E VA N
— R 3 %

B AR EL T AE e

i

e X

&% SAML £ 4535 2] % & X #5 IDP 2

B BN

Multi-Layered Cross-IDP SSO in SAML-based Architecture

R A RER
BB R R

TERBLT+ANFEANA

AN SAML 2433 22 XL IDP2E— 5 A4 %
HRA CEER AL ERE HE

3R KE T A T AR R KA AR R

R -

Web service o9 3R & 7348 A H A #90R R e A @ Bk - w1 A XML
REMEARNBREEAERIE- BEETHHOERL ATHATAREOMA
OASIS £ 2002 4458 7 — 48 24 XML & e uy33 5 SAML> TR 2 & 4 Fv X #a ik A H 32
BB o SAML BAZE R £ TH 5 R &WHEH X B XML MR wikz > Bk
RS L3 S B R Rz A w R E]) Web SSO w93 4k -

LA B AT SAML #2449 SSO (Single Sign<0n) ##] > & B —ERE PR EHE
B EE N BEBEY CECEBRF D RAF LB RE T RS 5%
TR R ZERY > RELAVERSCBEAB—R KT B YIRTA &8 BEEAN
EEBP £ A - 125 A4 A R F IDP Cidentity provider) & T &9RFE > AR %
W% REANGIERZS 5 -

B TREERE —EE L EMOESWRS » RIS ARER L AT R AR
PSR TARTERE—BAAE > B ARB XA SAMLL. 1 A Xe > RET —FT
IDP #4Bt A & » 323 i 3] SSO 89 4 4

B4 tWeb B - 2T TEBEET - BE—BAAH SSO -~ Bio g p3s

ii

Multi-Layered Cross-IDP SSO Based on SAML
Student : Chang-Jung Chang Advisor : Dr. Yi-Shiung Yeh

Institute of Computer Science and Information Engineering

National Chiao Tung University

Abstract

The development of Web Service enables users rapidly to access network resources
in time. As a result of the electronic commerce starting, Web service uses xml to transmit
the information to be able to adapt each kind of development environment. In order to
solve the information secure problem, the Security Assertion Markup Language (SAML)
which is an XML-based framework has been developed by the OASIS (the Organization
for the Advancement of Structured Juformation Standards) to describe and exchange
authorization and authentication information bétween on-line business partners in 2002.
SAML explicitly defines several safe confitmations ways and the security of xml
architecture will be enhanced with these‘methods. The superiority causes SAML widely
to be used to achieve Web SSO by the on-line commercial systems.

At present SAML SSO mechanism is that there is an identity provider (IDP) which
integrates several services managing users information. After logging in at IDP, the user
can access these services. So long as a user has logged in at the authentication center, he
does not need to authenticate again and then he directly can access these services at the
same time. But a user has to login many times to provide valid credentials to use the
services which are subordinate under different IDPs.

In order to provide the users a enterprise-crossed and integrated service, we must
enable the users also to achieve SSO under many identity providers, the thesis designs a

SSO architecture to achieve identity federation cross-IDP using SAML 1.1.

Key words : Web Services, SAML, SSO, Federated Identity, Identity federation

iii

% H

BE W XATEA G TR 0 B A ARH R T THIR > ERAEH
o ERRARET FRAELZF LRAFARE @FLHRERY
BT AREER S AN LBRRHET T FERNFEY
ERBIMAR LTHRRSOWTRERLUAEWE BF > LHB TR
FAEEAE Rbp ~ FIEHE Fbk o TAT 007 ~ N3k - RABREE
RFZFBAOEDLBIREE » RBRREF S 5 bsh » REBIRHIT X
W A EPMY - RnaX > BRELGEHF ST ENEMN B
HEBp O R RRERNFHATE YT o A TR R
AE — I8 AR o

R BHHBROZASZFROBIBE L3F > URHSBOR R
PGP Ll E N R R S Ry R e S Rl N A o
o 2B RGRER TR NG S8 > SRR R e R R R
F18 0 fEILE G IEF ACGH R A AR — 11 |

ERE R BT A B R Z AR A A 0 BEERT

Rk %
FERBA+NFENA

v

Contents

BB T 1 ettt sttt e te et e eae e teenteenee et entes i
ADSIFACE © oo 111
B BB et e et e et e et e e e b e e abaeeebeeennaeenns iv
Figure List............oooiiiii e e vii
Table LiSt......c.oooiiiiiiie e e 1X
Chapter 1 INtrodUCHON.ccoeuiieieiiieeeeiiee ettt e e eaee e e saeeeeas 1
1.1 Back@round...........ccceeiiiiiiiiiiiee e 1

1.2 MOTIVALION. ..ottt ettt ettt e e 1

1.3 ODBJECHIVE. ..eeeiiiieeitiee ettt ettt e et e et e e s bree e sareeeeaes 2
Chapter 2 Related WOrK.........ooviieeiiiiiiieeeiieeeeeieeee e 3
2.1 WED SEIVICE.....uuiiiiiiiiieiiiiie et e e 3

0 O B 0] 1 1<) o £ USRI 3

2.1.2 Components of Web Services.........ccceevcviiieeeenciiieeeeennnne, 4

2.2 Web Single Sign-On........ccooeiiiiiiiiiiiiieieieee e 5
0 N O] 1 11<) o £ UURPPI 5

2.2.2 Overview of Web SSO Functionality..........cccccccuveeerrennnnnnn. 6

Chapter 3 Technical Overview'of SAMIL] . 1......cccoiiiiiiiiiiee, 8
3.1 Introduction... ...e . e RN i 8

3.2 SAML ArchiteCtlre «..eiiise et it 8
3.2.1 SAML Participants ahd SCenarios...........cccceevuveeeervreeennnnen. 8

3.2.2 SAML COMPONentS il et eeeeereeeeeeieeeeeeireeeesveeeennes 10

3.2.3 Security in SAML........cccittidiiiiiiieeee e 11

3.3 High-Level SAML Us@ CaSes......cccvvveeeeenciiiiieeeeeiiiieeee e 12
3.3.1 Web Single Sign-On Use Case.........cccevveeeeeenenirieeeenennen. 12

3.3.2 Identity Federation Concepts and Use case....................... 13

Chapter 4 Our System ArChiteCture..........cccuveeeeerriiiieeeeenriiiee e 16
4.1 SYSIEM OVEIVIEW......vviieieiiiiiiiieeeeeiieeee e eeeieee e e e e e 16

i T B o151 F: 1 5 [0 1 PSR SUR 16

4.1.2 System COMPONENLS.....ccccuurrrreeerriiiieeeeeeriiiieeeeeseneeeeeeens 17

4.2 Concepts and MechaniSms..........c.eeeevuieeerniieeiniiieeeniee e 18
4.2.1 User LINK_ID....coooiiiiiiiiiiiiiiiieceeeeeec e 18

4.2.2 MANAEET.c....eeiiiiiieeeeiieeetee ettt et 18
4.2.3 SOTHNG coeeevieeeiiee ettt ettt et e e s 20

4.2.4 Maintain the net tOpolOZY.......ceeevvvireeriiieeiiniieeeieee e 20

4.2.5 Global Path FINdingcccoouiiiiniiiiiniieeiiieeeiee e, 22

4.2.6 Core algorithm of Manager...........ccccveeeevriiiieeeneniiieeennn, 23

4.3 USE CASES..uiiiieiiiiiiieeeeeiiiiee e e e et tee e e e et reeeeeesataaeeesessasnsaeeeens 25

4.3.1 Detailed Processing..........cccceeevveeeiriiieeenniiieeenieeeeniieee e 25

4.3.2 Implementation Result.........cccccceerviiiienniiiiiniiieeieeeee 29
Chapter 5 SyStem ANAlYSIS.....cccocuieiriiiieeiiiiee et ettt e e 39
5.1 SECUTILY ...tiieeiiie ettt e e e e et e e eaeeeas 39

5.2 EXpansibilify........cooiiiiiiiiiiiiiiee e 39

5.3 RODUSINESS...ceieiiiiiieeieiieeee e 41
Chapter 6 Conclusion and Future WorkK..........cccccevvviiiiiiieeiinniiiieee e, 42
6.1 CONCIUSION.utiiiiieeiiieee ettt e e e e e e e e e 42

6.2 FUuture WOrK.........oooiiiiiiiiieee e 42

| G £ (<) 1 L PR PRRR 43
Appendix A SoUrCEe COde....ccovviiiiiiiieeeiee e 44

Vi

Figure List

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

2.2.1 General Single Sign-On Use Case...............ccceeveeenvieeeennnen. 7
3.2.1 SAML Participants.............ccccceeiiiiniiiiiieieeeeeeee e 9
3.2.2 Basic SAML Component.............c.cccoocueeriiieniiieniieeneenieee 11
3.3.1 Detailed Processing for the SSO................ccccooeviiiiennnn. 12
3.3.2 Identity Federation with Persistent Pseudonym................. 14
4.1.1 Layered Concepts in Actual Commercial System.............. 16
4.1.2 System Components...............c.cceeeeeeviieeeeeiiiieeeesiiieee e e 17
4.2.1 IDP Associates a Federated Identifier with Local Identity....18
4.2.2 Account Linking Table in the Manager.............................. 19
4.2.3 Topology of Initial Commercial System.............................. 21
4.2.4 Topology of Commercial System after Modification....... 21
4.2.5 A Simple Global Path Finding Example........................... 23

4.2.6 Core Algorithm of Manager...................ccccovvvveeeciiiieeeennne. 24
4.3.1 Initial State before Federating...................c.cccocccoiiiinnnnne. 25
4.3.2 Processing Sequence of federation petition......................... 26
4.3.3 Topology of Commercial System..................ccccvvvereennnn..n. 27
4.3.4 Processing Sequence of Account Linking........................... 28

4.3.5 The Topology of Implemented Architecture...................... 29

4.3.6 Petition Step Llt e 30
4.3.7 Petition SteP 2. i it e eeeee e eereee e e eare e e 30
4.3.8 Petition Step 3.. ...t i, 31

4.3.9 Petition Step 4. ..ol i 31

4.3.10 Petition Step S immmmmi. o 32
4.3.11 Petition SEP6...............cciiiiiiiiiiiiiiiieeeeeeee e, 32
4.3.12 Petition Step 7. e 33
4.3.13 Petition Step 8. 33
4.3.14 Petition Step 9.........oooiiiiiiieeeeeeee e 34
4.3.15 Petition Step 10..........cccoiiiiiiiiiie e, 34
4.3.16 Petition Step 1., 35
4.3.17 Identity Federation Step 1.............................coe. 35
4.3.18 Identity Federation Step 2...............ccocceeviiiiiiiniiinicee, 36
4.3.19 Identity Federation Step 3................oocoiiiiiiiiiiiinicee 36
4.3.20 Identity Federation Step 4........................coiiiiin. 37
4.3.21 Identity Federation Step S..............ccccoeeiiiiiiiieieeeeee 37
4.3.22 Identity Federation Step 6....................ccooceeiiiiiiinncnnnnn. 38
4.3.23 Identity Federation Step 7.............ccccceviiieiiiiiieciiiee e 38
5.2.1 Initial TOPOIOZY........cccuvviiiieiieeeeee e 39
5.2.2 Topology State after Vertical Expansibility....................... 40
5.2.3 Topology State after Horizontal Expansibility................... 40

vii

Table List

Table
Table
Table
Table
Table
Table
Table

4.2.1 Sorting MechaniSm...........cccceevriiiiiniieriiiieeeieeeeee e 20
4.2.2 Local Relationship of EAT manager..........cccceecvveeeenniieeeenns 21
4.2.3 Local Relationship of EAT Manager after Modification.......22
4.3.1 The Mapping Table in Manager in Step S........cccceevvveeruneennns 27
4.3.2 The Mapping Table in Manager in Step 6..........ccceeeeeruvnnnnn. 27
5.2.1 Modification after Vertical Expansibility...........ccccceeevnnnneen. 40

5.2.2 Modification after Horizontal Expansibility.............ccccuueee..e. 41

viii

Chapter 1 Introduction

1.1 Background

The appearance of web service enables users to access network resources
immediately and rapidly. As a result of the electronic commerce starting, web service
uses xml to transmit the information to be able to adapt each kind of development
environment. Although it is convenient and fast, the information secure anxiety is still
existed.

Therefore the Security Assertion Markup Language (SAML) which is an
XML-based framework has been developed by the Security Services Technical
Committee (SSTC) of the standards organization OASIS (the Organization for the
Advancement of Structured Information Standards) to describe and exchange
authorization and authentication information between on-line business partners in 2002.
SAML explicitly defines several.’safe confirmations. ways depending on the different
goals as follows: Authentication Assertion, Attribute Assertion, Decision Assertion, and
Authorization Assertion. The security:of xml-architecture will be enhanced with these
methods. The superiority causes SAML. widely to be used to achieve Web SSO by the

on-line commercial systems.

1.2 Motivation

At present SAML SSO mechanism is that there is an Identity Provider (IDP)
which integrates several services managing users information. After logging in at IDP,
the user can access these services. So long as a user has logged in at the authentication
center, he does not need to authenticate again and then can access these services at the
same time. It can be imagined that after logging in at Yahoo home page, the user could
use its mailbox, auction, photo album services, and so on without providing credentials
again. But a user has to login many times to provide valid credentials to use the services
which are subordinate under different IDPs. The user still must remember a pile of

accounts/passwords. Such inconvenient operation may reduce the willingness of using

web services.

In order to support more commercial situations in real world, only considering the
security aspect is not enough. We also hope to achieve extra mechanisms and provide the

users a enterprise-crossed and integrated service.

1.3 Objective

In order to provide the users a enterprise-crossed and integrated service, we must
enable the users also to achieve SSO under many Certificate Authorities. In order to
provide a more conveniently sign-on mechanism, the thesis designs a SSO architecture to
achieve identity federation cross-IDP.

Pointed out in the SAML VI1.x specification, it is PKI-based, the information
transmitted is protected by SSL. Therefore we premise that messages are exchanged

safely with SSL.

Chapter 2 Related Work

2.1 Web Service

2.1.1 Concepts

Today, companies rely on thousands of different software applications each with
their own role to play in running a business. To name just a few, database applications
store information about customers and inventories, web applications allow customers to
browse and purchase products online, and sales tracking applications help business
identify trends and make decisions for the future. These different software applications
run on a wide range of different platforms and operating systems, and they are
implemented in different programming languages. As a result, it is very difficult for
different applications to communicate with one another and share their resources in a
coordinated way. To solve the problem of:application-to-application communication,
businesses need a standardized Wway for applications to communicate with one another
over networks, no matter how those applications-were-originally implemented.

Web Services provide exactly this selution by providing a standardized method of
communication between software applications. Specifically, web services are a stack of
emerging standards that describe a service-oriented, component-based application
architecture. With a standardized method of communication in place, different
applications can be integrated together in ways not possible before. Different applications
can be made to call on each other's resources easily and reliably, and the different
resources that applications already provide can be linked together to provide new sorts of
resources and functionality. Moreover, application integration becomes much more
flexible because Web services provide a form of communication that is not tied to any
particular platform or programming language. The interior implementation of one
application can change without changing the communication channels between it and the

other applications with which it is coordinated. In short, a Web service makes its

resources available in such a way that any client application, regardless of its internal

implementation, can operate and draw on the resources provided by the Web service.[1]

2.1.2 Components of Web Services

Web services provide a standard way to expose an application's resources to the
outside world so that any user can draw on the resources of the application. Web services
are built on standard technologies such as HTTP and XML. All Web service messages
are exchanged using a standard XML messaging protocol known as SOAP (Simple
Object Access Protocol), and Web service interfaces are described using documents in
the WSDL (Web Services Description Language) standard. These standards are all
completely agnostic of the platform on which the Web services were built.

Web services are able to expose their resources in this generally accessible way

because they adhere to the following communication standards [1]:

1. A Web service publicly deseribes-its own functionality through a WSDL file.
2. A Web service communicates with othérapplications via XML messages.

3. A Web service uses a standard netwerk-pretocol such as HTTP.

WSDL

A WSDL file provides a description (written in Web Service Description Language)
of how the Web service is operated and how other software applications can interface
with the Web service. Think of a WSDL file as the instruction manual for a Web service
explaining how a user can draw on the resources provided by the Web service. WSDLs
are generally publicly accessible and provide enough detail so that potential clients can
figure out how to operate the service solely from reading the WSDL file. If a Web service
translates English sentences into French, the WSDL file will explain how the English
sentences should be sent to the Web service, and how the French translation will be

returned to the requesting client [1].

XML and SOAP

XML messages provide the common language by which different applications can
talk to one another over a network. To operate a Web service a user sends an XML
message containing a request for the Web service to perform some operation; in response
the Web service sends back another XML message containing the results of the operation.
Typically these XML messages are formatted according to SOAP syntax. SOAP, an
acronym for Simple Object Access Protocol, specifies a standard format for applications
to call each other's methods and pass data to one another. Note that other non-SOAP
forms of XML messages are possible, depending on the specific requirements of the Web
service. But, in any case, the sort of XML message and the specific syntax required can
be found in the WSDL file, making the Web service generally available to any client
application capable of sending and receiving the appropriate XML messages [1].

SOAP (Simple Object Access Protocol) is the method by which you can send
messages across different modules. This is similar to how you communicate with the
search engine that contains an index with.thesWeb sites registered in the index associated

with the keywords [2].

HTTP
To make it accessible to other-applications across networks, such as the Internet and
in-house intranets, Web services receive requests and send responses using widely used

protocols such as HTTP (HyperText Transfer Protocol) and JMS (Java Message Service)
[1].

2.2 Web Single Sign-On

2.2.1 Introduction

Single sign-on (SSO) is mechanism whereby a single action of user authentication
and authorization can permit a user to access all computers and systems where he has
access permission, without the need to enter multiple passwords. Single sign-on reduces

human error, a major component of systems failure and is therefore highly desirable but

difficult to implement [3].

Single sign on is generally a process that allows the user to access multiple
applications requiring authentication by passing his credentials only once. The user first
authenticates to some trusted authentication authority and then is granted access to all the
applications trusting that authority. The SSO systems usually preserve the state of the
user for some period of time, so the user may repeatedly access these applications
without the need to authenticate each time.

One of the main advantages of SSO systems is the convenience for the user. Another
major advantage is security. There is only one place of authentication, which receives
user's credentials. The applications only receive information about whether they may let
the user in or not. Also, the user authenticates only once, so there is minimum transfer of
sensitive information over the network, not to mention that SSO systems usually force the
users to use secure communication channels.

Web single sign on provides SSO infrastructure for web applications. On
community networks, there is often a numbersof web applications and services designed
to aid community members andsthus requiring authentication. In these cases it is
convenient and secure to use a-centralized SSO. infrastructure bound to the central
authentication authority. The most common example-of such community networks are
university campus networks and some“of the most common web SSO systems were

developed there [4].

2.2.2 Overview of Web SSO Functionality

There is always a central authority, which handles user authentication. It may
support various backend authentication mechanisms like Kerberos, LDAP, relational
database, etc. The central authentication server may provide also a user interface needed
to retrieve user's credentials - usually a login form [4].

The applications in the SSO infrastructure are protected by special application layers
called filters or clients. These filters, usually implemented as modules for the web server
running the application, check if the user is authenticated before letting him to access the
protected application. To perform these checks they need to communicate with the

authentication server either directly or through redirects of the user's web browser.

There are two common scenarios for a SSO session: [4]
e login first - the user first performs login to the SSO infrastructure and then
chooses a service to access
e application first - the user first tries to access a service, but because he has not
been authenticated yet, the service redirects him to the login service and after a

successful logon he is redirected back to the service

The use case [6], shown in Figure 2.2.1, described here demonstrates what the
concept of web SSO is. In this use case, a user has a login session (that is, a security
context) on a web site (Airplane.com) which maintains local identities for users and is
accessing resources on that site. At some point he is directed over to a partner's web site
(CarRent.com). We assume that a trust relationship has been previously established
between Airplane.com and CarRent.com based on a business agreement between them.
The site (Airplane.com) asserts to the service provider site (CarRent.com) that the user is
known, has authenticated to it. Since CarRent.com trusts Airplane.com, it trusts that the
user is valid and properly authenticated andsthus.creates a local session for the user. The

user is not required to re-authenticate- when directed.over to the CarRent.com site.

Airplane.com

Authenticate

usiness agreement

CarRent.com

Access
Protected
resource

Figure 2.2.1 General Single Sign-On Use Case

Chapter 3 Technical Overview of SAML 1.1

3.1 Introduction

The OASIS Security Assertion Markup Language (SAML) standard defines an XML-based
framework for describing and exchanging security information between on-line business partners.
This security information is expressed in the form of portable SAML assertions that applications
working across security domain boundaries can trust. The OASIS SAML standard defines precise
syntax and rules for requesting, creating, communicating, and using these SAML assertions.

SAML defines a XML-based solution to the problem of Web Single Sign-On (SSO). Web
SSO allows users to gain access to website resources in multiple domains without having to
re-authenticate after initially logging in to the first domain. To achieve SSO, the domains need to
form a trust relationship before they can share an understanding of the users identity that allows

the necessary access.

3.2 SAML Architecture

This section describes the core SAML concepts and components briefly.

3.2.1 SAML Participants and Scenarios

SAML which exchanges take place between system entities referred to as a SAML asserting
party and a SAML relying party is different from other security systems due to its approach of
expressing assertions about a subject that other applications within a network can trust [5].

® Asserting party

The system that makes SAML assertions asserts information about a subject. It is also
called a SAML authority which role is defined as identity provider (IDP).

® Relying party

The system that relies on information supplied to it by the asserting party uses
assertions it has received. It is up to the relaying party as to whether it trusts the

assertions provided to it. SAML defines the role called service provider (SP).

® Subject
At the heart of SAML assertions, a subject, could be a human but also could be some
other kind of entity, such as a company or a computer. The terms subject and user tend

to be used interchangeably in this thesis.

When a SAML asserting or relying party makes a direct request to another SAML entity, the
party making the request is called a SAML requester, and the other party is referred to as a SAML
responder. A relying party's willingness to rely on information from an assertion party depends
on the existence of a trust relationship with the asserting party.

A typical assertion about a subject who has been authenticated and has given associated
attributes from an identity provider might convey information such as “This user is Bob Li, he
has an email address of bob.li@edu.com, and he was authenticated into this system using a
password mechanism,” A service provider could choose to use this information, depending on its
access policies, to grant Bob Li web SSO access to local resources. Figure 3.2.1 illustrates the

concept of Web SSO, and how to achieve this purpose will be demonstrated later in the thesis.

Identity
Prowicer
{f// i
/
/‘I Login
lll=-I \
\Be\\ Service
recognized - Provider

e
Figure 3.2.1 SAML Participants

In this case, a user has a login session on a web site, Company.com, and is accessing
resources on that site. At sometime, he is directed over to a partner's web site, Travel.com.

Assuming a trust relationship has been previous established between Company.com and

Travel.com based on a business agreement between them. The identity provider site,
Company.com, asserts to the service provider site, Travel.com, that the user has authenticated to it
and has certain identity attributes (e.g. has a “Gold” status). Since Travel.com trusts
Company.com, it trusts that the user is valid and properly authenticated and thus creates a local
session for the user. The user is not required to re-authenticate when directed over to the
Travel.com site. Once logged in, the IdP can produce an assertion that can be used by the SP to

validate the user's access rights to the protected resource [5].

3.2.2 SAML Components

SAML consists of building-block components that allow many use cases to be supported,

when put the components together. It has the following key concepts: [6]

® Assertion: A SAML assertion is a package of information that carries statements about

a subject. Assertions are created by a SAML authority. SAML defines three kinds of

statements that can be carried,within an dssertion.

B Authentication statements: They describe the means used to authenticate the user
and the specific time at which the authentication took place.

B Attribute statements: These-contain specific details or identifying attributes
about the subject, for example, the user'holds “Gold” card status.

B Authorization decision statements: These define what the subject is entitled to

do, for example, whether a user is permitted to buy a specific production.

® Protocol: SAML defines a number of generalized request/response protocols for
obtaining assertions. SAML protocol messages are used to make the SAML requests
which can either ask for a specific known assertion or make authentication, attribute,

and authorization decision queries and return appropriate responses.

® Bindings: A binding details exactly how the various SAML protocol messages map
onto underlying transport and messaging protocols. For example, SAML provides a
binding of how request/response protocols are carried within SOAP exchanges over

HTTP.

10

® Profiles: SAML profiles typically define how the SAML assertions, protocols, and
bindings are combined and constrained to solve particular business use cases in an

interoperable fashion, for example the Web Browser SSO profile.

Figure 3.2.2 illustrates the relationship between these basic SAML concepts. [6]

Profiles
Combinations of assertions, protocols,
and bindings to support a defined use case

Bindings
Mappings of SAML protocols
onto standard messaging and
communication protocols

3.2.3 Security in SAML 0

SAML defines many security mechanisms to detect and protect against the
“man-in-the-middle” attacks. The primary mechanism is for the relying party and asserting party
to have a pre-existing trust relationship which typically relies on a Public Key Infrastructure

(PKI). Using PKI is recommended by SAML, however, what is recommended is provided below:

® HTTP over SSL 3.0 or TLS 1.0 is recommended to ensure message integrity and
message confidentiality.

® When a relying party requests an assertion from an asserting party then bi-lateral
authentication is required and the use of SSL 3.0 or TLS 1.0 using mutual
authentication or authentication via digital signatures is recommended.

® When a response message containing an assertion is delivered to a relying party via a

11

user's web browser, it is mandated that the response message be digitally signed using

the XML signature standard to ensure message integrity [5][7].

3.3 High-Level SAML Use Cases

Early in its business requirements analysis, the SSTC (Security Services Technical
Committee) defined many use cases for SAML. This section will describe in detail the Web SSO

and identity federation use cases.

3.3.1 Web Single Sign-On Use Case
To date, only the Web SSO use case has been profile in SAML V1.1. The following Figure

shows the processing and message flow in the Source-Site-First scenario, that is the IDP-initiated
Web SSO scenario. It indicated that the user had first authenticated at the IDP before accessing a
protected resource at the SP. When users whom had not been authenticated subsequently attempts
to access a protected resource at the SR first;,the SP will send the user to the IDP with an

authentication request in order to have the user-log in:

|DP Source Site SP Destination Site
(www.abc.com) SAMI (Www.XyZ.com)

Responder :’%

.| Artifact
mn. Receiver Remote Application

S Sermvice
Authentication Application '?ter S’f'te Response
Authority Portal g
Service

< | | ST
L 9]

Redirect with Redir im D;.sﬂ 1arion
SAML Artifact i ons

Credential
Challenge

.‘.Iff'l?SE -S‘f‘ff(f
-gﬂi’ff' o emaole
Site Alpplication
Browser

Figure 3.3.1 Detailed Processing for the SSO

12

The processing is as follows: [5]

1.
2.

The user accesses the IDP site (www.abc.com).
The IDP performs an access check and determines that the user does not have a current

session. As a result, the user is challenged to authenticate.

3. The user logs in and supplies back credentials, for instance username and password.

. If the authentication is successful, then a session is created for the user who can access

resources.

. At some point, the user wants to access resources on a SP site www.xyz.com. This causes

a HTTP request which contains the URL of the resource on the SP site (TARGET URL)
to be send to the IDP site

. The IDP generates an assertion which contains the source ID of the www.abc.com SAML

responder for the user and sends back an HTTP redirection response to the browser, with

the HTTP location header containing the TARGET URL.

. The SP site receives the HTTP message and extracts the source ID. A mapping between

source IDs and remote Responders:will- already have been established. Therefore the SP
will know that it has to contact the;www.abc.com SAML responder, then it will send a

SAML request to the www:abc.com SAML responder.

. The www.abc.com SAML responder supplies back a SAML response message containing

the assertion about the user. If a valid assertion is received back, then a session on

www.xyz.com is established for the user at this point.

. The SP site sends a redirection message containing a cookie back to the browser. The

message indicates that the user has the correct authorization to access the SP site.

3.3.2 Identity Federation Concepts and Use case

Multi-domain web single sign-on is the most important use case for which SAML is used.

This section describes mechanisms supported by SAML for establishing and managing federated

identities.

SAML V2.0 introduced two features to enhance its federated identity capabilities. First, new

13

constructs and messages were added to support the dynamic establishment and management of
federated name identifiers. Second, two new types of name identifiers were introduced with
privacy-preserving characteristics. SAML uses the new features to dynamically establish a
federated identity for a user during a web SSO exchange. Most identity management systems
maintain local identities which might be represented by the user's local login account for users.
These local identities must be linked to the federated identity that will be used to represent the
user when the provider interacts with a partner. The process of associating a federated identifier
with the local identity at a partner where the federated identity will be used is often called
account linking.

Figure 3.3.2 illustrates dynamic identity federation using persistent pseudonym identifiers.
The user jdoe on CarRentallnc.com wishes to federate this account with his john account on the

IDP, Airlinelnc.com [6].

Lazal IO I4F Ligked I Lisked TL i Lecal ID
Jedoa Alplinelnc 61611 E1611 CarRental Ing Jehn
= L=t BankingIns 71711 E1E612 HapalimayIns B [=1 0y
olank Rirlin=eIng A1l £1621 carBentallns TATY

5%

#e X
Q)

Figure 3.3.2 Identity Federation with Persistent Pseudonym

In summary, the processing is as follows:
1. The user attempts to access a resource on CarRentallnc.com. The user does not have any
current logon session (i.e. security context) on this site, and is unknown to it.
2. The service provider sends the user to the Single Sign-On Service at the identity provider
(Airlinelnc.com) and requests the IDP to provide an assertion using a persistent name

identifier for the user.

14

3. The user will be challenged to provide valid credentials.

4. The user logs in as john user account and the IDP creates a local security context for the
user.

5. The Single Sign-On Service looks up user john in its identity store and creates a
persistent name identifier (61611) to be used for the session at the service provider. It then
builds a SAML assertion where the subject uses a transient name identifier format rather
then the name john.

6. The browser receives the assertion and issues a request to send the form to the service
provider.

7. The SP validates the digital signature on the SAML Response and validates the SAML
assertion. The supplied name identifier which maps to a local account is then used to
determine whether a previous federation has been established. If a previous federation has
been established then go to step 9. If no federation exists for the persistent identifier in the
assertion, then the SP needs to determine the local identity to which it should be assigned.
The user will be challenged to provide local credentials at the SP.

Optionally the user might first be-asked whether he would like to federate the two
accounts.

8. The user provides valid credentials-and .identifies his account at the SP as jdoe. The
persistent name identifier is.then ‘Stored and registered with the jdoe account along with
the name of the identity provider that created the name identifier.

9. A local logon session is created for user jdoe and an access check is then made to
establish whether the user jdoe has the correct authorization to access resources at the SP
site.

10. If the access check passes, the desired resource is returned to the browser.

15

Chapter 4 Our System Architecture

In this thesis, we provide a system architecture to achieve the cross-IDP identity federation.
In this chapter, we discuss the mechanism concepts before the design of our system, and at last

we will demonstrate the implementation result.

4.1 System Overview

4.1.1 Scenario

The relationship of level exists in the commercial system. Lots of homogeneous
organizations are subordinate to a kind of commercial system, an organization manages a number
of same kind companies, each company is composed of many departments, and the department
provides several services. It is graded layet upon. layer in real commercial situation, as Figure
4.1.1 demonstrates. Assume a uset is registered omn.some companies which are cooperative
enterprises. As long as he has logged.in at one of the web sites, he does not need to authenticate

again and then can access these services which are subordinate under different webs.

Wy L Ly
b4

gobby

Figure 4.1.1 Layered Concepts in Actual Commercial System

It may be suitable for a certain commercial scenario as below. There are lots of companies

16

or alliance shops being opened or closed every day. An alliance shop may join in or leave from
the business system willfully. When users visit another IDP site, they must know whether it
continues to operate or not. The participants and users shall know the cooperation relationship
between the mutable commercial system immediately. In accordance with such scenario, the

topology of business system must be maintained and managed dynamically.

4.1.2 System Components

In contrast with the realistic commercial system, Figure 4.1.2 illustrates the components
which are provided in our system architecture. There are three main rules, Service Provider (SP),
Identity Provider (IDP), Manager, in the architecture. All IDPs are portal sites and provides many
kinds of services. All levels above IDPs are Managers, which exchange users™ identities. First we

outline these three components and introduce them in detail in the next section.

anager

Figure 4.1.2 System Components

® Service Provider (SP)
The system provides resources and services
® Identity Provider (IDP)
The system integrates several services and maintains users information. Users must log
in at IDPs before accessing SPs.
® Manager
The system exchanges users™ identities and records the corresponding identities between

different IDPs for a user.

17

4.2 Concepts and Mechanisms

4.2.1 User Link ID

Essentially, the concept of user Link_ID is similar to the pseudonym. The IDPs maintain
local identities which might be represented by the user local login account for users. These local
identities must be linked to the federated identity, that is Link_ID, which is created by the IDP
that will be used to represent the user when the provider interacts outward. Link_ID is unique for
every user and generated randomly. It provides privacy-preserving characteristic for users. Figure
4.2.1 illustrates the database maintained by the IDP using Link_ID. For example, Link_ID (123)
is represented the local user account gobby externally.

The process of associating a federated identifier with the local identity at a partner where the

federated identity will be used is called account linking afterward.

User_name | Link ID

gobby 123

mary 456

Figure 4.2.1 IDP Associates a Federated Identifier with Local Identity

4.2.2 Manager

In order to achieve identity federation, we define a third-party architecture, manager, to
exchange users” identities. The manager records the corresponding identities at different IDPs for
a user, however, the information recorded is the Link ID rather than the local account. It
provides privacy-preserving characteristic for a user during a web SSO exchange .The process of

associating a Link_ID with another Link_ID at a partner is called account linking afterward.

18

Besides account linking, the manager can be used to classify the IDPs according to their
properties. For instance, the IDPs which are the educational categories petition the “EDU”
manager for account linking; the financial categories petition the “BANK” manager, etc. Thus,
commercial system can be integrated more efficiently.

Figure 4.2.2 shows the operation of a manager, the example assumes a user is registered on
two provider sites, but the local accounts have different account identifiers, Link_ID. Assume

that the user has logged in at IDP] using his gobby account.

Link ID | Src. | Link_ID | Dst.
123 IDP1 | 135 1IDP2
2
Manager
User_name | L_Link ID User_name | L_Link ID
gobby 123 / N bill 135
mary 456 amy 246

Figure 4.2.2 Account Linking Table in the Manager

In summary, the processing is as follows:

1. The user access resources at the IDP1 and then visits IDP2. The IDPlissues a request to
manager: “(123) at IDPI wants to visit IDP2”.

2. The manager receives the request and then looks up its account linking table to determine
whether a previous federation has been established. If a previous federation has been
established then go to step3, otherwise the IDP2 needs to determine the local identity to
which it should be assigned. The user will be challenged to provide local credentials at the
IDP2. Assume the federation exists, thus the manager finds (123) at IDP1 is (135) at
IDP2.

3. Then the manager issue an assertion “(135) is authenticated” to the IDP2, and then the

user bill associated with the Link_ID (135) has the correct authorization.

19

4.2.3 Sorting

If there are many users joining the federation organization, the account linking table at a
manager will be very large. We must provide an efficient way to determine whether a previous
federation has been established for a certain user. The index numbers of entries involved the
same IDP are collected and stored orderly in another table. As Table 4.2.1 shows, the index
numbers of entries involved the IDP1 are (1, 3, 5), and the index numbers of entries involved the
IDP2 are (1, 4). We can get (1) by intersectint (1,3,5) and (1.4), so only the first entry must be

traced when a certain user at IDP1 links to IDP2 or reversed.

Src./Dst. | Index
IDP1 1,3,5 —

L,

DP2 | 1,4 z_l

IDP3 2,3,4 Index | Link_ID Src. | Link _ID Dst.

IDP4 2,5 > 1 ABC.IDP1 | IDP1 | ABC_IDP2 | IDP2
2 ABC_IDP4 | IDP4 | ABC_IDP1 | IDP3
3 ABC_IDP3 | IDP3 | ABC_IDP1 | IDP1
4 ABC_IDP3 | IDP3 | ABC_IDP2 | IDP2
5 ABC_ IDP2 | IDP4 | ABC_IDP4 | IDP1

Table 4.2.1 Sorting Mechanism

4.2.4 Maintain the net topology

The net topology always changes as a result of the affiliation of sunrise industry or member
IDPs. For the purpose of expansibility, we define that each manager must record the nodes of its
upper layer and lower layers. The parent node and children nodes of a manager will be marked O
and 1. Assume the topology is as Figure 4.2.3 shows, the manager EAT marks 1 to represent its

children nodes as Table 4.2.2 shows.

20

Figure 4.2.3 Topology of Initial Commercial System

EAT
1 | 85C
1 | LW

Table 4.2.2 Local Relationship of EAT manager

As Figure 4.2.4 shows, if someday an uppér layer manager, LIFE, is increased EAT must
mark O to represent it. LIFE also needs to record its children nodes, as disputed in Figure. Tables

must be updated every time when the net topology changed.

Figure 4.2.4 Topology of Commercial System after Adding LIFE Manager

EAT

o | LIFE
1 | 85C
1 | LW

Table 4.2.3 Local Relationship of EAT Manager after Modification

4.2.5 Global Path Finding

The architecture defines that a user at a IDP wants to visit another IDP by following the tree
path rather than peer to peer. Deliberate that the source IDP and destination IDP might not be
below the same manager, so how to know the position of the destination IDP must be solved.

The last section describes that each manager must record the nodes of its upper layer and
lower layers. We can take advantage .of it to find the global path of a certain IDP over whole
topology.

Briefly, in a path, a manager stores the Link [ID of the left neighbor along with the Link_ID
of the right neighbor for every user. We:can.see-the following case to understand the operation of
global path finding.

The global path of an IDP is represent to a sequence string which can indicate the position
and relationship of the IDP. For the purpose of expansibility, the global path string is coded
dynamically. In this case, the global path of IDP E should be coded “A_C_E”, it indicates that

E’s manager is C and C's manager is A, and so on.

Figure 4.2.5 illustrates the processing of petition which is as follows:

1. E sends a request to its manager to get its global path.

2. C receives the request and then appends C. The path code becomes “ C_E ”. C looks up
its table to know that it is not on the top layer, then C keeps on sending the request to
upper layer.

3. A receives the request and then appends A. The path code becomes “ A_C_E . A refers

to its table to know there is no more upper layer, then sends back “ A_C_E ” to E.

22

Figure 4.2.5 A Simple Global Path Finding Example

An IDP site can ask its global path upward gradually as above and stores the path code in
local site. Each IDP asks upward periodically and updates its path code when the topology
changed.

4.2.6 Core algorithm of manager

When getting the global pathof the destination IDP, the source IDP will send the string and
the request of identity federation to its manager. After receiving, the manager would compare the
string with its name to determine whether its hame appears or not. If it appears, the fact expresses
that the target IDP is under its subtree surely, and the manager should send the request downward.
Otherwise, the manager sends the request upward.

Each manager which receives the request of identity federation will look up its account
linking table to determine whether a previous federation has been established for the user. If a
previous federation has been established then continue to transmit forward according to the
Link_ID, otherwise the manager needs to generate a Link_ID and record it to establish a new
account linking entry.

However, two situations would be considered in transmission process downward:
1. The manager sends to its lower manager, the operation is the same as describing above.
2. The manager sends to the target IDP, the operation is similar to as describing above. If a

previous federation has not been established, the manager needs to generate a Link_ID

23

and record it to establish a new account linking entry as usual. But the Link_ID generated
by the manager and the Link_ID represented another user at the target IDP might be
exactly the same. If the manager sends the Link_ID to the IDP, the wrong user account
with the Link_ID will be logged in automatically which results in inaccurate identity
federation. To solve such problem, we define that the manager generates a temporary
Link_ID which might be expressed by “managerName_Tmp_Link ID” form when
sending to the destination IDP. After receiving the temporary Link_ID, the IDP sends

back the real Link_ID to accomplish correct identity federation.

The algorithm of managers in details as Figure 4.2.6 shows.

1 if path code match its name
2 if mapping record exists
3 find the link_id from database
4 send to the lower node
5 else
6 if selfis the first layer manager
7 generate a temporary link_ id, create a new mapping record
8 send to the lower idp;.and request the correct link_id
9 else
10 generate a link_id, create a new mapping record
11 send to the lower node
12 else
13 if mapping record exists
14 find the link_id from database
15 send to the upper manager
16 else
17 generate a link_id, create a new mapping record
18 send to the upper manager

Figure 4.2.6 Core Algorithm of Manager

24

4.3 Use Cases

Up to now, the concepts of mechanisms used in our system architecture are explained. The
detailed processing will be described in this section. It deserves to be mentioned that the

architecture is PKI-based and the information transmitted is protected by SSL.

4.3.1 Detailed Processing

Above all, let’s consider the simplest situation. That is, there are just two IDPs in the net
topology. If the IDPs become partners, the users at two IDPs are federated identity by a manager.
The example assumes a user is registered on two IDPs, but the local accounts both have different
Link_IDs. As Figure 4.3.1 shows, at the IDP1, the user is registered as gobby, on the IDP2 his
account is bill. User ID gobby at IDP1 recommend user ID bill at IDP2 to use the federated
identity service for the user who has not previously federated his identity between these sites.

Initially, there is not any account linking record about the user in the manager.

Link ID | Src. | Link_ID | Dst.
Manager
User_name | L_Link_ID UserZnamey il Link)
20bby 123 bill 135
mary 456 @ @ amy 246

Figure 4.3.1 Initial State before Federating

Figure 4.3.2 illustrates the processing of petition which is as follows:

1. The user attempts to access a resource at the SP1 site. The user does not have any current

logon session at this site, and is unknown to it.

25

. The SP1 sends the user to the IDP1 and request the IDP1 to provide an assertion for the
user. Thus the user logs in the IDP1 and gets the services on SP1 using SAML
authentication.

. The user petitions for federated identity to the IDP1.

. The IDP1 issue a request for the user to manager *“(123) at IDP1 wants to visit IDP2 *.

. The manager receives the request and looks up that there is no account linking
information between the IDP1 and the IDP2 for the user. Thus it creates an new entry and
fills in the blanks with “(123) ~ IDP1 ~ IDP2* as Table 4.3.1 demonstrates. Then a
redirection is issued to the target web, IDP2, and which is requested the user's Link_ID at
the IDP2.

. The user provides valid credentials at the IDP2 as bill. The IDP2 sends back the Link_ID,
(135), of the bill account to the manager. The persistent name identifier is then stored
along with the entry as Table 4.3.2 shows.

. The IDP2 issues the assertion, and then the user bill has the correct authorization to access

the SP2.

Manager

47 \5 0
CORNCD

3T 2 17

user

Figure 4.3.2 Processing Sequence of federation petition

26

Link ID | Src. | Link_ID | Dst.
123 IDP1 IDP2

Table 4.3.1 The Mapping Table in Manager in Step 5

Link ID | Src. | Link ID | Dst.
123 IDP1 | 135 IDP2

Table 4.3.2 The Mapping Table in Manager in Step 6

The identity linking record which has been established exists perpetually as long as there is a
business agreement between both IDPs. After petition the user at the IDP1 wants to access a
resource at the IDP2, the manager looks up the mapping record about the user in its identity store.
Then the manager issue an assertion “(135):is authenticated” to the IDP2, and then the user bill

associated with the Link_ID (135) has the cerrect-authorization.

We will describe a more complicated situation.~The questions how to achieve identity
federation involving multi-layered ‘'managers must be considered. Assume the net topology as
Figure 4.3.3 shows and the user ID gobby at NCTU recommend user ID bill at BOT to use the

federated identity service.

Figure 4.3.3 Topology of Commercial System

27

Briefly, the processing of petition is as follows:
1. The user logs in at NCTU as gobby, and requests the service provided by SP5 using SSO.
2. NCTU asks the global path of the target web, BOT, and BOT response its global path.
(4.2.5)
3. Account linking

We will illustrate the step3 in detail immediately. After getting the global path of BOT,
NCTU proceeds to BOT and operates account linking.

111 | EDU | 222 | BANK

123

gobby

Figure 4.3.4 Processing Sequence of Account Linking

As Figure 4.3.4 demonstrates, the processing of account linking is as follows:

I. NCTU issues a request to its manager, EDU: “(123) at NCTU wants to visit
LIFE_BANK_BOT”.

2. EDU receives the request and compares the path string. The fact that its name, “EDU”
does not appear indicates the target IDP (BOT) is not under its subtree. Thus EDU stores
(123), NCTU, and a Link_ID (111) which is generated randomly by EDU and keeps on
sending the request “(111) at EDU wants to visit LIFE_BANK_BOT” to upper layer.

3. Similarly, LIFE compares the path string after receiving the request. The name “LIFE”
appears in the path means that the target IDP is in lower layer. And the next receiver is

BANK according to the path string, “LIFE_BANK_BOT . Thus LIFE looks up its

28

mapping table to determine whether a previous federation has been established or not. If

LIFE does not find any record about this request, it stores (111), EDU, and a Link_ID

(222) which is generated randomly by LIFE, and then keeping on sending the request

“(222) at LIFE wants to visit LIFE_BANK_BOT” to BANK.

. BANK receives the request and operates similarly as step 3. Because the previous
federation has not been established, BANK stores (222), LIFE, and a temporary link_ID
(BANK_TMP_333) generated randomly by BANK It keeps on sending the request
“(BANK_TMP_333) at BANK wants to visit LIFE_BANK_BOT" to lower layer.

. After the petitioner logs in as bill at BOT, BOT sends back the real Link_ID, (456), which
represent the user account bill. The temporary Link_ID will be covered with (456) and the

correct federation has been established.

4.3.2 Implementation Result

In the section, in order to enable readers to understand the actual operation circumstance of

our architecture, we will illustrate the implementation result with execution pictures gradually.

In this case, a user has registered the account amy at BOT site and mary at NCTU site. BOT

and NCTU sites are partners. The uset.ID-amy-at BOT wants to recommend user ID mary at

NCTU to use the federated identity service. Figure 4.3.5 shows the topology.

CEpu > (BANK D
(vor)

s

Figure 4.3.5 The Topology of Implemented Architecture

29

Following Figures will demonstrates the processing of petition and the identity federation

result.

Step 1 : The user attempts to access resources on SP3 site

(http://localhost:8080/BOT_SP/SP. jsp). Because he does not have any current logon

session, SP3 sends the user to the identity provider (http://localhost:8080/BOT/IDAuth. jsp)

and requests the IDP to provide an assertion for the user.

2} ServiceProvider - Microsoft Internet Explorer

C BED RED WHRO BmsEw IRO HADm

Q7 - © KRG Pnzdramz @ -2 & -[J)B

| {AHED) |] hitp:Mcalhost B0B/EOT_SEAE jop v E#E
EDU

K’Lm
_ BOT ServiceProvider
@D @EE@ (Bm EHEE T =R (EE e R e AT e PR
i Z . i

. sl
C8P1 D (se2 3

EEHERT RS, SRR RS eSS

Assertionfi & !!
1R AssertioniE - FHHER, F B EERREETT 127.0.0.1

Figure 4.3.6 Petition Step 1

Step 2 : The user logs in as amy user account and provides valid credentials.

Hl Authentication Result - Mictosoft Internet Explorer

BWRE ®EE ®RO H#SEW IAD HAD

Oix-© RNE G Om dmer @22 8 LS

D) | £] hipioealhostBIBVEO TAD Anth jop v BnE wE @ @ruelt B] 2
= e
_ N e

EDU m
L

o G C—

,:L\ f| — Password'"“ \

GO @D @D (5o [

ﬁ FERENEFE - 2 ANETHTEE - REREERE - BRI - LR ER R
HeELE - (HE I TEERER I FEEE T 0 IRRENERER=E0E A E ey HE [

u TR B AR AR (S R T £ RS B R e B R 5 Bl - M EE R R R A =B FR
FUFERRE (Authentication Protocol) =

A

I Tk e P P TDANPassword SR/ EER . (IS AITD1:bill, Password: 1234) (EIEL FTID2:amy, Password:4321)

Figure 4.3.7 Petition Step 2

30

Step3 : The user logs in successfully and the BOT redirects him to the SAML server.

[} Authentication Result - Microsoft Internet Explorer
#HEH REE WREO FSEW IBOD HRAD

Qr7- Q- HEAG Prehmone @ 3% & L8

HE4E D |@ http:#Mocalhost B080/BOTAD Auth jsp w | E

EDU

e 4
& & mEE
<

W E A 5 MesnEZISAMLServer
Figure 4.3.8 ?etition Step 3

Step 4 : The BOT builds a SAML aé_sertion_i@:r:;hé.;u_saf;.

[l SAMLServer response - Microsoft Internet Explorex

BWED HED WHO BHEFQ TED A

OtF-Q KRG PreJeawse @ -5 B-LJ3

HEAE T |5E| hitp:filocalhost:B0E0BO TS AML Server jop Muzerld =ary &S Frl=http #localhost. S0S0/BO T_SPREP jepdeledP=127. &

SAMLServer|o] f&

e

< 8P1) (“sp2 (:s@ T submit, #E{§ {E2£5 AMI Responsefs Service Provider

Figure 4.3.9 Petition Step 4

31

Step 5 : The browser receives the assertion and issues a request to send to SP3. The user can

access the resource at SP3. BOT and NCTU sites are partners. The user can recommend user 1D
mary at NCTU to use the federated identity service.

(s) : :
= BOT ServiceProvider

- =

(Fer) (N_Tl@ 2

D @D

EREREER R LR R R A R ERRE,
%ﬁ%ﬁf&?&%ﬁﬁﬂﬁﬁ EERREANE HEEREREIR

Assertion Issuer: hitp:flocalhost:B3080/BOT/AD Auth.jsp
Agzertion Subject: amy @gmail.com

TTHT Assertion 2 SrikHY, BEE A AHENS?

(RRmREEAEA)

EEEHAETR)

@ NCTU
NCTUSBHE TSRS - B EENCTURERE A MRS » aIEIESSONy F = S ETa RS -

HAEERSO

Figure 4.3.10 Petition Sfep 5

Step 6 : BOT sends a request to NCTU to ‘get NCTU's global path, “LIFE_EDU_NCTU”. After

getting the path string, BOT issues a request to its manager, BANK : “(0UdWFOIlj) which is
represented the user amy at NCTU wants to visit LIFE_EDU_NCTU”.

El BOT FID Aunthentication - Microsoft Internet Explozer
EEE #EE W®RO HFEEQW IRD HAW

Qrr-© @G Ons framse @
4 D) [) hitp Mocalhost 80B0/EO TFIDAuth jep

- & |3
= Wi
= G s R TR SSORUITE » ORI S T S A
(Ners) @zr@ sy BRI LIFE_EDU_NCTU
CoD G = R 1R OUAWEOL]
T—5

Figure 4.3.11 Petition Step 6

32

Step 7 : BANK receives the request and compares the path string. Because the name “BANK”
does not appear in the path sting, thus BANK stores (0(UdWFOIlj), NCTU, and a Link_ID
(Qxwxdfdt) which is generated randomly by BANK and keeps on sending the request
“(Qxwxdfdt) at BANK wants to visit LIFE_EDU_NCTU” to upper layer.

) PN

i H%ﬁ = n)?gn_\%?
<w11 . EEEEE T EmsSORETE » BISMERSEEE - 240
Qqc-m) QN‘THU) KBOI) oA ES
| ‘ =2
Cen > Grm) 4 By 25 #EEL1E: LIFE_EDU_NCTU
EIRTEIE L HE A LR AT & « BEE—FHTHE

a5 rEEER

OUdWFOLj | BOT | Quwadfdt LIFE

Figure 4.3.12 Petition Step 7

Step 8 : LIFE compares the path-string after rcCeiviﬁg the request. Because the name “LIFE”
appears in the path , thus LIFE Jooks up its ﬁlappingj table to determine whether a previous
federation has been established or not. K'LIFE does not find any record about this request, it
stores (Qxwxdfdt), EDU, and a LinkZID (QximBOC7) which is generated randomly by LIFE,
and then keeping on sending the request “(QximB0C7) at LIFE wants to visit
LIFE_EDU_NCTU” to EDU.

e aae

P
\--,’.Zﬂ,ué_ﬁ E‘—_Eh;f:\ HEEEE TETSOnTEE BIRMEAR R E LT 2R
Q%D e ’ ~ BB ER
CerL> G Gr > EEy i RES % LIFE_EDU_NCTU
Hier B o EER

Qzwzdfdt BANE | QzimBOCT EDU

Figure 4.3.13 Petition Step 8

33

Step 9 : EDU receives the request and operates similarly as step 8. Because the previous
federation has not been established, EDU stores (QximBOC?7), LIFE, and a temporary link_ID
(BANK_TMP_ Qg7HfRM3) generated randomly by EDU It keeps on sending the request
“(BANK_TMP_ Qg7HfRM3) at EDU wants to visit LIFE_EDU_NCTU” to lower layer.

e }ﬂ st
B.

P hAEEETETSOmER ERENRERE LT e
BOT
ij E-BAER
o Elf i ERE{E: LIFE_EDU_NCTU

EARFIRI U A E R RSB e - BAE S
e srHES

QuimBOC7 | LIFE EDU_TEMP_QgTHfRM3 =~ NCTU

Figﬁre 4.3.14 nPétit,ion Step 9

— 3% &

1= i} ‘ ‘

Step 10 : The user logs in as mary at NCTU. -~ ‘

HALED) | &) hpocalhost BISINC TU/FIDA fop vBeE Er G
T PANTNE
/_{QE]D\ H&ﬁ = ptop=
7 - _— -
o) (o) €Lk > L
:TJ o . Password **®® |
CspLo (e Lod) Tubrit

£
:" FFA R S — e FISSORYIRTS » 382 A (B At DR L LR FI R
-,

FEp g EDU_TEMP_Qg7HIRM3

Figure 4.3.15 Petition Step 10

34

Step 11 : NCTU sends back the Link_ID, (um4DO4HK) which represent the user account mary.
The temporary Link_ID will be covered with (um4DO4HK) and the correct federation has been
established.

BT éj hitp:acalhost B0B0EDT/FID Auth jsp b ' E
Y =TI
R H%ﬁ = n?tzn_m
~ @?__ HEEEE T EmesOnETE « BFRfERRFEAE T TSE
=i S BOT)
(erv) @F@ ij‘ T 28

c:l_m,. D) <

Figure 4.3.16 Petition Step 11

Now, let's regard the operation of identity federation.

Step 12 : The use accesses resources at SP1 and logs in as mary at NCTU.

D)] hit:Mocalhost BDBDNC TI_SPEP jsp vIB5E EE T - | St
S : .
- NCTU ServiceProvider
it — P
6@ € @ il@ %r' SE R AR LR F R R Bl B A IR T A S EEIATEE,
B2 @D Ko seosmans AEsETEsREL.

Assertion Issuer: hitp:Mocalhost:8080/NCTWID Auth.jsp
Assertion Subject: mary @nctu.edu.tw

TEEyAssertion B-H 1R, B A EEIR?

(HETREEl R EA)

@ NTHU

NTHUZEE TSR » & EENTHUSESE AR » [EALEIESSORT T2 S EERF -

@ BOT

BOTHA 787800 © EEABOTHEATE ABY > (B EEsson S s ERe -
Figure 4.3.17 Identity Federation Step 1

35

Step 13 : Then the user wants to visit BOT. NCTU issues a request to BOT to get BOT"s global
path. After getting the path string, “LIFE_BANK_BOT”’, NCTU issues a request to manager:
“(um4DO4HK) at NCTU wants to visit LIFE_BANK_BOT”.

FEHED) !g"| http:/ocalhost B0E0MNC TUFID A uth jsp v | i
/Q)\ o etas
AN
Crov S CND e rRT) B R T R
(m,-. (o) o
T E A7 BEEE (S LIFE_BANK_BOT
@ G B R um4 DO HK

Figure 4.3.18 Identity Federation Step 2

Step 14 : EDU receives the request and then looks up its account linking table to determine
whether a previous federation hasibeen estabhshed It finds (um4DO4Hk) at NCTU is
(Qxim4B0C7) at LIFE. Then EUD issues ‘a‘ request to LIFE: “(QximB0C7) at EDU wants to
visit LIFE_BANK_BOT". = (M ‘ “1

D) | €] htp:ncelhost SISVEDUFID Auth jsp v B#
i e eias
IEEEERE TERSSONHETE « EISERRERE ETE4E
BgAER
BRI AR {E: LIFE_BANK_BOT
BesoHEER

umdDO4Hk | NCTU QmimBOCT LIFE

Figure 4.3.19 Identity Federation Step 3

36

Step 15 : LIFE receives the request and finds that (QximB0C?7) at EDU is (Qxwxdfdt) at BANK
by looking up its account linking table. Then LIFE issues a request to BANK: “(Qxwxdfdt) at
EDU wants to visit LIFE_BANK BOT”.

#RE(D) |] hitp:#localhost BIBVLIFE/FIDAvth jip >k
Wk LaRes
@-}Eé BN TR SSORE ERERR R T R
erw) (o) @fP B mAER
@5 < &) I8y $RES{E: LIFE_BANK_BOT
WS ST

QximBOCY | EDU | Qxwxdfdt | BANE

Figure 4.3.20 Identity Federation Step 4

Step 16 : BANK receives the request and fmds that (waxdfdt) at EDU is (O UdWFOIj) at BOT
by looking up its account linking table Then BANK 1ssues a assertion to BOT: “(OUdWFOLj) is

authenticated”.

D) |] hitp:/localhost B0B0/EANKFIDAuth sp | B

—

ll

) PANCTAEY
o) H%ﬁ = mphaps.
b HEE A TR OMR | B RS LTS

—L "_'3 CBOT\]
o) Q“EFE‘- i E-2AES
o> () o E B s RE 2 LIFE_ BANK_BOT

HasrEHESH

Qzwzdfdt | LIFE OUdWFOL1j EOT

Figure 4.3.21 Identity Federation Step S

37

Step 17 : BOT receives the request and finds which user the Link_ID (QOUdWFOIj) is

represented.

| #8HED) €] hitp:tocelhost B0BBOTFID Avth jop i ~ B

= 72

== BN

7 i i 0 HEEEE TETSSORETE EISERRERE LT 2 HE
K\NC-{LD QNIFD SSORURETERY » BRIE T —H SR ZS AML Server
e G =P, s

Figure 4.3.22 Identity Federation Step 6

Step 18 : The user mary associated with the Link_ID (OUdWFOIj) has the correct authorization.

D) | €] htpilocalhast BISU/ECT_SPAPfp) v B
- BOT ServiceProvider
Tiahn (BANK)
—
fﬁ?’?ﬁ) e, ("130'1")
G \Tx - R R (R S B R A S AT,
Copt D Gm)) HIERe %f&ﬁ%mﬁfi £EEREBTE EEeEREOENE

Asgertion Issuner: hitpeflocalhost:B3080/BEOT/AD Auth. jap
fgsertion Subject: amy @ gmail.com

TRy Assertion B HiEHY B A HHENE?

) A

T
(RETEEREETAEA)

Figure 4.3.23 Identity Federation Step 7

38

Chapter 5 System Analysis

5.1 Security

All information that delivered is Link_ ID rather than real credentials. The source IDP and
destination IDP neither know the ID used on the other side. It provides privacy-preserving

characteristic for users.

5.2 Expansibility

The expansibility property can be discussed in vertical and horizontal dividedly. Each
manager must record the nodes of its upper layer and lower layers. We can take advantage of it to

insert or delete business systems. The following Figures can illustrate the concepts.

Figure 5.2.1 Initial Topology

Assume that a relationship exists as Figure 5.2.1. Someday all three groups want to
cooperate in demand, then the manager LIFE will be constructed in need to integrate them.

Figure 5.2.2 demonstrates the alteration of the net topology.

As Table 5.2.1 shows, the tables should be modified according to present topology, as

mentioned in section 4.2.2. It can solve vertical expansibility problem.

39

Figure 5.2.2 Topology State after Vertical Expansibility

LIFE EAT

1 | EDU L 185C
1 | BANK W
1 | EAT

Table 5.2.1 Modification after Vertical Expansibility

As for the horizontal expansibility, the: operation is similar to above. If another group

“PLAY” wants to join in the commercial system, the modification is shown in Figure 5.2.3and

Table 5.2.2.

EAT

o | LIFE
1 |85C
1 |LW

Figure 5.2.3 Topology State after Horizontal Expansibility

40

LIFE LIFE
. TEDU 1 |EDU
—EANK) | |BANK
T TEAT 1 | EAT

1 | PLAY

Figure 5.2.2 Modification after Horizontal Expansibility

5.3 Robustness

In the section, we would consider the influence when a manager is destroyed in the business
system. Most probably account linking in the node would not be operated. But it can work
without involving the crashed node, including account linking.

Besides, we consider another:situationl=That is, there is a petition to a certain manager and
the connected was interrupted. The Link_ID which is generated previously would not disappear.

After connecting successfully, the Eink .ID can be used for federation.

41

Chapter 6 Conclusion and Future Work

6.1 Conclusion

Using the security features as well as the pseudonym concepts of SAML provide the users a
enterprise-crossed and integrated service, moreover, it enables the users to achieve SSO under
many identity providers. All identity federations are established by managers and dispersed
evenly. The problem that a certain manager maintains all identity federation which results in
exhaustion of the manager is not considered. Comparing traditional SSO, regardless of sorting or

space storage is more efficient in our system architecture.

6.2 Future Work

When a manager is destroyed in the business system, it cannot operate involving the crashed
node. We should develop a secure, efficient method “to re-build the destroyed manager and

identity federation records established previously.

42

References:

[1] INTRODUCTION TO WEB SERVICES, 2004
http://dev2dev.bea.com/pub/a/2004/02/introwebsvcs.html
[2] Introduction to Web Services By Lakshmi Ananthamurthy

http://www.developer.com/services/article.php/1485821
[3] Single Sign On

http://www.opengroup.org/security/sso/

[4] Web Single Sign On Systems, 2006

http://www.cesnet.cz/doc/techzpravy/2006/web-sso/
[5] OASIS, Technical Overview of the OASIS Security Assertion Markup Language (SAML)
V1.1, 2004
[6] OASIS, Security Assertion Markup Language (SAML) 2.0 Technical Overview, 2005
[7] OASIS, Security and Privacy Consideration for the OASIS Security Assertion Markup
Language V1.1, 2003

43

Appendix A

A.1 Manager EDU

<%
String myName = "EDU"; // manager {5
String upManager = "LIFE"; // [Jgf manager {57

String FID_req_src = new String();
String tree_code = new String();
String prev_node = new String();
String prev_lid = new String();
String next_node = new String();

String next_lid = new String();

String actSTR = request.getPatametex(, "Action*);
int act = -1;
if (actSTR != null) act = Integer.parselnt(actSTR);

switch(act)

{
IR ¥/
case 21:
FID_req_src = request.getParameter("FID_src");

tree_code = request.getParameter("TreeCode");

if(FID_req_src == null)
out println(" 5528 » AT AT HE;
else {
out.println("<p align = center>4]FHE{EEIR > A

52

"+FID_req_src+"</p>");
tree_code = myName + "_" + tree_code;
out.println("<p align = center> | {ij/3 FEIE{E: "+tree_code+"</p>");
I %A BIEEHE - R RS ARS SR G A
if(upManager == null)

{

44

%>

<%

%>

<%

<p align=center>}% 5 _LJ&EHE - G N — o FHEAL
<form method="post" action=<%=FID_req_src%> >

<input type="hidden" name="Action" value=22 >

<input type="hidden" name="TreeCode" value=<%=tree_code%> >

<input type="submit" value = " —35"/>

</form></p>

}
else // RE/IRAS AT FR ARG B s B AR RS

{

<p align = center>{/347_EJE B > G4 N — A ARG
<form method="post" action="http://localhost:
8080/<%=upManager%>/FIDAuth.jsp") >

<input type="hidden" name="Action" value=21 >

<input type="hidden" name="FID, src" value=<%=FID_req_src%> >
<input type="hidden" name="TreeCoéde" value=<%=tree_code%> >

<input type="submit" value:=" RN--25"/>

</form></p>
}
}
break;
/% SSO B3k */
case 31:

out.println("<p align = center>F.—¥& A Zisk</p>");
FID_req_src = request.getParameter("FID_src");
prev_node = request.getParameter("Previous_node");
prev_lid = request.getParameter("Previous_LinkID");

tree_code = request.getParameter("TreeCode");

out.println("<p align = center>");
out.println(" H MY#s > REEE AL " + tree_code + "
");

S5

P+ ST » HetHlET U name

int name_index = -1;

45

String[] tokens = tree_code.split("_");
for (int i = 0 ; i <tokens.length ; i++) {
if(tokens[i].equals(myName)) {

name_index =1i;

% FHY N REGRIEREE */

if(name_index >-1) // A& F LY name » 15 | JE %
next_node = tokens[name_index+1];

else // {RAHEIHCH name - 11 FJEH{ER

next_node = upManager;

7% SEFSERHE o H A link _id */
I R E B G [HE */
Class.forName("com.mysql.jdbc.Driver")
.newlInstance();
String url = "jdbc:mysqli/flocalhest:3306/"+myName;
String user = "root";
String password = "crypto123";
Connection con = DriverManager.getConnection(url , user , password);
Statement stmt = con.createStatement();
String query = "select * from mapping";

ResultSet rs = stmt.executeQuery(query);

I AT A Ak
int mapping_exist = -1;
while(rs.next())

{
if(prev_node.equals(rs.getString("Src_IDP")))

{
if(prev_lid.equals(rs.getString(
"Link_ID_Src")) &&
next_node.equals(rs.getString(
"Dst_IDP")))

next_lid = rs.getString("Link_ID_Dst");

mapping_exist = 1;

46

break;

}
}
else
if(prev_node.equals(rs.getString("Dst_IDP")))
{
if(prev_lid.equals(rs.getString(
"Link_ID_Dst")) &&
next_node.equals(rs.getString(
"Src_IDP")))
{
next_lid = rs.getString("Link_ID_Src");
mapping_exist = 1;
break;
}
}

String nidp_addr = "http://1ocalhost:8080/" + next_node + "/FIDAuth.jsp";
act =31;
if(name_index > -1) %L AEGEIETTNY name » 17 | &%
{
11 ARSI IR S N 7AE 7 O —SE R
if(mapping_exist !=1)

{
out.printIn(" i ARAFAEREAZEE FHF IS ERC S - A /B — /AR

");

oA ¥

Random rand = new Random();

String charset = "abcdefghijklmnopqrstuvwxyz
ABCDEFGHIUUKLMNOPQRSTUVWXYZ0123456789";

",

next_lid="";
for (inti=0;1<8; i++)
next_lid += charset.charAt(rand.nextInt(
charset.length()));

/* EAS 55—)& manager? */

47

if(name_index==(tokens.length-2)) {
11 SHRGIRE A - Sl 25K IDP [e{E T AEACHS
next_lid = myName + "_TEMP_" + next_lid;
act = 32;

}

T i e s v Rl =y S R T

query = "insert into mapping (Link_ID_Src,

Src_IDP,Link_ID_Dst,Dst_IDP) " +

moam

+ prev_lid + "',"" + prev_node +

m

"values (
mnmeom mom

;" +next_lid + ", + next_node + ")";
stmt.executeUpdate(query);

}
else // WAHEIHCHY name » 11 FJE{Ee
{
11 S ERC B AE - T — B
if(mapping_exist !=1)
{ |
out.printin(" fRAFEEEA IR 1 fCHS EIERC SR - e — AL

");

1 AR
Random rand = new Random();
String charset = "abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
next_lid="";
for (inti=0;1<8; i++)
next_lid += charset.charAt(rand.nextInt(
charset.length()));

P RO
query = "insert into mapping (Link_ID_Src,
Src_IDP,Link_ID_Dst,Dst_IDP) " +

moam

+ prev_lid + "',"" + prev_node +

m

"values (
mnmeom mom

;" +mnext_lid + """ + next_node + "')";
stmt.executeUpdate(query);

48

%>

<%

out.println("</p>");

<p align = center>
<TABLE border=1 width=300 CELLPADDING=3>

<CAPTION>
lf§i &5 B 5 ¥ HEEF)
</CAPTION>

<TR align=center bgcolor=glay>
<TD>Link_ID</TD>
<TD>Source</TD>
<TD>Link_ID</TD>
<TD>Destination</TD>

</TR>

<TR align=center>
<TD><%=prev_lid%></TD>
<TD><%=prev_node%></TD>
<TD><%=next_lid%></TD>
<TD><%=next_node%></TD>
</TR>

</TABLE></p>

<p align = center>

<form method="post" action=<%=nidp_addr%> >

<input type="hidden" name="Action" value=<%=act%> >

<input type="hidden" name="FID_src" value=<%=FID_req_src%> >
<input type="hidden" name="Previous_node" value=<%=myName%> >
<input type="hidden" name="Previous_LinkID" value=<%=next_lid%> >
<input type="hidden" name="TreeCode" value=<%=tree_code%> >
<input type="submit" value = " —"/>

</form></p>
break;

1 EA SSO R 5 TERE o P s RS
case 32:
String temp_lid = request.getParameter("temp_lid");

String user_lid = request.getParameter("user_lid");

49

%>

String dst_IDP = request.getParameter("dst_IDP");

7% R TEREERABE] IS U VR Y IR RS/
I R EBRG [H= */
Class.forName("com.mysql.jdbc.Driver")
.newlInstance();
url = "jdbc:mysql://localhost:3306/"+myName;
user = "root";
password = "crypto123";
con = DriverManager.getConnection(url , user , password);
stmt = con.createStatement();
query = "select * from mapping";

rs = stmt.executeQuery(query);

int index = -1;
while(rs.next()) {
if(dst_IDP.equals(rs.getString('Dst_IDP")) &&
temp_lid.equals(rs.getSteing(*' Link_ID_Dst"))

index = Integer.parselnt(rs.getString(
"User:Index"));

if(index !=-1) {
query = "UPDATE mapping SET Link_ID_Dst =" + user_lid + "' WHERE
User_Index =" + index;

stmt.executeUpdate(query);

/% BT A R R DASE R SSO /YRR */
String addr = "http://localhost:8080/" + dst_IDP + "/FIDAuth.jsp";

<p align = center>5¢ [l fsl B HE S UG e R

<form method="post" action=<%=addr%> >

<input type="hidden" name="Action" value=31 >

<input type="hidden" name="Previous_LinkID" value=<%=user_lid%> >
<input type="submit" value = "ffEE"/>

50

</form></p>

<%

break;

default:

out.printIn("FHaR » MLEHERIEIE");
break;
}

90>
A.2 IDP
<%

String myName = "NCTU"; // IDP {5

String myAddr = "http://localhost:8080/NCTU/IDAuth.jsp";

String myManager = "http://localhost:8080/EDU/
FIDAuth.jsp'; /I Jeridil

String SAMLServerAddr = "http://localhost:8080/NCTU/
SAML Server.jsp';

String SPUTrl = "http://localhost:8080/NCTU_SP/SP.jsp";

String _userAddr = request.getRemote Addr();

String uid = new String();

String sNamelID = new String();
String FID_req_src = new String();
String tree_code = new String();

String user_lid = new String();

String actSTR = request.getParameter("Action");
int act = -1;
if (actSTR != null) act = Integer.parselnt(actSTR);

switch(act)

{
1+ YEIHE IDP BYBRAREEK o 7] L Jahm - B A Eek #/
case 21:
out.println("<p align = center> [\ &5 [AI/E 5% |~ SSO HYiH

51

%>

<%

2o+
" RS IS T 0 R </ font></p>"):
FID_req_src = request.getParameter("FID_src"

if(FID_req_src ==null)
out.println("$55% » A A hk");
else {
out.println("<p align = center>4FHPEIE EIK » A
"+FID_req_src+"</p>");
out.println("<p align = center>H {ij/3 FEIE{E: "+myName+"</p>");

<p align = center>

<form method="post" action=<%=myManager%> >

<input type="hidden" name="Action" value=21 >

<input type="hidden" name="FID_src" value=<%=FID_req_src%> >
<input type="hidden" name="TreeCode" value=<%=myName%> >
<input type="submit" value:=" s —35"/>

</form></p>

}
break;

1% BRI E Y S R R B

case 22:
out.printIn("<p align = center> 25 /&% T &/~ SSO 113
JEI
" E B M FH {5 FH 50 N o Al </p>");

tree_code = request.getParameter("TreeCode");
out.println("<p align = center>H i FHEE: "+tree_code+"</p>");

sNamelD = request.getParameter("user");

i TEASZORE > R link_id */

Class.forName("com.mysql.jdbc.Driver")
.newlnstance();

String url = "jdbc:mysql://localhost:3306/"+myName;

String user = "root";

String password = "crypto123";

52

%>

<%

Connection con = DriverManager.getConnection(url , user , password);
Statement stmt = con.createStatement();
String query = "select * from authentication";

ResultSet rs = stmt.executeQuery(query);

while(rs.next())
if(sNamelD.equals(rs.getString("User_email")))
{
user_lid = rs.getString("User_Code");
break;

out.println("<p align = center>{sfi & HHE: "+user_lid+"</p>");

<p align = center>

<form method="post" action=<%=myManager%> >

<input type="hidden" name=!Action" value=31 >

<input type="hidden" name="FIDsre" value=<%=myAddr%> >

<input type="hidden" name="Prévious._node" value=<%=myName%> >
<input type="hidden" hiame="Previous_LinkID" value=<%=user_lid%> >
<input type="hidden" name="TreeCode" value=<%=tree_code%> >
<input type="submit" value=""T—L:"/>

</form></p>
break;

[+ SSO Bk *#/
case 31:
out.println("<p align = center> [\ &5 A& 5% 1~ SSO HYiH
EI
" I FHIRF 5 FH G AN B T </p>");

user_lid = request.getParameter("Previous_LinkID");

/Iconnect to database

Class.forName("com.mysql.jdbc.Driver")
.newlnstance();

url = "jdbc:mysql://localhost:3306/"+myName;

user = "root";

53

password = "crypto123";

con = DriverManager.getConnection(url , user , password);
stmt = con.createStatement();

query = "select * from authentication";

rs = stmt.executeQuery(query);

while(rs.next())
if((user_lid.equals(rs.getString("User_Code"))))
{
uid = rs.getString("User_Id");
break;

if(uid.length(>0) { // { A A UG L AE
%>
<p align = center>SSO RPEEE5EHY » G4 A iEi- 5] SAMLServer
<form method="post" action=<%=SAMILServerAddr%> >
<input type="hidden" name="userld" value=<%=uid%> >
<input type="hidden" name="SPUzl" value=<%=SPUrl %> >
<input type="hidden" hame="UsetIP" value=<%=_userAddr%> >
<input type="submit" value =" F=35"/>
</form></p>
<%
}
else { // {5 A (CHSANTERE
To>
<p align = center>SSO REEESHL » F ARG <%=user_lid%>17){ FH3 »
A ELATEE A
<form method="post" action=<%=myAddr%> >
<input type="hidden" name="UserIP" value=<%=_userAddr%>>
<input type="hidden" name="SPUrl" value=<%=SPUrl%> >
<input type="submit" value = "ffEE"/>
</form></p>
<%

}
break;

/% B0 SSO B[*/

54

%>

<%

case 32:

String temp_lid = request.getParameter(

"Previous_LinkID");

String id = request.getParameter("id");

String pass = request.getParameter("password");

I ST ARIBHTE » AGIEHE Tink id 555 FEH
if((id==null) Il (pass==null)) {

}

<p align=center>
<form method="post" action="http://localhost:
8080/<%=myName%>/FID Auth.jsp">

ID<input name="id" type="text" value="">

Password<input name="password" type="password" value="">

<input type="hidden" name="Action" value=32 >

<input type="hidden" name="Previous_LinkID" value=<%=temp_lid%> >
<input type="submit" name="Submit" value="Submit">

<input type="reset":value="Reset">

</form></p>

<HR><p align = center>

FR S — K] SSO IR » G ASEOLHNAERSR UEAS
Fr

</p>

out.println("<p align = center>[iG{CiE:
"+temp_lid+"</p>");

else {

try {
//connect to database

Class.forName("com.mysql.jdbc.Driver")
.newlInstance();

url = "jdbc:mysql://localhost:3306/"+myName;

user = "root";

password = "crypto123";

con = DriverManager.getConnection(url , user , password);

55

%>

<%

%>

stmt = con.createStatement();

query = "select * from authentication";

rs = stmt.executeQuery(query);

nn,

user_lid="";

while(rs.next())

if((id.equals(rs.getString("User_Id"))) && (pass.equals(rs.getString(
"User_Password"))))

user_lid = rs.getString("User_Code");

if(user_lid.length() >0) {

}

<p align = center>

 X5 » Ffa N — A
ks Faia i &

<form method="post" action=<%=myManager%>>

<input type="hidden"name="Action" value=32 >

<input type="hidden" name="user_lid" value=<%=user_lid%> >

<input type="hidden" name="temp_lid" value=<%=temp_lid%> >

<input type="hidden" name="dst_IDP" value=<%=myName %> >

<input type="submit" value = " —2J"/>

</form></p>

else {

<p align = center>{FF A FREHTEA

<form method="post" action="http://
localhost:8080/<%=myName%>/
FIDAuth.jsp">

<input type="hidden" name="Action" value=32 >

<input type="hidden" name="Previous_LinkID"

value=<%=temp_lid%> >

56

<input type="submit" value = "HfEE"/>

</form></p>
<%
}
out.println("</td><td width="27%"></td></tr>
</table></p>");
}
catch(SQLException sqle) {
out.println("sqle="+ sqle + "<p>");
out.println("sqle produce some error");
sqle.printStackTrace();
}
}
break;
default:
out.printin("§575 > MELHEERIEF");
break;
}
%>

57

