

國 立 交 通 大 學

資訊科學與工程研究所

碩碩碩碩 士士士士 論論論論 文文文文

基於 SAML 架構達到多層式跨 IDP 之

單一登入系統

Multi-Layered Cross-IDP SSO in SAML-based Architecture

研 究 生：張長蓉

指導教授：葉義雄 教授

中中中中 華華華華 民民民民 國國國國 九九九九 十十十十 六六六六 年年年年 六六六六 月月月月

 ii

基於 SAML 架構達到多層式跨 IDP 之單一登入系統

研究生：張長蓉 指導教授：葉義雄 博士

國立交通大學資訊科學與工程研究所碩士班

摘要︰

Web service 的出現是為了讓使用者能夠迅速及時使用網路資源，它使用 XML

來傳輸資訊以適應各種開發環境。隨著電子商務的興起，為了解決資訊安全的問題，

OASIS 在 2002 年發展了一種以 XML 為基礎的語言 SAML，可安全產生和交換使用者認

證和授權資訊。SAML 明確地定義了許多安全認證方式並以 XML 架構來加強之，這樣

的優勢令許多網路廠商廣泛使用它來達到 Web SSO 的功能。

以目前 SAML 提供的 SSO (Single Sign-On) 機制，是透過一個認證中心來管理

使用者資訊，這個認證中心整合各種服務，使用者必須先到認證中心確認身分後，

才能使用這些服務，只要在認證中心登入過一次，底下所屬的服務都無須再做登入

動作即可使用。但若想使用不同 IDP (identity provider) 底下的服務時，仍然要

做多次登入動作認證身分。

為了提供使用者一個跨企業間的整合性服務，我們必須讓使用者在不同的認證

中心底下仍可達到單一登入的功能，因此本論文以 SAML1.1 為基礎，提供了一種可

跨 IDP 做聯合身分認證以達到 SSO 的系統。

關鍵字：Web 服務、安全宣示標記語言、單一登入系統 SSO、聯合身分認證

 iii

Multi-Layered Cross-IDP SSO Based on SAML

Student：Chang-Jung Chang Advisor：Dr. Yi-Shiung Yeh

Institute of Computer Science and Information Engineering

National Chiao Tung University

Abstract︰

The development of Web Service enables users rapidly to access network resources

in time. As a result of the electronic commerce starting, Web service uses xml to transmit

the information to be able to adapt each kind of development environment. In order to

solve the information secure problem, the Security Assertion Markup Language (SAML)

which is an XML-based framework has been developed by the OASIS (the Organization

for the Advancement of Structured Information Standards) to describe and exchange

authorization and authentication information between on-line business partners in 2002.

SAML explicitly defines several safe confirmations ways and the security of xml

architecture will be enhanced with these methods. The superiority causes SAML widely

to be used to achieve Web SSO by the on-line commercial systems.

 At present SAML SSO mechanism is that there is an identity provider (IDP) which

integrates several services managing users information. After logging in at IDP, the user

can access these services. So long as a user has logged in at the authentication center, he

does not need to authenticate again and then he directly can access these services at the

same time. But a user has to login many times to provide valid credentials to use the

services which are subordinate under different IDPs.

 In order to provide the users a enterprise-crossed and integrated service, we must

enable the users also to achieve SSO under many identity providers, the thesis designs a

SSO architecture to achieve identity federation cross-IDP using SAML 1.1.

Key words：Web Services, SAML, SSO, Federated Identity, Identity federation

 iv

致 謝

這篇論文能夠順利的完成，首先必須感謝我的指導教授，葉義雄教

授，在研究所兩年中，不論是在學問上或是待人處事方面都給我莫大的

鼓勵與指導，令我獲益良多。另外也很感謝鎮宇、定宇學長和靜紋學姊，

在我遇到瓶頸時，給了我很多的寶貴意見以及協助；還有，也謝謝實驗

室裡的各位學長姊、同學與學弟妹，雅婷、伯昕、小強、家明與佳君，

大家平日的相互勉勵與學習，讓我成長許多；此外，我要特別感謝好友

信州，在研究期間幫我一起跑程式，讓我因此節省許多寶貴的時間；擁

有這群知心好友，讓我這兩年的生活更加的豐富，在此希望他們未來都

能一路順風。

最後，要謝謝我的家人多年來的栽培與支持，以成就今日的我，家

人的溫暖關懷讓我不輕易被挫折打倒，也讓我毫無牽掛的專心在學業之

上，在學習的這條路上有了家人的支持和鼓勵，讓我感到相當的溫馨與

幸福，在此真的非常感謝家人為我做的一切！

謹將我這篇論文獻給所有關心我與支持我的人，謝謝你們！

張長蓉

中華民國九十六年六月

 v

Contents

摘要︰...ii

Abstract︰...iii

致 謝..iv

Figure List..vii

Table List..ix

Chapter 1 Introduction...1

1.1 Background...1

1.2 Motivation...1

1.3 Objective...2

Chapter 2 Related Work..3

2.1 Web Service..3

2.1.1 Concepts...3

2.1.2 Components of Web Services..4

2.2 Web Single Sign-On...5

2.2.1 Concepts...5

2.2.2 Overview of Web SSO Functionality..................................6

Chapter 3 Technical Overview of SAML 1.1...8

3.1 Introduction... ...8

3.2 SAML Architecture ...8

3.2.1 SAML Participants and Scenarios.......................................8

3.2.2 SAML Components...10

3.2.3 Security in SAML..11

3.3 High-Level SAML Use Cases..12

3.3.1 Web Single Sign-On Use Case..12

3.3.2 Identity Federation Concepts and Use case.......................13

Chapter 4 Our System Architecture..16

4.1 System Overview..16

4.1.1 Scenarios..16

4.1.2 System Components..17

4.2 Concepts and Mechanisms...18

4.2.1 User Link_ID...18

4.2.2 Manager...18

4.2.3 Sorting ...20

4.2.4 Maintain the net topology..20

4.2.5 Global Path Finding ..22

4.2.6 Core algorithm of manager..23

4.3 Use Cases..25

 vi

4.3.1 Detailed Processing..25

4.3.2 Implementation Result...29

Chapter 5 System Analysis..39

5.1 Security...39

5.2 Expansibility...39

5.3 Robustness..41

Chapter 6 Conclusion and Future Work..42

6.1 Conclusion..42

6.2 Future Work..42

References: ...43

Appendix A Source Code...44

 vii

Figure List

Figure 2.2.1 General Single Sign-On Use Case..7

Figure 3.2.1 SAML Participants..9

Figure 3.2.2 Basic SAML Component...11

Figure 3.3.1 Detailed Processing for the SSO...12

Figure 3.3.2 Identity Federation with Persistent Pseudonym.................14

Figure 4.1.1 Layered Concepts in Actual Commercial System..............16

Figure 4.1.2 System Components..17
Figure 4.2.1 IDP Associates a Federated Identifier with Local Identity....18

Figure 4.2.2 Account Linking Table in the Manager..............................19

Figure 4.2.3 Topology of Initial Commercial System..............................21

Figure 4.2.4 Topology of Commercial System after Modification…….21

Figure 4.2.5 A Simple Global Path Finding Example.............................23

Figure 4.2.6 Core Algorithm of Manager...24

Figure 4.3.1 Initial State before Federating..25

Figure 4.3.2 Processing Sequence of federation petition.........................26

Figure 4.3.3 Topology of Commercial System...27

Figure 4.3.4 Processing Sequence of Account Linking...........................28

Figure 4.3.5 The Topology of Implemented Architecture......................29

Figure 4.3.6 Petition Step 1..30

Figure 4.3.7 Petition Step 2..30

Figure 4.3.8 Petition Step 3..31

Figure 4.3.9 Petition Step 4..31

Figure 4.3.10 Petition Step 5..32

Figure 4.3.11 Petition Step 6..32

Figure 4.3.12 Petition Step 7..33

Figure 4.3.13 Petition Step 8…………………………………………......33

Figure 4.3.14 Petition Step 9..34

Figure 4.3.15 Petition Step 10..34

Figure 4.3.16 Petition Step 11…………………………………………....35

Figure 4.3.17 Identity Federation Step 1……………………………......35

Figure 4.3.18 Identity Federation Step 2..36

Figure 4.3.19 Identity Federation Step 3..36

Figure 4.3.20 Identity Federation Step 4……………………………......37

Figure 4.3.21 Identity Federation Step 5..37

Figure 4.3.22 Identity Federation Step 6..38

Figure 4.3.23 Identity Federation Step 7..38

Figure 5.2.1 Initial Topology..39

Figure 5.2.2 Topology State after Vertical Expansibility........................40

Figure 5.2.3 Topology State after Horizontal Expansibility...................40

 viii

Table List

Table 4.2.1 Sorting Mechanism...20

Table 4.2.2 Local Relationship of EAT manager......................................21

Table 4.2.3 Local Relationship of EAT Manager after Modification...….22

Table 4.3.1 The Mapping Table in Manager in Step 5..............................27

Table 4.3.2 The Mapping Table in Manager in Step 6..............................27

Table 5.2.1 Modification after Vertical Expansibility...............................40

Table 5.2.2 Modification after Horizontal Expansibility...........................41

 1

Chapter 1 Introduction

1.1 Background

The appearance of web service enables users to access network resources

immediately and rapidly. As a result of the electronic commerce starting, web service

uses xml to transmit the information to be able to adapt each kind of development

environment. Although it is convenient and fast, the information secure anxiety is still

existed.

Therefore the Security Assertion Markup Language (SAML) which is an

XML-based framework has been developed by the Security Services Technical

Committee (SSTC) of the standards organization OASIS (the Organization for the

Advancement of Structured Information Standards) to describe and exchange

authorization and authentication information between on-line business partners in 2002.

SAML explicitly defines several safe confirmations ways depending on the different

goals as follows: Authentication Assertion, Attribute Assertion, Decision Assertion, and

Authorization Assertion. The security of xml architecture will be enhanced with these

methods. The superiority causes SAML widely to be used to achieve Web SSO by the

on-line commercial systems.

1.2 Motivation

 At present SAML SSO mechanism is that there is an Identity Provider (IDP)

which integrates several services managing users information. After logging in at IDP,

the user can access these services. So long as a user has logged in at the authentication

center, he does not need to authenticate again and then can access these services at the

same time. It can be imagined that after logging in at Yahoo home page, the user could

use its mailbox, auction, photo album services, and so on without providing credentials

again. But a user has to login many times to provide valid credentials to use the services

which are subordinate under different IDPs. The user still must remember a pile of

accounts/passwords. Such inconvenient operation may reduce the willingness of using

 2

web services.

In order to support more commercial situations in real world, only considering the

security aspect is not enough. We also hope to achieve extra mechanisms and provide the

users a enterprise-crossed and integrated service.

1.3 Objective

 In order to provide the users a enterprise-crossed and integrated service, we must

enable the users also to achieve SSO under many Certificate Authorities. In order to

provide a more conveniently sign-on mechanism, the thesis designs a SSO architecture to

achieve identity federation cross-IDP.

 Pointed out in the SAML V1.x specification, it is PKI-based, the information

transmitted is protected by SSL. Therefore we premise that messages are exchanged

safely with SSL.

 3

Chapter 2 Related Work

2.1 Web Service

2.1.1 Concepts

 Today, companies rely on thousands of different software applications each with

their own role to play in running a business. To name just a few, database applications

store information about customers and inventories, web applications allow customers to

browse and purchase products online, and sales tracking applications help business

identify trends and make decisions for the future. These different software applications

run on a wide range of different platforms and operating systems, and they are

implemented in different programming languages. As a result, it is very difficult for

different applications to communicate with one another and share their resources in a

coordinated way. To solve the problem of application-to-application communication,

businesses need a standardized way for applications to communicate with one another

over networks, no matter how those applications were originally implemented.

Web Services provide exactly this solution by providing a standardized method of

communication between software applications. Specifically, web services are a stack of

emerging standards that describe a service-oriented, component-based application

architecture. With a standardized method of communication in place, different

applications can be integrated together in ways not possible before. Different applications

can be made to call on each other's resources easily and reliably, and the different

resources that applications already provide can be linked together to provide new sorts of

resources and functionality. Moreover, application integration becomes much more

flexible because Web services provide a form of communication that is not tied to any

particular platform or programming language. The interior implementation of one

application can change without changing the communication channels between it and the

other applications with which it is coordinated. In short, a Web service makes its

 4

resources available in such a way that any client application, regardless of its internal

implementation, can operate and draw on the resources provided by the Web service.[1]

2.1.2 Components of Web Services

 Web services provide a standard way to expose an application's resources to the

outside world so that any user can draw on the resources of the application. Web services

are built on standard technologies such as HTTP and XML. All Web service messages

are exchanged using a standard XML messaging protocol known as SOAP (Simple

Object Access Protocol), and Web service interfaces are described using documents in

the WSDL (Web Services Description Language) standard. These standards are all

completely agnostic of the platform on which the Web services were built.

Web services are able to expose their resources in this generally accessible way

because they adhere to the following communication standards [1]:

1. A Web service publicly describes its own functionality through a WSDL file.

2. A Web service communicates with other applications via XML messages.

3. A Web service uses a standard network protocol such as HTTP.

WSDL

A WSDL file provides a description (written in Web Service Description Language)

of how the Web service is operated and how other software applications can interface

with the Web service. Think of a WSDL file as the instruction manual for a Web service

explaining how a user can draw on the resources provided by the Web service. WSDLs

are generally publicly accessible and provide enough detail so that potential clients can

figure out how to operate the service solely from reading the WSDL file. If a Web service

translates English sentences into French, the WSDL file will explain how the English

sentences should be sent to the Web service, and how the French translation will be

returned to the requesting client [1].

 5

XML and SOAP

XML messages provide the common language by which different applications can

talk to one another over a network. To operate a Web service a user sends an XML

message containing a request for the Web service to perform some operation; in response

the Web service sends back another XML message containing the results of the operation.

Typically these XML messages are formatted according to SOAP syntax. SOAP, an

acronym for Simple Object Access Protocol, specifies a standard format for applications

to call each other's methods and pass data to one another. Note that other non-SOAP

forms of XML messages are possible, depending on the specific requirements of the Web

service. But, in any case, the sort of XML message and the specific syntax required can

be found in the WSDL file, making the Web service generally available to any client

application capable of sending and receiving the appropriate XML messages [1].

SOAP (Simple Object Access Protocol) is the method by which you can send

messages across different modules. This is similar to how you communicate with the

search engine that contains an index with the Web sites registered in the index associated

with the keywords [2].

HTTP

To make it accessible to other applications across networks, such as the Internet and

in-house intranets, Web services receive requests and send responses using widely used

protocols such as HTTP (HyperText Transfer Protocol) and JMS (Java Message Service)

[1].

2.2 Web Single Sign-On

2.2.1 Introduction

Single sign-on (SSO) is mechanism whereby a single action of user authentication

and authorization can permit a user to access all computers and systems where he has

access permission, without the need to enter multiple passwords. Single sign-on reduces

human error, a major component of systems failure and is therefore highly desirable but

 6

difficult to implement [3].

Single sign on is generally a process that allows the user to access multiple

applications requiring authentication by passing his credentials only once. The user first

authenticates to some trusted authentication authority and then is granted access to all the

applications trusting that authority. The SSO systems usually preserve the state of the

user for some period of time, so the user may repeatedly access these applications

without the need to authenticate each time.

One of the main advantages of SSO systems is the convenience for the user. Another

major advantage is security. There is only one place of authentication, which receives

user's credentials. The applications only receive information about whether they may let

the user in or not. Also, the user authenticates only once, so there is minimum transfer of

sensitive information over the network, not to mention that SSO systems usually force the

users to use secure communication channels.

Web single sign on provides SSO infrastructure for web applications. On

community networks, there is often a number of web applications and services designed

to aid community members and thus requiring authentication. In these cases it is

convenient and secure to use a centralized SSO infrastructure bound to the central

authentication authority. The most common example of such community networks are

university campus networks and some of the most common web SSO systems were

developed there [4].

2.2.2 Overview of Web SSO Functionality

There is always a central authority, which handles user authentication. It may

support various backend authentication mechanisms like Kerberos, LDAP, relational

database, etc. The central authentication server may provide also a user interface needed

to retrieve user's credentials - usually a login form [4].

The applications in the SSO infrastructure are protected by special application layers

called filters or clients. These filters, usually implemented as modules for the web server

running the application, check if the user is authenticated before letting him to access the

protected application. To perform these checks they need to communicate with the

authentication server either directly or through redirects of the user's web browser.

 7

There are two common scenarios for a SSO session: [4]

• login first - the user first performs login to the SSO infrastructure and then

chooses a service to access

• application first - the user first tries to access a service, but because he has not

been authenticated yet, the service redirects him to the login service and after a

successful logon he is redirected back to the service

The use case [6], shown in Figure 2.2.1, described here demonstrates what the

concept of web SSO is. In this use case, a user has a login session (that is, a security

context) on a web site (Airplane.com) which maintains local identities for users and is

accessing resources on that site. At some point he is directed over to a partner's web site

(CarRent.com). We assume that a trust relationship has been previously established

between Airplane.com and CarRent.com based on a business agreement between them.

The site (Airplane.com) asserts to the service provider site (CarRent.com) that the user is

known, has authenticated to it. Since CarRent.com trusts Airplane.com, it trusts that the

user is valid and properly authenticated and thus creates a local session for the user. The

user is not required to re-authenticate when directed over to the CarRent.com site.

Airplane.com

CarRent.com

Business agreement

Authenticate

Access

Protected

resource

1

2

Figure 2.2.1 General Single Sign-On Use Case

 8

Chapter 3 Technical Overview of SAML 1.1

3.1 Introduction

The OASIS Security Assertion Markup Language (SAML) standard defines an XML-based

framework for describing and exchanging security information between on-line business partners.

This security information is expressed in the form of portable SAML assertions that applications

working across security domain boundaries can trust. The OASIS SAML standard defines precise

syntax and rules for requesting, creating, communicating, and using these SAML assertions.

SAML defines a XML-based solution to the problem of Web Single Sign-On (SSO). Web

SSO allows users to gain access to website resources in multiple domains without having to

re-authenticate after initially logging in to the first domain. To achieve SSO, the domains need to

form a trust relationship before they can share an understanding of the user`s identity that allows

the necessary access.

3.2 SAML Architecture

This section describes the core SAML concepts and components briefly.

3.2.1 SAML Participants and Scenarios

SAML which exchanges take place between system entities referred to as a SAML asserting

party and a SAML relying party is different from other security systems due to its approach of

expressing assertions about a subject that other applications within a network can trust [5].

� Asserting party

The system that makes SAML assertions asserts information about a subject. It is also

called a SAML authority which role is defined as identity provider (IDP).

� Relying party

The system that relies on information supplied to it by the asserting party uses

assertions it has received. It is up to the relaying party as to whether it trusts the

assertions provided to it. SAML defines the role called service provider (SP).

 9

� Subject

At the heart of SAML assertions, a subject, could be a human but also could be some

other kind of entity, such as a company or a computer. The terms subject and user tend

to be used interchangeably in this thesis.

When a SAML asserting or relying party makes a direct request to another SAML entity, the

party making the request is called a SAML requester, and the other party is referred to as a SAML

responder. A relying party`s willingness to rely on information from an assertion party depends

on the existence of a trust relationship with the asserting party.

A typical assertion about a subject who has been authenticated and has given associated

attributes from an identity provider might convey information such as “This user is Bob Li, he

has an email address of bob.li@edu.com, and he was authenticated into this system using a

password mechanism,” A service provider could choose to use this information, depending on its

access policies, to grant Bob Li web SSO access to local resources. Figure 3.2.1 illustrates the

concept of Web SSO, and how to achieve this purpose will be demonstrated later in the thesis.

In this case, a user has a login session on a web site, Company.com, and is accessing

resources on that site. At sometime, he is directed over to a partner`s web site, Travel.com.

Assuming a trust relationship has been previous established between Company.com and

Figure 3.2.1 SAML Participants

 10

Travel.com based on a business agreement between them. The identity provider site,

Company.com, asserts to the service provider site, Travel.com, that the user has authenticated to it

and has certain identity attributes (e.g. has a “Gold” status). Since Travel.com trusts

Company.com, it trusts that the user is valid and properly authenticated and thus creates a local

session for the user. The user is not required to re-authenticate when directed over to the

Travel.com site. Once logged in, the IdP can produce an assertion that can be used by the SP to

validate the user`s access rights to the protected resource [5].

3.2.2 SAML Components

SAML consists of building-block components that allow many use cases to be supported,

when put the components together. It has the following key concepts: [6]

� Assertion: A SAML assertion is a package of information that carries statements about

a subject. Assertions are created by a SAML authority. SAML defines three kinds of

statements that can be carried within an assertion.

� Authentication statements: They describe the means used to authenticate the user

and the specific time at which the authentication took place.

� Attribute statements: These contain specific details or identifying attributes

about the subject, for example, the user holds “Gold” card status.

� Authorization decision statements: These define what the subject is entitled to

do, for example, whether a user is permitted to buy a specific production.

� Protocol: SAML defines a number of generalized request/response protocols for

obtaining assertions. SAML protocol messages are used to make the SAML requests

which can either ask for a specific known assertion or make authentication, attribute,

and authorization decision queries and return appropriate responses.

� Bindings: A binding details exactly how the various SAML protocol messages map

onto underlying transport and messaging protocols. For example, SAML provides a

binding of how request/response protocols are carried within SOAP exchanges over

HTTP.

 11

� Profiles: SAML profiles typically define how the SAML assertions, protocols, and

bindings are combined and constrained to solve particular business use cases in an

interoperable fashion, for example the Web Browser SSO profile.

Figure 3.2.2 illustrates the relationship between these basic SAML concepts. [6]

3.2.3 Security in SAML

SAML defines many security mechanisms to detect and protect against the

“man-in-the-middle” attacks. The primary mechanism is for the relying party and asserting party

to have a pre-existing trust relationship which typically relies on a Public Key Infrastructure

(PKI). Using PKI is recommended by SAML, however, what is recommended is provided below:

� HTTP over SSL 3.0 or TLS 1.0 is recommended to ensure message integrity and

message confidentiality.

� When a relying party requests an assertion from an asserting party then bi-lateral

authentication is required and the use of SSL 3.0 or TLS 1.0 using mutual

authentication or authentication via digital signatures is recommended.

� When a response message containing an assertion is delivered to a relying party via a

Figure 3.2.2 Basic SAML Component

 12

user`s web browser, it is mandated that the response message be digitally signed using

the XML signature standard to ensure message integrity [5][7].

3.3 High-Level SAML Use Cases

Early in its business requirements analysis, the SSTC (Security Services Technical

Committee) defined many use cases for SAML. This section will describe in detail the Web SSO

and identity federation use cases.

3.3.1 Web Single Sign-On Use Case

To date, only the Web SSO use case has been profile in SAML V1.1. The following Figure

shows the processing and message flow in the Source-Site-First scenario, that is the IDP-initiated

Web SSO scenario. It indicated that the user had first authenticated at the IDP before accessing a

protected resource at the SP. When users whom had not been authenticated subsequently attempts

to access a protected resource at the SP first, the SP will send the user to the IDP with an

authentication request in order to have the user log in.

IDP SP

Figure 3.3.1 Detailed Processing for the SSO

 13

The processing is as follows: [5]

1. The user accesses the IDP site (www.abc.com).

2. The IDP performs an access check and determines that the user does not have a current

session. As a result, the user is challenged to authenticate.

3. The user logs in and supplies back credentials, for instance username and password.

4. If the authentication is successful, then a session is created for the user who can access

resources.

5. At some point, the user wants to access resources on a SP site www.xyz.com. This causes

a HTTP request which contains the URL of the resource on the SP site (TARGET URL)

to be send to the IDP site

6. The IDP generates an assertion which contains the source ID of the www.abc.com SAML

responder for the user and sends back an HTTP redirection response to the browser, with

the HTTP location header containing the TARGET URL.

7. The SP site receives the HTTP message and extracts the source ID. A mapping between

source IDs and remote Responders will already have been established. Therefore the SP

will know that it has to contact the www.abc.com SAML responder, then it will send a

SAML request to the www.abc.com SAML responder.

8. The www.abc.com SAML responder supplies back a SAML response message containing

the assertion about the user. If a valid assertion is received back, then a session on

www.xyz.com is established for the user at this point.

9. The SP site sends a redirection message containing a cookie back to the browser. The

message indicates that the user has the correct authorization to access the SP site.

3.3.2 Identity Federation Concepts and Use case

Multi-domain web single sign-on is the most important use case for which SAML is used.

This section describes mechanisms supported by SAML for establishing and managing federated

identities.

SAML V2.0 introduced two features to enhance its federated identity capabilities. First, new

 14

constructs and messages were added to support the dynamic establishment and management of

federated name identifiers. Second, two new types of name identifiers were introduced with

privacy-preserving characteristics. SAML uses the new features to dynamically establish a

federated identity for a user during a web SSO exchange. Most identity management systems

maintain local identities which might be represented by the user's local login account for users.

These local identities must be linked to the federated identity that will be used to represent the

user when the provider interacts with a partner. The process of associating a federated identifier

with the local identity at a partner where the federated identity will be used is often called

account linking.

Figure 3.3.2 illustrates dynamic identity federation using persistent pseudonym identifiers.

The user jdoe on CarRentalInc.com wishes to federate this account with his john account on the

IDP, AirlineInc.com [6].

In summary, the processing is as follows:

1. The user attempts to access a resource on CarRentalInc.com. The user does not have any

current logon session (i.e. security context) on this site, and is unknown to it.

2. The service provider sends the user to the Single Sign-On Service at the identity provider

(AirlineInc.com) and requests the IDP to provide an assertion using a persistent name

identifier for the user.

SP IDP
61611

Figure 3.3.2 Identity Federation with Persistent Pseudonym

 15

3. The user will be challenged to provide valid credentials.

4. The user logs in as john user account and the IDP creates a local security context for the

user.

5. The Single Sign-On Service looks up user john in its identity store and creates a

persistent name identifier (61611) to be used for the session at the service provider. It then

builds a SAML assertion where the subject uses a transient name identifier format rather

then the name john.

6. The browser receives the assertion and issues a request to send the form to the service

provider.

7. The SP validates the digital signature on the SAML Response and validates the SAML

assertion. The supplied name identifier which maps to a local account is then used to

determine whether a previous federation has been established. If a previous federation has

been established then go to step 9. If no federation exists for the persistent identifier in the

assertion, then the SP needs to determine the local identity to which it should be assigned.

The user will be challenged to provide local credentials at the SP.

Optionally the user might first be asked whether he would like to federate the two

accounts.

8. The user provides valid credentials and identifies his account at the SP as jdoe. The

persistent name identifier is then stored and registered with the jdoe account along with

the name of the identity provider that created the name identifier.

9. A local logon session is created for user jdoe and an access check is then made to

establish whether the user jdoe has the correct authorization to access resources at the SP

site.

10. If the access check passes, the desired resource is returned to the browser.

 16

Chapter 4 Our System Architecture

In this thesis, we provide a system architecture to achieve the cross-IDP identity federation.

In this chapter, we discuss the mechanism concepts before the design of our system, and at last

we will demonstrate the implementation result.

4.1 System Overview

4.1.1 Scenario

The relationship of level exists in the commercial system. Lots of homogeneous

organizations are subordinate to a kind of commercial system, an organization manages a number

of same kind companies, each company is composed of many departments, and the department

provides several services. It is graded layer upon layer in real commercial situation, as Figure

4.1.1 demonstrates. Assume a user is registered on some companies which are cooperative

enterprises. As long as he has logged in at one of the web sites, he does not need to authenticate

again and then can access these services which are subordinate under different webs.

It may be suitable for a certain commercial scenario as below. There are lots of companies

Figure 4.1.1 Layered Concepts in Actual Commercial System

gobby bill

SP1 SP2
SP3

SP4 SP5 SP6 SP7

EDU
BANK

CT BOT

EAT

85C LW

LIFE

NCTU NTHU POST

 17

or alliance shops being opened or closed every day. An alliance shop may join in or leave from

the business system willfully. When users visit another IDP site, they must know whether it

continues to operate or not. The participants and users shall know the cooperation relationship

between the mutable commercial system immediately. In accordance with such scenario, the

topology of business system must be maintained and managed dynamically.

4.1.2 System Components

In contrast with the realistic commercial system, Figure 4.1.2 illustrates the components

which are provided in our system architecture. There are three main rules, Service Provider (SP),

Identity Provider (IDP), Manager, in the architecture. All IDPs are portal sites and provides many

kinds of services. All levels above IDPs are Managers, which exchange users` identities. First we

outline these three components and introduce them in detail in the next section.

� Service Provider (SP)

The system provides resources and services

� Identity Provider (IDP)

The system integrates several services and maintains users information. Users must log

in at IDPs before accessing SPs.

� Manager

The system exchanges users` identities and records the corresponding identities between

different IDPs for a user.

Manager

IDP

SP

IDP

SP

Manager

IDP

SP

IDP

SP

IDP

Manager

EDU

NCTU NTHU

SP1 SP2

BANK

POST CT

SP3 SP4 SP5

BOT

LIFE

SP

Figure 4.1.2 System Components

 18

4.2 Concepts and Mechanisms

4.2.1 User Link_ID

Essentially, the concept of user Link_ID is similar to the pseudonym. The IDPs maintain

local identities which might be represented by the user local login account for users. These local

identities must be linked to the federated identity, that is Link_ID, which is created by the IDP

that will be used to represent the user when the provider interacts outward. Link_ID is unique for

every user and generated randomly. It provides privacy-preserving characteristic for users. Figure

4.2.1 illustrates the database maintained by the IDP using Link_ID. For example, Link_ID (123)

is represented the local user account gobby externally.

The process of associating a federated identifier with the local identity at a partner where the

federated identity will be used is called account linking afterward.

4.2.2 Manager

In order to achieve identity federation, we define a third-party architecture, manager, to

exchange users` identities. The manager records the corresponding identities at different IDPs for

a user, however, the information recorded is the Link_ID rather than the local account. It

provides privacy-preserving characteristic for a user during a web SSO exchange .The process of

associating a Link_ID with another Link_ID at a partner is called account linking afterward.

User_name Link_ID

gobby 123

mary 456

….. …… IDP

SP2 SPn SP1 . . .
Figure 4.2.1 IDP Associates a Federated Identifier with Local Identity

 19

Besides account linking, the manager can be used to classify the IDPs according to their

properties. For instance, the IDPs which are the educational categories petition the “EDU”

manager for account linking; the financial categories petition the “BANK” manager, etc. Thus,

commercial system can be integrated more efficiently.

Figure 4.2.2 shows the operation of a manager, the example assumes a user is registered on

two provider sites, but the local accounts have different account identifiers, Link_ID. Assume

that the user has logged in at IDP1 using his gobby account.

In summary, the processing is as follows:

1. The user access resources at the IDP1 and then visits IDP2. The IDP1issues a request to

manager: “(123) at IDP1 wants to visit IDP2”.

2. The manager receives the request and then looks up its account linking table to determine

whether a previous federation has been established. If a previous federation has been

established then go to step3, otherwise the IDP2 needs to determine the local identity to

which it should be assigned. The user will be challenged to provide local credentials at the

IDP2. Assume the federation exists, thus the manager finds (123) at IDP1 is (135) at

IDP2.

3. Then the manager issue an assertion “(135) is authenticated” to the IDP2, and then the

user bill associated with the Link_ID (135) has the correct authorization.

Link_ID Src. Link_ID Dst.

123 IDP1 135 IDP2

User_name L_Link_ID

gobby 123

mary 456

User_name L_Link_ID

bill 135

amy 246

IDP 1 IDP 2

Manager

1

2

3

Figure 4.2.2 Account Linking Table in the Manager

 20

4.2.3 Sorting

If there are many users joining the federation organization, the account linking table at a

manager will be very large. We must provide an efficient way to determine whether a previous

federation has been established for a certain user. The index numbers of entries involved the

same IDP are collected and stored orderly in another table. As Table 4.2.1 shows, the index

numbers of entries involved the IDP1 are (1, 3, 5), and the index numbers of entries involved the

IDP2 are (1, 4). We can get (1) by intersectint (1,3,5) and (1.4), so only the first entry must be

traced when a certain user at IDP1 links to IDP2 or reversed.

Src./Dst. Index

IDP1 1, 3, 5

IDP2 1, 4

IDP3 2, 3, 4

IDP4 2, 5

4.2.4 Maintain the net topology

The net topology always changes as a result of the affiliation of sunrise industry or member

IDPs. For the purpose of expansibility, we define that each manager must record the nodes of its

upper layer and lower layers. The parent node and children nodes of a manager will be marked 0

and 1. Assume the topology is as Figure 4.2.3 shows, the manager EAT marks 1 to represent its

children nodes as Table 4.2.2 shows.

Index Link_ID Src. Link_ID Dst.

1 ABC_IDP1 IDP1 ABC_IDP2 IDP2

2 ABC_IDP4 IDP4 ABC_IDP1 IDP3

3 ABC_IDP3 IDP3 ABC_IDP1 IDP1

4 ABC_IDP3 IDP3 ABC_IDP2 IDP2

5 ABC_IDP2 IDP4 ABC_IDP4 IDP1

Table 4.2.1 Sorting Mechanism

 21

EAT

1 85C

1 LW

As Figure 4.2.4 shows, if someday an upper layer manager, LIFE, is increased EAT must

mark 0 to represent it. LIFE also needs to record its children nodes, as disputed in Figure. Tables

must be updated every time when the net topology changed.

EDU

NCTU NTHU

SP1 SP2

BANK

POST CT

SP3 SP4 SP5

BOT

EAT

85C LW

SP6 SP7

LIFE

EDU

NCTU NTHU

SP1 SP2

BAN

POST CT

SP3 SP4 SP5

BOT

EAT

85C LW

SP6 SP7

Figure 4.2.3 Topology of Initial Commercial System

Table 4.2.2 Local Relationship of EAT manager

Figure 4.2.4 Topology of Commercial System after Adding LIFE Manager

 22

4.2.5 Global Path Finding

The architecture defines that a user at a IDP wants to visit another IDP by following the tree

path rather than peer to peer. Deliberate that the source IDP and destination IDP might not be

below the same manager, so how to know the position of the destination IDP must be solved.

The last section describes that each manager must record the nodes of its upper layer and

lower layers. We can take advantage of it to find the global path of a certain IDP over whole

topology.

Briefly, in a path, a manager stores the Link_ID of the left neighbor along with the Link_ID

of the right neighbor for every user. We can see the following case to understand the operation of

global path finding.

The global path of an IDP is represent to a sequence string which can indicate the position

and relationship of the IDP. For the purpose of expansibility, the global path string is coded

dynamically. In this case, the global path of IDP E should be coded “A_C_E”, it indicates that

E`s manager is C and C`s manager is A, and so on.

Figure 4.2.5 illustrates the processing of petition which is as follows:

1. E sends a request to its manager to get its global path.

2. C receives the request and then appends C. The path code becomes “ C_E ”. C looks up

its table to know that it is not on the top layer, then C keeps on sending the request to

upper layer.

3. A receives the request and then appends A. The path code becomes “ A_C_E ”. A refers

to its table to know there is no more upper layer, then sends back “ A_C_E ” to E.

EAT

0 LIFE

1 85C

1 LW

Table 4.2.3 Local Relationship of EAT Manager after Modification

 23

An IDP site can ask its global path upward gradually as above and stores the path code in

local site. Each IDP asks upward periodically and updates its path code when the topology

changed.

4.2.6 Core algorithm of manager

When getting the global path of the destination IDP, the source IDP will send the string and

the request of identity federation to its manager. After receiving, the manager would compare the

string with its name to determine whether its name appears or not. If it appears, the fact expresses

that the target IDP is under its subtree surely, and the manager should send the request downward.

Otherwise, the manager sends the request upward.

Each manager which receives the request of identity federation will look up its account

linking table to determine whether a previous federation has been established for the user. If a

previous federation has been established then continue to transmit forward according to the

Link_ID, otherwise the manager needs to generate a Link_ID and record it to establish a new

account linking entry.

However, two situations would be considered in transmission process downward:

1. The manager sends to its lower manager, the operation is the same as describing above.

2. The manager sends to the target IDP, the operation is similar to as describing above. If a

previous federation has not been established, the manager needs to generate a Link_ID

E 1

A 0

C C 1

B 1

A

A

B C

E D

3

2

1

Figure 4.2.5 A Simple Global Path Finding Example

 24

and record it to establish a new account linking entry as usual. But the Link_ID generated

by the manager and the Link_ID represented another user at the target IDP might be

exactly the same. If the manager sends the Link_ID to the IDP, the wrong user account

with the Link_ID will be logged in automatically which results in inaccurate identity

federation. To solve such problem, we define that the manager generates a temporary

Link_ID which might be expressed by “managerName_Tmp_Link_ID” form when

sending to the destination IDP. After receiving the temporary Link_ID, the IDP sends

back the real Link_ID to accomplish correct identity federation.

The algorithm of managers in details as Figure 4.2.6 shows.

1 if path code match its name

 2 if mapping record exists

 3 find the link_id from database

 4 send to the lower node

 5 else

 6 if self is the first layer manager

 7 generate a temporary link_id, create a new mapping record

 8 send to the lower idp, and request the correct link_id

 9 else

10 generate a link_id, create a new mapping record

11 send to the lower node

12 else

13 if mapping record exists

14 find the link_id from database

15 send to the upper manager

16 else

17 generate a link_id, create a new mapping record

18 send to the upper manager

Figure 4.2.6 Core Algorithm of Manager

 25

4.3 Use Cases

Up to now, the concepts of mechanisms used in our system architecture are explained. The

detailed processing will be described in this section. It deserves to be mentioned that the

architecture is PKI-based and the information transmitted is protected by SSL.

4.3.1 Detailed Processing

Above all, let`s consider the simplest situation. That is, there are just two IDPs in the net

topology. If the IDPs become partners, the users at two IDPs are federated identity by a manager.

The example assumes a user is registered on two IDPs, but the local accounts both have different

Link_IDs. As Figure 4.3.1 shows, at the IDP1, the user is registered as gobby, on the IDP2 his

account is bill. User ID gobby at IDP1 recommend user ID bill at IDP2 to use the federated

identity service for the user who has not previously federated his identity between these sites.

Initially, there is not any account linking record about the user in the manager.

Figure 4.3.2 illustrates the processing of petition which is as follows:

1. The user attempts to access a resource at the SP1 site. The user does not have any current

logon session at this site, and is unknown to it.

Link_ID Src. Link_ID Dst.

User_name L_Link_ID

bill 135

amy 246

User_name L_Link_ID

gobby 123

mary 456 IDP 1 IDP 2

Manager

SP1
SP2

Figure 4.3.1 Initial State before Federating

 26

2. The SP1 sends the user to the IDP1 and request the IDP1 to provide an assertion for the

user. Thus the user logs in the IDP1 and gets the services on SP1 using SAML

authentication.

3. The user petitions for federated identity to the IDP1.

4. The IDP1 issue a request for the user to manager “(123) at IDP1 wants to visit IDP2 “.

5. The manager receives the request and looks up that there is no account linking

information between the IDP1 and the IDP2 for the user. Thus it creates an new entry and

fills in the blanks with “(123)、IDP1、IDP2“ as Table 4.3.1 demonstrates. Then a

redirection is issued to the target web, IDP2, and which is requested the user`s Link_ID at

the IDP2.

6. The user provides valid credentials at the IDP2 as bill. The IDP2 sends back the Link_ID,

(135), of the bill account to the manager. The persistent name identifier is then stored

along with the entry as Table 4.3.2 shows.

7. The IDP2 issues the assertion, and then the user bill has the correct authorization to access

the SP2.

Manager

IDP1 IDP2

SP1 SP2

user

1

2 3

4
5 6

7

Figure 4.3.2 Processing Sequence of federation petition

 27

The identity linking record which has been established exists perpetually as long as there is a

business agreement between both IDPs. After petition the user at the IDP1 wants to access a

resource at the IDP2, the manager looks up the mapping record about the user in its identity store.

Then the manager issue an assertion “(135) is authenticated” to the IDP2, and then the user bill

associated with the Link_ID (135) has the correct authorization.

We will describe a more complicated situation. The questions how to achieve identity

federation involving multi-layered managers must be considered. Assume the net topology as

Figure 4.3.3 shows and the user ID gobby at NCTU recommend user ID bill at BOT to use the

federated identity service.

Link_ID Src. Link_ID Dst.

123 IDP1 IDP2

Link_ID Src. Link_ID Dst.

123 IDP1 135 IDP2

EDU

NCTU NTHU

SP1 SP2

BANK

POST CT

SP3 SP4 SP5

BOT

EAT

85C LW

SP6 SP7

LIFE

Table 4.3.1 The Mapping Table in Manager in Step 5

Table 4.3.2 The Mapping Table in Manager in Step 6

in Step 6

Figure 4.3.3 Topology of Commercial System

 28

Briefly, the processing of petition is as follows:

1. The user logs in at NCTU as gobby, and requests the service provided by SP5 using SSO.

2. NCTU asks the global path of the target web, BOT, and BOT response its global path.

 (4.2.5)

3. Account linking

We will illustrate the step3 in detail immediately. After getting the global path of BOT,

NCTU proceeds to BOT and operates account linking.

As Figure 4.3.4 demonstrates, the processing of account linking is as follows:

1. NCTU issues a request to its manager, EDU: “(123) at NCTU wants to visit

LIFE_BANK_BOT”.

2. EDU receives the request and compares the path string. The fact that its name, “EDU”

does not appear indicates the target IDP (BOT) is not under its subtree. Thus EDU stores

(123), NCTU, and a Link_ID (111) which is generated randomly by EDU and keeps on

sending the request “(111) at EDU wants to visit LIFE_BANK_BOT” to upper layer.

3. Similarly, LIFE compares the path string after receiving the request. The name “LIFE”

appears in the path means that the target IDP is in lower layer. And the next receiver is

BANK according to the path string, “LIFE_BANK_BOT “. Thus LIFE looks up its

111 EDU 222 BANK

123 NCTU 111 LIFE

222 LIFE BANK_TMP_333 BOT

gobby 123

bill 456

EDU

NCTU
NTHU

SP1 SP2

BANK

POST CT

SP3
SP4 SP5

BOT

EAT

85C LW

SP6 SP7

LIFE

4
5

1

2

3
456

Figure 4.3.4 Processing Sequence of Account Linking

 29

mapping table to determine whether a previous federation has been established or not. If

LIFE does not find any record about this request, it stores (111), EDU, and a Link_ID

(222) which is generated randomly by LIFE, and then keeping on sending the request

“(222) at LIFE wants to visit LIFE_BANK_BOT” to BANK.

4. BANK receives the request and operates similarly as step 3. Because the previous

federation has not been established, BANK stores (222), LIFE, and a temporary link_ID

(BANK_TMP_333) generated randomly by BANK It keeps on sending the request

“(BANK_TMP_333) at BANK wants to visit LIFE_BANK_BOT” to lower layer.

5. After the petitioner logs in as bill at BOT, BOT sends back the real Link_ID, (456), which

represent the user account bill. The temporary Link_ID will be covered with (456) and the

correct federation has been established.

4.3.2 Implementation Result

In the section, in order to enable readers to understand the actual operation circumstance of

our architecture, we will illustrate the implementation result with execution pictures gradually.

 In this case, a user has registered the account amy at BOT site and mary at NCTU site. BOT

and NCTU sites are partners. The user ID amy at BOT wants to recommend user ID mary at

NCTU to use the federated identity service. Figure 4.3.5 shows the topology.

EDU

NCTU NTHU

SP1 SP2

BANK

SP3

BOT

LIFE

Figure 4.3.5 The Topology of Implemented Architecture

 30

Following Figures will demonstrates the processing of petition and the identity federation

result.

Step 1 : The user attempts to access resources on SP3 site

(http://localhost:8080/BOT_SP/SP.jsp). Because he does not have any current logon

session, SP3 sends the user to the identity provider (http://localhost:8080/BOT/IDAuth.jsp)

and requests the IDP to provide an assertion for the user.

Step 2 : The user logs in as amy user account and provides valid credentials.

Figure 4.3.6 Petition Step 1

Figure 4.3.7 Petition Step 2

 31

Step3 : The user logs in successfully and the BOT redirects him to the SAML server.

Step 4 : The BOT builds a SAML assertion for the user.

Figure 4.3.8 Petition Step 3

Figure 4.3.9 Petition Step 4

 32

Step 5 : The browser receives the assertion and issues a request to send to SP3. The user can

access the resource at SP3. BOT and NCTU sites are partners. The user can recommend user ID

mary at NCTU to use the federated identity service.

Step 6 : BOT sends a request to NCTU to get NCTU`s global path, “LIFE_EDU_NCTU”. After

getting the path string, BOT issues a request to its manager, BANK : “(0UdWFOlj) which is

represented the user amy at NCTU wants to visit LIFE_EDU_NCTU”.

Figure 4.3.10 Petition Step 5

Figure 4.3.11 Petition Step 6

 33

Step 7 : BANK receives the request and compares the path string. Because the name “BANK”

does not appear in the path sting, thus BANK stores (0UdWFOlj), NCTU, and a Link_ID

(Qxwxdfdt) which is generated randomly by BANK and keeps on sending the request

“(Qxwxdfdt) at BANK wants to visit LIFE_EDU_NCTU” to upper layer.

Step 8 : LIFE compares the path string after receiving the request. Because the name “LIFE”

appears in the path , thus LIFE looks up its mapping table to determine whether a previous

federation has been established or not. If LIFE does not find any record about this request, it

stores (Qxwxdfdt), EDU, and a Link_ID (QximB0C7) which is generated randomly by LIFE,

and then keeping on sending the request “(QximB0C7) at LIFE wants to visit

LIFE_EDU_NCTU” to EDU.

Figure 4.3.12 Petition Step 7

Figure 4.3.13 Petition Step 8

 34

Step 9 : EDU receives the request and operates similarly as step 8. Because the previous

federation has not been established, EDU stores (QximB0C7), LIFE, and a temporary link_ID

(BANK_TMP_ Qg7HfRM3) generated randomly by EDU It keeps on sending the request

“(BANK_TMP_ Qg7HfRM3) at EDU wants to visit LIFE_EDU_NCTU” to lower layer.

Step 10 : The user logs in as mary at NCTU.

Figure 4.3.14 Petition Step 9

Figure 4.3.15 Petition Step 10

 35

Step 11 : NCTU sends back the Link_ID, (um4DO4Hk) which represent the user account mary.

The temporary Link_ID will be covered with (um4DO4Hk) and the correct federation has been

established.

Now, let`s regard the operation of identity federation.

Step 12 : The use accesses resources at SP1 and logs in as mary at NCTU.

Figure 4.3.16 Petition Step 11

Figure 4.3.17 Identity Federation Step 1

 36

Step 13 : Then the user wants to visit BOT. NCTU issues a request to BOT to get BOT`s global

path. After getting the path string, “LIFE_BANK_BOT”, NCTU issues a request to manager:

“(um4DO4Hk) at NCTU wants to visit LIFE_BANK_BOT”.

Step 14 : EDU receives the request and then looks up its account linking table to determine

whether a previous federation has been established. It finds (um4DO4Hk) at NCTU is

(Qxim4B0C7) at LIFE. Then EUD issues a request to LIFE: “(QximB0C7) at EDU wants to

visit LIFE_BANK_BOT”.

Figure 4.3.18 Identity Federation Step 2

Figure 4.3.19 Identity Federation Step 3

 37

Step 15 : LIFE receives the request and finds that (QximB0C7) at EDU is (Qxwxdfdt) at BANK

by looking up its account linking table. Then LIFE issues a request to BANK: “(Qxwxdfdt) at

EDU wants to visit LIFE_BANK_BOT”.

Step 16 : BANK receives the request and finds that (Qxwxdfdt) at EDU is (0UdWFOlj) at BOT

by looking up its account linking table. Then BANK issues a assertion to BOT: “(0UdWFOlj) is

authenticated”.

Figure 4.3.20 Identity Federation Step 4

Figure 4.3.21 Identity Federation Step 5

 38

Step 17 : BOT receives the request and finds which user the Link_ID (0UdWFOlj) is

represented.

Step 18 : The user mary associated with the Link_ID (0UdWFOlj) has the correct authorization.

Figure 4.3.22 Identity Federation Step 6

Figure 4.3.23 Identity Federation Step 7

 39

Chapter 5 System Analysis

5.1 Security

All information that delivered is Link_ID rather than real credentials. The source IDP and

destination IDP neither know the ID used on the other side. It provides privacy-preserving

characteristic for users.

5.2 Expansibility

The expansibility property can be discussed in vertical and horizontal dividedly. Each

manager must record the nodes of its upper layer and lower layers. We can take advantage of it to

insert or delete business systems. The following Figures can illustrate the concepts.

Assume that a relationship exists as Figure 5.2.1. Someday all three groups want to

cooperate in demand, then the manager LIFE will be constructed in need to integrate them.

Figure 5.2.2 demonstrates the alteration of the net topology.

As Table 5.2.1 shows, the tables should be modified according to present topology, as

mentioned in section 4.2.2. It can solve vertical expansibility problem.

EDU

NCTU NTHU

SP1 SP2

BANK

POST CT

SP3
SP4 SP5

BOT

EAT

85C LW

SP6 SP7

Figure 5.2.1 Initial Topology

 40

As for the horizontal expansibility, the operation is similar to above. If another group

“PLAY” wants to join in the commercial system, the modification is shown in Figure 5.2.3and

Table 5.2.2.

LIFE

1 EDU

1 BANK

1 EAT

EAT

1 85C

1 LW

EAT

0 LIFE

1 85C

1 LW

EDU

NCTU NTHU

SP1 SP2

BANK

POST CT

SP3
SP4 SP5

BOT

EAT

85C LW

SP6 SP7

LIFE

EDU

NCTU NTHU

SP1 SP2

BANK

POST CT

SP3
SP4 SP5

BOT

EAT

85C LW

SP6 SP7

LIFE

PLAY

SEGA

SP8

Figure 5.2.2 Topology State after Vertical Expansibility

Table 5.2.1 Modification after Vertical Expansibility

Figure 5.2.3 Topology State after Horizontal Expansibility

 41

5.3 Robustness

In the section, we would consider the influence when a manager is destroyed in the business

system. Most probably account linking in the node would not be operated. But it can work

without involving the crashed node, including account linking.

 Besides, we consider another situation. That is, there is a petition to a certain manager and

the connected was interrupted. The Link_ID which is generated previously would not disappear.

After connecting successfully, the Link_ID can be used for federation.

LIFE

1 EDU

1 BANK

1 EAT

LIFE

1 EDU

1 BANK

1 EAT

1 PLAY

Figure 5.2.2 Modification after Horizontal Expansibility

 42

Chapter 6 Conclusion and Future Work

6.1 Conclusion

Using the security features as well as the pseudonym concepts of SAML provide the users a

enterprise-crossed and integrated service, moreover, it enables the users to achieve SSO under

many identity providers. All identity federations are established by managers and dispersed

evenly. The problem that a certain manager maintains all identity federation which results in

exhaustion of the manager is not considered. Comparing traditional SSO, regardless of sorting or

space storage is more efficient in our system architecture.

6.2 Future Work

When a manager is destroyed in the business system, it cannot operate involving the crashed

node. We should develop a secure, efficient method to re-build the destroyed manager and

identity federation records established previously.

 43

References:

[1] INTRODUCTION TO WEB SERVICES, 2004

 http://dev2dev.bea.com/pub/a/2004/02/introwebsvcs.html

[2] Introduction to Web Services By Lakshmi Ananthamurthy

 http://www.developer.com/services/article.php/1485821

[3] Single Sign On

 http://www.opengroup.org/security/sso/

[4] Web Single Sign On Systems, 2006

 http://www.cesnet.cz/doc/techzpravy/2006/web-sso/

[5] OASIS, Technical Overview of the OASIS Security Assertion Markup Language (SAML)

V1.1, 2004

[6] OASIS, Security Assertion Markup Language (SAML) 2.0 Technical Overview, 2005

[7] OASIS, Security and Privacy Consideration for the OASIS Security Assertion Markup

Language V1.1, 2003

 44

Appendix A

A.1 Manager EDU

<%

 String myName = "EDU"; // manager代號

 String upManager = "LIFE"; // 上層 manager代號

 String FID_req_src = new String();

 String tree_code = new String();

 String prev_node = new String();

 String prev_lid = new String();

 String next_node = new String();

 String next_lid = new String();

 String actSTR = request.getParameter("Action");

 int act = -1;

 if (actSTR != null) act = Integer.parseInt(actSTR);

 switch(act)

 {

 /* 找出分類路徑 */

 case 21:

 FID_req_src = request.getParameter("FID_src");

 tree_code = request.getParameter("TreeCode");

 if(FID_req_src == null)

 out.println("錯誤，沒有來源端位址");

 else {

 out.println("<p align = center>分類路徑要求，來源端:

"+FID_req_src+"</p>");

 tree_code = myName + "_" + tree_code;

 out.println("<p align = center>目前分類路徑: "+tree_code+"</p>");

 // 沒有上層管理者，將分類路徑結果回傳給來源端

 if(upManager == null)

 {

 45

%>

 <p align=center>沒有上層管理者，請按下一步回傳分類路徑

 <form method="post" action=<%=FID_req_src%> >

 <input type="hidden" name="Action" value=22 >

 <input type="hidden" name="TreeCode" value=<%=tree_code%> >

 <input type="submit" value = "下一步"/>

 </form></p>

<%

 }

 else // 將分類路徑字串傳給上層管理者繼續編碼

 {

%>

 <p align = center>仍有上層管理者，請按下一步繼續編碼

 <form method="post" action="http://localhost:

8080/<%=upManager%>/FIDAuth.jsp") >

 <input type="hidden" name="Action" value=21 >

 <input type="hidden" name="FID_src" value=<%=FID_req_src%> >

 <input type="hidden" name="TreeCode" value=<%=tree_code%> >

 <input type="submit" value = "下一步"/>

 </form></p>

<%

 }

 }

 break;

 /* SSO要求 */

 case 31:

 out.println("<p align = center>單一登入要求</p>");

 FID_req_src = request.getParameter("FID_src");

 prev_node = request.getParameter("Previous_node");

 prev_lid = request.getParameter("Previous_LinkID");

 tree_code = request.getParameter("TreeCode");

 out.println("<p align = center>");

 out.println("目的端分類路徑: " + tree_code + "
");

 /* 分析路徑代碼，找出自己的 name */

 int name_index = -1;

 46

 String[] tokens = tree_code.split("_");

 for (int i = 0 ; i <tokens.length ; i++) {

 if(tokens[i].equals(myName)) {

 name_index = i;

 }

 }

 /* 找出下次傳送的節點 */

 if(name_index > -1) // 有找到自己的 name，往下層傳送

 next_node = tokens[name_index+1];

 else // 沒有找到自己的 name，往上層傳送

 next_node = upManager;

 /* 連結資料庫，找出使用者的 link_id */

 /* 尚未實現索引搜尋 */

 Class.forName("com.mysql.jdbc.Driver")

.newInstance();

 String url = "jdbc:mysql://localhost:3306/"+myName;

 String user = "root";

 String password = "crypto123";

 Connection con = DriverManager.getConnection(url , user , password);

 Statement stmt = con.createStatement();

 String query = "select * from mapping";

 ResultSet rs = stmt.executeQuery(query);

 // 是否存在使用者的對應紀錄

 int mapping_exist = -1;

 while(rs.next())

 {

 if(prev_node.equals(rs.getString("Src_IDP")))

 {

 if(prev_lid.equals(rs.getString(

"Link_ID_Src")) &&

 next_node.equals(rs.getString(

"Dst_IDP")))

 {

 next_lid = rs.getString("Link_ID_Dst");

 mapping_exist = 1;

 47

 break;

 }

 }

 else

 if(prev_node.equals(rs.getString("Dst_IDP")))

 {

 if(prev_lid.equals(rs.getString(

"Link_ID_Dst")) &&

 next_node.equals(rs.getString(

"Src_IDP")))

 {

 next_lid = rs.getString("Link_ID_Src");

 mapping_exist = 1;

 break;

 }

 }

 }

 String nidp_addr = "http://localhost:8080/" + next_node + "/FIDAuth.jsp";

 act = 31;

 if(name_index > -1) // 有找到自己的 name，往下層傳送

 {

 // 代碼對應紀錄不存在，新增一筆資料

 if(mapping_exist != 1)

 {

 out.println("尚未存在此位使用者的代碼對應紀錄，產生一組代碼

");

 /* 產生一組代碼 */

 Random rand = new Random();

 String charset = "abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";

 next_lid = "";

 for (int i = 0; i < 8; i++)

 next_lid += charset.charAt(rand.nextInt(

charset.length()));

 /* 是否為第一層 manager? */

 48

 if(name_index==(tokens.length-2)) {

 // 改用臨時代碼，並要求 IDP回傳正確代碼

 next_lid = myName + "_TEMP_" + next_lid;

 act = 32;

 }

 /* 新增一筆資料到資料庫裡面 */

 query = "insert into mapping (Link_ID_Src,

Src_IDP,Link_ID_Dst,Dst_IDP) " +

 "values ('" + prev_lid + "','" + prev_node +

 "','" + next_lid + "','" + next_node + "')";

 stmt.executeUpdate(query);

 }

 }

 else // 沒有找到自己的 name，往上層傳送

 {

 // 代碼對應紀錄不存在，新增一筆資料

 if(mapping_exist != 1)

 {

 out.println("尚未存在此位使用者的代碼對應紀錄，產生一組代碼

");

 /* 產生一組代碼 */

 Random rand = new Random();

 String charset = "abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";

 next_lid = "";

 for (int i = 0; i < 8; i++)

 next_lid += charset.charAt(rand.nextInt(

charset.length()));

 /* 新增一筆資料到資料庫裡面 */

 query = "insert into mapping (Link_ID_Src,

Src_IDP,Link_ID_Dst,Dst_IDP) " +

 "values ('" + prev_lid + "','" + prev_node +

 "','" + next_lid + "','" + next_node + "')";

 stmt.executeUpdate(query);

 }

 }

 49

 out.println("</p>");

%>

 <p align = center>

 <TABLE border=1 width=300 CELLPADDING=3>

 <CAPTION>

 聯合身分對應資料

 </CAPTION>

 <TR align=center bgcolor=glay>

 <TD>Link_ID</TD>

 <TD>Source</TD>

 <TD>Link_ID</TD>

 <TD>Destination</TD>

 </TR>

 <TR align=center>

 <TD><%=prev_lid%></TD>

 <TD><%=prev_node%></TD>

 <TD><%=next_lid%></TD>

 <TD><%=next_node%></TD>

 </TR>

 </TABLE></p>

 <p align = center>

 <form method="post" action=<%=nidp_addr%> >

 <input type="hidden" name="Action" value=<%=act%> >

 <input type="hidden" name="FID_src" value=<%=FID_req_src%> >

 <input type="hidden" name="Previous_node" value=<%=myName%> >

 <input type="hidden" name="Previous_LinkID" value=<%=next_lid%> >

 <input type="hidden" name="TreeCode" value=<%=tree_code%> >

 <input type="submit" value = "下一步"/>

 </form></p>

<%

 break;

 /* 取代 SSO臨時代碼為正確的使用者連結代碼 */

 case 32:

 String temp_lid = request.getParameter("temp_lid");

 String user_lid = request.getParameter("user_lid");

 50

 String dst_IDP = request.getParameter("dst_IDP");

 /* 將正確的使用者代碼取代資料庫的臨時代碼 */

 /* 尚未實現索引搜尋 */

 Class.forName("com.mysql.jdbc.Driver")

.newInstance();

 url = "jdbc:mysql://localhost:3306/"+myName;

 user = "root";

 password = "crypto123";

 con = DriverManager.getConnection(url , user , password);

 stmt = con.createStatement();

 query = "select * from mapping";

 rs = stmt.executeQuery(query);

 int index = -1;

 while(rs.next()) {

 if(dst_IDP.equals(rs.getString("Dst_IDP")) &&

temp_lid.equals(rs.getString("Link_ID_Dst"))

 {

 index = Integer.parseInt(rs.getString(

"User_Index"));

 }

 }

 if(index != -1) {

 query = "UPDATE mapping SET Link_ID_Dst = '" + user_lid + "' WHERE

User_Index = " + index;

 stmt.executeUpdate(query);

 }

 /* 重新導向使用者回去以完成 SSO的步驟 */

 String addr = "http://localhost:8080/" + dst_IDP + "/FIDAuth.jsp";

%>

 <p align = center>完成使用者的連結代碼對應表

 <form method="post" action=<%=addr%> >

 <input type="hidden" name="Action" value=31 >

 <input type="hidden" name="Previous_LinkID" value=<%=user_lid%> >

 <input type="submit" value = "確定"/>

 51

 </form></p>

<%

 break;

 default:

 out.println("錯誤，無法辨識的動作");

 break;

 }

%>

A.2 IDP

<%

 String myName = "NCTU"; // IDP代號

 String myAddr = "http://localhost:8080/NCTU/IDAuth.jsp";

 String myManager = "http://localhost:8080/EDU/

FIDAuth.jsp"; // 上層網址

 String SAMLServerAddr = "http://localhost:8080/NCTU/

SAMLServer.jsp";

 String SPUrl = "http://localhost:8080/NCTU_SP/SP.jsp";

 String _userAddr = request.getRemoteAddr();

 String uid = new String();

 String sNameID = new String();

 String FID_req_src = new String();

 String tree_code = new String();

 String user_lid = new String();

 String actSTR = request.getParameter("Action");

 int act = -1;

 if (actSTR != null) act = Integer.parseInt(actSTR);

 switch(act)

 {

 /* 收到其它 IDP的路徑要求，向上層送出分類路徑要求 */

 case 21:

 out.println("<p align = center>此畫面是為了展示 SSO的過

 52

程，" +

 "實際應用時使用者並不會知道</p>");

 FID_req_src = request.getParameter("FID_src");

 if(FID_req_src == null)

 out.println("錯誤，沒有來源端位址");

 else {

 out.println("<p align = center>分類路徑要求，來源端:

"+FID_req_src+"</p>");

 out.println("<p align = center>目前分類路徑: "+myName+"</p>");

%>

 <p align = center>

 <form method="post" action=<%=myManager%> >

 <input type="hidden" name="Action" value=21 >

 <input type="hidden" name="FID_src" value=<%=FID_req_src%> >

 <input type="hidden" name="TreeCode" value=<%=myName%> >

 <input type="submit" value = "下一步"/>

 </form></p>

<%

 }

 break;

 /* 接收目的端分類路徑字串 */

 case 22:

 out.println("<p align = center>此畫面是為了展示 SSO的過

程，" +

 "實際應用時使用者並不會知道</p>");

 tree_code = request.getParameter("TreeCode");

 out.println("<p align = center>目的端分類路徑: "+tree_code+"</p>");

 sNameID = request.getParameter("user");

 /* 連結資料庫，找出使用者的 link_id */

 Class.forName("com.mysql.jdbc.Driver")

.newInstance();

 String url = "jdbc:mysql://localhost:3306/"+myName;

 String user = "root";

 String password = "crypto123";

 53

 Connection con = DriverManager.getConnection(url , user , password);

 Statement stmt = con.createStatement();

 String query = "select * from authentication";

 ResultSet rs = stmt.executeQuery(query);

 while(rs.next())

 if(sNameID.equals(rs.getString("User_email")))

 {

 user_lid = rs.getString("User_Code");

 break;

 }

 out.println("<p align = center>使用者代碼: "+user_lid+"</p>");

%>

 <p align = center>

 <form method="post" action=<%=myManager%> >

 <input type="hidden" name="Action" value=31 >

 <input type="hidden" name="FID_src" value=<%=myAddr%> >

 <input type="hidden" name="Previous_node" value=<%=myName%> >

 <input type="hidden" name="Previous_LinkID" value=<%=user_lid%> >

 <input type="hidden" name="TreeCode" value=<%=tree_code%> >

 <input type="submit" value = "下一步"/>

 </form></p>

<%

 break;

 /* SSO要求 */

 case 31:

 out.println("<p align = center>此畫面是為了展示 SSO的過

程，" +

 "實際應用時使用者並不會知道</p>");

 user_lid = request.getParameter("Previous_LinkID");

 //connect to database

 Class.forName("com.mysql.jdbc.Driver")

.newInstance();

 url = "jdbc:mysql://localhost:3306/"+myName;

 user = "root";

 54

 password = "crypto123";

 con = DriverManager.getConnection(url , user , password);

 stmt = con.createStatement();

 query = "select * from authentication";

 rs = stmt.executeQuery(query);

 while(rs.next())

 if((user_lid.equals(rs.getString("User_Code"))))

 {

 uid = rs.getString("User_Id");

 break;

 }

 if(uid.length()>0) { // 使用者代碼正確

%>

 <p align = center>SSO認證完成，請按下一步轉址到 SAMLServer

 <form method="post" action=<%=SAMLServerAddr%> >

 <input type="hidden" name="userId" value=<%=uid%> >

 <input type="hidden" name="SPUrl" value=<%=SPUrl%> >

 <input type="hidden" name="UserIP" value=<%=_userAddr%> >

 <input type="submit" value = "下一步"/>

 </form></p>

<%

 }

 else { // 使用者代碼不正確

%>

 <p align = center>SSO認證失敗，找不到代碼為<%=user_lid%>的使用者，

請重新登入

 <form method="post" action=<%=myAddr%> >

 <input type="hidden" name="UserIP" value=<%=_userAddr%>>

 <input type="hidden" name="SPUrl" value=<%=SPUrl%> >

 <input type="submit" value = "確定"/>

 </form></p>

<%

 }

 break;

 /* 第一次 SSO引薦 */

 55

 case 32:

 String temp_lid = request.getParameter(

"Previous_LinkID");

 String id = request.getParameter("id");

 String pass = request.getParameter("password");

 // 執行登入的動作，並回傳 link id給管理者

 if((id==null) || (pass==null)) {

%>

 <p align=center>

 <form method="post" action="http://localhost:

8080/<%=myName%>/FIDAuth.jsp">

 ID<input name="id" type="text" value="">

 Password<input name="password" type="password" value="">

 <input type="hidden" name="Action" value=32 >

 <input type="hidden" name="Previous_LinkID" value=<%=temp_lid%> >

 <input type="submit" name="Submit" value="Submit">

 <input type="reset" value="Reset">

 </form></p>

 <HR><p align = center>

 由於您是第一次使用 SSO的服務，請登入您位於本站的帳號以連結使用

者代碼

</p>

<%

 out.println("<p align = center>臨時代碼:

"+temp_lid+"</p>");

 }

 else {

 try {

 //connect to database

 Class.forName("com.mysql.jdbc.Driver")

.newInstance();

 url = "jdbc:mysql://localhost:3306/"+myName;

 user = "root";

 password = "crypto123";

 con = DriverManager.getConnection(url , user , password);

 56

 stmt = con.createStatement();

 query = "select * from authentication";

 rs = stmt.executeQuery(query);

 user_lid = "";

 while(rs.next())

 if((id.equals(rs.getString("User_Id"))) && (pass.equals(rs.getString(

 "User_Password"))))

 {

 user_lid = rs.getString("User_Code");

 }

 if(user_lid.length() > 0) {

%>

 <p align = center>

 認證完成，請按下一步回傳使用者代

碼給上層管理者

 <form method="post" action=<%=myManager%>>

 <input type="hidden" name="Action" value=32 >

 <input type="hidden" name="user_lid" value=<%=user_lid%> >

 <input type="hidden" name="temp_lid" value=<%=temp_lid%> >

 <input type="hidden" name="dst_IDP" value=<%=myName%> >

 <input type="submit" value = "下一步"/>

 </form></p>

<%

 }

 else {

%>

 <p align = center>認證失敗，請重新登入

 <form method="post" action="http://

localhost:8080/<%=myName%>/

FIDAuth.jsp">

 <input type="hidden" name="Action" value=32 >

 <input type="hidden" name="Previous_LinkID"

value=<%=temp_lid%> >

 57

 <input type="submit" value = "確定"/>

 </form></p>

<%

 }

 out.println("</td><td width='27%'></td></tr>

</table></p>");

 }

 catch(SQLException sqle) {

 out.println("sqle=" + sqle + "<p>");

 out.println("sqle produce some error");

 sqle.printStackTrace();

 }

 }

 break;

 default:

 out.println("錯誤，無法辨識的動作");

 break;

 }

%>

