
國 立 交 通 大 學

資訊科學與工程研究所

碩碩碩碩 士士士士 論論論論 文文文文

建構一個角色扮演互動式學習內容模型

Constructing an RPG-like Interactive Learning Content Model

研 究 生：吳東權

指導教授：曾憲雄 博士

中中中中 華華華華 民民民民 國國國國 九九九九 十十十十 六六六六 年年年年 六六六六 月月月月

 2

建構一個角色扮演互動式學習內容模型建構一個角色扮演互動式學習內容模型建構一個角色扮演互動式學習內容模型建構一個角色扮演互動式學習內容模型

研究生研究生研究生研究生: : : : 吳東權吳東權吳東權吳東權 指導教授指導教授指導教授指導教授: : : : 曾憲雄博士曾憲雄博士曾憲雄博士曾憲雄博士

國立交通大學資訊學院國立交通大學資訊學院國立交通大學資訊學院國立交通大學資訊學院

資訊科學與工程研究所資訊科學與工程研究所資訊科學與工程研究所資訊科學與工程研究所

摘摘摘摘 要要要要

 在過去數位學習的環境中，學習內容通常是由純 Html語法寫成的，屬於靜態

的內容呈現，然而，隨著網頁技術的快速發展，互動式的學習內容變得愈來愈普

遍，因為互動的特性會使得學習和教學變得較有趣，可增加學習動機。而本篇論

文主要著重在於角色扮演型態的學習內容，但要去建構這種類型的學習內容對一

般人而言是困難的。因此，我們提出了一個物件導向的互動式學習內容模型

(OOICM)，此模型呈現高階的遊戲知識給學習內容編輯者，並且編輯者可透過它

所提供的界面，不需要自己寫程式，就可以容易地建構一個角色扮演型態的學習

內容。 OOICM由三個成分所構成，分別是Story Control Flow (SCF), Activity, 和

Scene Object (SO)。在 OOICM的系統層中，因為我們用派翠網路去描述 SCF，並

且用框架知識去描述 Activiy 和 SO，所以我們的系統環境需要派翠網路引擎和框

架引擎。此外，我們基於 OOICM 實做了一個產生器用來協助編輯者建構學習內

容，並和其它的編輯工具比較，而實驗結果也顯示了我們的產生器在學習內容的

重複利用上有較優異的能力。

關鍵字關鍵字關鍵字關鍵字:::: 派翠網路派翠網路派翠網路派翠網路、、、、框架框架框架框架、、、、角色扮演遊戲角色扮演遊戲角色扮演遊戲角色扮演遊戲、、、、知識技術方法知識技術方法知識技術方法知識技術方法

 3

Constructing an RPG-like Interactive Learning

Content Model

Student: Dung-Chiuan Wu Advisor: Dr. Shian-Shyong Tseng

Institute of Computer Science and Engineering

Nation Chiao Tung University

Abstract

In early years, the e-Learning contents are static and uninteresting because they are

only written by HTML. However, with the growth of the web technology, interactive

learning contents are getting more and more popular because the interactive feature

makes learning as well as teaching more interesting. In this thesis, we focus on

RPG-like Flash interactive learning content. But it is hard and costly to create this kind

of learning content. Therefore, we propose an Object Oriented Interactive Content

Model (OOICM) which represents the high level game knowledge for authors and the

interface of OOICM can assist authors in constructing an RPG-like learning content

easily without writing low level codes. OOICM is composed of three components

which are Story Control Flow (SCF), Activity, and Scene Object (SO). In the system

layer of OOICM, because we apply Petri Net to model SCF and apply frame knowledge

representation to model Activity and SO, the system environment must contain a Petri

Net engine and a frame engine. In addition, we also implement a generator based on

OOICM to help authors construct the learning content. Final, we compare the generator

with other authoring tools and the experimental result shows the generator has better

reusability.

Keywords: Petri Net, Frame, RPG, Knowledge Based Approach.

 4

致致致致 謝謝謝謝

 這篇論文的完成，首先要感謝我的指導教授，曾憲雄老師。在研究所兩年的

歲月裡，無論是在學術研究或是為人處世方面，皆讓我受益匪淺，尤其是我學到

了對一個知識領域的研究方法、邏輯思考及表達能力的訓練，這將使我終生受用

不盡。同時也感謝我的口試委員，楊鎮華教授、孫春在教授和黃國禎教授，他們

給予了我相當多的寶貴意見，讓本論文更有意義與價值。

 再來要感謝的是蘇俊銘學長、翁瑞峰學長和林喚宇學長，這段期間內，即使

他們很忙，還是會騰出時間與我討論並給我建議、想法，協助我修改論文。此外

我也從他們身上學習了不少生活態度及為人處事的方法，在此深表感激。還有實

驗室的同窗們，昂叡、信男、雨杰、芙民、曉涵、嘉妮，在這兩年的時光裡，和

你們同甘共苦、互相扶持鼓勵，能認識你們真的很開心。還有其他在身邊鼓勵我

的朋友們，雖然無法在此一一提及，但我心裡真的非常感激有你們在我身邊。

 最後要感謝的是我的家人，默默地支持與鼓勵，並不時地關心我，是我在心

力交瘁時還能保持鬥志的原動力。日後，我會更加努力地繼續前進，不辜負他們

的期望。

 5

Table of Content

摘摘摘摘 要要要要.. 2

Abstract... 3

致致致致 謝謝謝謝.. 4

Table of Content ... 5

List of Figures... 6

List of Tables... 7

Chapter 1. Introduction... 8

Chapter 2. Related Work..11

2.1. Story Representation ...11

2.2. Authoring Tools ... 14

Chapter 3. Object Oriented Interactive Content Model (OOICM) 15

3.1. Story Control Flow (SCF) .. 17

3.2. Activity ... 21

3.3. Scene Object (SO) ... 23

3.4. Application of OOICM... 25

Chapter 4. System Layer of OOICM ... 27

4.1. Petri Net for SCF (SCFPN) .. 28

4.2. Activity Frame... 32

4.3. Scene Object Frame.. 34

4.4. The OOICM Running Process... 36

Chapter 5. ActionScript Transformation Process ... 38

Chapter 6. Experiment .. 41

6.1. System Implementation .. 41

6.3. Experiment Results... 43

Chapter 7. Conclusion ... 44

References ... 45

 6

List of Figures

Figure 1: A Mimesis storyworld plan .. 12

Figure 2: An example of partial-ordering of plot... 12

Figure 3: OOICM overview... 16

Figure 4: A simple conversation SCF... 19

Figure 5: A complex SCF... 20

Figure 6: An SCF Super node .. 20

Figure 7: Scene Object Ontology... 23

Figure 8: A diagram for communications among SCF, Activity, and SO. 25

Figure 9: The steps to transform SCF in example 1 into Petri Net................................ 31

Figure 10: The corresponding Petri Net of example 2... 31

Figure 11: An instance of Conversation frame. ... 33

Figure 12: The frame representation of a SO... 35

Figure 13: The OOICM running process. .. 37

Figure 14: The running process of Petri Net.. 37

Figure 15: A prototype system based on OOICM.. 38

Figure 16: The outline of “template.as”... 39

Figure 17: The SCF of our experiment .. 42

Figure 18: The screenshot of the learning content... 42

Figure 19: The comparison of the number of steps ... 43

 7

List of Tables

Table 1: The SCF node... 18

Table 2: The SCF connector... 18

Table 3: The attribute of an activity that authors have to assign values to. 21

Table 4: Activity templates .. 22

Table 5: The descriptions of concepts in Scene Object Ontology 24

Table 6: The corresponding Petri Net for SCF nodes. ... 28

Table 7: The corresponding Petri Net for SCF connectors. ... 29

Table 8: The descriptions of the slots in an activity frame. ... 32

Table 9: Five kinds of templates of activity... 32

 8

Chapter 1. Introduction

With the growth of Internet, it changes not only the human’s life but also the learning

approaches. The technologies of e-learning are globally accepted for making learners

study anytime and anywhere. Most e-Learning contents are placed on web servers, and

learners can study with those contents by a web browser. In early years, these

e-Learning contents are static and lack interactive features due to the pure HTML

format, so they are uninteresting and can not show the real world scenario in a realistic

way. However, some learnings need interactions with learners and scenario simulations.

In recent years, the web technology (such as Flash, JavaScript, AJAX) has become

more and more mature and stable. Web has been able to present all kinds of multimedia

information. As mentioned above, some learnings need interactions with learners and

scenario simulations. For game-based learning, it has the characteristic of high

interactions. Among several kinds of games, such as Action Game, Role Playing Game

(RPG), Strategy Game and so on, RPG is suitable for scenario simulations because it

emphasizes the "real-world" side of science. Besides, Role-Playing mainly has three

advantages which are “Motivating Students“, “Augmenting Traditional Curricula”, and

“Learning Real-World Skills” [1].

Moreover, a platform is necessary to display the learning content. According to the

statistics [2] from Adobe, Flash Player is the most pervasive software platform in the

world, and supports many kinds of operating systems and mobile devices. In addition, it

can represent rich 2D animations on WWW and handle various interactions by writing

ActionScript code. Therefore, Flash file format (SWF) is very popular format in

interactive learning content.

Due to the reasons above, we focus on RPG-like Flash interactive learning content in

this thesis. But creating this kind of learning content is time-consuming and costly

 9

especially for nonprogrammer. Authors have to write ActionScript codes to handle

various events. Even though the author has constructed RPG-like Flash content, he

must modify the codes in order to apply to another similar scenario because the content

is hard code. Therefore, how to facilitate the creation of RPG-like Flash content and

reuse the learning content are important issues.

In general, RPG is composed of story (narrative), characters and scenes. All

characters are arranged in the scene and the story describes how characters act to

complete the playing of the game. These considerations must be taken into account.

Therefore, in this thesis, we propose Object Oriented Interactive Content Model

(OOICM) to represent the high level knowledge for RPG-like learning content.

Authors can use the interface that OOICM provides to construct an RPG-like learning

content easily without writing low level codes. OOICM is composed of three

components which are Story Control Flow (SCF), Activity, and Scene Object (SO).

SCF is a sequence of subgoals, Activity is the action that SOs can perform, and SO is

the object in a game scene. In the system layer of OOICM, we apply Petri Net to model

SCF and apply frame knowledge representation to model Activity and SO. Petri Net is a

powerful language for process flow modeling, concurrency handling, and validation.

These properties of Petri Net are suitable to represent the concept of the SCF. SOs have

their own attributes, inherited attributes, and event procedure call. Frame knowledge

representation is suitable to represent the properties of SOs. Final in order to

communicate with SOs’ frames, frame knowledge representation is also to represent

activities.

Because we apply Petri Net and frame, the system environment must contain a Petri

Net engine and a frame engine. We implement the two engines in ActionScript and a

generator based on OOICM to assist authors in constructing an RPG-like learning

content.

 10

The remainder of the article is organized as follows. In Chapter 2, we introduce some

related works about the story representation and authoring tools for creating the

interactive content. Then, the proposed model OOICM and the system layer of OOICM

are described in Chapter 3 and Chapter 4 respectively. Chapter 5 introduces the

prototype system and an algorithm OOICM2AS. The implementation for OOICM and

experiments are discussed in Chapter 6. Finally, Chapter 7 gives the conclusion and

future work.

 11

Chapter 2. Related Work

2.1. Story Representation

 Story (Narrative) is a very important element in RPG. Story is a control flow that

describes a sequence of events that the player has to experience in order to complete the

game. There are several researches about the story representation and they propose their

story structure. A well-designed story structure can help us verify the correctness of the

story flow. In this section, we will describe some story representations.

In [3], they have studied many papers to analyze the narrative techniques. They

think that storytelling applications can be classified as Rule base, State Transition based,

Goal based, Permutation, Template based, Script based, Semantic Inference based,

Emergent Narrative based, and Narrative Function based. We discuss several story

structures as follows.

(1) Plan

 In Mimesis [4][5], the planning representation is applied to represent the story. As

shown in Figure 1, Gray rectangles represent character actions and are labeled with an

integer reference number, the actions’ names and a specification of the actions’

arguments. Arrows indicate causal links connecting two steps when an effect of one

step establishes a condition in the game world needed by one of the preconditions of a

subsequent step. Each causal link is labeled with the relevant world state condition. The

white box in the upper left indicates the game’s current state description, and the box in

the upper right indicates the current planning problem’s goal description. The

expressive power is proved in [6].

 12

Figure 1: A Mimesis storyworld plan

(2) Partial-Ordering Graph

 In Interactive Drama Architecture (IDA) [7][8], Brian Magerko used

partial-ordering graph to represent story. As shown in Figure 2, each node in the graph

is a plot point. A plot point has preconditions, actions, and a time constraint. The

preconditions describe what should be true in the world in order for the plot point’s

actions to be executed. The actions are the plot events that are performed after all

preconditions are fulfilled. The time constraint describes a time span during which

every precondition must be true. This structure is similar to the planning language in

Mimesis described earlier. The key difference is that this representation has no explicit

concept of causality.

Figure 2: An example of partial-ordering of plot

(3) Petri Net

 In [9], Petri Net is used to model an atomic action called transaction. There are

 13

three relationships of ordering and two logics relationships between transactions. The

language that Petri Net generates can used to characterize the topology of the virtual

space in a game [10]. In [11], in order to characterize narrative structures, they employ

“narrative nets” (N-nets), which are based on colored Petri nets. In [12], Clark

Verbrugge presented a representation framework called Narrative Flow Graphs (NFG),

derived from 1-safe Petri Net. NFG can be used to verify desirable properties, or as the

basis for a narrative development system.

 The researches discussed above mainly attempt to verify the properties of the story

flow such as the balance between the user control and the story coherence. But they did

not take the construction of a story into consideration. These story structures are not

intuitively understood by authors. Therefore, a game author must understand the story

structure before designing a game. Besides, there are other considerations such as

scenes, actions for an object, when designing a whole game.

 14

2.2. Authoring Tools

 Many tools can be used to create the interactive content. Adobe Flash [13] is the

original and popular authoring tool to create the flash format content. Flash is not

designed to construct the RPG-like content, and therefore authors have to add

ActionScript code manually to simulate the behaviors of the role playing games. It is

not easy for a programmer to write ActionScript code to handle varied events in a game,

not to mention a nonprogrammer.

 RPG-Maker [14] is powerful tool for creating role playing games. It provides the

user-friendly editor interface. Authors create a role playing game without writing low

level codes. Events are attached to the objects or characters in the scene. The story

control flow is event-driven and is not represented explicitly. What authors see is the

game scene and a lot of events. The scenario that the game presents can not be

understood by authors immediately. Therefore, it is hard to construct, reuse, and

maintain a more complex role playing game.

 15

Chapter 3. Object Oriented Interactive Content Model

(OOICM)

 As mentioned before, it is time-consuming and costly to create the RPG-like learning

content. Because authors have to write low level codes to handle various events, we

want to propose a model to assist authors in constructing the learning content without

low level programming. To design this model, some difficulties must be solved. First,

how do we represent the story explicitly for authors? Second, the objects in a scene

have their own attributes, inherited attributes, and event procedure calls. Writing codes

for every object instances is costly. Final, how do we transform the model into low

level codes?

The idea for this model is described as follows. We provide authors with the high

level game knowledge from authors’ viewpoint so that author can construct an

RPG-like learning content easily without understanding how the system actually work

actually. Based upon this idea, we propose Object Oriented Interactive Content

Model (OOICM) to represent the high level knowledge for RPG-like learning content.

Authors can use the interface of OOICM to construct an RPG-like learning content

easily without writing low level codes. Furthermore, the story control flow is

represented explicitly in order to show the scenario of the learning content clearly.

Object oriented methodology is also used for reusability and eases coding effort.

 As shown in Figure 3, OOICM is composed of three components which are Story

Control Flow (SCF), Activity, and Scene Object (SO). Story Control Flow a

sequence of subgoals. Activity denotes the action that SOs can perform. Some

activities may achieve subgoals in the SCF. Scene Object denotes the objects that

constitute the scene of learning content. In order to complete the playing of the game,

the player has to perform some activities to achieve the subgoals in the SCF. The detail

 16

of the three components will be described in this Chapter.

HelloHello

Subgoal

ˇ̌̌̌

ˇ̌̌̌

ˇ̌̌̌

Figure 3: OOICM overview

 17

3.1. Story Control Flow (SCF)

The SCF denotes a sequence of subgoals in an RPG-like learning content. The

definition of the SCF is described as following.

Definition 1: The Story Control Flow is a 3-tuple

SCF = (N, C, O), where

1. N }n,...,n,{n m21= is a finite set of SCF nodes. ni includes four types which are

Start, End, Connective, Regular, and Super.

� The Start node and End node are atomic nodes that specify the start and the end

of a game respectively. Start node and End node in an SCF must be unique.

� The Connective node is an atomic node just for connecting different connectors.

� The Regular node is an atomic node that denotes the subgoal in a game. It has an

attached activity declaration. In this section, we skip the detail of the activity. It

will be discussed in 3.2.

� The Super node is a composite node that can be taken apart into nodes and

connectors. An SCF can be encapsulated into a Super node and the Super node can

be reused to simplify another SCF. When an SCF is transformed into a Super node,

the Start node and End node in the SCF will both become a Connective node.

The detail is described in Table 1.

2. C }c,...,c,{c n21= is a finite set of SCF connectors. A connector ci = (TN, HN, t) is

considered to be directed from TN to HN.

� TN⊂N. TN is called the PreNodes of ci. The side that connects to TN is called tail

of ci.

� HN⊂N. HN is called the PostNodes of ci. The side that connects to HN is called

head of ci.

 18

� t denotes the type of the connection. There are five types which are “Linear”,

“Concurrence”, “Selection”, “And”,and “Or”. The values of |TN| and |HN| are

dependent on t. As described in Table 2, |TN| = |HN| = 1 for a Linear connector,

but |TN| = 1, |HN| > 1 for a Concurrence connector.

3. O }o,...,o,{o q21= is a finite set of Scene Object declarations. oi = (type, variable),

 where type is the type of oi, variable is the identification for oi.

Table 1: The SCF node

SCF Node

Type
SCF Node Notation Description

Start
The start of a game. Only one

outport.

End
The end of a game. Only one

inport

Virtual
A middle node for connecting

different connectors

Normal The subgoal of a game

Outport
Start

Inport
End

Attached Activity(type, ...)

Description

name
Inport Outport

Connective

OutportInport

Table 2: The SCF connector

SCF Connector

Type

SCF Connector

Graph
Description

Linear

One to one. If the PreNode of this connector is

achieved, player can progress in PostNode of this

connector.

Concurrence

One to many. If the PreNode of this connector is

achieved, player can progress in any PostNode of this

connector.

Selection

One to many. If the PreNode of this connector is

achieved, player can progress in only one PostNode of

this connector.

And

Many to one. If all PreNodes of this connector are

achieved, the player can progress in PostNode of this

connector.

Or

Many to one. If any n PreNodes of this connector are

achieved, the player can progress in PostNode of this

connector. The default value of n is 1.

...C

...S

... A

... O
n

 19

From author’s viewpoint, N means the plots in a story, C means the flow directions

of plots, and O mean the cast.

Most scenarios are not beyond the scope of the above definitions. Therefore, the

expressive power of the SCF is enough. We give three examples to explain the SCF.

Example 1. A sample conversation scenario

Figure 4 shows a sample SCF graph composed of three nodes and two connectors.

The three nodes are Start node, End node, and Regular node node1. The two connectors

are c1 and c2 which are both linear type. The story describes that the player has to talk

to Mary to complete the game. The subgoal is described in node1.

Start Talk to Mary

node1

End
c1 c2

Conversation(John, Mary)

The List of Scene Object:

<PlayerCharacter> John

<NonPlayerCharacter> Mary

Figure 4: A simple conversation SCF.

Example 2. The procedure to leave school.

Figure 5 shows a part of the procedure to leave school. It is composed of seven SCF

nodes and four SCF connectors. The story describes that the player has to talk to Mary

and will get hints. After that, the player knows that he/she has to copy five theses and

give two theses to the library, three to the laboratory. In the same time, the player also

has to return the key of the laboratory to the manager. When finishing all missions, the

player completes the game.

 20

Start
Talk to the

manager

seal

Give 3 theses

to the lab

toLab

Give the key of

lab to the

manager

returnKey
C ATalk to Mary

talk
c1

c2

c3

c4

Conversation(John, Mary)

UseItem(John, Roy, key)

Copy 3 theses

copy

Trade(John, Bill, theses_3)

End
UseItem(John, Roy, theses_3)

Conversation(John, Roy)

The List of Scene Object:

<PlayerCharacter> John

<NonPlayerCharacter> Mary

<NonPlayerCharacter> Roy

<Item> theses_3

<Item> key

c5

Figure 5: A complex SCF

Example 3. Use Super node to simplify a complex SCF.

As shown in Figure 6, the SCF in Example 2 can be encapsulated into an SCF Super

node. The Start node and End node in the original SCF will become Connective nodes

in Super node. The Connective node is a node used to join two different connectors.

supernode

Virtual
Talk to the

manager

seal

Give 3 theses

to the lab

toLab

Give the key of

lab to the

manager

returnKey
C ATalk to Mary

talk
c1

c2

c3

c4

Conversation(John, Mary)

UseItem(John, Roy, key)

Copy 3 theses

copy

Trade(John, Bill, theses_3) UseItem(John, Roy, theses_3)

Conversation(John, Roy)

c5
Virtual

supernode

Virtual
Talk to the

manager

seal

Give 3 theses

to the lab

toLab

Give the key of

lab to the

manager

returnKey
C ATalk to Mary

talk
c1

c2

c3

c4

Conversation(John, Mary)

UseItem(John, Roy, key)

Copy 3 theses

copy

Trade(John, Bill, theses_3) UseItem(John, Roy, theses_3)

Conversation(John, Roy)

c5
Virtual

Start Print sheet

getCopy

Registration office

sn4

Enddormitory

sn2

Department office

sn3

lab

sn1

C A

Figure 6: An SCF Super node

 21

3.2. Activity

 Activity is the action that the player can perform. Some activities may achieve

some subgoals in the SCF, but some may not. In order to complete the game, the player

has to perform some activities to achieve the subgoals in the SCF. For example, John

has to have a conversation (Activity) with Mary so that the subgoal can be achieved.

The basic principle is that if the precondition of an activity is satisfied, this activity will

be executed, and after that, causes some post action to be executed. As shown in Table

3, authors must assign values to three basic attributes for every activity. The

In this thesis, we propose five kinds of activity templates which are “Trade”, “Use

Item”, “Take Item”, “Conversation”, and “Time”. For the learning purpose, these five

activities are often used. If a new kind of activity is required, a new template can be

added to extend the activity templates. These five templates have the default

preconditions and are detailedly described in Table 4.

Table 3: The attribute of an activity that authors have to assign values to.

Attribute Description

Participants Specify the participants for the activity. The format is (<t1> p1, <t2>

p2, …, <ti> pi, ….). Scene object pi must conform with type ti.

Effect Specify the effect after the activity is finished. Some APIs will be

provided for authors.

LifeCycle

Specify when the activity can be performed. There are six options.

○1 “Default”: If this activity is attached to some SCF node, it can be

performed when the node is enabled. If this activity is not attached to

any SCF node, it can be performed anytime.

○2 “Always”: This activity can be performed anytime.

○3 “AE_NodeName”: After the given SCF node is enabled, this activity

can be performed.

○4 “AF_NodeName”: After the given SCF node is finished, this activity

can be performed.

○5 “BE_NodeName”: Before the given SCF node is enabled, this activity

can be performed.

 22

○6 “BF_NodeName”: Before the given SCF node is finished, this activity

can be performed.

Subgoal Specify the node in the SCF. The activity will be attached to a given

node (subgoal) in SCF. After the activity is finished, the subgoal will be

achieved.

Table 4: Activity templates

Activity

Template
Attribute Description

Participants

Type

(<PlayerCharacter> pc,

<NonPlayerCharacter> npc)

Default

Precondition

pc collides with npc and the mouse

click pc.

Conversation

Dialog {(speaker1, content1), (speaker2,

content2), …}

The player has a

conversation with

others.

Participants

Type

(<PlayerCharacter> pc, <Item>

item)

Take Item

Default

Precondition

pc collides with item, and item is

selected by the mouse.

The player takes

some item to his

inventory.

Participants

Type

(<PlayerCharacter> pc, <Item>

item, <SceneObject> target)

Use Item

Default

Precondition

Case 1: target is null

The player clicks the useButton for

item in pc’s ventory.

Case 2: target is not null

When pc collides with target, the

player clicks the useButton for

item in pc’s ventory.

The player uses some

item in his inventory

(to some target).

Participants

Type

(<PlayerCharacter> pc,

<NonPlayerCharacter> npc,

<Item> goods)

Trade

Default

Precondition

pc collides with npc and the player

clicks the buyButton for goods.

The player buys some

item from a trader

and then the item is

put in his inventory.

Participants

Type

(<SceneObject> so) Time

Default

Precondition

A given time interval elapses.

Some event will be

triggered after a

given interval of

time.

 23

3.3. Scene Object (SO)

Scene Object denotes the objects that constitute the game scene, for example, a

person, a dog, a tree, and so on. In order to describe the features and concepts of

various SOs, we propose a Scene Object Ontology to classify SOs, analyze the

inherited attributes and relations among SOs. The proposed ontology as shown in

Figure 7, SOs are classified into Dynamic Object which is an animate object such as

an animal and Static Object which is an inanimate object such as a building. There are

two relations in Scene Object Ontology which are “a kind of” and “a part of”. “A kind

of” relation denotes the inheritance from the parent. For example, if SO1 is a kind of

SO2, it denotes that some attributes of SO1 inherit SO2. “A part of” relation denotes

scene object can be classified into several classes. For example, if SO1 is a part of SO2,

it denotes that SO1 is the subset of SO2. The details of all scene objects are shown in

Table 5.

Figure 7: Scene Object Ontology

 24

Table 5: The descriptions of concepts in Scene Object Ontology

Scene Object Type Description

Base Scene Object The base object in a scene of a game.

Dynamic Object The animate object. For example, a dog.

Non Player Character The AI object.

Player Character The object that can be controlled by the player, i.e. the

protagonist.

Enemy The object that will attack Player Character.

Neutral The object between Enemy and Ally.

Ally The object that will help Player Character.

Static Object The inanimate object. For example, a building.

Item The object that can be taken and used by the Player

Character. For example, a pen.

Transfer Space When touching the Transfer Space, the player will be

transferred to another scene. For example, a door.

 25

3.4. Application of OOICM

In this section, we will explain how SCF, Activity, and SO communicate each other.

As shown in Figure 8, there are four interfaces among the three components. ○1 An

SCF has activities that attached to the SCF nodes. The types of activities must all

conform to the types that SCF nodes specify. ○2 An SCF has a list of SOs. The types

of SOs in the scene must all conform to the types that the SCF specifies. ○3 An

activity specifies the types of participant SOs. The types of SOs must all conform to the

types that the activity specifies. ○4 The states of SOs can be changed by an activity.

Type

State

SO
Activity

Type

A Given

SO Type

A Given SO

Type

A Given

Activity Type

SCF

Change the

State of SO

1 2

3

4

Type

Figure 8: A diagram for communications among SCF, Activity, and SO.

The Construction and reuse of an RPG-like learning content are described as follows.

(1) The Process of Constructing an RPG-like Learning Content

Step 1. Construct an SCF by combining the SCF nodes and SCF connectors.

Step 2. Create SOs and configure their attributes.

Step 3. Create activities and configure their attributes.

Step 4(optional). Attach the activities in Step 3 to SCF nodes.

 26

Example 4. Construct a conversation learning content.

 (Step 1) Construct an SCF as same as Example 1. (Step 2) Add a Player Character

named John and a Non Player Character named Mary to the scene. Then set the

properties of John and Mary such as location, width, height. (Step 3) Add a

Conversation activity named CS. Then set John and Mary as the participants of CS.

(Step 4) Finally, attach CS to node1.

(2) Reusing an Existing SCF

Import an existing SCF into a new learning content and name the SCF scf.

Step 1. For each SO soi in O of scf, create a new SO whose type is the same as soi’s.

Step 2. For each node ni in N of scf, check the attached activity ai of ni and then

create a new activity nai whose type is the same as ai’s.

Step 3. For each nai in step 2, check the types of participants (i.e. SOs) of ai and then

add the same type participants into nai.

 Step 4. Attach nai to ni.

Example 5. Construct a conversation learning content from an existing SCF.

We name the SCF in Example 1 scf and reuse scf to construct a new learning content.

(Step 1) there are Player Character and Non Player Character type SOs in the cast of

scf. Therefore, create Player Character named Bill and Non Player Character named

Kelly. (Step 2) node1 has an attached Conversation activity which participants are

Player Character and Non Player Character type. Therefore, create a Conversation

activity named cs. (Step 3) Set Bill and Kelly as the participants of cs. (Step 4) Attach

cs to node1.

 27

Chapter 4. System Layer of OOICM

The system layer of OOICM specifies how OOICM actually works in our prototype

system. We apply Petri Net to model SCF and apply frame knowledge representation to

model Activity and SO. Petri Net is a powerful language for process flow modeling,

concurrency handling, and validation. These properties of Petri Net are suitable to

represent the concept of the SCF. SOs have their own attributes, inherited attributes,

and event procedure call. Frame knowledge representation is suitable to represent the

properties and functionality of SOs. In order to communicate with SO’s frames, frame

knowledge representation is also to represent activities. Then, Petri Net and frames will

be transformed into ActionScript code. Although what authors see are SCF, activities,

and SOs, our system actually handles Petri Net and frames

Adding the system layer for OOICM has the advantage described as follows.

Transforming the OOICM into Petri Net and frames and then transforming Petri Net

and frames into ActionScript codes is easier than transforming the OOICM into

ActionScript codes straight. Besides, OOICM can be extended without modifying or

adding ActionScript codes, because the system actually handles Petri Net and frames

which originally have the fixed execution mechanism.

Petri Net and frames will be described detailedly in this Chapter respectively.

 28

4.1. Petri Net for SCF (SCFPN)

Petri Net is a powerful language for process flow modeling, concurrency handling,

and validation. These properties of Petri Net are suitable to represent the concept of the

SCF. Therefore, we apply the Petri Nets to model the SCF. The definition of Petri Net

for the SCF is described as follows.

Definition 2: The Petri Net for Story Control Flow is a 5-tuple.

SCFPN = (P, T, F, W, M 0), where

1. P }p,...,p,{p m21= is a finite set of places. P includes five types of places.

� PP : The progress of a story.

� SP : The start of a story.

� EP : The end of a story.

� LP : Check whether the activity is completed.

2. T }t,...,t,{t n21= is a finite set of transitions which disjoint form P (P∩T=0)

3. F P)(TT)(P ×∪×⊆ is a set of arcs (flow relation).

4. W : F→{1,2,3,…} is a weight function.

5. M0 : ..}{0,1,2,3,.P→ is the initial marking and 0M (SP) = 1.

Since every SCF node and SCF connector can be transformed into Petri Net, as shown in

Table 6 and Table 7 respectively, every SCF can be also transformed into Petri Net.

Table 6: The corresponding Petri Net for SCF nodes.

PP PP

PL

SCF Node

Type
Petri Net Notation

SCF Node

Type
Petri Net Notation

Start Virtual

End Normal

PS

PE

PP

 29

Table 7: The corresponding Petri Net for SCF connectors.

PP

PP

...

PP

PP

PP

...

PP

...

PP

...

PL

PL

 SCF Connector

Type
Petri Net Notation

SCF Connector

Type
Petri Net Notation

Linear And

Concurrence Or

Selection

n

We also propose a transformation algorithm SCF2PN to transform the SCF into Petri

Net. The algorithm is shown as follows.

Algorithm : SCF2PN

Input

 scf denote the SCF that will be transformed into Petri Net.

Output

 The transformed Petri Net.

Step 1. Create a new empty Petri Net pn.

Step 2. For every node ni in scf, ND2PN(ni, pn).

Step 3. For every connector ci in scf, CRT2PN(ci, pn).

Step 4. Output pn.

 30

Procedure ND2PN(Node n, PetriNet pn)

Convert an SCF node to the corresponding Petri Net npn, and attach npn to pn.

Parameter

 n is the SCF node that will be transformed into Petri Net.

pn is the attached Petri Net.

Step 1. Check the type of n.

Step 2. According

Table 6, add corresponding Petri Net block to pn.

Step 3. Assign the inport and outport places of n.

Procedure CTR2PN(Connector c, PetriNet pn)

Convert an SCF connector to the corresponding Petri Net cpn, and attach cpn to pn.

Parameter

c is the SCF connector that will be transformed into Petri Net.

pn is the attached Petri Net.

Step 1. Check the type of c.

Step 2. According Table 7, add the corresponding Petri Net block pnb to pn.

Step 3. Assign the tail and head transitions of c.

Step 4. Connect c with its PreNodes and PostNodes.

Step 4.1. For every PreNode ni of c, create an arc to connect outport place of ni

and tail transitions of c.

Step 4.2. For every PostNode nj of c, create an arc to connect head transition of c

and inport place of nj.

 31

Example 6. Transform SCF in Example 1 into SCFPN.

Figure 9 shows the steps to transform the SCF of example into the corresponding

Petri Net. According to the algorithm SCF2PN, ○1 Create a new empty Petri Net pn.

○2 Transform every node ni into the corresponding Petri Net. ○3 Transform every

connector ci into the corresponding Petri Net and create arcs to connect PreNode and

PostNode of ci.

Figure 9: The steps to transform SCF in example 1 into Petri Net.

Example 7. Transform SCF in Example 2 into SCFPN.

The steps are the same as Example 3. The corresponding Petri Net of Example 2 is

shown in Figure 9.

Figure 10: The corresponding Petri Net of example 2.

 32

4.2. Activity Frame

In order to communicate with Scene Object frames, the frame knowledge

representation is applied to model the functionality of activities. The frame of an

activity is shown in Table 8. PreCondition slot and InActivity slot of the five templates

all have default values, and the other slot values are specified by the content author as

shown in Table 9.

Table 8: The descriptions of the slots in an activity frame.

Activity

Slot Name Type Description

Actor Scene Object Scene objects that participant in this activity.

PreCondition Rule The condition that triggers this activity to start.

LifeCycle String Specify when the activity can be performed.

InActivity Procedure The actions that will be executed when the activity

is proceeding.

Result String The result of this activity. So far, it is useful for

only Conversaton activity.

PostAction Rule The actions that will be executed after the activity

is finished.

GoalTest Rule The subgoal that this activity will achieve in SCF.

Table 9: Five kinds of templates of activity

Activity

Template
Default Slot Value

PreCondition If Actor.Collision(SceneObject target) == true

AND , target.onRelease == true, then trigger

InActivity.

Conversation

InActivity Call Conversation.run()

PreCondition If Actor.Collision(Item target) == true and

target.MouseDown == true, then trigger InActivity.

Take Item

InActivity Call TakeItem.run()

Use Item PreCondition If Actor.Collision(SceneObject target) == true and

Actor.Inventory.Items[i].clickUse == true, then

 33

trigger InActivity.

InActivity Call UseItem.run()

PreCondition If Actor.Collision(SceneObject target) == true and

target.goods[i].clickBuy == true, then trigger

InActivity.

Trade

InActivity Call Trade.run()

PreCondition If Time.Elapsed == timeInterval, then trigger

InActivity.

Time

InActivity Call Time.run()

Example 8. A Conversation Frame Instance

The Conversation frame instance is shown in Figure 11. If John collides with Mary, a

Conversation procedure will be called to show the dialogs of John and Mary. When the

conversation ends, a result value will be added to the Result slot. After that, PostAction

and Goal will be triggered. PostAction checks the Result slot value, if the value is

“result1”, then the appearance of Mary will be changed. Goal also checks the Result

slot value, if the value is “result1”, then it means subgoal1 is achieved.

Conversation

Slot Name Value

Actor John

PreCondition if Actor.Collision.Name == Mary

then trigger InActivity

InActivity Conversation procedure

Result result1

PostAction if Result == result1,

set Mary.appearence = “smile.gif”

GoalTest if Result == Result1, set subgoal1 = true

Figure 11: An instance of Conversation frame.

If added

Trigger

PostAction and

GoalTest

 34

4.3. Scene Object Frame

We apply the frame knowledge representation to describe the attributes of the scene

object. The attributes of the scene object can be classified into three categories which

are resource, profile, and behavior. Resource denotes the external files of the scene

object. Profile denotes the personal data of the scene object. Behavior denotes the

event-driven behavior. The definition is described as follows.

Definition 3: The Scene Object Frame is a 4-tuple.

SOF = (FN, Rel, S), where

1. FN is the name of a frame.

2. Rel = {rel
1
, rel

2
, …,rel

h
} and rel

k
= <relation, FN> which is the relation with other

frame specified by frame name FN. There are three types of relation –“a kind of”,

“a part of”.

3. S = {s
1
, s

2
, ..., s

n
}is a finite set of slots, and s

i
= <SN

i
, V

i
, P

i
>, where

� SN
i
is the name of the i-th slot

� V
i
is the value of the i-th slot.

� P
i
is a attached procedure that can be triggered by “if added” events.

 35

Example 9. A frame instance for Non Player Character

 Figure 12 shows an example of Non Player Character frame. The scene object Mary

will be located at the coordination (10,100), and its appearance is the image from

“C:\Mary.png”. The Collision slot is null because no other SOs collide with it.

Non Player Character

Slot Value

Name Mary

Location (10,100)

Size Width = 20, Height = 30

Appearance “C:\Mary.png”

Collision null

Figure 12: The frame representation of a SO.

profile

resource→

behavior→

 36

4.4. The OOICM Running Process

In this section, we will discuss the running process of frames and Petri Net. We give

an example of a simple conversation scenario to explain that.

Example 10. The learning content of a simple conversation scenario.

Figure 4 is the SCF of this game. The initial mark of SCFPN is State 1 shown in

Figure 14. P S has one token. As shown in Figure 13, the scene of the learning content

contains two scene objects which are Player Character type and Non Player Character

type respectively. For the sake of convenience, we simplify the two frames in our

example. The man called John and the girl called Mary will have a conversation activity.

The frame representation of the conversation activity called CsAT is shown in the down

side of Figure 13.

After game starts, the Petri Net runs and becomes State 2 in Figure 14. All scene

objects are set according to their frames. The player can press up, down, left, and right

key to move John. When the player presses left key, John’s location is changed and user

event interrupt happens. Therefore, the Location slot value of John frame is updated. If

John collides with Mary, CsAT will be triggered as shown in Figure 13. The inference

process is ○1 the Collision slot value of John frame is added and then the attached

procedure is triggered. ○2 Actor slot value of CsAT is added. ○3 Check whether

PreCondition is satisfied. ○4 PreCondition is true, so run procedure of InActivity. ○5

The procedure of InActivity causes John and Mary to converse. ○6 . After the

conversation, the procedure of InActivity add result to Result slot. ○7 Result slot is

added, so attached procedure is triggered. ○8 The PostAction procedure is run to set

Appearance slot of Mary frame. ○9 Appearance slot of Mary frame is updated. ○10

The GoalTest procedure is run to add token in Petri Net, and therefore Petri Net for

SCF becomes State 3 in Figure 14. Final, the Petri Net runs again and becomes State 4

 37

in Figure 14. Because P E in Petri Net has one token, the story ends.

“Default”StringLifeCycle

(Activity) CsAT is a Conversation

“Result1”StringResult

if Result == Result1,

set Mary.appearence = “MaryHappy.png”

RulePostAction

Conversation procedureProcedureInActivity

if Result == Result1, set cs1 = trueRuleGoalTest

JohnDynamic

Object

Actor

if Actor.Collision.Name == Mary

then trigger InActivity

rulePreCondition

valueTypeSlot Name

“Default”StringLifeCycle

(Activity) CsAT is a Conversation

“Result1”StringResult

if Result == Result1,

set Mary.appearence = “MaryHappy.png”

RulePostAction

Conversation procedureProcedureInActivity

if Result == Result1, set cs1 = trueRuleGoalTest

JohnDynamic

Object

Actor

if Actor.Collision.Name == Mary

then trigger InActivity

rulePreCondition

valueTypeSlot Name
Procedure()
{
if(…)
{
dialog.show();
…

}
else
{
…

}
…

}

If added trigger
PostAction and GoalTest

2

3

4

5

67

8

10

MaryScene ObjectCollision

(200,100)PointLocation

(SO) John is a Player Character

“John”StringName

Type

…

ValueSlot name

MaryScene ObjectCollision

(200,100)PointLocation

(SO) John is a Player Character

“John”StringName

Type

…

ValueSlot name

If added,
Set this to CSwithMary.Actor
Trigger CSwithMary.PreCondition

1

“MaryHappy.png”StringAppearance

(SO) Mary is a Non Player Character

“Mary”StringName

Type

…

ValueSlot name

“MaryHappy.png”StringAppearance

(SO) Mary is a Non Player Character

“Mary”StringName

Type

…

ValueSlot name

9

RPG-like Learning Content

Figure 13: The OOICM running process.

Figure 14: The running process of Petri Net

 38

Chapter 5. ActionScript Transformation Process

 In this Chapter, we will introduce our prototype system. Figure 15 shows the

prototype system. The SCF will be transformed into Petri Net by mean of SCF2PN that

has been discussed in 4.1. Activity and SO will be transformed into frames by filling in

the slots of frames according to the attributes of Activity and SO. Because we apply

Petri Net to model SCF and apply frame knowledge representation to model Activity

and SO in the system layer of OOICM, the system environment must contain a Petri

Net engine and a frame engine. Therefore, we implement the Petri Net engine and

frame engine in ActionScript. We also propose an algorithm OOICM2AS to transform

Petri Net and frames into ActionScript codes.

Author

U
I

SCF

Activity SO

OOICM

Petri Net

Frame Frame

AS file
AS fileAS file

Frame

Engine

Petri Net

Engine

T
ran

sfo
rm

O
O
IC
M
2
A
S

Figure 15: A prototype system based on OOICM

(1) Petri Net Engine

Besides the basic capability of Petri Net engine, there are two additional

requirements for this engine in order to handle the SCFPN.

a. The type PL place is a place which the activity frame can add tokens or remove

tokens to. Therefore, the Petri Net engine must be able to receive the commands

 39

form frames to add tokens or remove tokens of places.

b. The end of a game depends on whether the type PE place has tokens. Therefore,

the Petri Net engine must be able to dispatch an ending message when the type PE

place has tokens.

(2) Frame Engine

A frame engine is necessary in order to handle the inference of activity frames and

SO frames. We implement each activity frame and each Scene Object frames as

several ActionScript classes. The communications among frames and Petri Net

mainly rely on the ActionScript API dispatchEvent().

(3) OOICM2AS

 OOICM must be transformed into ActionScript (AS) code so that the compiler can

compile the code into SWF file. We have implemented SCFPN AS class, Activity

AS class, SO AS class. Besides, we also give a middle AS file called “template.as”

to help the transformation. Figure 16 shows the outline of “template.as”.

import mx.controls.*;

import mx.utils.Delegate;

class FlashGame

{ …

 //<SceneObject declare>

 …

//<Activity declare>

 …

 //<Petri Net instance>

 …

 //<SceneObject instance>

 …

 //<SceneObject setting>

 …

 //<Activity instance and setting>

 …

}

//<Activity PostAction setting>

...

Figure 16: The outline of “template.as”

 40

The OOICM2AS algorithm is described as follows.

Algorithm: OOICM2AS

Input

 SCFPN, Activity Frames, SOFs, and an AS file “template.as”.

Output

 An ActionScript File.

Step 1. Create a new file “source.as”.

Step 2. Read the next line from “template.as”, and write the line in “soruce.as”

Step 3. Check the line in Step 2.

Case 1: the line is “//<SceneObject declare>”

For each SOF, get the value of slot Name, and write the declaration in

“source.as”.

Case 2: the line is “//<Activity declare>”

For each Activity Frame, get the value of slot Name, and write the declaration in

“source.as”.

Case 3: the line is “//<Petri Net instance>”

For each place, transition, and arc, write their declaration and attributes setting in

“source.as”.

Case 5: the line is “//<SceneObject instance>”

For each Activity Frame, get the value of slot Name, and write the declaration in

“source.as”.

Case 6: the line is “//<SceneObject setting>”

For each SOF, get the attributes from its frame and write the attribute setting in

“source.as”.

Case 7: the line is “//<Activity instance and setting>”

For each Activity Frame, get the attributes from its frame and write the attribute

setting in “source.as”.

Case 8: the line is “//<Activity PostAction setting>

For each Activity Frame, get the value of slot PostAction and write a PostAction

function in “source.as”.

Step 4. if the line is final line in “template.as”, then go to Step 5, else go to Step 2.

Step 4. Output “source.as”

 41

Chapter 6. Experiment

 For evaluating the OOICM model, we implement a generator based on OOICM.

The generator transform XML file into Flash file. Authors construct the RPG-like

learning content by editing XML. In addition, several scenarios are given to evaluate

the expressive power of OOICM and we also compare performance of the generator

with Adobe Flash and RPG-Maker.

6.1. System Implementation

 Our generator has four inputs and one output. “Story.xml”, “Activity.xml”, and

“Scene.xml” are the specifications of SCF, Activity, and Scene Object respectively.

Transform process will parse these xml files and then apply OOICM2AS algorithm to

transform them into ActionScript file called “FlashGame.as”. “Source.xml” describes

what asset is imported, such as images and sounds. It is the input for Swfmill [15] that is

an xml2swf and swf2xml processor with import functionalities. Swfmill will import the

assets described in “Source.xml” into a blank flash file called “source.swf”. After that,

“FlashGame.as” and “source.swf” are inputted to MTASC [16]. MTASC is an

ActionScript 2 Open Source free compiler. It can compile large number of .as class files

in a very short time and generate directly the corresponding SWF bytecode without

relying on Adobe Flash or other tools. “FlashGame.as” may call function from Library,

so MTASC has to import class from Library. Final, MTASC will generate a Flash file

called “FlashGame.swf”.

 42

6.2. Experiment Designs

 We use the generator to generate the learning content and compare with Adobe

Flash and RPG-Maker. The experiment gives a scenario of the standard operation

procedure. The player plays the role of a graduate. The scenario describes the player

has to complete several procedures in order to get the graduation certificate. Figure 17

shows the SCF, and Figure 18 shows the screenshot of the game.

C End

Talk to library
manager

node1

Talk to lab
manager

node3
Take the

graduation

certificate

node7

Start A

Talk to dorm

manager

node5

Give 2 theses

to library

node2

Give 3 theses

to lab

node4

Return the

key to dorm

node6

Talk to Su

node8

Figure 17: The SCF of our experiment

Figure 18: The screenshot of the learning content

 43

6.3. Experiment Results

 We count the steps of constructing this learning content for our generator and

RPG-Maker. Figure 19 shows the comparison of the number of steps. When

constructing a new learning content in our experiment design, the generator spends

about 350 steps and RPG-Maker spends about 250 steps. Because we have to construct

SCF, the cost for constructing a new learning content is more than RPG-Maker.

However, the generator spends fewer steps than RPG-Maker for reusing a learning

content. In the experiment, we reuse the SCF, the author just reconfigure the activities

and SOs. In addition, the AS code, generating by generator, contains 686 lines. If we

take the other library into account, authors have to write more than 686 lines of code in

Adobe Flash.

0

50

100

150

200

250

300

350

400

Construct Reuse

St
ep

s Generator

RPG-Maker

Figure 19: The comparison of the number of steps

 44

Chapter 7. Conclusion

 In this thesis, we apply knowledge-based approach to propose OOICM, which is

composed of SCF, Activity, and SO. We apply Petri Net to model SCF and apply Frame

knowledge representation to model Activity and SO. An ontology is proposed to

describe the relations of all kinds of SOs. Moreover, we also implement a generator to

evaluate OOICM. This generator can help authors construct an RPG-like flash learning

content without low level programming.

 It is tedious to edit the XML files for the input of the generator. Therefore, we will

develop an authoring tool to help authors edit XML file by a user-friendly UI in near

future. In addition, MMORPG (Massive Multiplayer Online Role Playing Game) has

become very popular in recent years, because the player can play the game with other

real people rather than AI agents. We are trying to support MMORPG in OOICM.

Moreover, the battle, which is a complex activity actually, is very attractive to most

players in the computer game. We will also add the battle activity into OOICM in the

future.

 45

References

[1] Role-Playing Exercises, Created by Rebecca Teed, SERC, Carleton College,

 http://serc.carleton.edu/introgeo/roleplaying/index.html

[2] Flash Player Penetration,http://www.adobe.com/products/player_census/flashplayer/

[3] Arturo Nakasone, Mitsuru Ishizuka, “Storytelling Ontology Model using RST”,

Proceedings of the IEEE/WIC/ACM International Conference of Intelligent Agent

Technology 2006

[4] Mark Riedl, C. J. Saretto, R. Michael Young, “Managing Interaction between Users

and Agents in a Multi-agent Storytelling Environment”, Proceedings of the second

international joint conference on Autonomous agents and multiagent systems, 2003

[5] RM Young, MO Riedl, M Branly, A Jhala, RJ Martin, C. J. Saretto, “An

Architecture for Integrating Plan-based Behavior Generation with Interactive Game

Environments”, Journal of Game Development, 2004

[6] Mark O. Riedl and R. Michael Young, “From Linear Story Generation to Branching

Story Graphs”, IEEE Computer Graphics and Applications Special Issue on

Interactive Narrative, 2006

[7] B Magerko, JE Laird, M Assanie, A Kerfoot, D Stokes, “AI Characters and

 Directors for Interactive Computer Games”, 16th Innovative Applications of

 Artificial Intelligence Conference, 2004

[8] Brian Magerko, “Story Representation and Interactive Drama”, 1st Artificial

Intelligence and Interactive Digital Entertainment Conference, 2005

[9] S Natkin, L Vega, “A Petri Net Model for Computer Games Analysis”, International

Journal of Intelligent Games & Simulation, 2004

[10] S Natkin, L Vega, S Grünvogel, “A new Methodology for Spatiotemporal Game

Design”, Proceedings of CGAIDE, 2004

[11] Martin Purvis, “Narrative Structures for Multi-Agent Interaction”, Proceedings of

 46

the IEEE/WIC/ACM International Conference on Intelligent Agent Technology,

2004

[12] Clark Verbrugge, “A Structure for Modern Computer Narratives”, CG’2002:

International Conference on Computers and Games, 2002 - Springer

[13] Adobe Flash, http://www.adobe.com/products/flash/

[14] RPG Maker, http://www.enterbrain.co.jp/tkool/RPG_XP/eng/

[15] Swfmill, http://osflash.org/swfmill

[16] MTASC, http://www.mtasc.org/

