EH- BAESPFI BN YN F

Constructing an RPG-like Interactive Eearning Content Model

PoE AR {4 L+ 2 E A

EH- BEIPRIFNEY R G KA

@
My
i

™
| =

Fid: S h¥rcs: §

=T A EFRER

FTRPE I RF

&

BB B E Y kB Y BV P FUF A S HmlF2 B3 g B EL

R F R KA o EFRTHITOREFE IBNPEY N FREGAAS
o Fla ikl g R TE Y sREREHRG AL VHEVEH o A L%
PARFELNEIPIFINRET N F RS S HEEGIUNTY N FH-
gdm g AR EE e Fp R PR - B Ee I B F Y R F R

(OOICM) » #* H-3] & B Iy chiph o e B PN F il > 1 7 SpfBy 7 535 ¥
TREORG 0 3 FEP L RARS T UE R B B A BRI E DT Y
e OOICM ¥ = i = & #7f = » & & & Story Control Flow (SCF), Activity, -
Scene Object (SO) - & OOICM i1k ¥k ¥ » F] 5 A i # i ¥ gt 3 5 it SCF> #

IO R SraRd fy if Activiy fr SO v AT AP ek STR I T R AR RRLIIHF o

‘&

Al o gt b AP O0ICM 9 i - BASL F¥ KA ik X S 8 Y P
D E e T R B g @ R RS MR AT EAEY G

AAIE b3 RRR i 4 e

ok %

MatF: B RR 128 -~ &0 PUFSE - B 2

Constructing an RPG-like Interactive Learning

Content Model

Student: Dung-Chiuan Wu Adyvisor: Dr. Shian-Shyong Tseng
Institute of Computer Science and Engineering
Nation Chiao Tung University

Abstract

In early years, the e-Learning contents are static and uninteresting because they are
only written by HTML. However, with the growth of the web technology, interactive
learning contents are getting more and more popular because the interactive feature
makes learning as well as teaching more, interesting. In this thesis, we focus on
RPG-like Flash interactive learning contént: But itis hard and costly to create this kind
of learning content. Therefore,-we propose‘an Object Oriented Interactive Content
Model (OOICM) which represents the high-level game knowledge for authors and the
interface of OOICM can assist authors' in ‘constructing an RPG-like learning content
easily without writing low level codes. OOICM is composed of three components
which are Story Control Flow (SCF), Activity, and Scene Object (SO). In the system
layer of OOICM, because we apply Petri Net to model SCF and apply frame knowledge
representation to model Activity and SO, the system environment must contain a Petri
Net engine and a frame engine. In addition, we also implement a generator based on
OOICM to help authors construct the learning content. Final, we compare the generator
with other authoring tools and the experimental result shows the generator has better

reusability.

Keywords: Petri Net, Frame, RPG, Knowledge Based Approach.

® #

Thwmyhr o FALEIA D g § 2L F o 7 g 497a &
AoV BHE g AL L AR 6 0 P EALFBER S A LA

TR - BB ART Y S CBIBL Y 2 A 4 PR e AR 2
FE oo PR BT B R PHERR G RRRR R s B
EATAPFIOFFAL E AR L ABRERE -

PRERPOLREHEE - SRESE oIS 2L TRDTP Wi
Bl BEEFINPFRFAAFRHTLENER S B2 B ARG o g0t
AL KB L FEY A A EREREE A R E Et“??%}éiﬁokﬁ’ﬁ @
SREDRFP o Bk BT A A XA s akiE s B hiEa &k o
A I] #F‘#&#‘:’&@’)AL BRI IR B (AR o :ﬁ’ﬁ H ft—é/ﬁ%}:@%?\l
PP R BRARE R Bt - - BE O fmsaage B2t f R ke IR A i o

Bofs B R E A R A BB i;};_&&}lﬁé CE AR MO A S EA LG
P ARPFRL EEP AR B BN (A R 2 R e

Table of Content

*ﬁ ‘g oo 2
ADSTIACT ccceuiiitiiiientenieinsneisnestecsteesseissacsssessssessanssssesssessssssssssssassssessssssssssssassssassssessanes 3
B = N 4
Table of CONLENL.....cuueeiieiiiiiisniiiencseensstenseessseisecssseesnssssesssnssssesssnssssessssssssasssssssassssasess 5
LiSt Of FIUIES..ccicueiiiirriniiiiniiicnsnnicssnncnsnncssssnossssisssssesssssssssssssssssosssssssssssssssssssssssssssssse 6
LISt Of TADIES..cccuiiiiiiiiiiiiininnieinennniisnisnenseessessessssesssessssssssesssssssssssssssssasssssssssssssssss 7
Chapter 1. INtroduction.......ecceeiencseicssenccssnncssssncssssicssssssssssessssssssssssssssssssssssssssssssssssses 8
Chapter 2. Related WOorK........ccueieiveiiiviicnsnnninsnicnssicsssicssssisssssssssssssssssessssssssssssssssses 11
2.1. Story Representationc.eeccceeccsseeecssnecssnnessssncsssscssssssssssesssssesssssossssssssssssses 11
2.2. AUthOTrINg TOOIS ..cueeeeueierinicssuricssnnicsssnncssnnncssssesssssesssssessssssssssssssssessssssosssssossssess 14
Chapter 3. Object Oriented Interactive Content Model (OOICM)........cccueeruveennens 15
3.1. Story Control FIOW (SCEF) fuuciccueiicnneeicissiinnneicssnicsssnessssnossssssssssssssssessosssssossess 17
320 ACHVILY couvieueesuecnncnisuecsesbuninsisncenebsnnisncassshocsssthosressecsssssnsssessasssnssassssessasssessassssssss 21
3.3. Scene ODjJect (SO) ccccuerissiussssncssascsssnionssssecssnasessssessssssssssssssssssssssssssssessonssssssssss 23
3.4. Application of OOICM i.......iciiresrncessnsossssecsssiosssssesssssessssssssssssssssssssssesssssssssssess 25
Chapter 4. System Layer of OOICM............citeicienneicnsneicssnnicsssncssssessssssssssessssssssssses 27
4.1. Petri Net for SCF (SCEFPN) ..uuiiiiineiiccnnsseniccsssnnsicsssssssesssssssssssssssssssssssssssssssases 28
4.2. ACLIVIEY FIrame.....ueiieveiiiceicssrncssnnicissnncssnnncssssisssssessese 32
4.3. Scene ODbject Frame......iceeicnveicssnnecnsnicssnnncssssessssnesssnsssssssssssessssssssssssssssess 34
4.4. The OOICM RuUnNDING ProcCess......cccceeerverecssnnicssnnecsssncssssncssssscssssscssssessssesssssens 36
Chapter 5. ActionScript Transformation Processceeeeecsccsecsseecsnensnccseecsnnees 38
Chapter 6. EXPerimentecceveierieicssnicsssnncsssncssssncssess 41
6.1. System Implementationcocceeeeveecssnnccssnncssnicsssnicssssesssssessssssssssessssssssnsssses 41
6.3. Experiment ReSUILs.........cooveiiriviiirieiinssnncnsnicssnicssnnicsssnesssncssnssssssssssssssssssssses 43
(@] 1 F:1 0 7 G G011 16 L1 T 1) 1 44
REfEIreNCES c.ccueeiiieiuiiiiiitinstintinstecstinaensnecsessessssessessssesssessssesssasssssssssssssssssassssassnns 45

List of Figures

Figure 1: A Mimesis Storyworld planoccooeiiiiieiiienieeeeeeeee e 12
Figure 2: An example of partial-ordering of plot..........ccceeviriiniininiiniiieeeeee 12
Figure 3: OOICM OVEIVIEWcoiuiiiiriieiieieniieeite sttt sttt sttt st sbe et e b s 16
Figure 4: A simple conversation SCF..........coccoiiiiiiiinienieieieeeeeee e 19
Figure 5: A cOmMPIEX SCF...c.uoiiiiiiiiiiiieeese e 20
Figure 6: An SCF SUPET NOAEcouiiiiiiiiiiiiiiiiesieeeeeeee e 20
Figure 7: Scene Object ONtOlOZY......ccueervieriieriieeiieiie ettt 23
Figure 8: A diagram for communications among SCF, Activity, and SO. 25
Figure 9: The steps to transform SCF in example 1 into Petri Net.........ccccoeoeevveiennnene. 31
Figure 10: The corresponding Petri Net of example 2.........ccccoevieviiieniieniieiienieeieee. 31
Figure 11: An instance of Conversation frame.c.cccoceeverieniniiniininieiienieeeene, 33
Figure 12: The frame representation of @ SO.........ccccevvieriiiiiieniiniieniceeeseeee 35
Figure 13: The OOICM rUNNING PrOCESS. ...vveeuvierureeriieeieeiieeieenieeseeeseessreeseesseesseessns 37
Figure 14: The running process of Petri Net.......cccoeoerieriiiinieniiienieceeceieee e 37
Figure 15: A prototype system based onOOICM..........cc.ceouevieriiiieniiniiieeieneeeenene 38
Figure 16: The outline of “templat.as”.. cusssws s e coabineevverreeruenieneesienieneeeeseesie e 39
Figure 17: The SCF of our eXperiment ...l i it ot eeseeeeeeieenie et 42
Figure 18: The screenshot of the learning content......c.....c..ooceeveeveriininienienecenne 42
Figure 19: The comparison of the NUMbBETFOTSIEPS ieit.veveererieniiieniiiiiieeierieeeeeene 43

List of Tables

Table 1: The SCF NOAE......cc.oiiiiiiiiiiisieieeeceee et 18
Table 2: The SCF CONNECLOT.c..coruiiiiriieiieieniieieete ettt 18
Table 3: The attribute of an activity that authors have to assign values to. 21
Table 4: ACtivity temMPIALEScc.eeviieiiiiiiieie ettt 22
Table 5: The descriptions of concepts in Scene Object Ontologyccceeevverueeeenennne. 24
Table 6: The corresponding Petri Net for SCF nodes.coccveeevieniieiienieciieieeieee. 28
Table 7: The corresponding Petri Net for SCF connectors.cccceeeeveevveeciieneeeneennen. 29
Table 8: The descriptions of the slots in an activity frame.c.ccoeceeverieriencneneenne. 32
Table 9: Five kinds of templates of aCtivity.........ccoeeieriieiiiiniiiiieieceeee e 32

Chapter 1. Introduction

With the growth of Internet, it changes not only the human’s life but also the learning
approaches. The technologies of e-learning are globally accepted for making learners
study anytime and anywhere. Most e-Learning contents are placed on web servers, and
learners can study with those contents by a web browser. In early years, these
e-Learning contents are static and lack interactive features due to the pure HTML
format, so they are uninteresting and can not show the real world scenario in a realistic
way. However, some learnings need interactions with learners and scenario simulations.

In recent years, the web technology (such as Flash, JavaScript, AJAX) has become
more and more mature and stable. Web has been able to present all kinds of multimedia
information. As mentioned above, some learnings need interactions with learners and
scenario simulations. For gamé-=based learning, it has the characteristic of high
interactions. Among several kinds of games; such as Action Game, Role Playing Game
(RPG), Strategy Game and so on, RPG is-suitable for scenario simulations because it
emphasizes the "real-world" side of science.”Besides, Role-Playing mainly has three
advantages which are “Motivating Students, “Augmenting Traditional Curricula”, and
“Learning Real-World Skills” [1].

Moreover, a platform is necessary to display the learning content. According to the
statistics [2] from Adobe, Flash Player is the most pervasive software platform in the
world, and supports many kinds of operating systems and mobile devices. In addition, it
can represent rich 2D animations on WWW and handle various interactions by writing
ActionScript code. Therefore, Flash file format (SWF) is very popular format in
interactive learning content.

Due to the reasons above, we focus on RPG-like Flash interactive learning content in

this thesis. But creating this kind of learning content is time-consuming and costly

especially for nonprogrammer. Authors have to write ActionScript codes to handle
various events. Even though the author has constructed RPG-like Flash content, he
must modify the codes in order to apply to another similar scenario because the content
1s hard code. Therefore, how to facilitate the creation of RPG-like Flash content and
reuse the learning content are important issues.

In general, RPG is composed of story (narrative), characters and scenes. All
characters are arranged in the scene and the story describes how characters act to
complete the playing of the game. These considerations must be taken into account.
Therefore, in this thesis, we propose Object Oriented Interactive Content Model
(OOICM) to represent the high level knowledge for RPG-like learning content.
Authors can use the interface that OOICM provides to construct an RPG-like learning
content easily without writing low level codes. OOICM is composed of three
components which are Story Centrol Flow (SCE), Activity, and Scene Object (SO).
SCF is a sequence of subgoals,-Activity-is-the-action that SOs can perform, and SO is
the object in a game scene. In the system layerof OOICM, we apply Petri Net to model
SCF and apply frame knowledge representation to model Activity and SO. Petri Net is a
powerful language for process flow modeling, concurrency handling, and validation.
These properties of Petri Net are suitable to represent the concept of the SCF. SOs have
their own attributes, inherited attributes, and event procedure call. Frame knowledge
representation is suitable to represent the properties of SOs. Final in order to
communicate with SOs’ frames, frame knowledge representation is also to represent
activities.

Because we apply Petri Net and frame, the system environment must contain a Petri
Net engine and a frame engine. We implement the two engines in ActionScript and a
generator based on OOICM to assist authors in constructing an RPG-like learning

content.

The remainder of the article is organized as follows. In Chapter 2, we introduce some
related works about the story representation and authoring tools for creating the
interactive content. Then, the proposed model OOICM and the system layer of OOICM
are described in Chapter 3 and Chapter 4 respectively. Chapter 5 introduces the
prototype system and an algorithm OOICM2AS. The implementation for OOICM and
experiments are discussed in Chapter 6. Finally, Chapter 7 gives the conclusion and

future work.

10

Chapter 2. Related Work

2.1. Story Representation

Story (Narrative) is a very important element in RPG. Story is a control flow that
describes a sequence of events that the player has to experience in order to complete the
game. There are several researches about the story representation and they propose their
story structure. A well-designed story structure can help us verify the correctness of the
story flow. In this section, we will describe some story representations.

In [3], they have studied many papers to analyze the narrative techniques. They
think that storytelling applications can be classified as Rule base, State Transition based,
Goal based, Permutation, Template based, Script based, Semantic Inference based,
Emergent Narrative based, and Narrative .Function based. We discuss several story

structures as follows.

(1) Plan

In Mimesis [4][5], the planning representation is applied to represent the story. As
shown in Figure 1, Gray rectangles represent character actions and are labeled with an
integer reference number, the actions’ names and a specification of the actions’
arguments. Arrows indicate causal links connecting two steps when an effect of one
step establishes a condition in the game world needed by one of the preconditions of a
subsequent step. Each causal link is labeled with the relevant world state condition. The
white box in the upper left indicates the game’s current state description, and the box in
the upper right indicates the current planning problem’s goal description. The

expressive power is proved in [6].

11

0.Current s ;
e 2 PickUp{fred ammo,armory) Has (fred, ammo) 7 Goal
State State

At (fred, armory) ‘ 4 Load(fred,gun,ammo) | 1oad2d (gun)
‘ 1.Move(fred, tower,armory) At (frad, armory) Wounded | frad)
/Has (frad, gun)
3.PickUp(fred,gun,armory) f/—/—/_\‘ 6.Shoot({fred,bamey, gun, bunker) ‘

At (fred, bunker)

At (fred, tower)

At (fred, armory)

‘ ENov e o bunker) ‘

At (Barney, bunker)

Figure 1: A Mimesis storyworld plan

(2) Partial-Ordering Graph

In Interactive Drama Architecture (IDA) [7][8], Brian Magerko used
partial-ordering graph to represent story. As shown in Figure 2, each node in the graph
is a plot point. A plot point has preconditions, actions, and a time constraint. The
preconditions describe what should be true in the world in order for the plot point’s
actions to be executed. The actions are theplot events that are performed after all
preconditions are fulfilled. The time-Constraint describes a time span during which
every precondition must be true. This:structure is similar to the planning language in
Mimesis described earlier. The key difference is that this representation has no explicit

concept of causality.

AtiSally, Lobby)
At(John, Lobby) Talk(John, Sally, Conv #9)
Proximity(Sally, User, 1
room)

Begin: 5 sec. End: 100

preconditions actions

Figure 2: An example of partial-ordering of plot

(3) Petri Net

In [9], Petri Net is used to model an atomic action called transaction. There are

12

three relationships of ordering and two logics relationships between transactions. The
language that Petri Net generates can used to characterize the topology of the virtual
space in a game [10]. In [11], in order to characterize narrative structures, they employ
“narrative nets” (N-nets), which are based on colored Petri nets. In [12], Clark
Verbrugge presented a representation framework called Narrative Flow Graphs (NFG),
derived from 1-safe Petri Net. NFG can be used to verify desirable properties, or as the

basis for a narrative development system.

The researches discussed above mainly attempt to verify the properties of the story
flow such as the balance between the user control and the story coherence. But they did
not take the construction of a story into consideration. These story structures are not
intuitively understood by authors..Therefore, a‘game author must understand the story
structure before designing a game. Besidesy there -are other considerations such as

scenes, actions for an object, when designing-a-whole game.

13

2.2. Authoring Tools

Many tools can be used to create the interactive content. Adobe Flash [13] is the
original and popular authoring tool to create the flash format content. Flash is not
designed to construct the RPG-like content, and therefore authors have to add
ActionScript code manually to simulate the behaviors of the role playing games. It is
not easy for a programmer to write ActionScript code to handle varied events in a game,
not to mention a nonprogrammer.

RPG-Maker [14] is powerful tool for creating role playing games. It provides the
user-friendly editor interface. Authors create a role playing game without writing low
level codes. Events are attached to the objects or characters in the scene. The story
control flow is event-driven and is not represented explicitly. What authors see is the
game scene and a lot of events, The scenario“that the game presents can not be
understood by authors immediately. Therefore, it <is hard to construct, reuse, and

maintain a more complex role playing game-.

14

Chapter 3. Object Oriented Interactive Content Model

(OOICM)

As mentioned before, it is time-consuming and costly to create the RPG-like learning
content. Because authors have to write low level codes to handle various events, we
want to propose a model to assist authors in constructing the learning content without
low level programming. To design this model, some difficulties must be solved. First,
how do we represent the story explicitly for authors? Second, the objects in a scene
have their own attributes, inherited attributes, and event procedure calls. Writing codes
for every object instances is costly. Final, how do we transform the model into low
level codes?

The idea for this model is describéd as follows. We provide authors with the high
level game knowledge from authors’ viewpoint 'so that author can construct an
RPG-like learning content easily without-understanding how the system actually work
actually. Based upon this idea, ‘we. propose Objeéct Oriented Interactive Content
Model (OOICM) to represent the high level knowledge for RPG-like learning content.
Authors can use the interface of OOICM to construct an RPG-like learning content
easily without writing low level codes. Furthermore, the story control flow is
represented explicitly in order to show the scenario of the learning content clearly.
Object oriented methodology is also used for reusability and eases coding effort.

As shown in Figure 3, OOICM is composed of three components which are Story
Control Flow (SCF), Activity, and Scene Object (SO). Story Control Flow a
sequence of subgoals. Activity denotes the action that SOs can perform. Some
activities may achieve subgoals in the SCF. Scene Object denotes the objects that
constitute the scene of learning content. In order to complete the playing of the game,

the player has to perform some activities to achieve the subgoals in the SCF. The detail

15

of the three components will be described in this Chapter.

Story Control Flow (SCF)

I
[1Subgoall]

cececccccccbcccccccccccccccccccccccccncaa-.

Activity |

Scene Object (SO)

perform

Static Object

Character Character

The scene of a RPG-like learning

The actions that SOs perform content is composed of SOs

Figure 3: OOICM overview

16

3.1. Story Control Flow (SCF)

The SCF denotes a sequence of subgoals in an RPG-like learning content. The

definition of the SCF is described as following.

Definition 1: The Story Control Flow is a 3-tuple
SCF = (N, C, O), where
I.N ={n,,n,,..,n_} is a finite set of SCF nodes. n; includes four types which are
Start, End, Connective, Regular, and Super.
® The Start node and End node are atomic nodes that specify the start and the end
of a game respectively. Start node and End node in an SCF must be unique.
® The Connective node is an atomi¢ node just for connecting different connectors.
® The Regular node is an atomic, nodelthat'denotes the subgoal in a game. It has an
attached activity declaration. ‘In this section, we skip the detail of the activity. It
will be discussed in 3.2.
® The Super node is a composite node that can be taken apart into nodes and
connectors. An SCF can be encapsulated into a Super node and the Super node can
be reused to simplify another SCF. When an SCF is transformed into a Super node,
the Start node and End node in the SCF will both become a Connective node.
The detail is described in Table 1.
2.C ={c,,c,,...,c,} 1is a finite set of SCF connectors. A connector ¢; = (TN, HN, f) is
considered to be directed from 7N to HN.
® TNcN. TN is called the PreNodes of c;. The side that connects to TN is called tail
of ¢;.
® [NcN. HN is called the PostNodes of c;. The side that connects to HN is called

head of c;.

17

® ¢ denotes the type of the connection. There are five types which are “Linear”,
“Concurrence”, “Selection”, “And”,and “Or”. The values of |TN| and |HN] are
dependent on 7. As described in Table 2, |TN| = |[HN| = 1 for a Linear connector,

but |TN| =1, |HN| > 1 for a Concurrence connector.

3.0 ={0,,0,,...,0,}is a finite set of Scene Object declarations. o; = (type, variable),

where type is the type of o;, variable is the identification for o;.

Table 1: The SCF node

SCF Node
Type

.Outport The start of a game. Only one
outport.
End Inpo The end of a game. Only one
mport

Inport Outport A'middle node for connecting
Connective

SCF Node Notation Description

Virtual L] L] 3
differentsconnectors

Inpo i Outport
Normal [] Description [_] The subgoal of a game

Attached Activity(type, =)

Table 2:: The:SCF connector

SCF Connector SCF Connector

Description
Type Graph

One to one. If the PreNode of this connector is
Linear achieved, player can progress in PostNode of this

connector.

One to many. If the PreNode of this connector is
Concurrence achieved, player can progress in any PostNode of this

connector.

One to many. If the PreNode of this connector is
Selection achieved, player can progress in only one PostNode of

this connector.

Many to one. If all PreNodes of this connector are

]

And achieved, the player can progress in PostNode of this

connector.

Many to one. If any n PreNodes of this connector are
Or : achieved, the player can progress in PostNode of this

connector. The default value of n is 1.

18

From author’s viewpoint, N means the plots in a story, C means the flow directions
of plots, and O mean the cast.
Most scenarios are not beyond the scope of the above definitions. Therefore, the

expressive power of the SCF is enough. We give three examples to explain the SCF.

Example 1. A sample conversation scenario

Figure 4 shows a sample SCF graph composed of three nodes and two connectors.
The three nodes are Start node, End node, and Regular node nodel. The two connectors
are c/ and c2 which are both linear type. The story describes that the player has to talk

to Mary to complete the game. The subgoal is described in nodel.

The List of Scene Object:
<PlayerCharacter> John
<NonPlayerCharacter> Mary

Conversation(John, Mary)

Figure 4: A smmple conversation SCF.

Example 2. The procedure to leave school.

Figure 5 shows a part of the procedure to leave school. It is composed of seven SCF
nodes and four SCF connectors. The story describes that the player has to talk to Mary
and will get hints. After that, the player knows that he/she has to copy five theses and
give two theses to the library, three to the laboratory. In the same time, the player also
has to return the key of the laboratory to the manager. When finishing all missions, the

player completes the game.

19

The List of Scene Object:
<PlayerCharacter> John
<NonPlayerCharacter> Mary
<NonPlayerCharacter> Roy
<[tem> theses_3
<[tem> key

[toLab |
Give 3 theses|
to the lab

Trade(John, Bill, theses_3) Useltem(John, Roy, theses_3

. Talk to the
manager

Conversation(John, Mary) Conversation(John, Roy)

Useltem(John, Roy, key)

Figure 5: A complex SCF

Example 3. Use Super node to simplify a complex SCF.
As shown in Figure 6, the SCF in Example 2 can be encapsulated into an SCF Super
node. The Start node and End node in the original SCF will become Connective nodes

in Super node. The Connective node is a node used to join two different connectors.

supernode

.
[ond 1}

I IRegistration officd_]

Figure 6: An SCF Super node

20

3.2. Activity

Activity is the action that the player can perform. Some activities may achieve
some subgoals in the SCF, but some may not. In order to complete the game, the player
has to perform some activities to achieve the subgoals in the SCF. For example, John
has to have a conversation (Activity) with Mary so that the subgoal can be achieved.
The basic principle is that if the precondition of an activity is satisfied, this activity will
be executed, and after that, causes some post action to be executed. As shown in Table
3, authors must assign values to three basic attributes for every activity. The

In this thesis, we propose five kinds of activity templates which are “Trade”, “Use
Item”, “Take Item”, “Conversation”, and “Time”. For the learning purpose, these five
activities are often used. If a new kind of activity is required, a new template can be
added to extend the activity .templates: These'.five templates have the default

preconditions and are detailedly described in Table 4.

Table 3: The attribute of an activity that authors have to assign values to.

Attribute Description
Participants Specify the participants for the activity. The format is (<t;> p;, <t,>
P2, ..., <t pi,). Scene object p; must conform with type t;.
Effect Specify the effect after the activity is finished. Some APIs will be

provided for authors.

Specify when the activity can be performed. There are six options.

any SCF node, it can be performed anytime.

@*“Always”: This activity can be performed anytime.

(D“Default”: If this activity is attached to some SCF node, it can be

performed when the node is enabled. If this activity is not attached to

LifeCycle Q“AE_NodeName”: After the given SCF node is enabled, this activity

can be performed.

can be performed.

can be performed.

21

@®“AF_NodeName”: After the given SCF node is finished, this activity

O “BE_NodeName”: Before the given SCF node is enabled, this activity

©®“BF NodeName”: Before the given SCF node is finished, this activity

can be performed.

Subgoal Specify the node in the SCF. The activity will be attached to a given
node (subgoal) in SCF. After the activity is finished, the subgoal will be
achieved.

Table 4: Activity templates
Activity
Attribute Description
Template
Conversation | Participants (<PlayerCharacter> pc, The player has a
Type <NonPlayerCharacter> npc) conversation with
Default pc collides with npc and the mouse | others.
Precondition | click pc.
Dialog {(speaker;, content;), (speakers,
contenty), ...}
Take Item Participants (<PlayerCharacter> pc, <Item> The player takes
Type item) some item to his
Default pc collides with item, and item is inventory.
Precondition = | selected by the mouse.
Use Item Participants (<PlayerCharacter> pc, <ltem> The player uses some
Type item, <SceneObject> target) item in his inventory
Default Case 1t target is null (to some target).
Precondition | The player clicks the useButton for
item in pc’s ventory.
Case 2: target is not null
When pc collides with target, the
player clicks the useButton for
item in pc’s ventory.
Trade Participants (<PlayerCharacter> pc, The player buys some
Type <NonPlayerCharacter> npc, item from a trader
<ltem> goods) and then the item is
Default pc collides with npc and the player | put in his inventory.
Precondition | clicks the buyButton for goods.
Time Participants (<SceneObject> so) Some event will be
Type triggered after a
Default A given time interval elapses. given interval of
Precondition time.

22

3.3. Scene Object (SO)

Scene Object denotes the objects that constitute the game scene, for example, a
person, a dog, a tree, and so on. In order to describe the features and concepts of
various SOs, we propose a Scene Object Ontology to classify SOs, analyze the
inherited attributes and relations among SOs. The proposed ontology as shown in
Figure 7, SOs are classified into Dynamic Object which is an animate object such as
an animal and Static Object which is an inanimate object such as a building. There are
two relations in Scene Object Ontology which are “a kind of” and “a part of”. “A kind
of” relation denotes the inheritance from the parent. For example, if SO; is a kind of
SO,, it denotes that some attributes of SO, inherit SO,. “A part of” relation denotes
scene object can be classified into several classes. For example, if SO is a part of SO,,
it denotes that SO is the subset.of SO, The details of all scene objects are shown in

Table 5.

—» A Kind Of

—————— » A Part Of

Transfer
Sapce

Character

Figure 7: Scene Object Ontology

23

Table 5: The descriptions of concepts in Scene Object Ontology

Scene Object Type

Description

Base Scene Object

The base object in a scene of a game.

Dynamic Object The animate object. For example, a dog.

Non Player Character | The Al object.

Player Character The object that can be controlled by the player, i.e. the
protagonist.

Enemy The object that will attack Player Character.

Neutral The object between Enemy and Ally.

Ally The object that will help Player Character.

Static Object The inanimate object. For example, a building.

Item The object that can be taken and used by the Player

Character. For example, a pen.

Transfer Space

When touching the Transfer Space, the player will be

transferred to another scene. For example, a door.

24

3.4. Application of OOICM

In this section, we will explain how SCF, Activity, and SO communicate each other.
As shown in Figure 8, there are four interfaces among the three components. (D An
SCF has activities that attached to the SCF nodes. The types of activities must all
conform to the types that SCF nodes specify. @) An SCF has a list of SOs. The types
of SOs in the scene must all conform to the types that the SCF specifies. 3) An
activity specifies the types of participant SOs. The types of SOs must all conform to the

types that the activity specifies. (4) The states of SOs can be changed by an activity.

A Given A Given SO
Activity Type Type
Type Type
A Given @
SO Type % Type

SO
Activity

Change the @
State of SO > State

Figure 8: A diagram for communications among SCF, Activity, and SO.

The Construction and reuse of an RPG-like learning content are described as follows.
(1) The Process of Constructing an RPG-like Learning Content

Step 1. Construct an SCF by combining the SCF nodes and SCF connectors.

Step 2. Create SOs and configure their attributes.

Step 3. Create activities and configure their attributes.

Step 4(optional). Attach the activities in Step 3 to SCF nodes.

25

Example 4. Construct a conversation learning content.

(Step 1) Construct an SCF as same as Example 1. (Step 2) Add a Player Character
named John and a Non Player Character named Mary to the scene. Then set the
properties of John and Mary such as location, width, height. (Step 3) Add a
Conversation activity named CS. Then set John and Mary as the participants of CS.

(Step 4) Finally, attach CS to nodel.

(2) Reusing an Existing SCF
Import an existing SCF into a new learning content and name the SCF scf.
Step 1. For each SO so; in O of scf, create a new SO whose type is the same as so;’s.
Step 2. For each node n; in N of scf, check the attached activity a; of n; and then
create a new activity na;whose type 1s the same as a;’s.
Step 3. For each na; in step 2 check the types of participants (i.e. SOs) of a; and then
add the same type participants-into-najs

Step 4. Attach na; to n;.

Example S. Construct a conversation learning content from an existing SCF.

We name the SCF in Example 1 scf and reuse scf to construct a new learning content.
(Step 1) there are Player Character and Non Player Character type SOs in the cast of
scf. Therefore, create Player Character named Bill and Non Player Character named
Kelly. (Step 2) nodel has an attached Conversation activity which participants are
Player Character and Non Player Character type. Therefore, create a Conversation
activity named cs. (Step 3) Set Bill and Kelly as the participants of cs. (Step 4) Attach

cs to nodel.

26

Chapter 4. System Layer of OOICM

The system layer of OOICM specifies how OOICM actually works in our prototype
system. We apply Petri Net to model SCF and apply frame knowledge representation to
model Activity and SO. Petri Net is a powerful language for process flow modeling,
concurrency handling, and validation. These properties of Petri Net are suitable to
represent the concept of the SCF. SOs have their own attributes, inherited attributes,
and event procedure call. Frame knowledge representation is suitable to represent the
properties and functionality of SOs. In order to communicate with SO’s frames, frame
knowledge representation is also to represent activities. Then, Petri Net and frames will
be transformed into ActionScript code. Although what authors see are SCF, activities,
and SOs, our system actually handles Petti.Net and frames

Adding the system layer for:OOICM has thé. advantage described as follows.
Transforming the OOICM into-Petri Net and frames and then transforming Petri Net
and frames into ActionScript ‘eodes .is -easier than transforming the OOICM into
ActionScript codes straight. Besides,” OOICM can be extended without modifying or
adding ActionScript codes, because the system actually handles Petri Net and frames
which originally have the fixed execution mechanism.

Petri Net and frames will be described detailedly in this Chapter respectively.

27

4.1. Petri Net for SCF (SCFPN)

Petri Net is a powerful language for process flow modeling, concurrency handling,
and validation. These properties of Petri Net are suitable to represent the concept of the
SCF. Therefore, we apply the Petri Nets to model the SCF. The definition of Petri Net

for the SCF is described as follows.

Definition 2: The Petri Net for Story Control Flow is a 5-tuple.
SCFPN=(P, T, F, W, M), where
1.P ={p,,p,.---P,,} 1S a finite set of places. P includes five types of places.
® P, : The progress of a story.
® P, : The start of a story.
® P, : The end of a story.
® P, : Check whether the activity i1s completed.
2.T ={t,,t,,..,t } isa finite Setof transitions which disjoint form P (P N T=0)
3.F c(PxT)uU(TxP) is aset of arcs(flow relation).
4. W :F—{1,2,3,...} is a weight function.

5.Mp:P —{0,1,2,3,...} is the initial marking and M, (P) = 1.
Since every SCF node and SCF connector can be transformed into Petri Net, as shown in

Table 6 and Table 7 respectively, every SCF can be also transformed into Petri Net.

Table 6: The corresponding Petri Net for SCF nodes.

SCF Node SCF Node
Petri Net Notation Petri Net Notation
Type Type

Start Virtual

End Normal I

28

Table 7: The corresponding Petri Net for SCF connectors.

SCF Connector) X SCF Connector) X
Petri Net Notation Petri Net Notation
Type Type
)
Linear »ﬂ» And : D$
e
»D\
. n
Concurrence Or : D»
-
Selection

We also propose a transformation algorithm SCF2PN to transform the SCF into Petri

Net. The algorithm is shown asfollows.

Algorithm : SCF2PN
Input
scf denote the SCF that will be transformed into Petri Net.
Output
The transformed Petri Net.
Step 1. Create a new empty Petri Net pn.
Step 2. For every node n; in scf, ND2PN(n;, pn).
Step 3. For every connector c; in scf, CRT2PN(c;, pn).

Step 4. Output pn.

29

Procedure ND2PN(Node n, PetriNet pn)
Convert an SCF node to the corresponding Petri Net npn, and attach npn to pn.
Parameter

n is the SCF node that will be transformed into Petri Net.

pn is the attached Petri Net.

Step 1. Check the type of n.
Step 2. According

Table 6, add corresponding Petri Net block to pn.

Step 3. Assign the inport and outport places of .

Procedure CTR2PN(Connector c, PetriNet pn)
Convert an SCF connector to the corresponding Petri Net cpn, and attach cpn to pn.
Parameter
c is the SCF connector that will be transformed into Petri Net.
pn is the attached Petri Net.
Step 1. Check the type of c.
Step 2. According Table 7, add the corresponding Petri Net block pnb to pn.
Step 3. Assign the tail and head transitions of c.
Step 4. Connect ¢ with its PreNodes and PostNodes.
Step 4.1. For every PreNode n; of ¢, create an arc to connect outport place of n;
and tail transitions of c.
Step 4.2. For every PostNode n; of ¢, create an arc to connect head transition of ¢

and inport place of n;.

30

Example 6. Transform SCF in Example 1 into SCFPN.

Figure 9 shows the steps to transform the SCF of example into the corresponding
Petri Net. According to the algorithm SCF2PN, (D Create a new empty Petri Net pn.
(@ Transform every node n; into the corresponding Petri Net. 3) Transform every
connector ¢; into the corresponding Petri Net and create arcs to connect PreNode and

PostNode of ¢;.

Step 1. Create corresponding Petri Net for nodes Step 2. Create corresponding Petri Net for connectors

Step 3. Create arcs to connect nodes and connectors

Figure 9: The steps to transform SCF in example | into Petri Net.

Example 7. Transform SCF in Example 2 into SCFPN.
The steps are the same as Example 3. The corresponding Petri Net of Example 2 is

shown in Figure 9.

toLah

Figure 10: The corresponding Petri Net of example 2.

31

4.2. Activity Frame

In order to communicate with Scene Object frames, the frame knowledge

representation is applied to model the functionality of activities. The frame of an

activity is shown in Table 8. PreCondition slot and InActivity slot of the five templates

all have default values, and the other slot values are specified by the content author as

shown in Table 9.

Table 8: The descriptions of the slots in an activity frame.

Activity
Slot Name Type Description
Actor Scene Object Scene objects that participant in this activity.
PreCondition | Rule The condition that triggers this activity to start.
LifeCycle String Specify when the activity can be performed.
InActivity Procedure Theractions that will be executed when the activity
is proceeding.
Result String The-result of this activity. So far, it is useful for
only Conversaton activity.
PostAction Rule The actions that will be executed after the activity
is finished.
GoalTest Rule The subgoal that this activity will achieve in SCF.
Table 9: Five kinds of templates of activity
Activity
Template Default Slot Value
Conversation | PreCondition | If Actor.Collision(SceneObject target) == true
AND , target.onRelease == true, then trigger
InActivity.
InActivity Call Conversation.run()
Take Item PreCondition | If Actor.Collision(Item target) == true and
target. MouseDown == true, then trigger InActivity.
InActivity Call Takeltem.run()
Use Item PreCondition | If Actor.Collision(SceneObject target) == true and
Actor.Inventory.Items[i].clickUse == true, then

32

trigger InActivity.

InActivity Call Useltem.run()
Trade PreCondition | If Actor.Collision(SceneObject target) == true and
target.goods[i].clickBuy == true, then trigger
InActivity.
InActivity Call Trade.run()
Time PreCondition | If Time.Elapsed == timelnterval, then trigger
InActivity.
InActivity Call Time.run()

Example 8. A Conversation Frame Instance

The Conversation frame instance is shown in Figure 11. If John collides with Mary, a
Conversation procedure will be called:to show:the dialogs of John and Mary. When the
conversation ends, a result value'will be added to the Result slot. After that, PostAction
and Goal will be triggered. PostAction checks the -Result slot value, if the value is
“resultl”, then the appearance of Mary will be changed. Goal also checks the Result

slot value, if the value is “result]1”, then it means subgoall is achieved.

Conversation

Slot Name Value

Actor John

PreCondition | if Actor.Collision.Name == Mary

then trigger InActivity
— : If added
InActivity Conversation procedure s
rigger
Result resultl 7 >
PostAction and
PostAction if Result == resultl,
o GoalTest
set Mary.appearence = “smile.gif”

GoalTest if Result == Resultl, set subgoall = true

Figure 11: An instance of Conversation frame.

33

4.3. Scene Object Frame

We apply the frame knowledge representation to describe the attributes of the scene
object. The attributes of the scene object can be classified into three categories which
are resource, profile, and behavior. Resource denotes the external files of the scene
object. Profile denotes the personal data of the scene object. Behavior denotes the

event-driven behavior. The definition is described as follows.

Definition 3: The Scene Object Frame is a 4-tuple.
SOF = (FN, Rel, S), where
1. FN is the name of a frame.

2. Rel = {rel D rel » ...,relh} and relk= <relation, FN> which is the relation with other
frame specified by frame name FN. Thete'are three types of relation —“a kind of”,
“a part of”.

3. S= {51’ S sn}is a finite set of slots, and 5. = <SNi, Vi, Pi>, where
® SN is the name of the i-th slot

® Vi is the value of the i-th slot.

o Pi is a attached procedure that can be triggered by “if added” events.

34

Example 9. A frame instance for Non Player Character
Figure 12 shows an example of Non Player Character frame. The scene object Mary
will be located at the coordination (10,100), and its appearance is the image from

“C:\Mary.png”. The Collision slot is null because no other SOs collide with it.

Non Player Character
Slot Value
Name Mary
profile Location (10,100)
Size Width = 20, Height = 30
resource— | Appearance “C:\Mary.png”
behavior— | Collision null

Figure 12: The frame representation of a SO.

35

4.4. The OOICM Running Process

In this section, we will discuss the running process of frames and Petri Net. We give
an example of a simple conversation scenario to explain that.

Example 10. The learning content of a simple conversation scenario.

Figure 4 is the SCF of this game. The initial mark of SCFPN is State 1 shown in
Figure 14. P has one token. As shown in Figure 13, the scene of the learning content
contains two scene objects which are Player Character type and Non Player Character
type respectively. For the sake of convenience, we simplify the two frames in our
example. The man called John and the girl called Mary will have a conversation activity.
The frame representation of the conversation activity called CsAT is shown in the down
side of Figure 13.

After game starts, the Petri Net runsand becomes State 2 in Figure 14. All scene
objects are set according to their frames. The player can press up, down, left, and right
key to move John. When the player presses-left key, John’s location is changed and user
event interrupt happens. Therefore, the Location slot value of John frame is updated. If
John collides with Mary, CsAT will be triggered as shown in Figure 13. The inference
process is (D the Collision slot value of John frame is added and then the attached
procedure is triggered. @ Actor slot value of CsAT is added. 3 Check whether
PreCondition is satisfied. ® PreCondition is true, so run procedure of InActivity. &)
The procedure of InActivity causes John and Mary to converse. (6). After the
conversation, the procedure of InActivity add result to Result slot. (?) Result slot is
added, so attached procedure is triggered. The PostAction procedure is run to set
Appearance slot of Mary frame. ©) Appearance slot of Mary frame is updated.
The GoalTest procedure is run to add token in Petri Net, and therefore Petri Net for

SCF becomes State 3 in Figure 14. Final, the Petri Net runs again and becomes State 4

36

in Figure 14. Because P, in Petri Net has one token, the story ends.

RPG-like Learning Content

(SO) John is a Player Character (SO) Mary is a Non Player Character
Slot name | Type Value Slot name Type Value
Name String “John” Name String “Mary”
Location Point (200,100) Appearance | String “MaryHappy.png”
Collision Scene Object | Mary I
©),
=74
D= ®
If added,
Set this to CSwithMary.Actor
Trigger CSwithMary.PreCondition
(Activity) CsAT is a Conversation
Slot Name Type value
- Procedure()
Actor Dynamic John
Object Q @ if(...)
PreCondition rule if Actor.Collision.Name == Mary @ {
then trigger InActivity dialog.show();
LifeCycle String “Default” }
InActivity Procedure Conversation procedure @) {else
Result Strin “Result1” <
g — (7 ©))"
PostAction Rule if Result == Result1,
set Mary.appearence = “Maappy.png“ \ >
GoalTest Rule if Result == Result1, set cs1 = true
@ If added trigger
PostAction and GoalTest

Figure 13: The OOICM running process.

State 4

Figure 14: The running process of Petri Net

37

Chapter S. ActionScript Transformation Process

In this Chapter, we will introduce our prototype system. Figure 15 shows the
prototype system. The SCF will be transformed into Petri Net by mean of SCF2PN that
has been discussed in 4.1. Activity and SO will be transformed into frames by filling in
the slots of frames according to the attributes of Activity and SO. Because we apply
Petri Net to model SCF and apply frame knowledge representation to model Activity
and SO in the system layer of OOICM, the system environment must contain a Petri
Net engine and a frame engine. Therefore, we implement the Petri Net engine and
frame engine in ActionScript. We also propose an algorithm OOICMZ2AS to transform

Petri Net and frames into ActionScript codes.

00ICM

m SCF
%E“>H I::> Activity SO

wIoysuelr |,

Frame
Petri Net g‘:l Engine

Frame Frame Petri Net
Engine

SVZINDIOO

A

Figure 15: A prototype system based on OOICM

(1) Petri Net Engine
Besides the basic capability of Petri Net engine, there are two additional
requirements for this engine in order to handle the SCFPN.
a. The type P place is a place which the activity frame can add tokens or remove

tokens to. Therefore, the Petri Net engine must be able to receive the commands

38

form frames to add tokens or remove tokens of places.
b. The end of a game depends on whether the type Pg place has tokens. Therefore,
the Petri Net engine must be able to dispatch an ending message when the type Pg

place has tokens.

(2) Frame Engine
A frame engine is necessary in order to handle the inference of activity frames and
SO frames. We implement each activity frame and each Scene Object frames as
several ActionScript classes. The communications among frames and Petri Net

mainly rely on the ActionScript API dispatchEvent().

(3) OOICM2AS
OOICM must be transformed into ActionScript (AS) code so that the compiler can
compile the code into SWF-file.:We-have-implemented SCFPN AS class, Activity
AS class, SO AS class. Besides; we.also give a middle AS file called “template.as”

to help the transformation. Figure 16 shows the outline of “template.as”.

import mx.controls.*;
import mx.utils.Delegate;
class FlashGame

{)/”<SceneObject declare>
/'/;Activity declare>
/'/;Petri Net instance>

' ././<SceneObj ect instance>
/'/;SceneObj ect setting>

//<Activity instance and setting>

}

//[<Activity PostAction setting>

Figure 16: The outline of “template.as”

39

The OOICM2AS algorithm is described as follows.

Algorithm: OOICM2AS
Input
SCFPN, Activity Frames, SOFs, and an AS file “template.as”.
Output
An ActionScript File.
Step 1. Create a new file “source.as”.
Step 2. Read the next line from “template.as”, and write the line in “soruce.as”
Step 3. Check the line in Step 2.
Case 1: the line is “//<SceneObject declare>"
For each SOF, get the value of slot Name, and write the declaration in
“source.as”.
Case 2: the line is “//<Activity declare>”
For each Activity Frame, get the value of slot Name, and write the declaration in
“source.as’.
Case 3: the line is “//<Petri Net instance>"
For each place, transition, and,are, write their declaration and attributes setting in
“source.as’.
Case 5: the line is “//<SceneQbject instance>"
For each Activity Frame, get the value of slot Name, and write the declaration in
“source.as”.
Case 6: the line is “//<SceneObject setting>"
For each SOF, get the attributes from its frame and write the attribute setting in
“source.as’.
Case 7: the line is “//<Activity instance and setting>"
For each Activity Frame, get the attributes from its frame and write the attribute
setting in “source.as”.
Case 8: the line is “//<Activity PostAction setting>
For each Activity Frame, get the value of slot PostAction and write a PostAction
function in “source.as”.
Step 4. if the line is final line in “template.as”, then go to Step 5, else go to Step 2.
Step 4. Output “source.as”

40

Chapter 6. Experiment

For evaluating the OOICM model, we implement a generator based on OOICM.
The generator transform XML file into Flash file. Authors construct the RPG-like
learning content by editing XML. In addition, several scenarios are given to evaluate
the expressive power of OOICM and we also compare performance of the generator

with Adobe Flash and RPG-Maker.

6.1. System Implementation

Our generator has four inputs and one output. “Story.xml”, “Activity.xml”, and
“Scene.xml” are the specifications of SCF Activity, and Scene Object respectively.
Transform process will parse these xil files and. then apply OOICM2AS algorithm to
transform them into ActionScript file called “FlashGame.as”. “Source.xml” describes
what asset is imported, such as images and sounds. Itiis the input for Swfmill [15] that is
an xml2swf and swf2xml processor with import functionalities. Swfmill will import the
assets described in “Source.xml” into a blank flash file called “source.swf”. After that,
“FlashGame.as” and “source.swf” are inputted to MTASC [16]. MTASC is an
ActionScript 2 Open Source free compiler. It can compile large number of .as class files
in a very short time and generate directly the corresponding SWF bytecode without
relying on Adobe Flash or other tools. “FlashGame.as” may call function from Library,
so MTASC has to import class from Library. Final, MTASC will generate a Flash file

called “FlashGame.swf”.

41

6.2. Experiment Designs

We use the generator to generate the learning content and compare with Adobe
Flash and RPG-Maker. The experiment gives a scenario of the standard operation
procedure. The player plays the role of a graduate. The scenario describes the player
has to complete several procedures in order to get the graduation certificate. Figure 17

shows the SCF, and Figure 18 shows the screenshot of the game.

Ik to libr: Give 2 the
] alk to libras] ve ses

manager to library

&=

/| 7 Wacron T2eh Player 0 =iy

Flas|
HEE WA IO o

- TR TR R R
QWA T T 777 Vi 0 T 77

%%H! i

cromedia F1ash Player 0
RO S

LA d = Ll

Figure 18: The screenshot of the learning content

42

6.3. Experiment Results

We count the steps of constructing this learning content for our generator and
RPG-Maker. Figure 19 shows the comparison of the number of steps. When
constructing a new learning content in our experiment design, the generator spends
about 350 steps and RPG-Maker spends about 250 steps. Because we have to construct
SCF, the cost for constructing a new learning content is more than RPG-Maker.
However, the generator spends fewer steps than RPG-Maker for reusing a learning
content. In the experiment, we reuse the SCF, the author just reconfigure the activities
and SOs. In addition, the AS code, generating by generator, contains 686 lines. If we
take the other library into account, authors have to write more than 686 lines of code in

Adobe Flash.

400
350
300
250

O Generator
O RPG-Maker

Steps
[\
(@)
(@)

150
100
50

Construct Reuse

Figure 19: The comparison of the number of steps

43

Chapter 7. Conclusion

In this thesis, we apply knowledge-based approach to propose OOICM, which is
composed of SCF, Activity, and SO. We apply Petri Net to model SCF and apply Frame
knowledge representation to model Activity and SO. An ontology is proposed to
describe the relations of all kinds of SOs. Moreover, we also implement a generator to
evaluate OOICM. This generator can help authors construct an RPG-like flash learning
content without low level programming.

It is tedious to edit the XML files for the input of the generator. Therefore, we will
develop an authoring tool to help authors edit XML file by a user-friendly UI in near
future. In addition, MMORPG (Massive Multiplayer Online Role Playing Game) has
become very popular in recent years, because the player can play the game with other
real people rather than Al agents. We, atre trying'to support MMORPG in OOICM.
Moreover, the battle, which is-a complex activity actually, is very attractive to most
players in the computer game. We will ‘also-add the battle activity into OOICM in the

future.

44

References

[1] Role-Playing Exercises, Created by Rebecca Teed, SERC, Carleton College,

http://serc.carleton.edu/introgeo/roleplaying/index.html

[2] Flash Player Penetration,http://www.adobe.com/products/player_census/flashplayer/

[3] Arturo Nakasone, Mitsuru Ishizuka, “Storytelling Ontology Model using RST”,
Proceedings of the IEEE/WIC/ACM International Conference of Intelligent Agent
Technology 2006

[4] Mark Riedl, C. J. Saretto, R. Michael Young, “Managing Interaction between Users
and Agents in a Multi-agent Storytelling Environment”, Proceedings of the second
international joint conference on Autonomous agents and multiagent systems, 2003

[5] RM Young, MO Riedl, M Branly, A Jhala, RJ Martin, C. J. Saretto, “An
Architecture for Integrating Plan-based Behavior Generation with Interactive Game
Environments”, Journal of Game Development, 2004

[6] Mark O. Riedl and R. Michael Young;“From Lin¢€ar Story Generation to Branching
Story Graphs”, IEEE Computer Graphics and Applications Special Issue on
Interactive Narrative, 2006

[7] B Magerko, JE Laird, M Assanie, A Kerfoot, D Stokes, “Al Characters and
Directors for Interactive Computer Games”, 16th Innovative Applications of
Artificial Intelligence Conference, 2004

[8] Brian Magerko, “Story Representation and Interactive Drama”, Ist Artificial
Intelligence and Interactive Digital Entertainment Conference, 2005

[9] S Natkin, L Vega, “A Petri Net Model for Computer Games Analysis”, International
Journal of Intelligent Games & Simulation, 2004

[10] S Natkin, L Vega, S Griinvogel, “A new Methodology for Spatiotemporal Game

Design”, Proceedings of CGAIDE, 2004

[11] Martin Purvis, “Narrative Structures for Multi-Agent Interaction”, Proceedings of

45

the IEEE/WIC/ACM International Conference on Intelligent Agent Technology,
2004

[12] Clark Verbrugge, “A Structure for Modern Computer Narratives”, CG’2002:
International Conference on Computers and Games, 2002 - Springer

[13] Adobe Flash, http://www.adobe.com/products/flash/

[14] RPG Maker, http://www.enterbrain.co.jp/tkool/RPG_XP/eng/

[15] Swimill, http://osflash.org/swfmill

[16] MTASC, http://www.mtasc.org/

46

