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摘      要 

大部分的研究都致力於使用 k-匿名的方式來保護位置隱私權。要實做出 k-
匿名最常見的架構是由一個可信任的伺服器(稱做位置匿名者)將至少 K 個使用

者的位置做覆蓋，藉此來保護位置隱私權。而前人所做的研究都只有產生出矩形

狀的覆蓋區域。然而，此矩形狀的覆蓋區域卻會導致較多的查尋結果，因而增加

在過濾無用的解時的負擔。在這篇論文裡，我們提出了道路網路狀的覆蓋機制，

可根據道路網路的特性來產生覆蓋區域。因為利用了道路網路的特性，此覆蓋區

域將可以非常有效率的降低查詢結果的數量並且增加行動裝置的暫存資料使用

率。另外，我們也提出了時間－空間相連性覆蓋的演算法(稱做 STCC)來建立道

路網路的索引架構。我們也做了相關的模擬實驗。實驗結果顯示，我們所提出的

STCC 機制在候選查詢結果的數量以及暫存資料使用率的表現是較優勝的。 

 
關鍵字：k-匿名，位置隱私權，位置匿名者。 



Abstract

Most of research efforts have elaborated on k-anonymity for location privacy.
The general architecture for implementing k-anonymity is that there is one trusted
server (referred to as location anonymizer) that is responsible for cloaking at least
K users’ location for protecting location privacy. Prior works only generate grid
shapes cloaking regions. However, grid shapes cloaking regions results in a consider-
able amount of query results, thereby increasing the overhead of filtering unwanted
results. In this paper, we proposed spatial network-based cloaking mechanisms in
which cloaking regions are generated according to the features of road networks.
By exploring the features of spatial networks, the cloaking regions are very effi-
cient for reducing query results and improving cache utilization of mobile devices.
Furthermore, an index structure for spatial networks is built and in light of the
proposed index structure, we develop Spatial-Temporal Connective Cloaking mech-
anisms(abbreviated as STCC). A simulation is implemented and extensive exper-
iments are conducted. Experimental results show that our proposed mechanisms
STCC outperforms prior cloaking algotihms in terms of the candidate query results
and the cache utilization.

Keywords — k-anonymity, location privacy, location anonymizer
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Chapter 1

Introduction

With the advances in location detection devices (e.g., GPS devices, cell phones,

RFIDs, etc.), mobile devices with computing, storage and wireless communication

are increasingly popular recently. At the same time, map databases and geograph-

ical information services are widely used. Thus, a large number of location-based

services (referred to as LBS) are now available and users could issue the location-

based queries to the servers of LBS. Examples of location-based queries include

“when I am moving on a certain road, find the k nearest gas stations with me”

or “what is the traffic condition within five minutes of my route”. While LBSs

have shown to be valuable to users’ daily life, on the other hand, they also expose

extraordinary threats to user privacy. If not well protected, the location informa-

tion of users may be misused by some untrustworthy service providers or stolen by

hackers. Once the location information is exposed, adversaries may dig for cues to

invades user privacy. Obviously, it is important to protect location privacy.

Recently, the problem of location privacy preserving has received growing in-

terests from the research community. Most of research efforts have elaborated on

k-anonymity [5, 13, 21]. The general architecture for implementing k-anonymity is

that there is one trusted server (referred to as location anonymizer) that is responsi-

ble for cloaking at least K users’ location for protecting location privacy. Explicitly,

1



Figure 1.1: An example of spatial network.

a location anonymizer is built to collect user location and perform cloaking proce-

dure in which the exact location of users is blurred as a cloaked spatial area in ac-

cordance with each user privacy requirements. Then, the location anonymizer will

send location-dependent query alone with the cloaked spatial area to location-based

server to retrieve location-dependent data. Note that since the query location is

an area instead of single query point, location-dependent servers should fetch those

query results based on the cloaked spatial area. Prior works in [14] proposed a

framework for location services without compromising location privacy. However,

only free space environment is considered, which is not realistic in a real world

environment. Furthermore, the authors in [12] explore privacy protected query

processing on spatial networks, where query processing schemes are modified to

retrieve query results. Note that the cloaking mechanisms used in the prior works

only consider cloaking regions are rectangle (i.e., grid-based shape). Only exploring

grid-based shape for cloaking regions are not efficient due to that more candidate

query results are retrieved. More candidate query results, more computing cost

and communication cost. In addition, user’s movements have spatial-temporal

behavior, cloaking region based on grid-based shape can not efficiently improve

cached utilization. Thus, in this paper, we intend to explore spatial network-based

cloaking mechanism by taking features of spatial networks into consideration.
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(a) 4-anonymity of grid-based mechanism

(b) 4-anonymity of spatial network-based mechanism

Figure 1.2: Examples of cloaking regions.
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(a) 4-anonymity of grid-based mechanism

(b) 4-anonymity of spatial network-based mechanism

Figure 1.3: Examples of cache utilization.
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The problem we study could be best understood by an illustrative example,

where Figure 1.1 is the spatial network given. Figure 1.2 shows spatial network-

based cloaking algorithm can retrieve less candidate query results than traditional

grid-based cloaking mechanism. Figure 1.2(a) shows the cloaking regions of the

traditional cloaking algorithm. It can be verified that the number of candidate

query results is 5( i.e., O1, O2, O3, O4, O5). On the other hand, Figure 1.2(b)

shows the cloaked road segments of spatial network-based cloaking mechanism.

Rather than blur query point into a cloaked region, we cloaked the query point

into a series connective road segments( i.e. (n4, n10), (n9, n10)). As shown in Figure

1.2(b), the number of candidate query results is 2( i.e., O4 and O7). Note that the

traditional grid-based mechanism will obtain larger number of candidate query re-

sults is because grid-based mechanism averagely use more road segments to achieve

k-anonymity. The more road segments in cloaked region, the more query result re-

turned. For example, in Figure 1.2(a), traditional grid-based cloaking mechanism

uses two users on segment (n6, n12), one user on segment (n6, n12) and query point

to achieve 4-anonymity. There are 6 segments in the cloaked region. On the con-

trary, the spatial network-based mechanism, in Figure 1.2(b), only uses 2 road

segments for cloaking. The spatial network-based cloaking mechanism can obtain

less candidate query results and reduces the computing cost and communication

cost. Note that cloaking regions based on spatial networks reflect spatial-temporal

features. Thus, cache utilization of devices will be higher. Figure 1.3 shows the

spatial network-based cloaking mechanism can efficiently reuse the cached data

on mobile device. For each retrieving the candidate query results from LBS, the

cloaked region and candidate query results’ location will be temporary cached on

mobile device. If a mobile user does not leave the cloaked region, he can find the

query answer by filtering those candidate query results without issuing a query to

LBS again. Consequently, increasing cache utilization is able to reduce the number
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of queries, thus reducing revealed location information in issuing LBS queries. In

Figure 1.3(a), a mobile user is moving from ti to ti+2 and periodically issues query

for LBS. The movement length of the mobile user in the cloaked region is the

length summation of n10 to the two intersection point on segments (n4, n10) and

(n9, n10). However, this mobile user cannot move to the other road segments in the

cloaked region. Therefore, a mobile user will easily move out of the cloaked region

on tt+1 and results in cache miss. The cloaked road segments of spatial network-

based cloaking mechanism, in Figure 1.3(b), has the spatial-temporal connective

property that fully fit the moving behaviors of users. Assume that at ti, a mobile

user retrieves the candidate query results( i.e., O4 and O7). Next, he calculates the

network distance between his location to O4 and O7 and obtains O4 is the query

answer. Then, the cloaked road segments, (n4, n10), (n9, n10), and the location of

query results will be cached on the mobile device. At next time slot, ti+1, the

cached data are still useful for this mobile user. It can be seen that by exploring

spatial network features for cloaking, both candidate query size and cache hit are

improved.

Consequently, in this paper, we propose spatial network-based cloaking mecha-

nisms in which cloaking regions basically consist of road segments instead of grid-

based shapes. Specifically, we propose a system consist of three components, mo-

bile users, the Spatial-Temporal Connective Location Anonymizer and the Privacy-

Protected Query Processor, to support privacy protected spatial queries for spatial

networks. The mobile users can set their own privacy requirements by an user-

specified privacy profile. The format of user-specified privacy profile is as (k, Lmin)

or (k, Nmin) where k indicates the user wants to be k-anonymity, Lmin indicates

the user want the length of cloaked road segments is at least Lmin, and Nmin

indicates the user want the number of cloaked road segments is at least Nmin.

Large value of k, Lmin and Nmin indicate more strict privacy requirements. The
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Spatial-Temporal Connective Location Anonymizer can receives the exact location

and privacy profile from mobile user. And the Spatial-Temporal Connective Loca-

tion Anonymizer can blur mobile user’s exact location into a series of connective

cloaked road segments according to his privacy profile. For the Spatial-Temporal

Connective Location Anonymizer, we propose a hierarchical index structure to de-

compose the spatial network into different level of granularity. It help us quickly

find a series of connective road segments that best matches mobile user’s require-

ment. The Privacy-Protected Query Processor can deal with privacy-protected

query and returns the candidate query results instead of accurate answer accord-

ing to the cloaked road segments. Finally, experimental results shows that our

proposed cloaking mechanism fully utilize features of spatial networks. Thus, our

proposal cloaking mechanisms are able to not only reduce candidate query results

but also increase the utilization of caching query results.

The rest of the paper is organized as follows: Chapter 2 surveys the related work.

Chapter 3 gives an outline of our system architecture. Chapter 4 and Chapter 5

respectively describe the main two components, the location anonymizer and the

query processor, of our system architecture. Chapter 6 describes the experimental

evaluation of our system. Chapter 7 concludes this paper.
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Chapter 2

Related Works

The concept of k-anonymity [22] have been proposed and used to protect data

privacy. For each data in database, the main idea is to let it is not distinguishable

among other k − 1 data to achieve k-anonymous. Gruteser et al. [5] used this

concept and proposed spatial-temporal cloaking to protect mobile user’s location

privacy. They assume that all of the users have the same k-anonymous requirement.

Once the user updates his location, the spatial space need recursively divided in a

KD-tree-like format until the subspace is suitable for the k-anonymous requirement.

But this method is not scalable because it needs run the Adaptive-Interval Cloaking

algorithm again for each single movement of each user. Then Gedik et al. [4]

proposed the CliqueCloak algorithm to support different k-anonymous requirement

for each user. It constructs a clique graph and finds that some users can share

the same cloaked region. Their minimum bounding rectangle is the cloaked region.

However, these researches mainly focus on designing the location anonymizer rather

than query processing. Molbel et al. [14] proposed a framework include three

main components that are system user, location anonymizer and query processor.

For mobile user, he can set his privacy profile to define his requirement like k-

anonymous and Amin which is particular useful for dense area. Location anonymizer

will construct a pyramid structure to index different granularity cloaked region.

8



Query processor will return candidate answers according to the cloaked region.

However, both of the location cloaking and query processing are according to free

space environment and not suitable for spatial network environments.

For the spatial network environment, we focus on the k-nearest-neighbor query.

Kolahdouzan et al. [11] use a first order Voronoi diagram to efficiently evaluate the

k-nearest-neighbor query on spatial networks. Papadias et al. [18] proposed the

Incremental Euclidean Restriction algorithm (IER) and Incremental Network Ex-

pansion algorithm (INE) to evaluate k-nearest-neighbor query on spatial networks.

IER uses the Euclidean lower bound property. First, IER retrieves the Euclidean

distance of query point to nearest neighbor as lower bound and calculate their

network distance as upper bound. Next, if the next Euclidean nearest neighbor’s

network distance is smaller than before, updates the nearest neighbor. IER obtains

the nearest neighbor by narrowing the search region until there is no other target

object in this region. In addition, INE utilizes a priority queue to store the nodes

and target objects to be explored through the expanding process. The nodes and

target objects in the priority queue are sorted by their network distance to the

query point. During the expansion, INE repeatedly dequeues the top entry in the

priority queue and enqueues it’s neighbor nodes and the target objects on the road

segments to neighbor nodes with their network distance into the priority queue.

When a target object entry is dequeued, the nearest neighbor is found. However,

those spatial queries in the spatial network need accurate query point’s location.

In order to provide privacy protected query process on spatial networks, Wei-

Shinn Ku et al. [12] combine the concept in the work of [14] and [18]. They

adopt the grid-based pyramid data structure proposed in [14] to provide cloaking

function. Then their Location-based Service Provider has the ability to process

the privacy protected query. They design privacy protected spatial network near-

est neighbor query (PSNN) algorithm and privacy protected spatial network range

9



query (PSRQ) algorithm for two popular query types, nearest neighbor query and

range query on spatial networks respectively. However, they focus on snapshot

query. For continuous query, they will cause two problems: (1) the re-identified

probability increasing problem and (2) the large costs of cloaking and query prob-

lem. Although they implement cache mechanism on mobile user’s device, they still

can not efficiently use the cache because of the character of traditional cloaked

region described in the introduction section. Therefore, we need a new cloaked

mechanism to efficiently process the continuous query on spatial networks.
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Chapter 3

System Architecture

In this section, we describe the system architecture for supporting privacy protected

spatial queries with underlay spatial networks. Figure 3.1 depicts our operating en-

vironment with three main entities: mobile users, the Spatial-Temporal Connective

Location Anonymizer, and the Privacy-Protected Query Processor.

In spatial networks, they are usually modeled as an undirected graph G (V, E),

where V denotes the set of road junctions and E denotes the set of road segments.

Mobile clients are distributed and move in it. We consider mobile clients such as cell

phones, personal digital assistants (PDA), laptops, that are instrumented with a

global positioning system (GPS) for continuous position information. Furthermore,

we assume that there are access points/base stations around the system environ-

ment for mobile devices to communicate with the location cloaker. All users have

Figure 3.1: The system architecture.
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mobility for traveling on underlay networks, continuously update their location to

the Spatial-Temporal Connective Location Anonymizer and ask for LBSs. They

also hold privacy policies which specify the privacy requirements of each user. A

user privacy profile is defined as (k, Lmin) or (k, Nmin), where k indicates that the

user want that there are at least another k − 1 peers in cloaked road segments to

achieve k-anonymous, Lmin indicates the minimum acceptable length summation

of cloaked road segments, and Nmin indicates the minimum acceptable number of

cloaked road segments. Lmin and Nmin are particularly useful in dense area where

even a large k can not achieve the user’s privacy requirements. For Lmin, if the

length summation of road segments is larger, it will be harder to re-identify the

mobile user is on which point of road segments. For Nmin, if there are more road

segments in a cloaked road segments, it will be harder to re-identify the mobile

user is on which road segments. Besides, there is a cache in each mobile user’s

device to decrease the probability of re-identity for the continuous query by reduc-

ing the number of queries. At the same time, it can reduce the costs of cloak for

the Spatial-Temporal Connective Location Anonymizer and query for LBS servers.

And we use LRU (Least Recently Used) algorithm for cache replacement.

The Spatial-Connective Location Anonymizer receives continuous location up-

dates from mobile users and it blurs the location of any query requesting user q to

a cloaked road segments CRS, instead of a spatial region to achieve k-anonymity

like [14] or [12], to match user’s profile (k, Lmin) or (k, Nmin) and forwards the

privacy protected query to the location-based service providers. For example,

given a spatial network G (V,E) like Figure 3.2, where V = {n1, n2, n3, n4, n5}
and E = {(n1, n2) , (n2, n3) , (n2, n4) , (n2, n5)}. There are three different mobile

users which are u1, u2 and u3, and their locations are u1 (x1, y1), u2 (x2, y2) and

u3 (x3, y3) respectively. Assumed k = 3, after bluring them into cloaked road seg-

ments, they will have the same location tuple which is {(n1, n2) , (n2, n3) , (n2, n4)}

12



Figure 3.2: An example of cloaked road segments.

and form 3-anonymity. Note that any user identity related information in the query

is also removed by the Spatial-Temporal Connective Location Anonymizer during

the cloaking process.

The Privacy-Protected Query Processor is included by location-based service

provider to handle privacy-protected query. Instead of returning an exact answer,

the privacy-protected query processor returns the candidate answer list for query

requesters through the Spatial-Temporal Connective Location Anonymizer. After

receiving the result set, mobile users can distill the exact answers by their loca-

tions in linear time. The privacy profile of a user determines the computational

complexity of their spatial queries. Strict privacy requirements (i.e., large k, Lmin

and Nmin values) increase the complexity of processing the query. So, mobile users

have the ability to adjust the personal trade-off by their privacy profiles. In or-

der to improve efficiency, only cloaked spatial queries have to be processed by

the Privacy-Protected Query Processor, non-cloaked queries can be processed with

existing spatial query algorithms.

We assume a digitization process that translates an input spatial network into a

modeling graph and storages the modeling graph in the above three entities of our

architecture. The nodes of the modeling graph are generated by the road junctions,

the start/end points of road segments, and other subsidiary points such as speed

13



limit change points. In addition, as describe in [18], we assume the network storage

scheme will propose the three entities of our architecture different operations:

• For mobile user:

– NDist (p1, p2): returns the network distance of two input points p1,p2

in the network by applying a algorithm such as Dijkstra’s algorithm [3]

to compute the shortest path from p1 to p2.

• For the Spatial-Temporal Connective Location Anonymizer :

– find segment (px): returns the road segment which user x locates on.

– Number of user (segmenti): returns the number of user on segmenti.

• For the Privacy-Protected Query Processor :

– find objects (segmenti): returns the data objects which covered by

segmenti.

– NDist (p1, p2): returns the network distance of two input points p1,p2

in the network by applying a algorithm such as Dijkstra’s algorithm [3]

to compute the shortest path from p1 to p2.

Table 3.1 collects the symbolic notation used throughout this paper.
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Description Symbol
Minimum number of road segments in cloaked road segments Nmin

Minimum length summation of road segments in cloaked road segments Lmin

Level h Lh

Total number of road junctions in a spatial network Totaljunction

Total length summation of all road segments in a spatial network Totallength

Total number of road segments in a spatial network Totalseg
Number of blocks in level h N blockLh

Number of mobile users in block i of Lh N userBh,i

Length summation of road segments in block i of Lh LengthBh,i

Number of segments in block i of Lh N segBh,i

Network Distance from a to b NDist(a, b)
Hierarchical index structure of spatial network for Lmin Indexlength

Hierarchical index structure of spatial network for Nmin IndexNum segment

Table 3.1: Description of symbols.
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Chapter 4

The Spatial-Temporal Connective

Location Anonymizer

The function of the location anonymizer is that it can blur each mobile user’s exact

location into a cloaked road segments. We think a better location anonymizer needs

to satisfy the following three requirements:

• Accuracy. If the cloaked road segments satisfies and as close as possible

to a user’s privacy profile (i.e. k, Lmin, Nmin), the location anonymizer will

obtain better accuracy.

• Efficiency. If the time complexity of cloaked algorithm and the cost of

maintenance are as low as possible, the location anonymizer will obtain better

efficiency.

• Flexibility. The cloaked road segments can satisfy different user’s require-

ments. And each user can change their privacy profile at any time.

In order to satisfy the above requirements as much as possible, we propose

our Spatial-Temporal Connective Location Anonymizer. Section 4-1 shows the data

structure of Spatial-Temporal Connective Location Anonymizer. Section 4-2 shows

the maintenance of the data structure. Section 4-3 shows the cloaking algorithm.
16



4.1 Data structure

The data structure of the Spatial-Temporal Connective Location Anonymizer is

shown in Figure 4.1. We propose this hierarchical structure to bottom up compose

those road segments into different Lh level and form different granularity until the

root which has only one block covers the whole spatial network. When h = 0, each

road segments will be each one block. So, there are Totalseg blocks in L0 level

where Totalseg is the total number of road segments in a spatial network. When

h > 0, each block of Lh−1 will merge with its’ neighbor to obtain larger blocks of

Lh and get lower granularity. In the example of Figure 4.1, edge (n10, n4) and edge

(n10, n9) of L0 merge together and form block B1,1 of L1. Next, Block B1,1 and

B1,2 of L1 merge together and form B2,3 of L2. B2,1 and B2,3 of L2 merge together

and form B3,1 of L3. B3,1 and B3,2 of L3 merge together and form B4,1 of L4. Each

block is represented as
(
Bh,i, N userBh,i

, LengthBh,i
, N segBh,i

)
where Bh,i is the

block identifier of Lh, N userBh,i
is the number of users in Bh,i, LengthBh,i

is the

length summation in Bh,i and N segBh,i
is the number of segments in Bh,i. By this

hierarchical structure, we can quickly find the cloaked road segments to fit user’s

profile (k, Lmin) or (k, Nmin).

According to user’s profile is (k, Lmin) or (k, Nmin), we can build two different

index tree to match each of them better. If user’s profile is (k, Lmin), we will

build the index tree named Indexlength which can let the length summation of the

cloaked road segments is as close as possible to Lmin. If the summation of road

length in each block of the same level is as the same as possible, the quality of

spatial network partition is better. Given a spatial network, there are Totaljunction

road junctions, and Totallength length summation of all road segments. We define

17



Figure 4.1: An example of hierarchical structure of the Spatial-Temporal Connec-
tive Location Anonymizer.
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Figure 4.2: An example of spatial network with mobile users and length of each
segment.

the spatial network partition quality as





N blockLh∑
i=1

∣∣∣LengthBh,i
− Totallength

Totaljunction

∣∣∣ , if h = 1

N blockLh∑
i=1

∣∣∣∣∣∣
LengthBh,i

− Totallength⌈
N blockLh−1

2

⌉

∣∣∣∣∣∣
, if h > 1





. For level 1, we merge the road segments to their common junction, so the maxi-

mum number of blocks in level 1 is Totaljunction and the minimum average length

summation of road segments in each block of level 1 is
Totallength

Totaljunction
. For higher

level, if we want to merge the blocks from Lh−1 to Lh, the maximum number of

blocks in level h is
⌈

N blockLh−1

2

⌉
and the minimum average length summation of

road segments in each block of level h is
Totallength⌈
N blockLh−1

2

⌉ . The length summation of

road segments in block i of level h is LengthBh,i
. We calculate the variance be-

tween LengthBh,i
and

Totallength

Totaljunction
, when h = 1, or LengthBh,i

and
Totallength⌈
N blockLh−1

2

⌉ , when

h > 1, to recognize if the length summation of road segments are averagely dis-

tributed in those blocks. The less the variance is, the higher the quality of partition

is.

The Build Index length algorithm is shown in Algorithm 1. Assume the spatial

network is shown in Figure 4.2. At first, we calculate the total length summation

19



Algorithm 1 Build Indexlength Algorithm

Input: A modeling spatial network graph, G(V,E)
Output: A hierarchical index structure, Indexlength, for Lmin

1: Totallength= the total length summation of road segments in G(V,E)
2: Totaljunction= the total number of road junctions in G(V, E)
3: k = 0
4: while Any segment is not distributed do
5: Finds junction, ni,whose length summation of adjacent segments is closest

to
Totallength

Totaljunction

6: ni’s adjacent segments become B1,i and remove those segments from ni’s
adjacent node,nj

7: Re-sum up the adjacent length summation and number of adjacent segments
of nj

8: k + +
9: end while

10: N blockL1 = k
11: h = 2
12: while N blockLh−1

> 1 do
13: k = 0
14: while Any Bh−1,i have not been merged do
15: if Bh−1,i connects to Bh−1,j and they have not merge with other block

then
16: if LengthBh−1,i

+ LengthBh−1,j
is closet to

Totallength⌈
N blockLh−1

2

⌉ then

17: Merge Bh−1,i with Bh−1,j to Bh,t

18: k + +
19: end if
20: end if
21: end while
22: N blockLh

= k
23: h + +
24: end while
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of all road segments and the number of junction (Line 1 and 2 in Algorithm 1). In

this example, the length summation of all road segments is 86 and the number of

junctions is 7. Next, we start to merge the blocks from level 0 to 1 according to

the above spatial network partition quality:





N blockLh∑
i=1

∣∣∣LengthBh,i
− Totallength

Totaljunction

∣∣∣ , if h = 1

N blockLh∑
i=1

∣∣∣∣∣∣
LengthBh,i

− Totallength⌈
N blockLh−1

2

⌉

∣∣∣∣∣∣
, if h > 1





. We greedily choose the junction whose length summation of road segments is

the closet to
Totallength

Totaljunction
. Once the road segments have already been distributed

to a road junction, it can not be distributed to another junction again. So, the

length summation of road segments in each junction will change after each choosing

procedure (Line 4 to 9 in Algorithm 1). In our example, we will choose the junction

whose length summation of road segments is the closet to 86
7

= 12.3. We first

choose the junction n10 whose length summation is 14, shown in Figure 4.3(a),

the adjacent edges of n10 merge together and form B1,1. Then it causes the road

segments (n10, n4) and (n10, n9) need be removed from the adjacent list of n4, n9

respectively, so the remain length summation of junction n4 and n9 will become

10 and 13 respectively. So, shown in Figure 4.3(b), the next choosen junction is

n9 and form B1,2. Repeat the procedure until all of the road segments have been

distributed to their junctions. Level 1 of Figure 4.1 shows the result of L1. Next,

we choose the pair of blocks in Lh−1 whose length summation of road segments

is the closet to
⌈

N blockLh−1

2

⌉
and merge together to obtain a larger block of Lh.

Repeats the merge procedure until there exists only one block that covers the whole

spatial network (Line 12 to 24 in Algorithm 1). In our example, N blockL1 = 7,

so the maximum average length summation of road segments in each block of L2

is 86

d 7
2e = 21.5. We find if B4 merge with B5, the new block’s length summation
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(a) First step of merge L0 (b) Second step of merge L0

Figure 4.3: Merge step of L0

(a) First step of merge L1 (b) Second step of merge L1

Figure 4.4: Merge step of L1

of road segments will be 20 which is closet to 21.5. So, we merge B4 with B5 and

obtain B8 of L2, shown in Figure 4.4(a). Next, shown in Figure 4.4(b), we merge

B3 with B7 and obtain B9 of L2. Repeat the procedure until there are no blocks

of L2 can be merge. Level 2 of Figure 4.1 shows the result of L2. Repeat the same

procedure of each level, we can obtain the result of L3 and L4 and we obtain the

index structure, Indexlength shown in Figure 4.1.

If user’s profile is (k, Nmin), we will build the index tree named IndexNum segment

which can let the number of road segments in the cloaked road segments is as

close as possible to Nmin. The concept of building IndexNum segment is almost the
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same with Indexlength, and the difference of them is that the partition quality of

IndexNum segment is according to





N blockLh∑
i=1

∣∣∣N segBh,i
− Totalseg

Totaljunction

∣∣∣ , if h = 1

N blockLh∑
i=1

∣∣∣∣∣∣
N segBh,i

− Totalseg⌈
N blockLh−1

2

⌉

∣∣∣∣∣∣
, if h > 1





.

4.2 Maintenance

The mobile user will periodically update his location to the Spatial-Connective

Location Anonymizer in this form (uid, x, y) where uid is used to identify this mo-

bile user, x and y are the spatial coordinate of this mobile user’s new location.

Once the Spatial-Temporal Connective Location Anonymizer receives this update

information, it will apply the find segments(px) operation to find this mobile

user locates on which road segment, segmentnew. Then the Spatial-Temporal Con-

nective Location Anonymizer will check the original road segment, segmentold,

with segmentnew. If segmentold = segmentnew, there is no additional process-

ing. If segmentold 6= segmentnew, the number of users on both segmentold and

segmentnew need to update. Then propagate the Number of user (segmentold)

and Number of user (segmentnew) in the block counters N userBh,i
of their higher

layer. If a new mobile user registers to our architecture, the number of users on the

segment which this user locates on needs to increase by one and update the block

counters N userBh,i
of its’ higher layer.
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4.3 The Spatial-Temporal Connective Cloaking

Algorithm

Algorithm 2 Spatial-Temporal Connective Cloaking Algorithm

Input: User’s profile (k, Lmin), location (x, y) and hierarchical index structure
Indexlength

Output: Cloaked road segments
1: Find the road segment, (ni, nj), which (x,y) locates on
2: segment (ni, nj) belongs to B0,t

3: h=0
4: while N blockLh

≥ 1 do
5: if N userBh,t

≥ k && LengthBh,t
≥ Lmin then

6: return the road segments covered by Bh,t

7: end if
8: find block Bh+1,s which is the parent of block Bh,t

9: h++
10: t=s
11: end while

Algorithm 2 bottom-up blurs a mobile user’s location into cloaked road seg-

ments. Whenever user wants ask some service to LBS, the Spatial-Temporal Con-

nective Location Anonymizer will apply this cloaking algorithm to obtain cloaked

road segments and protect user’s location privacy. For simplicity, we assume that

the query user’s profile is in (k, Lmin) format, so the input of the algorithm is the

user’s privacy profile k, Lmin, his location (x, y) and the hierarchical index structure

Indexlength. If the query user’s profile is in (k, Nmin) format, it is only to replace

Indexlength with IndexNum segment, Lmin with Nmin and LengthBh,t
with N segBh,t

in Algorithm 2. Assume there is a spatial network with length of road segments

and mobile users and one of the users query for a service, shown in Figure 4.5(a).

This user’s privacy profile is k = 3 and Lmin = 25. First, the Spatial-Connective

Location Anonymizer will find out the query user locates on which block of L0

(Line 1 to 2 in Algorithm 2). Next, it will bottom-up check the blocks, Bh,t, if

the number of users in Bh,t is larger than k and the length summation in Bh,t is
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larger than Lmin (Line 4 to 11 in Algorithm 2). If yes, return the road segments

covered by Bh,t. In our example, shown in Figure 4.5(a), the query user location

on segment (n9, n10) whose length is 7 and there is only one user on it. Because 7

is less than Lmin and 1 is less than k, it needs to merge with other road segments.

Then the Spatial-Temproal Connective Location Anonymizer will bottom-up find

B1,1, shown in Figure 4.5(b), whose length summation is 14 and there are 4 users

on B1,1. Although 4 is larger than k, but 14 is less than Lmin. So, it needs to merge

with more road segments. The Spatial-Temproal Connective Location Anonymizer

bottom-up finds B2,3, shown in Figure 4.5(c), whose length summation is 27 which

is larger than Lmin and there are 8 users which is larger than k on B2,3. So,

the Spatial-Connective Location Anonymizer will return the cloaked road segments

which is {(n9, n3), (n9, n8), (n9, n11), (n10, n4), (n10, n9)}.
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(a) Cloaks user’s location in L0

(b) Cloaks user’s location in L1

(c) Cloaks user’s location in L2

Figure 4.5: Bottom-up cloak user’s location.
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Chapter 5

Privacy-Protected Query

Processing

In our architecture, shown in Figure 3.1, the Privacy-Protected Query Processor

can deal with the private queries over public data on spatial networks. It uses

the cloaked road segments rather than the exact location to obtain the candidate

answers. The traditional query processing algorithm on spatial networks, such as

INE or RNE [18], can only support the public queries over public data because the

location of query point must be available. So, we illustrate the algorithm for the

Privacy-Protected Query Processor to solve the private queries. Without loss of

generality, we focus on k nearest neighbor query.

When the Private-Protected Query Processor receives the privacy-protected k

nearest neighbor query from the location anonymizer, it will apply the Privacy-

Protected k Nearest Neighbor Query algorithm to deal with the cloaked road seg-

ments. Given a spatial network with target objects and cloaked road segments

CRS, the Privacy-Protected k Nearest Neighbor Query algorithm will first find

out all of the objects within CRS. Those objects must be the partial candidate

answers (Line 1 in Algorithm 3). Next, the algorithm will find out all of the in-

tersection nodes between CRS and the spatial network (Line 4 in Algorithm 3).
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Algorithm 3 Privacy-Protected k Nearest Neighbor Query Algorithm

Input: A spatial network with interest objects and cloaked road segments CRS
Output: Candidate answers
1: Candidateans = all of objects in CRS
2: NDistmax = ∞
3: Declare a priority queue Q
4: Find the intersection nodes between CRS and underlying network as

T={t1, t2, ..., tn}
5: for each ti do
6: {O1, O2, ..., Ok} = the k nearest object of ti sorted in ascending order of their

network distance (The initial value of O1, O2, ..., Ok are all ∅)
7: n = ti
8: while NDist(ti, n) < NDistmax do
9: for each non-visited adjacent node ni of n do

10: Coverobject = find objects(n, ni)
11: update {O1, O2, ..., Ok} from Coverobject

12: NDistmax = NDist(ti, Ok) (if Ok = ∅, NDistmax = ∞)
13: en-queue (ni, NDist(ti, ni)) to Q
14: end for
15: de-queue the next node n in Q
16: end while
17: Candidateans = Candidateans ∪ {O1, O2, ..., Ok}
18: end for
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For each intersection node ti, it searches its’ k nearest neighbor objects and stores

in the set of {O1, O2, ..., Ok}. The algorithm will incremental expand to find the

k nearest neighbor objects from ti (Line 8 to 16 in Algorithm 3). {O1, O2, ..., Ok}
are also the partial candidate answers. Finally, union the objects in CRS and

{O1, O2, ..., Ok} of each intersection node ti, the result set is the candidate answers

of k nearest neighbor objects of CRS (Line 17 in Algorithm 3).

For example, Figure 5.1 shows a spatial network with four target objects, O1,

O2, O3 and O4, and the cloaked road segments {(n10, n4), (n10, n9)}. Assume k = 2,

and we want to find the 2 nearest neighbor objects of the cloaked road segments

{(n10, n4), (n10, n9)}. First, the objects within CRS that is O2 must be the partial

candidate answers. Candidateans is {O2}. Next, the intersection nodes between

CRS and this spatial network are n4 and n9. Then the privacy-protected k nearest

neighbor query algorithm will search the 2 nearest neighbor objects of n4 and n9.

For n4, it fist visits its’ adjacent node n3 and find out O1 on segments (n4, n3).

Because the NDist(n4, O1) = 3, NDistmax becomes 3. Then n3 pushes to the

priority queue Q. Q =< (n3, 7) >. Next, n4 visits n6 and n10 and pushes them

to Q. Q =< (n6, 3), (n3, 7), (n10, 7) >. Next de-queue n6 from Q, n6 will visit

its’ adjacent node n5, n7 and n12. It finds out O3 is on the segments (n6, n12).

So, {O1, O3} is the candidate list of 2 nearest neighbor objects of n4. Because O3

is the second nearest neighbor object of n4, NDistmax becomes 11. And Q =<

(n5, 6), (n7, 6), (n3, 7), (n10, 7), (n12, 13) >. Because n5 and n7 cannot be expanded,

it de-queues n5, n7 and n3 from Q and n3 will visit its’ adjacent node n1, n2

and n9. Q =< (n10, 7), (n1, 12), (n2, 12), (n12, 13), (n9, 14) >. Next de-queue n10

from Q, n10 will visit its’ adjacent node n9. It finds out O2 is on the segments

(n10, n9). So, {O1, O2} is the candidate list of 2 nearest neighbor objects of n4 and

NDistmax becomes 9. Because the network distance from n4 to the other nodes

in Q are larger than NDistmax, the privacy-protected k nearest neighbor query
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Figure 5.1: Privacy-protected query for the k nearest neighbor objects of cloaked
road segments. (k = 2 in this example)

algorithm will stop to search the other nearest neighbor of n4. The same with n4,

the candidate list of 2 nearest neighbor objects of n9 is {O2, O4}. Finally, union

{O1}, {O1, O2} and {O2, O4} will obtain the candidate list of 2 nearest neighbor

object of {(n10, n4), (n10, n9)} that is {O1, O2, O4}.
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Chapter 6

Experiments

In this section, we will evaluate the performance of our system by evaluating

its’ three components that are mobile user, Spatial-Temporal Connective Location

Anonymizer and Privacy-Protected Query Processor. In all of our experiments, we

use the Network-based Generator of Moving Objects [2] to generate moving objects.

We use its’ attached Oldenburg’s road map data file, shown in Figure 6.1, as the

input to the generator. The generator will output a set of moving objects that

move on the road network of the given map. We set there are 5000 mobile users

on the spatial network and they will update their location per time stamp. Next,

Target objects are randomly distributed on the spatial network. We assume that

each edge exists at most only one target object.

6.1 Mobile user

In this subsection, we evaluate the overall performance of our Spatial-Temporal

Connective Cloaking algorithm with respect to the cache hit rate for mobile users

to prove the contribution of this work by evaluating three different influences that

are effect of user’s condition, effect of user’s profile and effect of query. We ran-

domly choose one mobile user as the query point who issues an k-nearest-neighbor
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Figure 6.1: Map of Oldenburg.

continuous query which persists 30 time stamps and there are 3000 target objects

in this spatial network.

6.1.1 Effect of user’s condition

Figure 6.2(a) compares the effect of speed to our cloaked road segments with the

effect to traditional cloaked region by increasing speed from 1
200

to 1
10

( the denom-

inator is the speed parameter in the generator). We assume user sets his privacy

profile as 30-anonymity and Lmin and Nmin are both of 0, he issues one-nearest-

neighbor query and his cache size is 100. By increasing the speed, the cache hit

rate decreases because user will easily leave out of our cloaked road segments or

the traditional cloaked region. Even though, the cache hit rate of our cloaked road

segments is higher than traditional cloaked region especially for higher speed.

Figure 6.2(b) compares the effect of cache size to our cloaked road segments

with the effect to traditional cloaked region by increasing the size from 20 to 100.

We assume user sets his privacy profile as 30-anonymity and Lmin and Nmin are
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(b) Effect of cache size

Figure 6.2: Effect of user’s condition.

both of 0, he issues one-nearest-neighbor query and his speed is 1
50

(middle in the

generator). By increasing the cache size, the cache hit rate increases because the

cache on mobile device can cache more record in it. Even though, the cache hit rate

of our cloaked road segments is higher than traditional cloaked region especially

for less cache size.

6.1.2 Effect of user’s profile

Figure 6.3 compares the effect of k-anonymity in user’s privacy profile to our cloaked

road segments with the effect to traditional cloaked region by increasing k from

10 to 100 while Lmin and Nmin are both of 0. We assume user issues one-nearest-
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Figure 6.3: Effect of k.

neighbor query, his speed is 1
50

and his cache size is 100. By increasing the k value

of k-anonymity, the cache hit rate of our cloaked road segments and traditional

cloaked region increase from k = 10 to k = 30, but decrease from k = 40 to

k = 100. Because the cache of user’s device can cache larger length summation

or number of segments for cloaked road segments or larger region for traditional

cloaked region and its’ candidate answer size is not over the cache size until k = 30.

When k > 30, its’ candidate answer size will begin to over the cache size and cause

cache miss. Even though, the cache hit rate of our cloaked road segments is higher

than traditional cloaked region especially for larger k.

Figure 6.4 gives the effect of Lmin and Nmin in user’s privacy profile to our

cloaked road segments by increasing Lmin from 500 to 30000 and Nmin from 1 to

300 while the k value of k-anonymity is 1. We assume user issues one-nearest-

neighbor query, his speed is 1
50

and his cache size is 100. By increasing the Lmin

or Nmin, the cache hit rate increases from Lmin = 500 to Lmin = 10000 or from

Nmin = 1 to Nmin = 50, but decreases from Lmin = 10000 or Nmin = 50. Because

the cache of user’s device can cache larger length summation or number of segments

for cloaked road segments and its’ candidate answer size is not over the cache size

until Lmin = 10000 or Nmin = 50. When Lmin > 10000 or Nmin > 50, its’ candidate

answer size will begin to over the cache size and cause cache miss. Even though,
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Figure 6.4: Effect of Lmin and Nmin.

the cache hit rate of our cloaked road segments is higher than traditional cloaked

region especially for larger Lmin or Nmin.

6.1.3 Effect of query

Figure 6.5 compares the effect of k value of k-nearest-neighbor query to our cloaked

road segments with the effect to traditional cloaked region by increasing the k value

of k-nearest-neighbor from 1 to 20. We assume user sets his privacy profile as 30-

anonymity and Lmin and Nmin are both of 0, his speed is 1
50

and his cache size is

100. By increasing the k value of k-nearest-neighbor, the cache hit rate decreases

because the privacy-protected query processor will return more candidate answers

and those result the candidate answer size easily over the cache size and cause
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Figure 6.5: Effect of query.

cache miss. Even though, the cache hit rate of our cloaked road segments is higher

than traditional cloaked region especially for larger k value of k-nearest-neighbor.

Through all of the above experiments in 6.1 subsection, we prove that our

Spatial-Temporal Connective Cloaking algorithm gives higher cache hit rate that

helps to reduce the re-identified probability of query point and the costs of cloaking

and query for continuous query on spatial networks.

6.2 Spatial-Temporal Connective Location Anonymizer

In this subsection, we evaluate the efficiency of the Spatial-Temporal Connective

Location Anonymizer with respect to accuracy because user wants to have a cloaked

road segments that can best match his privacy profile. However, the Spatial-

Temporal Connective Location Anonymizer may not give an exact match because

of the resolution of the hierarchical structure. We randomly choose one mobile user

as the query point and assume he issues an one-nearest-neighbor continuous query

which persists 30 time stamps, his speed is 1
50

( middle in this generator) and the

cache size of mobile device is 100 candidate answers. Besides, there are 3000 target

objects in this spatial network.

36



6.2.1 k Precision

The accuracy is measured as k
′

k
, where k

′
is the number of users in cloaked road

segments while k is the exact user requirement in his privacy profile. We run the

experiment for different privacy requirement, k = 10, 20 and 30, while Lmin and

Nmin are 0. Figure 6.6(a) and Figure 6.6(b) give the effect of the hierarchical

level of two different index tree Indexlength and IndexNum segment respectively on k

precision of the cloaked road segments. Lower hierarchical levels give very accurate

answer whose error ratio is very close to one (optimal case) whether for relaxed users

or not. Higher hierarchical levels give less accurate answer especially for relaxed

users. Because higher hierarchical level provides lower resolution that means there

are fewer blocks and more mobile users in each block. This results the number of

users in the block of higher hierarchical level more easily over k too much and cause

higher error ratio. Besides, for relaxed users, their k values are small, so even a

little difference will cause large error ratio.

6.2.2 Lmin and Nmin Precision

The accuracy is measured as
L
′
min

Lmin
and

N
′
min

Nmin
, where L

′
min and N

′
min are respectively

the length summation and number of segments in cloaked road segments while Lmin

and Nmin are the exact user requirements in his privacy profile. For Lmin, we run

the experiment for different privacy requirement, Lmin = 1000, 2000 and 3000. For

Nmin, we run the experiment for different privacy requirement, Nmin = 10, 15 and

20. Both of the two experiments, we set k to 0. Figure 6.7(a) gives the effect of the

hierarchical level of the index tree, Indexlength, on Lmin precision of the cloaked

road segments. Lower hierarchical levels give very accurate answer whose error

ratio is very close to one (optimal case) whether for relaxed users or not. Higher

hierarchical levels give less accurate answer especially for relaxed users. Because

higher hierarchical level provides lower resolution that means there are fewer blocks
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Figure 6.6: k precision.
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Figure 6.7: Lmin and Nmin precision.

and larger length summation in each block. This results the length summation in

the block of higher hierarchical level more easily over Lmin too much and cause

higher error ratio. Besides, for relaxed users, their Lmin values are small, so even a

little difference will cause large error ratio. The same as Lmin, Figure 6.7(b) gives

the effect of the hierarchical level of the index tree, IndexNum segment, on Nmin

precision of the cloaked road segments.

6.3 Privacy-Protected Query Processor

In this subsection, we evaluate the scalability and efficiency of the Privacy-Protected

Query Processor with respect to the returned candidate answer size because we
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want to prove if our cloaked road segments can obtain less candidate answer size

than traditional cloaked region and raise the cache hit rate. We randomly choose

one mobile user as the query point and assume he issues an k-nearest-neighbor

continuous query which persists 30 time stamps, his speed is 1
50

( middle in this

generator) and the cache size of mobile device is 100 candidate answers.

6.3.1 Scalability

Figure 6.8(a) compares the scalability of our cloaked road segments with traditional

cloaked region by increasing the number of target objects from 1000 to 5000. We

assume user sets his privacy profile as 30-anonymity and Lmin and Nmin are both

of 0 and he issues one-nearest neighbor query. By increasing the number of target

objects, the candidate answer size of our cloaked road segments and traditional

cloaked region increase because the more target objects in the spatial network,

the more target objects will be covered by cloaked road segments and traditional

cloaked region. Even though, the candidate answer size of our cloaked road seg-

ments is less than traditional cloaked region especially for large target objects.

Figure 6.8(b) compares the scalability of our cloaked road segments with tra-

ditional cloaked region by increasing the k value of k-nearest-neighbor query from

1 to 20. We assume user sets his privacy profile as 30-anonymity and Lmin and

Nmin are both of 0 and the target objects in the spatial network are 3000. By

increasing the k value of k-nearest-neighbor query, the candidate answer size of our

cloaked road segments and traditional cloaked region increase because it needs to

find more neighbor target objects. Even though, the candidate answer size of our

cloaked road segments is less than traditional cloaked region especially for large

target objects.
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Figure 6.8: Scalability.
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Figure 6.9: Effect of k.

6.3.2 Effect of privacy profile

Figure 6.9 compares the effect of k-anonymity in user’s privacy profile to our cloaked

road segments with the effect to traditional cloaked region by increasing k from 10

to 100 while Lmin and Nmin are both of 0. We assume there are 3000 target objects

in the spatial network and user issues one-nearest-neighbor query. By increasing

the k value of k-anonymity, the candidate answer size of our cloaked road segments

and traditional cloaked region increase because it needs larger number of segments

or region for larger k and this will result that there are more target objects will be

covered by cloaked road segments and traditional cloaked region. Even though, the

candidate answer size of our cloaked road segments is less than traditional cloaked

region especially for large target objects.

Figure 6.10 gives the effect of Lmin and Nmin in user’s privacy profile to our

cloaked road segments by increasing Lmin from 500 to 30000 and Nmin from 1 to

300 while the k value of k-anonymity is 1. We assume there are 3000 target objects

in the spatial network and user issues one-nearest-neighbor query. By increasing

the Lmin or Nmin, the candidate answer size increases too because it needs larger

number of segments for larger Lmin or Nmin and this will result that there are more

target objects will be covered by cloaked road segments.
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Figure 6.10: Effect of Lmin and Nmin.

43



Chapter 7

Conclusion

This paper introduces a system with three components that are mobile users,

Spatial-Temporal Connective Location Anonymizer and Privacy-Protected Query

Processor to efficiently process continuous query without compromising privacy

and large overheads. First, we implement cache mechanism on mobile user’s de-

vice to reduce the number of queries. Mobile users can set their privacy profile

(k, Lmin) or (k,Nmin). In order to efficiently utilize the cache, we design Spatial-

Temporal Connective Cloaking algorithm in the Spatial-Temporal Connective Loca-

tion Anonymizer. The Spatial-Temporal Connective Location Anonymizer can pro-

duce two different hierarchical index trees that are Indexlength and IndexNum segment

to best match user’s profile (k, Lmin) and (k,Nmin) respectively. The hierarchi-

cal index structure can blur query point into different granularity cloaked road

segments. Next, the Privacy-Protected Query Processor can process the privacy-

protected query according to the cloaked road segments and return the candi-

date answer list to query point through the Spatial-Temporal Connective Location

Anonymizer. Finally, we experimentally evaluate our system by evaluating the per-

formance of mobile user, Spatial-Temporal Connective Location Anonymizer and

Privacy-Protected Query Processor and prove that our system can efficiently pro-

cess continuous query without compromising privacy and large overheads.
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