’%E’ B0 O 2 BT AL R B Al IR % 0
i2 POP3 {2 PR B » i
Improving Performance of POP3 Server by Reducing 1/0 and

Disk Data Block Uncontinuity

= B F
Iﬂ?{i-ilem

IR R R

B Rt /02 B TR R E 3 @ KR % 1 5 i POP3 #IR B ok

[y

%
R

EREEY B R T Hoa

e B R

MEFTE R R FE AR > AKARE A R T 3L § FL R RARRAR
oo SERLfCEe i i cig B Bt POP3 PR B Hskil 0 7l e POP3 RIRE ki ¥
S P i e D

O3 PR 0 IR STt 0 < optiz bt b F LR
SRR T FAIRA L) BB BT G AR ATET b g AR
ﬁﬂ§4?wé*mg&owu%Wﬁﬂ—@%#’“%#ﬁ”wﬂuW%“Pm@ﬁ
oo TR IR 0 AR e G TR T R R A RIRE ARG R R &
AP R TR FREET AP RN 2 BFIT AR LD AP TR N2

1=

Improving Performance of POP3 Server by

Reducing I/0O and Disk Data Block Uncontinuity
Student: Min-Ju Wu Advisor: Prof. Ruei-Chuan Chang

Computer Science and Engineering College of Computer Science

National Chiao Tung University

Abstract

Email is one of the most widely-used network services in our daily life. Because the
network speed is more and more-fast, clients are.more sensitive about the performance of
POP3 server when retrieving mails. So.we can fasten the duration of retrieving mails by
improving the performance of POP3 servers.

According to our prior observation on a real POP3 server, we find that when the mail
folders grow larger, they are more fragmented on disk. And we find that it takes more time to
read a more fragmented mail folder. In this thesis, we proposed a mechanism to do
defragmentation during mail deletions, and we can mitigate the large amount of disk 1/0 and
memory access caused by mail deletion. As shown in experimental result our mechanism can

do defragmentation more effectively with lower overhead than original mechanism.

Y

Rz

—‘ﬁﬁa%wm %:'#@%iﬁﬁ VHERY R e bR nme R ET 0 28 & R
NEZ S RET AT R E 2R S A EN ARG oa A ERH
2 AR 0 4 L AR 1]%5 WEECEI e RS A s R ik o

FREERHFTHRZTOR LFF R o A AT RS AN HET A - BaE
HRMUE S ool EH WS (HEP j‘%’é‘i‘{,ui ey ;{éi*ﬁmk;ffﬁgtﬁvo# EH#HTHRTF
BENZELPFHORENEERYA o

S BB A LR R F LB L EFE S NI B AR ATEERLE
BRLG AN ;47\%&;}'@@4 o

BSR A A o dede o R LS m S e B R A R AEF A B

FRA LI AL R KRR TEHY o RS K ’}’%‘/‘;‘\ﬁxﬁ‘ EIT Y o

TABLE OF CONTENTS

I;r,” B NS i
AADSTFACT ...ttt et h bbbt h e b et h s b et et et ene bt nes i
T oot ettt ii
TABLE OF CONTENTS ...ttt sttt ettt st st st st st st eesteebeebeesbeesbeesaaenaeesnnes iv
LIST OF FIGURESottt st sttt sttt et ettt esbe e s aeesatesat e satesatesntesntesnbeenbeenseense ee v
Chapter 1 INTTOTUCTIONeeuetiteieieieei ettt b ettt b ettt s e st sbesbe b e s eneeneene 1
1.1 IMIOTIVALION ..ttt b bttt b e e 1
I I T T @ o= T4 L To] PO RO 3
Chapter 2 REIAIEA WOTK......c.oouieeeiesecteee ettt ettt sttt e st eae et e s be e s et e sbeessesessaensensens 4
2.1 Hot-Data CONCENTIAtIONc.euveesti it tardiies ettt s 4
2.2 Disk Defragmentation ... o e i s et s e e s ee e te e et e e te e te e b e e be e beesane s 5
2.3 ACCESS Pattern PrediCtor.5 e e doressfoitneiiae e bttt sttt s 6
Chapter 3 Design and Implementation e e eiile e 7
3L TNE PIODIBIMS ...ttt b e a et n e ebenne s 7
3.2 Reducing UPDATE State OVErNEadccevieieiieriieieierie ettt st 9
3.3 Speed UP AUTHORIZATION SEALEcoeoveeeeeeeeereeseeeesseseseesssesseesssesssessssessssssseseseessesssens 12
3.4 Write MechaniSm PrOtOTYPE.ccerieieieiirieeterteteteit ettt sttt ettt se b e 15
Chapter 4 Performance EVAIUALIONcceeiriririeieieereseseeee ettt 18
4.1 Experimental ENVIFONMENTcuveciiiiiieiese ettt sttt te st e ste et e e ste e s esesreeasessesreennas 18
4.2 Performance Improvement in the AUTHORIZATION Statecccceveeeevieneneecese e 18
4.3 Performance Improvement in the UPDATE Stateccccevvieeiereseeeeeseeeeese e 20
(O TV (=] g o @0 0] 10T Lo o S 24
RETEIENCE. ...ttt b b bt b n e 25

LIST OF FIGURES

Figure 1: State Transition Diagram of @ POP3 SeSSiON........ccccceveevieeieseeieseeieeeeenne 8
Figure 2: An Example of Mail Deletion of Original Mechanism...........ccccccecvevvenene. 9
Figure 3: An Example of BIOCK Deletioncccccuevvevieecenieiceeeceseee e 11
Figure 4: Relationship between seek distance and disk seek time..............ccccueeeeee. 12
Figure 5: Compacting a Mail Folder in a Mail Deletion..........cccccoecvevvevereevieeneenee. 13
Figure 6: Example of Defragmentation..........cccccvecueveeveecieseeeceee e 15
Figure 7: Flow Chart of Our Mechanismccccevveveecienieeceeeceseee e 16
Figure 8: Architecture of Our MechaniSmM..........ccccevveveecienieeceee e 17
Figure 9: Comparison on AUTHORIZATION State Duration..........cccceeveeverveennenee. 20
Figure 10: The Effectiveness of Defragmentation............cccocevveeeeveeveseeseeceeseenen. 20
Figure 11: Comparison on UPDATE State Duration..........cccceeeveeeeveeveneeseeseeseenne. 21
Figure 12: Comparison of Number of DisK 1Occooveiieiecieeeeeceeeeee e, 22
Figure 13: Comparison on CPU Utilization during the UPDATE state.................... 23

Chapter 1 Introduction

1.1 Motivation

Email is one of the most widely-used network services in our daily life. Many people
check their email several times a day by using email client applications, and most of the
applications retrieve mail from the servers via the 3" version of the Post Office Protocol
(POP3)[14]. In POP3, a client retrieves mail by first starting a new session with the server,
and then downloading the mail specified by the user. During the session, the client can also
delete some user-specified mail from:the server. Finally, the client terminates the session by
sending a quit command to the server.

After clients retrieve mails by “retr-command, these mails are still not deleted unless
clients issue dele command. But clients will not delete these mails which are useful, so they
deleted useless mails and back up useful mails over server side. Then the mail folders of these
clients grow large. However, current POP3 servers have two performance problems when
handling large mail folders. First, starting a POP3 session that corresponds to a large mail
folder usually requires a long time. This is because a POP3 server has to scan the whole mail
folder corresponding to the client at the beginning of a POP3 session in order to obtain the
amount of the mail and the size of each mail. In most mail servers, each mail folder is

implemented as a single file, and therefore a POP3 server has to read the whole file at the start
1

of each POP3 session. Since mail files are usually fragmented due to the concurrent handling

(i.e., reception and deletion) of multiple folders by the server, accessing these files requires a

large amount of disk seek operations and thus results in a long client-perceived wait time. The

second problem is that a POP3 server may cause a large number of disk 10 operations when a

user deletes his mail from a large mail folder, especially when the deleted mail resides close to

the beginning of the mail file (i.e., older mail)., This is because a POP3 server has to move the

data blocks behind the deleted part forward.

In order to mitigate the two problems, we have to reduce the number of fragments in

mail folders and the amount of sdisk 1O “gperations caused by mail deletion. Disk

reorganization is the most straightforward method for file defragmentation. However, the

large amount of disk 10 operations caused by disk reorganization may have a noticeable

performance impact to the POP3 server. Moreover, disk reorganization cannot reduce the

amount of disk 10 operations caused by mail deletion.

In this thesis, we proposed a new mail folder update mechanism for POP3 servers to

mitigate the aforementioned performance problems. The basic idea of the proposed

mechanism is to avoid data block movement due to mail deletion unless such movement can

reduce the fragment number of the mail folder. Specifically, we move the fragments

following the deleted mail forward when the data blocks containing the deleted mail together

with the adjacent free blocks can hold at least two of the following fragments. Otherwise, we

only free the data blocks occupied by the deleted mail.

The benefits of the proposed mechanism are four fold. First, the proposed mechanism
minimizes the amount of disk 10 operations caused by mail deletion as well as reduces the
fragment numbers of mail folders. Second, it incurs little overhead. It requires much fewer
disk 10 operations when compared to disk reorganization techniques. Third, the mechanism
does not require any code modification or recompilation on POP3 servers. It is a file system
level mechanism, and takes advantage of file system information to improve the performance
of POP3 servers. Fourth, the mechanism is not tight to a specific POP3 server since it
considers the general behavior of POP3 servers. Therefore, the mechanism can be applied on
more than one POP3 servers.

We implemented the proposed mechanism in‘Linux ext2 file system. According to the
performance results, our mechanism reduces the 10 access time caused by mail deletion into a
small and nearly-constant time and makes clients do not need to wait for logout. Moreover,

our mechanism has shortened the AUTHORIZATION state about 23.7%.

1.2 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we introduce the related work
about disk performance improvement. In Chapter 3, we describe the design and
implementation of our mechanism, which is followed by the performance evaluation in

Chapter 4. In the end, we give conclusions in Chapter 5.
3

Chapter 2 Related Work

Several techniques have been proposed to improve disk performance by rearranging data
on the disk. In this section, we briefly describe these techniques, which can be classified into

2 categories: disk defragmentation, hot-data concentration.

2.1 Hot-Data Concentration

Hsu et al.[10] proposed grouping hot data and sequentially accessed data into a specific
area on the disk so that most disk accesses can be done in that area, reducing the disk seek
time.

If we try to improve the performance-of disk 1/O by grouping hot data, there are some
problems. As we mentioned above, POP3 server-Ttead the whole mail folder after clients
logged in. Then, after mail deletion, POP3 servers sequentially move all the data blocks
behind the deleted mails forward. So the latter mails are a little hotter than former mails. But,
if we copy these mails into reorganization area, when the POP3 server reads the whole mail
folder disk head stays over original place instead the reorganization area because the former
mails are not in reorganization area. Then, if there are mail deletions, the POP3 server
sequentially move the mails forward, but we cannot guarantee all these mails are in
reorganization area, so disk head may need to start to read from the original place. So

grouping hot data is not suitable for POP3 servers.

4

2.2 Disk Defragmentation

Chee et al.[5] proposed a disk block reorganization mechanism by exploiting the
characteristic of disk writes in a log-structured filesystem. In a log-structured filesystem, write
operations do not modify the original data blocks. Instead, write requests are batched and the
corresponding blocks are written to the end of the log. By exploiting this characteristic, when
the disk reorganizer is called up, it can place these data to be written by the access pattern.

The mechanism can only be used in a log-structured Filesystem, and it focuses on small
write. If data size to be written is larger than cache size they will be written out to disk soon.
Moreover, in POP3 server every. mailideletions there is lots of data to be written, then
according to this mechanism these data in“one deletion will to be written together, but after
several mail deletions in different sessions-itimay separate one mail folder into several place
on disk. So this mechanism cannot solve our problem.

Wang and Hu[24] proposed a zone based reorganization mechanism for log-structured
Filesystem. Based on the fact that outer zones of a hard disk drive has a higher data transfer
rate, the mechanism moves frequently accessed data to the outer zones, during garbage
collection time to reduce the overhead.

Similar to the previous mechanism, this mechanism can only be used in a log-structured
filesystem. When using this concept over POP3 server on Ext2, how to move data online is

another problem, if there are mails coming when moving this mail folder will be more
5

complicated. Besides, the mechanism does not help to mitigate the large amount of disk 1/0

and memory access caused by mail deletion.

Offline defragmenters such as e2defrag[9] can perform defragmentation over an

unmounted file system. So we need an online defragmentation tools to solve the problems on

POP3 servers.

2.3 Access Pattern Predictor

Optimizing disk layout usually requires the knowledge of the data access patterns. For

example, hot blocks and sequentially accessed data have to be identified before they can be

collocated. Long et al.[2][3][4][12]{13][16][22][26][27][28][29][30] proposed several

predictors by analyzing lots of statistics.

In POP3 sessions, servers read the whole mail folder after clients logged in, and the

access pattern is known to be reading the whole mail folder. And after each deletion, data

blocks after deleted part will be accessed. We know that when deletions happen, the access

pattern will be reading every data blocks after deleted part. So we do not need to spend

overhead of accumulating statistics to get information about access pattern.

From the above, we can know that the defragmentation and reorganization techniques

nowadays are not suitable to solve the problems. In this thesis we proposed a new mechanism

to do defragmentation online to solve the problems over POP3 servers.

Chapter 3 Design and Implementation

In this chapter, we introduce design and implementation of the proposed mail folder
update mechanism for POP3 servers. In Section 3.1, we simply show the states of POP3
server, two formats of mail folder and the main problem to be dealt by the proposed
mechanism. In Section 3.2, we introduce how to reduce overhead of memory access and disk
I/0O in UPDATE state. In Section 3.3, we introduce how to reduce the disk seek time of
reading the whole mail folder. In Section 3.4, we._introduce prototype of the proposed write

mechanism.

3.1 The Problems

Figure 1 shows the state transition diagram of a POP3 session, which is defined in RFC
1939. As shown in the figure, a session starts by entering the AUTHORIZATION state, in
which the server authorizes the client. After the client has been authorized, the session enters
the TRANSACTION state and the client can then make requests to obtain mail folder
information, retrieve mail, mark mail as deleted, and etc. When the client issues the quit
request, the session enters the UPDATE state. In that state, the server removes the

marked-as-deleted mail from the mail folder and then terminates the session.

A

AUTHORIZA, TRANSACTI
ION ON

Figure 1: State Transition Diagram of a POP3 Session

Most email servers (e.g., the top three email servers on Linux, Sendmail[1][21],

Qmail[19], and Postfix[18]) store mail messages corresponding to a specific user in a single

file. There are two reasons for clientsto left a copy of their mails on server side. First, clients

back up their mails on server side, so they can get-these mails back when their system crash.

Second, clients with mobile devices may wants to.retrieve mails on different devices, if there

is no mail backed up on server side, clients will not be able to retrieve mails on different

mobile device. As stated in the Introduction, current POP3 servers have two problems on

handling large mail files efficiently. First, scanning a large and fragmented mail file at the

beginning of a POP3 session causes a large amount of disk seek operations and thus results in

a long client-perceived wait time. Second, in the UPDATE state, a POP3 server (e.g., Dovecot

[8], UW-imap [23]) removes the mark-as-deleted messages from the mail file by moving all

the messages following the deleted ones forward, causing a large number of disk 10

operations. In this chapter, we describe a novel mail folder update mechanism that can

mitigate the above two problems. By performing defragmentation and reducing data block
movement during mail deletion, the mechanism can reduce the client-perceived wait time in
the AUTHORIZATION state and the 10 load in the UPDATE state. In the following sections,

we describe the design issues and implementation details of the proposed mechanism.

3.2 Reducing UPDATE State Overhead

In this section, we show how to reduce the overhead of updating mail folders. Because
current file systems are not able to delete data from the middle of a file. So the mail deletion
of POP3 server modifies every memory pages and disk blocks behind the deleted data as

Figure 2 shown.

delete @ Mail Deletion

1 I I fi T 1]

@ After Original Mechanism

Figure 2: An Example of Mail Deletion of Original Mechanism

The main idea of the proposed mechanism is to free the memory pages and data blocks

occupied by deleted part to reduce the overhead of mail deletions. In order to do so, we have

to know the memory pages and disk blocks corresponding to the start and end of deleted part.
9

The way we take is as following:

First, we copy the return content and the file offset of every read system calls to an array.

Then, every time the POP3 server calls a write system call, we compare the content of the

every entry of the array and the data to be written by strcmp(). Because every mail has

different a message identifier even if the content of these mails is the same. The file offset of

mapped read system call is the end of deletion, and the file offset of write system call is the

start of deletion. In order to avoid wasting memory space, we record the results of 30 read

system calls.

After we get the information about the start and the end of deleted part, we start to free

memory pages and disk blocks occupied by the deleted part. We free memory pages by calling

truncate_inode_pages_range() to“.remove these .pages, and free disk blocks by calling

ext2_free_blocks(). We also modify the related file system information(ex. ctime and i_blocks

in inode, data block bitmap) to avoid file system inconsistency. When the deleted part is less

than one memory page, we just call memset() to clear the deleted part.

In the original mechanism, POP3 server will keep reading the data behind the deleted

part by read system calls and write them forward by write system calls. In our mechanism, we

have to filter out such read and write system calls. We use the following method to filter out

such read and write system calls.

First, if the file offset of read is equal to file offset of previous read plus the return

10

value of previous read, we consider the read as an unnecessary read, because and do not
read actually. Otherwise, there is a deletion, and we will handle this situation during next
write. Finally, if POP3 server issues a write after several unnecessary reads, we consider the
write as an unnecessary write and do not write actually because it is trying to move data
forward. Otherwise, there is a deletion, and we start the procedure of finding the start and the
end of the deleted part.

As shown in Figure 3, we know there is a read starting from file pointer position A and
read data size of B. If next read starts from A+B, we consider it as an unnecessary read.
Otherwise, if next read start from A+C (C>B), we consider that there is a deletion with the
start is A+B and the end is A+C.

|:l ‘Data Blocks of User A's iMail Folder

- . 1*read ™read
With Delction: < 0 Pl 4
B A+B ArC
delete
Without Deletion:
1*read 2™ raacl
— —
Iy AR

Figure 3: An Example of Block Deletion

According to the above description, the proposed mechanism can reduce the load of disk

11

10 and memory access effectively, and thus shortening the time spent on the UPDATE state.

of client waiting after quit from POP3 session.

3.3 Speed up AUTHORIZATION State

In this section, we introduce that how to reduce the disk seek time of reading the whole
mail folder by reducing fragments of mail folders on disk. In the progress of reading the
whole mail folder in POP3 session, we cannot reduce the data transfer time, so we want to
reduce disk seek time to speed up the AUTHORIZATION state. Lu Jun[11] proposed that
most disk seek time gap happens when disk seek distance increase a little from zero as Figure
4 shows[11]. Steven’s observation[18] has a similarresult. So we try to reduce number of

seeks to reduce disk seek time.

35 r

(o)
<o
\

[SR
S
\¢

Seek Latency{(ms)
ot
e
_\
\
\
\
\
1Y

o
A
\
A

0 200 400 600 800 1000 1200 1400

Seek Distance (Tracks)

o
L
e

Figure 4: Relationship between seek distance and disk seek time

In reading the whole mail folder, we have to reduce number of fragments to reduce
number of seeks. Because large overhead of disk reorganization, we do defragmentation by

12

another way. If there is enough continuous free blocks after mail deletion, we move data
blocks to reduce number of fragments. After we free memory pages and disk blocks occupied
by deleted part in every mail deletion, we do defragmentation as following:

First, if the former one and the latter one data block of deleted part on disk are occupied
by same mail folder as the deleted part, we move the latter data blocks forward to compact
this fragment. Otherwise we will handle in next stage.

As Figure 5 shows, the deleted part are logical block number 875 and 876, and we find
that logical block number 874 and 877 are occupied by same mail folder as the deleted part.
So we move the blocks to compact.

|:| Data Blocks of User A's Mail Foldey

| delete |

B74 875 B76 877
compact

R74 R7% R76 R77

Figure 5: Compacting a Mail Folder in a Mail Deletion

After we consider about compacting in a fragment, we will consider about
defragmentation in different fragments as following:

First we calculate the length of free blocks from the former one to the latter one data
block in this mail folder by scanning the data block bitmap with data blocks which is mapped

13

by the former one to the latter one data blocks in this mail folder. Then we calculate the length
of fragments behind the deleted part by scanning the i_data field in ext2 inode, and compare
with the length of free blocks. If the length of free blocks is larger than the length of at least
first two fragments, we move data blocks of these fragments to these free blocks. Finally, we
update the related information of inode.

As Figure 6 shows, the deleted part are the fifth to eighth data blocks in this mail folder,
and these blocks are mapped to logical block number 570 to 573. Then we check the fourth
and ninth data blocks in this mail folder which are mapped to logical block number 568 and
575. We can find that the length of longest continuous free blocks is 5, the length of first
fragment is 2, the length of second fragment is°3, and the length of third fragment is 2. So we

can move the first and the second fragment intofree blocks, and reduce one fragment.

‘Data Blocies of User A's Mall Folder ‘Data Blocks of User B's Mail Folder

| delete I | Fragl:d | Frag2:3 I | Frag3:2 I
|
|

568 570 571 572 573 575

defragment

5hE 570 571 572 573 575

14

Figure 6: Example of Defragmentation

3.4 Write Mechanism Prototype

In this section, we propose a Write Mechanism Prototype which integrate two
components mentioned in sections above. Our mechanism will only be motivated in UPDATE
state when there is a mail deletion in TRANSACTION state. Figure 7 shows the integrated
flow chart. When we find there is write request issued by POP3 server, we will do as
following:

First, we record the information about read and write system call. Second, if there is a
mail deletion, we simply free the memory pages and disk data blocks. Third, if the fragment
with deleted part can be compact, we compaci-this fragment. Fourth, we calculate the length
of free blocks. Fifth, we calculate the length of fragments. Finally, if the length of free blocks

larger than the length of fragments, we do defragmentation.

15

R/W

b
#

record r/w info.

mail
deletion?

free pages & blocks

i

former &
latter disk
block the

compact

calculate free block
length

B

calculate fragment
length

fee leng s
first 2 frag
leng ?

defragment

Figure 7: Flow Chart of Our Mechanism

We can divide implementation into two parts, first part is a monitor and second part is
the proposed write mechanism. The monitor is implemented in Virtual File System(VFS), it
modifies sys_read() and sys_write() to intercept the content of read and write, and file pointer
position. The proposed write mechanism is implemented in the Second Extended Filesystem
(Ext2 filesystem) as a kernel module, it modifies do_generic_mapping_read() and
generic_file_buffered write() to get information about memory pages and inode. There are

two components in our kernel module, one is compactor to compact fragment and the other is
16

defragmentor to do defragmentation between fragments as mentioned above. Figure 8 shows

POP3
server

Virtualfile system

the architecture of our mechanism.

Buffer Cache

Our Write Ext2 file system
Mechanism

Figure g:vié\rr'(::hitegtur_e".of'o_ur Mechanism

— e Y L

17

Chapter 4 Performance Evaluation

In this chapter, we evaluate the performance improvements of the proposed mechanism
in different states of a POP3 session. Section 4.1 introduces the experimental environment.
Section 4.2 and 4.3 compare the performance of the proposed mechanism with the original

one in the AUTHORIZATION and UPDATE states, respectively.

4.1 Experimental Environment

The experimental environment consists of a server machine and a client machine, which
are connected by a D-Link Gigabit:Ethernet switch:,Each of the machine is equipped with an
Intel Pentium 4 3.2 GHz processor, 1GBytes DDR RAM, and a Seagate 40GBytes 7200rpm
disk. We run Linux 2.6.17.13 and the UW-imap POP3 server on the server machine.

We use the Postal benchmark [17] to generate the email workload and to measure the

performance.

4.2 Performance Improvement in the AUTHORIZATION State

In this section, we evaluate the effectiveness of our defragmentation mechanism. We
created 20 mail folders in an empty partition and then backup the partition including the
layout by dd command. The size of these mail folders is about 500Mbytes and each of them

are composed of about 80000 mails and maximum mail size is 10Kbytes. We randomly

18

deleted a various number mails from a folder, and measured the number of fragments of this

folder after the mail deletion had completed. Then we recovered the disk layout by dd

command and measured the number of fragments after deleting the same mails with our

mechanism.

Because the duration of reading the whole mail folder in AUTHORIZATION state is

proportional to number of fragments of this mail folder. In this experiment, we measure the

performance improvement, on the AUTHORIZATION state, of the proposed mechanism. We

measured the duration from client login in to welcome message shown. We use a kernel

module to get the experimental result’from kernel message by printing out durations of every

state. Figure 9 shows the results.“The x-axis represents.the number of deletions, and the y-axis

represents the time for reading. the “whole mail."folder. As shown in the figure, our

defragmentation mechanism can reduce the time for reading the whole mail folder by about

23.7% after 40000 mail deletion operations have been performed.

350 g~

\\\

300

250 \\
200 \

—+Original Mechanism

Our Mechanism

Duration of AUTHORIZATION State

O T T T T T T T 1

NI N R VR IO I SN P N P IO
F S T T FSTFSTSTRS
NN NN PN N N T S N
20N M- MNP NP

Number of Deletions

19

Figure 9: Comparison on AUTHORIZATION State Duration

Figure 10 shows the result of performance of defragmentation of our mechanism after
mail deletions. The x-axis represents the number of deletions, and the y-axis represents the
fragment numbers. As shown in the figure, 50% of fragments can be eliminated after 40000

mail deletion operations have been performed.

80000
70000

60000 \\

50000 \\

40000 \

30000 ——Qriginal Mechanism
Our Mechanism

20000
10000
O T T T T T T T 1

Number of Fragments

Number of Deletions

Figure 10: The Effectiveness.of Defragmentation

4.3 Performance Improvement in the UPDATE State

In this section, we evaluate the performance in UPDATE state by measuring the
UPDATE state duration. Before the experiment, we generated an initial set of mail folders on
an empty disk partition by using the Postal benchmark. The initial set is composed of 35 mail
folders ranging from 5M to 320M bytes, and the maximum mail size is 10K bytes.

During the experiment, we deleted one mail in each mail folder which ranges 5M to
320M bytes before the end of the mail file, and measured the duration of the UPDATE state.

We get the duration by intercepting the quit command and the end of read system call issued
20

by POP3 server.

Figure 11 shows the update duration of the original and the proposed mechanism. The
x-axis represents the deletion distance, which is the number of bytes from the last byte of the

deleted mail to the end of the mail file. The y-axis represents the duration of the UPDATE

state.

250

200

150

50 I I
T - T I T T T
0 20 40 80 160 320

B Original Mechanism

Our Mechanism

0 —
5 1

Time for Updating a Folder (seconds)
=
S

Deletion Distance (MBytes)

Figure 11: Comparison on UPDATE State Duration

As shown in the figure, the update state duration increases with the growth of the
deletion distance under the original mechanism. The increment is due to the increase of the
disk 1/0O for writing dirty pages to disk. On the contrary, our mechanism just frees the memory
pages and the disk blocks occupied by the deleted mail, and hence the time for updating a
mail folder is almost constant.

Figure 12 shows the number of disk 10 during the update process of the original and the
proposed mechanism. The x-axis represents the deletion distance, and the y-axis represents

21

the number of disk 10.

45000

B Original Mechanism

Our Mechanism
15000
10000 I
5000 I
’ -1
0 20 40 80 160 320

5 1

Number of Disk TO

Deletion Distance (MBytes)

Figure 12: Comparison of Number of Disk 10

As the figure shown, the number of d‘isk;‘IO, inéfeases with the growth of the deletion
distance under original mechanism. But underrc‘)ur mechanism, the number of disk 10 is
almost constant.

Figure 13 shows the average CPU utilization during the update process of the original
and the proposed mechanism. The x-axis represents the deletion distance, and the y-axis

represents the CPU utilizations that were obtained by using the top command.

22

100

90
80
70
60 -
50 - m Original Mechanism
40 7 Our Mechanism
30 -
20 - —
10 —
0 \ I \ | | 1
10 20 40 80 160 320

Deletion Distance (MBytes)

CPU Utilization(%o)

Figure 13: Comparison on CPU Utilization during the UPDATE state

Similar to the previous figure, thg_QP_L}_ 'utilization increases with the growth of the
deletion distance due to the incremgrit'of; thp dlsktrafﬁc By contrast, our mechanism leads to
a constant CPU utilization since ;.3:/'\;equt friewmemory pages and the disk blocks occupied
by the deleted mail, and the amou.r;t;'lof'[nemo_'ry édt;éss and disk 1/O is almost constant. From

the above two figures we can see that, our mechanism can effectively reduce the load, and

hence improve the performance, of updating mail folders.

23

Chapter 5 Conclusion

In this thesis, we proposed a mechanism to improve the performance of POP3 servers by
performing defragmentation on Ext2 filesystem. Our mechanism can do defragmentation
during mail deletions, and mitigate the large amount of disk 1/0O and memory access caused
by mail deletion.

We implemented the proposed mechanism in Linux ext2 file system. According to the
performance results, our mechanism reduces the 10 access time caused by mail deletion into a
small and nearly-constant time and makesclients do not need to wait for logout. Moreover,

our mechanism has shortened thee AUTHORIZATION:-state about 23.7%.

24

Reference

[1]. Eric Allman, “SENDMAIL-AnN Internetwork Mail Router”, Issued with the BSD UNIX
documentation set

[2]. Ahmed Amer and Darrell D. E. Long, “Aggregating Caches: A Mechanism for Implicit
File Prefetching”,Proceedings of the Ninth International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTYS),
Cincinnati: IEEE, August 2001

[3]. Ahmed Amer, Darrell D. E. Long, Jehan- Francois Paris and Randal C. Burns, “File
Access Prediction with Adjustable Accuracy”, Proceedings of the International
Performance Conference on Computers and Communication (IPCCC), Phoenix: IEEE,
April 2002

[4]. Karl Brandt, Darrell D. E. Long and Ahmed Amer. “Predicting When Not To Predict”,
Proceedings of the Twelfth International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS), Volendam, The
Netherlands: IEEE, October 2004

[5]. C. L.Chee, H. Lu, H. Tang.and;C:+\/. Ramameorthy, “Improving I/0 Response Times
Via Prefetching and Storage-System Reorganization”, 21st International Computer
Software and Applications Conference,1997

[6]. Wenjing Chen, Christoph F. Eick and Jehan-Francois Paris, “A Two-Expert Approach to
File Access Prediction”, Proceedingsof* the third International Information and
Telecommunication Technologies Symposium (I12TS), Sao Carlos, Brazil, December
2004

[7]. Inchul Choi and Chanik Park *“Enhancing Prediction Accuracy in PCM-Based File
Prefetch by Constained Pattern Replacement Algorithm”, LECTURE NOTES IN
COMPUTER SCIENCE, 2003

[8]. Dovecot- http://www.dovecot.org/

[9]. e2defrag- http://e2compr.sourceforge.net/attic/defrag.htmi

[10]. Windsor W. Hsu, Alan Jay Smith and Honesty C. Young, “The Automatic Improvement
of Locality in Storage Systems”, ACM Transactions on Computer Systems (TOCS),
2005

[11].Lu Jun, Lu Xianliang, Luo Guangchun, Han Hong and ZhouXu, “STFS: A Novel File
System for Efficient Small Writes”, ACM SIGOPS Operating Systems Review, 2002

[12]. Thomas M. Kroeger and Darrell D. E. Long, “Design and Implementation of a Predictive
File Prefetching Algorithm”, Proceedings of Usenix Technical Conference, Boston:
Usenix Association, June 2001

[13]. Thomas M. Kroeger and Darrell D. E. Long, “The Case for Efficient File Access Pattern

25

Modeling”, Proceedings of the Seventh Workshop on Hot Topics in Operating Systems,
19909.

[14].J. Myers and M. Rose, “RFC1939-Post Office Protocol-Version 37,
http://www.ietf.org/rfc/rfc1939.txt

[15].Kyle J. Nesbit and James E. Smith, “Data Cache Prefetching Using a Global History
Buffer”, 10th International Symposium on High Performance Computer Architecture
(HPCA'04)

[16].Jehan-Francois Paris, Ahmed Amer and Darrell D. E. Long, “A Stochastic Approach to
File Access Prediction”, Proceedings of the International Workshop on Storage Network
Architecture and Parallel 1/0 (SNAPI), New Orleans: IEEE, September 2003

[17].Postal Benchmark, http://www.coker.com.au/postal/

[18]. Postfix, http://www.postfix.org/

[19].Qmail, http://infobase.ibase.com.hk/gmail/top.html#tips

[20].Steven W. Schlosser, Jiri Schindler, Stratos Papadomanolakis, Minglong Shao,
Anastassia Ailamaki, Christos Faloutsos and Gregory R. Ganger“On multidimensional
data and modern disks”, Proceedings of the 4th USENIX Conference on File and Storage
Technology (FAST '05). San Franciscoj:CA. December 13-16, 2005

[21]. Sendmail- http://www.sendmail.org/

[22].Purvi Shah, Jehan- Francois Paris, Ahmed: Amer and Darrell D. E. Long, “ldentifying
Stable File Access Patterns”, Proceedings of the Twenty-first Symposium on Mass
Storage Systems (MSS), Goddard, Maryland: NASA, April 2004

[23]. UW-imap- http://www.washington.edu/imap/

[24].Jun Wang and Yiming Hu, "PROFS—-Performance-Oriented Data Reorganization for
Log-structured File System on Multi-Zone Disks”, Ninth IEEE International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems
(MASCOTS'01)

[25].David A. Wheeler, “Why Open Source Software / Free Software (OSS/FS, FLOSS, or
FOSS)? Look at the Numbers!”, http://www.dwheeler.com/contactme.html

[26].Gary A. S. Whittle, Jehan- Francois Paris, Ahmed Amer, Darrell D. E. Long and Randal
Burns,“Using Multiple Predictors to Improve the Accuracy of File Access Predictions”,
Proceedings of the Twentieth Symposium on Mass Storage Systems (MSS), San Diego:
IEEE, April 2003

[27]. Tsozen Yeh, Darrell D. E. Long and Scott A. Brandt, “Performing File Prediction with a
Program-Based Successor Model”, Proceedings of the Ninth International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), Cincinnati: IEEE, August 2001

[28]. Tsozen Yeh, Darrell D. E. Long and Scott A. Brandt, “Using Program and User
Information to Improve File Prediction Performance”, Proceedings of the International

26

Symposium on Performance Analysis of Systems and Software (ISPASS), Tucson: IEEE,
November 2001

[29]. Tsozen Yeh, Darrell D. E. Long and Scott A. Brandt,“Increasing Predictive Accuracy by
Prefetching Multiple Program and User Specific Files”, Proceedings of the Sixteenth
Annual International Symposium on High Performance Computing Systems and
Applications (HPCS), Moncton, New Brunswick, Canada: IEEE, June 2002

[30]. Tsozen Yeh, Darrell D. E. Long and Scott A. Brandt. “Caching Files with a
Program-based Last n Successors Model”, Proceedings of the Workshop on Caching,
Coherence and Consistency (WC3), Sorrento, Italy: ACM, June 2001

27

