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This chapter is concerning how we decide features of subjects for classification. As

proved correlation between diseases and the brain volume, observations of the brain vol-

ume are considered as good features to differentiate between normal subjects and abnormal

ones. Presumably, it is intuitive that every unit of brain structures is available as a feature.

However, the size of a medical image is 256 x 256 x 124 and it costs enormous computa-

tions to analyze all images if each unit is taken as a feature. In addition, inclusions of all

units may contain both of good and bad features and cause a poor classification outcome.

So, it is expected that better features are extracted to obtain a better result. In this work,

we use voxel-based morphometry technology to gain better features and select more useful

subset of extracted features with principal component analysis.

2.1 Voxel-Based Morphometry

2.1.1 Introduction to VBM

Voxel-based morphometry (VBM) is a neuroimaging analysis technique that allows

investigation of a voxel-wise comparison of the concentration or volume of brain tissues

between two different groups of MR images [10]. It was first proposed by Wright et al. in

1995 for characterizing regional tissues’ differences in structural MR images [11]. Since

then, many studies of brain morphometry have been presented, for instance, schizophre-

nia [12], attention-deficit hyperactivity disorder(ADHD) [13], Alzheimer’s disease [14]

and bipolar disorder [15]. Furthermore, these studies often obtained some particular mor-

phometric measurements from known and definite brain regions and had lots of findings

related to those specific measurements.

VBM has been widely used for brain structure studies because of its simplicity and

feasibility. Moreover, it is a whole-brain technique that means scientists have no need

to know where differences between two groups may exist and have a more clear sight of
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disease pathologies. In other words, it is unbiased to any particular brain structure and

gives a impartial and thoroughgoing assessment of anatomical differences everywhere in

brain [10].

The basic VBM concept involves five steps described in order as below [10]. Figure 2.1

is the flowchart of the basic VBM.

1. Spatially normalization of all the images to the same stereotactic space

As shown in the figure 2.2, the spatially normalization is to register all subjects’ MR

images obtained by a scanner into a standard stereotactic space defined by a template

image. It is impossible to compare each voxel of different MR images in native space

because of different sizes, shapes and the diversity of the scanning position. So, the

transformation into the same space is assumed that every voxel of different images

in normalized space represents the same brain tissue and could be compared with

others.

2. GM, WM and CSF extraction from the normalized images

The spatially normalized images are segmented into several different tissue classes

which are grey matter (GM), white matter (WM), cerebrospinal fluid (CSF) and other

nonbrain partition. A modified model cluster analysis method is often used for tissue

segmentation according to voxel intensities of images.

3. Smoothing

The normalized, extracted images of different tissues are smoothed using an isotropic

Gaussian kernel for the following analysis. The smoothing step enables the data to

be more closely to Gaussian field model by central limit theorem and improves the

validity of making inferences about statistical analysis. Also, it atones for the vague

results due to the spatial normalization.

4. Voxel-based statistical analysis for localization

The normalized, segmented and smoothed images including GM, WM and CSF are
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Figure 2.1: Flowchart of basic VBM steps. Raw images are first normalized to a standard
space with a template. Secondly, GM, WM and CSF are segmented from the normal-
ized images. Thirdly, the normalized and segmented images are modulated to correct vol-
ume changes due to previous normalization. Fourthly, the modulated images are smoothed
with an isotropic Gaussian kernel to make the data close to normal distribution. Finally, a
voxel-based statistical inference is applied to those normalized, segmented, modulated and
smoothed data.
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Figure 2.2: Concepts of the spatial normalization. Due to the different shape and size of
each subject, it is impossible to compare different subjects in the native space. Thus, all
images are registered into a standard space defined by a template such ICBM152. After
normalization, each subject is in the same space and can be compared.

statistically analyzed with the general linear model [16] to identify regionally dis-

crepancy between different groups. Standard parametric statistical procedures such

as t tests and F tests are often used to test the hypotheses at every voxel of brain

structures to examine where are significantly related to different groups in statistic.

5. Making inferences about group differences

As a result of the fourth step, it is easy to know where different groups have diversi-

ties. In other words, a voxel is considered as a position of diversity between different

groups if the voxel reaches the significant level in statistical tests. Hence, a 3D vol-

ume data with statistical parameters is obtained and we can make inferences about

group differences with the data.

There are many ways to implement voxel-based morphometric analysis in terms of

improvements in inferences about group differences. Some change the order of the first
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three steps and some promote the normalization and segmentation techniques. In next

section, one of the most popular implementations, the optimized VBM protocol [17], will

be introduced.

2.1.2 Optimized VBM protocol

There are some discussions about imperfect registration influences on VBM [18]. De-

fective registration may lose the original image information and cause faulty segmenta-

tions. Missegmentation also leads to inappropriate comparisons between dissimilar brain

structures. So, a good result of the registration will bring about a good outcome of the seg-

mentation and lead to better interpretations of structural differences discovered by VBM.

The optimized VBM proposed by Good et al. [17] used a recursive method of the

segmentation and the normalization to improve fine consequences of the preprocessing.

The optimized VBM protocol is described as follows and its flowchart is shown in Fig-

ure 2.3 [19].

1. Creation of customized T1 template and a prior probability maps of GM, WM

and CSF

A customized template is created in order to reduce the deviation caused by the scan-

ner and to be more close to the population sample to minimize distortions due to

the spatial normalization. All images are normalized to ICBM 152 template (Mon-

treal Neurological Institute), segmented into GM, WM and CSF images and then

smoothed with an 8mm full-width at half-maximum (FWHM) isotropic Gaussian

kernel. Each normalized, segmented and smoothed T1/GM/WM/CSF images are

separately averaged to construct T1/GM/WM/CSF templates respectively.

2. Segmentation and extraction of affine-registered whole brain images

The purpose of this step is automatically to remove scalp tissue, skull and non-brain



2.1 Voxel-Based Morphometry 21

Smooth

GM image

Modulation

Modulated

GM image

Smooth

Segmentation

& extraction

GM/WM/CSF

priors

T1 template

Normalized

T1 image

Apply

deformations

Deformation

filed

Spatial

normalization

GM image

Segmentation

& extraction

Affined T1 image

Affine registration

GM prior

Statistics

(volumes)

Statistics

(concentrations)

T1 image

Smooth

GM image

Modulation

Modulated

GM image

Smooth

Segmentation

& extraction

GM/WM/CSF

priors

T1 template

Normalized

T1 image

Apply

deformations

Deformation

filed

Spatial

normalization

GM image

Segmentation

& extraction

Affined T1 image

Affine registration

GM prior

Statistics

(volumes)

Statistics

(concentrations)

T1 image

Figure 2.3: Flowchart of optimized VBM protocol. Optimized VBM protocol consists
of the following seven steps: (1) creation of customized T1 template and a prior prob-
ability maps of GM, WM and CSF, (2) segmentation and extraction of affine-registered
whole brain images, (3) obtaining optimized normalization parameters by normalizing
GM/WM/CSF images into the GM/WM/CSF template, (4) normalization of whole brain
T1 images with optimized normalization parameters, (5) segmentation and extraction of
normalized whole brain images, (6) modulation (if need), and (7) smoothing.
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tissues. Initially, GM/WM/CSF images from the original structural MR images are

extracted in native space with customized GM/WM/CSF template derived from first

step. Then, a series of morphological operations is applied to these segmented im-

ages to remove unconnected non-brain voxels. So, segmented GM/WM/CSF images

without non-brain tissues in native space are obtained.

3. Obtaining optimized normalization parameters by normalizing GM/WM/CSF

images into the GM/WM/CSF template

In this step, segmented GM/WM/CSF images without non-brain tissues acquired in

second step are normalized into the customized GM/WM/CSF template individually.

The process is to avoid the bias from non-brain voxels and to find the optimized

normalization parameters. Then, optimal normalization parameters of GM, WM and

CSF are obtained and help us measure group differences in a proper way.

4. Normalization of whole brain T1 images with optimized normalization param-

eters

In terms of facilitating an optimal segmentation, the optimized normalization pa-

rameters derived from the previous step are reapplied to the original whole-brain

structural MR images in native space. Namely, all raw images in native space are

normalized into stereotactic space. Usually, the resolution of normalized images is

relatively high because of reduction of partial volume effects.

5. Segmentation and extraction of normalized whole brain images

In stereotactic space, the optimally normalized whole brain structural MR images

obtained from the above step are segmented into GM, WM, CSF and some other

non-brain partitions. Thus, the exclusion of non-brain parts is repeated at this stage

with the same methods using in second step. Finally, the optimally normalized and

segmented GM/WM/CSF images are got in stereotactic space.

6. Correction for volume changes (optional)
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Due to the nonlinear spatial normalization, the volumes of specific brain areas may

twist and have distortions. In order to preserve the volume of a certain region within a

voxel, a correction for volume changes, usually called as modulation, is incorporated.

A modulated value of a voxel, represented as the volume of the voxel, is obtained by

multiplying its value in the segmented images by its Jacobian determinants derived

from the spatial normalization step. Besides, the unmodulated data is usually referred

as the concentration of the voxel.

7. Smoothing

As the basic VBM method, the optimally normalized, segmented and modulated im-

ages of different tissues are smoothed using an isotropic Gaussian kernel. Smoothing

conditions the population more normally distributed and reduces the registration er-

ror. Most importantly, the choice of the smoothing kernel is related to the expected

differences. An 8mm or 12mm FWHM smoothing kernel is often used in VBM

method.

8. Statistical analysis

As the basic VBM method, a voxel-wise statistical analysis is performed on those

optimally normalized, segmented, modulated and smoothed images to identify re-

gionally discrepancy between different groups. Two-sample t test is often used to

evaluate hypotheses at every voxel of the brain structures. The resulting statistical

parameters are formed into a 3D image, called as a t-test map. According to the t-

test map, voxels with the statistical parameters reaching the significant level compose

the regions representative of the detected significant group differences.

In order to have fine normalization and segmentation, the optimized VBM protocol pro-

vides an automatic brain extraction technique and construction of a separate grey and white

matter templates. Moreover, it proposes a modulation step to calculate volume changes

during normalization. Often, the optimized VBM protocol is implemented with SPM2
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software (the Wellcome Department of Imaging Neuroscience, University College Lon-

don, UK) in Matlab. In this work, we maintain concepts of the optimized VBM protocol

and implement it with both of FSL (Analysis Group, FMRIB, Oxford, UK) and SPM2

softwares in Matlab 7.0 (the MathWorks, Inc. Natick, MA, USA).

2.1.3 Implementation of VBM

As we mentioned above, better normalization and segmentation will lead to better out-

comes of voxel-based morphometric statistical analysis. Also, some studies is referred

to the performance of automatic segmentation algorithms. It is shown that each kind of

segmentation algorithms with optimal parameters will result in correctness of the segmen-

tation [20]. Furthermore, there are some VBM studies using other tools to operate the

segmentation instead of using SPM2 software and those researches reveal more subtle dis-

crepancy between different groups [15]. In our thesis, hence, we tried to use both of FSL

software and SPM2 software to find a better performance of the tissue segmentation.

In our experiments, we found that the efficiency of each segmentation tool depended

on the quality of MR images. Our study group was collected from three different MR

scanners which were set with dissimilar parameters that led to different resolution and SNR

of each MR image. Surprisingly, FSL software was suitable to high quality images which

have higher resolution, higher SNR and fewer artifacts, and SPM2 software was suitable

to low quality, noisy images. We surmised that the phenomenon might be caused by the

segmentation algorithm. In SPM2 software, images with skull and non-brain tissue were

used with priors to accomplish the segmentation which was based on both of the intensity

and the position. In FSL software, only images without skull and non-brain were used to

perform the segmentation which was based on the image intensity. Therefore, noisy images

would have a better segmentation result with SPM2 software than with FSL software. In

short, we applied a suitable segmentation tool in our work according to the image quality
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and then there were two corresponding implementations of VBM. One is introduced in the

previous subsection and the other is as follows.

The implementation of VBM in this work is illustrated in figure 2.4. It is similar with

standard VBM protocol but has different order of the normalization and the segmentation.

It results from characteristics of segmentation tools. For example, the FAST segmentation

could segment tissues in the native space instead of a standard space. Despite the order of

the two steps, our goal is to find a good segmentation result which would solve the cross-

machine problem and lead to a precise registration. Our implementation could be depicted

in six steps as below.

1. Non-brain exclusion of T1 images with BET2

T1 images is edited to remove non-brain tissues using the Brain Extraction Tool v2

(BET2) in FSL. BET2 is a fast and automatic tool to extract the inner and outer skull

and scalp from MR images. Also, it improves the contrast of the image which would

achieve an accurate segmentation. It uses a surface model approach to develop the

brain’s surface accurately and then segments the brain images into brain and non-

brain partitions [21]. There is a parameter to decide how thick the skull is in BET2.

We often took the default value initially and then judged results manually for optimal

parameters. All images are segmented to remove nonbrain parts in native space with

BET2. Figure 2.5 illustrates the concept of non-brain exclusion.

2. Segmentation and extraction of brain T1 images with FAST

All raw T1 images without non-brain tissues derived from the previous step are seg-

mented into GM, WM and CSF images in native space with FMRIB’s Automated

Segmentation Tool (FAST) in FSL. FAST also provides a function of correcting for

intensity nonuniformity, also known as RF inhomogeneities. Its method is based on

a hidden Markov random field model and an associated Expectation-Maximization

algorithm [22, 23]. Notice that we opened the partial volume estimate option within
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FAST. Thus, the value of a voxel in segmented images represents a probability of

belonging to one particular tissue, ranged from 0 to 1.

3. Creation of customized GM, WM and CSF templates

All segmented GM, WM and CSF images are respectively normalized to ICBM 152

template and then averaged to construct customized GM, WM and CSF templates.

These customized templates are more close to the population sample and minimize

the distortion caused by normalization in later processes. The registration is operated

with the normalization function in SPM2 software and the following steps are also

done by SPM2 software.

4. Normalization of segmented GM, WM and CSF images

The segmented GM, WM and CSF images in native space obtained in second step are

separately normalized to the corresponding GM, WM and CSF customized templates

gained from the above step. So, all segmented and normalized GM/WM/CSF images

of different subjects are now in the same space and could be compared. Moreover,

the consequences, known as deformation field, from the normalization are stored in

order to correct volume changes in next step.

5. Correction for volume changes

The purpose of this step is to restore the expansion or the shrinkage of brain volume

through the normalization. We modulate these segmented and normalized images

with their deformation field by SPM2 software. The value of a voxel in segmented,

normalized and modulated images is considered as the brain volume in this position.

In our thesis, we used these modulated images as experimental materials and probed

the volume discrepancy between different groups.

6. Smoothing and Voxel-based mophometric statistical analysis

The segmented, normalized and modulated images are smoothed to be close to nor-

mal distribution. Then, a voxel-wise statistical analysis is performed on these seg-



2.1 Voxel-Based Morphometry 27

T1 Image BET2 segmentation

GM image

T1 without non-brain

FAST segmentation

Normalize to 
ICBM 152 template

Customized template 
Of GM

Spatial Normalization

Normalized GM image

Deformation field

Modulation

Modulated GM image
Statistics 
(Volumes)

Also produces WM and CSF.Now we 
only consider the part of GM in this 
flowchart. The procedure of WM and 
CSF are similar to this procedure.

Figure 2.4: Illustration of VBM implementation. Our implementation of VBM uses both
of FSL and SPM2 software and could be described in six steps: (1) non-brain exclusion of
T1 images with BET2, (2) segmentation and extraction of brain T1 images with FAST, (3)
creation of customized GM, WM and CSF templates, (4) normalization of segmented GM,
WM and CSF images, (5) correction for volume changes, (6) smoothing and voxel-based
mophometric statistical analysis.

mented, normalized, modulated and smoothed GM/WM/CSF images to identify re-

gionally discrepancy between different groups. Two-sample t test was used in our

work to test hypotheses at every voxel of brain structures. After the processing with

SPM2, a t-test map was produced, revealed the significance of each voxel and was

referred in the later processing.

VBM is used as a method of the feature selection in our system. Each voxel of the

t-test map from VBM is compared with a significant level (threshold) set by human in
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Figure 2.5: BET2 segmentation. This figure shows non-brain exclusion from a T1 image
by using BET2. The left image is T1 images with lower contrast and the right one is
an extracted brain image without non-brain materials after segmentation by BET2. The
quality of the extracted image has been improved and would make a good segmentation
with FAST.

order to recognize which are more important than others. If a voxel’s value reaches the

significant level, the voxel will be viewed as a good feature and be collected to form a

new space for classification. However, those features, 146395, are large relative to the

number of population sample, 91, and the dimensionality of the new space may cost a lot

for computation after thresholding. In behalf of effects caused by small sample size and

computation diminution, we employed a feature extraction method, principal component

analysis (PCA), to reduce dimensions of the new data set and to keep the original properties

of it.

2.2 Principal Component Analysis

2.2.1 Introduction to PCA

There is a well-known phenomenon in relations between the finite training data and

the number of features, termed as curse of dimensionality. It was made up by Bellman in
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1961 and referred to the problem that adding extra dimensions to a space would cause the

exponential growth of hypervolume. In a classifier design, this problem may lead to the

peaking phenomenon and affect the performance of the classifier. In practice, it is often

observed that adding features may result in a poor outcome of a classifier if the number of

features is large relative to that of training samples used for classification [24]. Therefore, it

is important for the training data with a fixed sample size to select reliable features. In our

experiments, we met the small sample size problem after thresholding and used principal

component analysis to solve it.

Principal component analysis (PCA) is a linear transformation technique that simpli-

fies a data set. It retains the characteristics of a data set in a high-dimensional space and

compresses it into an improved, lower-dimensional representation for analysis. PCA, also

called the Hotelling transform, was proposed by a statistician, Hotelling, in 1933 [25] and

has found applications in fields such as face recognition and image compression. However,

PCA is not always an optimal dimensionality-reduction procedure for classification pur-

poses. Therefore, we will bring up a method to improve the influence on our system caused

by this disadvantage in next section.

The main idea of PCA is to find most accurate data representation in a lower dimen-

sional space. Figure 2.6 illustrates concepts of PCA. PCA determines some appropriate

bases which form a subspace of dimensionality m in the original feature space of dimen-

sionality d where m is smaller than d. All data are then projected on the subspace and

represented with fewer variables. The proper subspace fits a criterion which has the mini-

mum of projection errors. For example, the line y in figure 2.6 (b) lying in the direction of

largest variance of data set produces smaller projection errors than lines in other directions

and is thought as a good line to use for projection. Also, it is shown that PCA preserves

largest variances in the data.

Suppose that {y1,...,yn} represent all vectors in a set of d-dimensional samples. We

want to find the most accurate representation of this set in some subspace W of dimension-
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Figure 2.6: Dimension Reduction. Figure (a) illustrates the distribution of a 2D data set
in a two dimensional space. A projection line could be found in the 2D space (figure (b)).
All data points are projected to the projection line and the line represents the data set in a
new and one dimensional space (figure (c)).

ality m (m ≤ d). First, we subtract the sample mean µ from the data and the sample mean

is defined as

µ =
1

n

n∑
i=1

yi. (2.1)

Then, the data set is reinterpreted as {x1,...,xn} with zero mean. Let {e1,e2,...,em} be the

orthonormal basis for W. Each sample xj of the set can be written as
∑m

i=1 αjiei. The total

errors for representations of all the data are

J(e1, ..., em, α11, ..., αnm) =
n∑

j=1

∥∥∥∥∥xj −
m∑

i=1

αjiei

∥∥∥∥∥
2

. (2.2)

Thus, we can find the best base of W by minimizing the total errors. After derivation of

Eq. 2.2, the problem can be translated into the following equation,

J(e1, ..., em) =
n∑

j=1

‖xj‖2 −
m∑

i=1

et
iSei, (2.3)

where S is a so-called scatter matrix, defined as

S =
n∑

k=1

(xk − µ)(xk − µ)t, (2.4)

where µ is the sample mean [26]. The scatter matrix is just (n-1) times the sample co-

variance matrix. Minimizing J is equivalent to maximize
∑m

i=1 et
iSei. The solution of this
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problem involves the method of Lagrange multipliers and is enforced constraints ‖ei‖ = 1

for all i. Then, we find that {e1,e2,...,em} and {λ1,λ2,...,λm} must be eigenvectors and

eigenvalues of the scatter matrix, that is, Se = λe. In addition, eigenvalues are sorted in

the descending order and eigenvectors are arranged in the order of corresponding eigen-

values. In order to minimize J, the basis of W must consist of the m eigenvectors of S

corresponding to the m largest eigenvalues. Furthermore, the larger eigenvalue of S indi-

cates the larger variance in the direction of the corresponding eigenvector.

However, it is difficult to apply PCA in practice when the sample size of data set is

small relative to the space dimensionality where data set is, known as small sample size

problem. Suppose that {x1,...,xn} represent all data in a p-dimensional samples (p � n).

Directly, the scatter matrix S, Sp×p = XXT , is computed with the matrix size of p × p.

It is an inefficient way to solve eigenvalues and eigenvectors of S because of exhaustive

computations. Therefore, we consider the k-th eigenvectors βk of the matrix T, Tn×n =

XTX, with the matrix size of n × n. We have

Tn×nβk = λkβk

⇒ XTXβk = λkβk

⇒ XXTXβk = λkXβk, multiply X at both sides

Let αk = Xβk,

⇒ Sp×pαk = λkαk. (2.5)

In other words, the first k-th eigenvectors of Sp×p, αk , is a multiplier of the k-th eigen-

vectors of Tn×n, βk , corresponding to the same eigenvalues. These eigenvectors are

so-called the principal components (PCs). By substituting the equation, it is efficient to

implement PCA in reality.
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2.2.2 Feature Selection

Due to curse of dimensionality, it is often suggested that using some subsets of all fea-

tures result in better outcomes for classification instead of using all features after applying

PCA. The corresponding eigenvalue of each eigenvector implies the amount of variation in

that direction and is usually expressed as a percentage of the total. Assume that {e1,...,em}

and {λ1,...,λm} represent eigenvectors and eigenvalues of the reduced space after PCA.

Then, the ratio of relative importance of the first k eigenvalues associated with the first k

eigenvectors preserves

degree =

∑k
i=1 λi∑m
j=1 λj

(2.6)

of the original data information. In this work, we used two methods to select proper subsets

of all features and both of them are introduced in the following.

First, principal components are selected based on variances of the data set in corre-

sponding directions. We name this method as variance-based principal component selec-

tion. After PCA, the found eigenvalues are ranked in descending order and eigenvectors

are arranged in the order of the corresponding eigenvalues. That is, the first eigenvalue is

the largest among the others and preserves most of information of the data set. The smaller

the eigenvalue is, the less information it preserves. Thus, it infers that the corresponding

eigenvectors of larger eigenvalues should be good choices as the basis of new subspace for

classification. Briefly, we select eignevectors which have the largest corresponding eigen-

values in the remainders when the classification space is needed to expand.

Second, a method, termed as significant-based principal component selection, selects

principal components for classification by their discrepancy between groups. Although

the direction of the first eigenvector contains the largest variance, it does not mean that

different groups of the projected data set in this direction can be differentiated from each

other. Figure 2.7 illustrates this state. Therefore, we use a statistical analysis, t-test, to seek

principal components where the difference between two groups reaches a significant level.
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Figure 2.7: Projection Illustration. Figure (a) and figure (b) show two projections by
using different projection lines. Although the y line in figure (a) can separate two groups,
projected groups are mixed together and are bad for classification. The better choice of
projection lines is like the z line in figure (b). After projection, two groups are easily
differentiated from each other.

In other words, a two sample t-test would be applied to each eigenvector to compute the

significance of it. Later, eigenvalues and eigenvectors are rearranged in their significant

order. The more significant eigenvectors are, the more useful they are for classification.

In short, we select eignevectors which are the most significant in the remainders when the

classification space is needed to expand.

In our experiments, we used both selection methods in every classification model. So,

there were two classifiers, a variance-based classifier and a significant-based classifier, in

each model for a specific disease. The experimental results will be shown in Chapter 4 and

some comparisons of the two methods will be discussed in Chapter 5.
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