optimal path of using wavefront sets. 

 Global optimal provides the same results as local method when using the 

convex method. 

 Using local optimal with convex always finds the optimal extraction path. 

 Current results show that it is possible to deduce optimal paths for 

different devices. 

 We proposed a bandwidth reservation algorithm for multisource streaming 

using optimized extraction. 

6.2 Future Work 

There are some future works that remains to be done: 

 Extend the extraction scheme to support more combinations of combined 

scalability. 

 Support FGS, which allows slice truncation instead of discrete layer 

truncation. 

 Consider different QP settings for SNR layers. 

 Allow flexible prediction structures. 

 Develop the multisource streaming scheme. 

 Run simulations. 

 Develop interleaved layer (symbol) packetization scheme 

 Develop a new resource allocation approach using game theory to achieve 

fairness. 

 Support real-time video streaming. 
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