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We proposed a parallel and fuzzy computer-aided diagnosis system to test if a subject

takes disorders or not instead of an absolute diagnosis result. The whole method consists of

feature selection, feature extraction and classification. Initially, a voxel-based morphomet-

ric analysis is performed to find the anatomical discrepancy between normal and abnormal

groups where is considered as better feature for classification. Also, a customized template

is obtained from the VBM analysis to construct a standard space for classification. Sec-

ondly, a principal component analysis is applied to find a proper representation for data

without loss and two principal component selection methods, variance-based PC selection

and significant-based PC selection, are then used to select more useful characteristics as

features for classification. Thirdly, a probabilistic classification approach is implemented

with Bayes’ Theorem and the Parzen-window approach. Thus, two classifiers with differ-

ent PC selection are established for a particular disease. Finally, the whole system is con-

structed by combining several classification models of the corresponding specific illness.

A test subject will know how many possibilities he or she has of sicken with disorders.

According to the points of views addressed as follows, we decided to construct a clas-

sification system by using a probabilistic approach. First, a probabilistic classifier provides

a test with a probability which reveals different degrees of being abnormal rather than dis-

covers an absolute boundary to classify a test into a known group definitely. The higher

the posterior probability is, the more similar to the specific group the unknown sample is.

Secondly, due to the density-based approach, the probabilistic approach is more suitable

and more intuitive to solve multi-class problems than the geometric approach is. Usually,

geometric approaches are used in the two-category classification. Besides, in geometric

methods, it is hard to use an analytic expression to represent the absolute boundary in a

high dimensional classification space. Therefore, the dimensionality reduction must be

done and may lead to data loss. Thus, we decide to construct a probabilistic classifier and

estimate the density distribution of known groups to calculate posterior probabilities of an

unknown sample in each known group in our work.
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Here, we give some comparisons between the proposed evaluation system and some

other geometric CAD systems mentioned in section 1.3. The most apparent characteristic

of the proposed evaluation system is to provide a test sample with a fuzzy result instead

of a definite result, yes or no. Moreover, only MR images of test subjects are analyzed

in the evaluation system and GM/WM/CSF images segmented from original MR images

are all used to construct individual classifiers. We put equal emphasis on various tissues

and merge their results to have a final outcome. Furthermore, we classify two groups in a

high dimensional space where is considered as a good classification space instead of only

one dimensional space. Finally, we use an estimated density function to anticipate the

probability of a sample to be in a specific category rather than find an absolute boundary to

divide between groups.

Regarding comparisons between variance-based PC selection and significant-based PC

selection, our experiments showed that a classifier with the latter method achieves a better

and consistent performance than one with the former method. It conforms to our expecta-

tion because the method of significant-based PC selection takes account of the relation of

different groups by applying a two sample t-test analysis on data projected into principal

components. Moreover, data of two different groups may be mixed with each other after

projected on principal component with the largest variance so that it is hard to separate.

In short, it is recommended using the significant-based PC selection to construct a good

classification space.

Yet, there are some flaws in our proposed system. Despite the difference in age, our

classifier can examine people of all ages although the classifier was trained by using a study

group with age in a specific range. Because of the limitation in the amount of training data,

we were not able to construct different classifiers for different age groups. Fortunately,

our experiment results showed that our classifier still can achieve good performance for all

age groups. Thus, it might not be necessary to differentiate age groups when constructing

classifiers.
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Our evaluation system is a so-called VBM-based CAD system because features for

classification depend on results of a voxel-based morphometric analysis. Therefore, the

limitation of VBM would postpone to our proposed system. First, construct customized

templates with Taiwanese templates instead of using ICBM152 template. Taiwanese tem-

plates are more similar with ours subjects and will lead to fewer normalization errors to

have an accurate registration. Moreover, the improvement in segmentation and normaliza-

tion may lead to an unbiased result. For example, all extracted partitions from BET2 will

be segmented into one of GM, WM and CSF tissues. If some non-brain tissues are left, they

will also be classified into one of them and cause incorrect segmentation and normalization.

Furthermore, the significant level might influence the regions which are considered as good

features for post-processings. In our experiments, we found that the significant level which

is neither too strict nor too loose is a good choice to retain enough and suitable data infor-

mation. In addition, it is much easier for the voxel-based morphometric approach to detect

relatively localized differences than to discover relatively distributed differences involved

with many brain structures because VBM analyzes the group discrepancy in a voxel-by-

voxel manner. Thus, ROIs from VBM results may not contain the widely-distributed dis-

crepancy located in a large area. In short, an unbiased voxel-based morphometric analysis

may result in a robust classification system.

For a particular disease, there is a corresponding classification model which only dis-

tinguishes between the normal group and the disease group. We just give thought to the

relation between normal and abnormal groups without thinking about the relation between

distinct disease groups. Thus, it could happen that a subject is diagnosed to have more

than one disorder though he or she has only one in reality. A fundamental solution to this

problem is to consider multicategory at a time. Subjects of all diverse groups are projected

into a common space and the density function of each group can be estimated with some

estimation techniques. Therefore, it is easy to compute posterior probabilities of a test

sample to be in each group. Besides, a classification model which classifies two similar
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diseases can be built up by using our technological procedure and provides an index sign

for physicians to assist them in diagnosing subjects.
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