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Abstract

Recently, the research of EEG-based Brain-computer Interface provides a new way

of communication and control. In the existing BCI researches, we are interested in the

motor-imagery based BCI systems. Nowaday this kind of BCI system is facing many

challanges such as noises and inter-subject variability. There are many issues to study, the

noise reduction, the adaptation between a BCI and a user, the feedback of the BCI, etc.

In this work, we studied the adaptation issue in the Brain-computer Interface based on

the motor-imagery EEG. First, we want to construct a good spatial filter that suppresses

the noises and enhances the power change in a motor-imagery task. We use Maximum

Contrast Beamforming technique to construct the spatial filter. This technique has its ability

to lower the nontarget noise and enhance the contrast between the active state and control

state we define. We focus on the usability of this spatial filter and analyse its performance

by applying a ROC curve analysis. In this work we show that this spatial filter has its

effectiveness.

Furthermore, we applied the constructed spatial filter online. We designed a two-session

online experiment with a visual feedback to study the adaptation and the biofeedback is-

sues. We expect the user to adapt himself to the system by monitoring the visual feedback,

and the system to adapt to the user by training a new spatial filter. The result tells us that

the spatial filter is possible to work online, but the visual feedback somehow affects the

ERS in the motor-imagery tasks.
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Chapter 1

Introduction



2 Introduction

In this first chapter we give some background knowledge to this thesis. We briefly

introduce from the human brain to Electroencephalography to Brain-computer Interfaces.

In section 1.2 we introduce the structure of a human brain and the different functions of

cortex areas. In section 1.3 we give some introduction to Electroencephalography (EEG),

so called brain wave. The measurement way, some basic analyses and researches are pre-

sented. In section 1.4 we give a brief introduction to Brain-computer Interfaces (BCI). The

detail of BCI systems will be provided in the next chapter.

1.1 Motivation

There are a lot of patients suffering from the paralyzed body. Disorders such as Spinocere-

bellar Ataxia (SCA) and Amyotrophic Lateral Sclerosis (ALS) are motor-disabled. These

diseases make the patients unable to communicate with the external world through the nor-

mal pathway. They can’t talk or move their fingers to click a button.

As the time is different now, we start to think about the other pathways between human

and a computer. That is, a Brain-computer Interface. A Brain-computer interface is defined

as a communication system that does not depend on the brains normal output pathways of

peripheral nerves and muscles. Nowadays researchers use Electroencephalogram, so called

brain wave, as a source to communicate and control. The users can use a Brain-computer

interface to communicate with the outside world without using any real movement. So if

this technique successes, it indeed helps lots of motor-diabled people. Even if those are

not paralyzed, the BCI system may provide some assistance to some works, like moni-

toring a pilot’s fatigue to avoid accident, or monitoring a child’s brain waves to train his

concentration.

So researchers keep doing researches on EEG and BCI. The more we discover about

the human brain, the more people we may help in the future.
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Figure 1.1: The lobes of human brain. [6]

1.2 The Human Brain

The human brain can be divided into four structures: cerebral cortex, cerebellum, brain

stem, hypothalamus and thamalus. The one that related to BCIs is the cerebral cortex.

The cerebral cortex can be divided in two hemispheres, left and right. And each hemi-

sphere can be further divided into four lobes. The four lobes are frontal lobe, parietal lobe,

temporal lobe, and occipital lobe, as figure 1.1 shows. The cerebral cortex is responsible

for many complicated functions like mental calculating, language learning, visual stimulus

processing, or motor movement. The different areas in the cerebral cortex are responsible

for different functions. As figure 1.2 shows, these different areas of cerebral cortex are

marked with different colors, indicating its responsible functions. For instance, the motor

area is located at about parietal lobe. It’s responsible for all the movement of the body.

These informations are very important when doing researches on a EEG based BCI sys-

tem. We observe the EEG from different locations on the head according to that area’s

representative function. For instance, we observe mainly the EEG from the channels lo-

cated on the top(parietal) of the head when we are doing motor-related experiments, and

we observe mainly the channels on the back(occipital) of the head when we are researching

about visual stimulus.
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Figure 1.2: The functions of different cortex areas. [4]

1.3 Electroencephalography

1.3.1 What is Electroencephalography

Electroencephalography. There exists various non-invasive techniques to monitor the

brain activity such as functional Magnetic Resonance Imaging (fMRI), magnetoencephalog-

raphy (MEG), and Electroencephalography (EEG). EEG is used to measure the electrical

activity of the brain. This activity is generated by billions of nerve cells, called neurons.

Each neuron is connected to thousands of other neurons, and the neurons send action po-

tentials to other neurons when they are communicating. When we measure the EEG, we

actually are measureing the combined electrical activity of millions of neurons on the cere-

bral cortex because the potential of a single neuron is too small to be measured.

1.3.2 How to measure Electroencephalography

How to measure human EEG and record it for analysis? A typical EEG meauring device

consists of several components, including EEG electrode cap that receives the electrical

avtivity from the scalp, EEG amplifier that amplifys the signal, computers that record the

data, and monitors that give the subjects visual cues. The devices are shown in figure 1.3.

The EEG signal has a good temporal resolution, but it has a poor spatial resolution,
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Figure 1.3: EEG measuring devices. From right to left is the EEG amplifier and the elec-
trode cap.

which depends on the electrode number of an EEG electrode cap. The electrode layout on

an EEG electrode cap has a international standtard called the international 10-20 system,

as figure 1.4 shows. When we are measureing EEG, we often put some single electrodes

surrounding the eye. This is used to measure the electrical activity of eye movement and

eye blinking, which is called EOG. This EOG contaminates the EEG signal badly, so by

measuring it we can remove the trials that was affected. This processing is called EOG

rejection.

When we use an EEG electrode cap to measure EEG, we have to fill each electrode

with the electrolyte gel using a blunt needle. This makes the electrodes contact the scalp

and lower the impedance. In an EEG experiment we often wait until all the electrodes have

an impedence lower 5k ohm before we start the signal acquisition.

1.3.3 Basic Analysis to Electroencephalography

There are some basic EEG analyses, mainly described here as time domain and fre-

quency domain analysis.

Time domain analysis

Usually we use time domain analysis to observe an Event-related Potential (ERP). An

ERP is a potential change in the EEG when a particular event or stimulus occurs. The
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Figure 1.4: The international 10-20 system. The 10 and 20 means 10% and 20% distance in
the left figure. The channels are named as a capital letter followed by a number. The capital
letter ’F’ is for ’Frontal, ’C’ is for ’Central’, ’P’ is for ’Parietal’, ’O’ is for ’Occipital’,
and ’T’ is for ’Temporal’. The numbers are odd on the left sphere and even on the right
sphere. [5]

potential change is time-locked and phase-locked, it is a very small potential change and

can not be easily observed in a single trial. So we have to average a few trials to observe

it. Because of the time-locked and phase-locked characteristic, by the averaging technique

we can eliminate the random noise and enhance the signal-to-noise ratio (SNR). That is the

common technique to observe an ERP.

There are some well-known ERPs, including P100 in the Visual-evoked Potential (VEP),

P300, N400, and Audio-evoked Potential (AEP). The P300 means a positive potential

change occers 300ms after the particular stimulus, as figure 1.5. In section 2.3.1 we will

introduce more about the application on BCIs using ERPs.

Frequency domain analysis

In addition to the ERPs in time domain analysis, we can observe Event-related Syn-

chronization (ERS) and Event-related Desynchronization (ERD) in the frequency domain.

When we are observing ERD and ERS, we have to observe a spicific frequency band, like

alpha band (8-12Hz) or beta band (around 20Hz). The ERD and ERS indicate the power

changes of the frequency band. While ERD means the power decreasing and ERS means

the power increasing.

The ERD/ERS analysis has a general procedure as figure 1.6 shows.
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Figure 1.5: The P300 ERP. 300ms after the particular stimulus, there is a positive potential
change in the time domain. This figure is a result of averaging. [3]

1. First we apply a bandpass filter with a spicific frequency band to the data.

2. Calculate the mean of the filtered data over all trials.

3. Subtract the mean from the filtered data in step1.

4. We do the squaring on the time domain amplitude samples from the previous step

over all trials.

5. Average over time samples from the step4.

6. Obtain ERD/ERS by calculating the percentage relative to the power of the baseline

interval.

Then we can see the power change and the change rate clearly after these procedures.

There are some well-known ERD/ERS. For example, the movement related ERD and

ERS. It it known by now that during the movement there is an alpha ERD, and after the

movement terminates there is a beta ERS. In this thesis we are mainly observing this phe-

nomenon. Figure 1.7 shows the movement related alpha ERD and ERS. In addition to

observing the ERD/ERS curve, we can analyse the data using wavelet transform to obtain a
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Figure 1.6: The procedure of observing ERD/ERS. [14]

time-frequency map. This analysis contains more information, we use this technique much

in this thesis. The ERD/ERS issue is very important in a motor-related BCI. As for this

thesis, we are trying to enhance the ERD to ERS ratio in a wrist imagery movement task.

The details will be described in section 3.4.3.

1.4 Brain-computer Interface

Over the past few decades, the EEG has beenused mainly for evaluation of neurolog-

ical disorders in the clinic and for the investigation of brain functions. Until recently, re-

searchers found it possible to translate some specific EEG to commands. That is, people can

communicate with others or control devices directly by their brain activity, without using

any normal pathways of the peripheral nerves. This communication and control technique
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Figure 1.7: Movement related alpha ERD and ERS. The cue point was a visual cue indi-
cating the subject to perform hand movement. When the movement is proceeding, there is
an ERD, and when the movement terminates, there is an ERS.

was then called Brain-computer Interface.

A Brain-computer interface is defined as a communication system that does not de-

pend on the brains normal output pathways of peripheral nerves and muscles. Among the

methods to measure electrical activity, MEG and EEG are more suitable for a BCI system

because they can give the instantaneous continuous recording of brain activity. And EEG

is even more suitable because of the following advantages: the devices to measure EEG are

more portable and cheaper, and we don’t have to be in a shielding room when measuring

EEG. Although the EEG signal is having low spatial resolution compared to the others.

Almost all BCI researches are using EEG signal nowadays.

A general BCI flowchart is as figure 1.8 shows. The BCI system goes through the data

acquisition, then some signal processing, followed by a command translation, in the end

output commands to communicate with others or to control cursors or devices. The details

of a BCI system will be described in the next chapter.

1.5 Thesis Overview

Chapter 2 provides the overview of BCI systems, including the basic components and

key-issues. We also introduce some present-day BCIs here. The methods used in our BCI

will be introduced in Chapter 3. We mainly want to design and test an optimal spatial

filter to filter the data. With the noise suppressed and features enhanced, we can obtain
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Figure 1.8: The general flowchart of a BCI.

significant data for further classification. Chapter 4 provides the experiment results of our

designed offline experiments. We show the analysis results of the spatial filter along with

some further performance evaluation results. In chapter 5, we show the experiment results

of online feedback sessions and give some brief discussion. In chapter 6 and 7 we give this

thesis some conclusion and detailed discussions, including the stability of our spatial filter,

the feedback issue, the adaptation issue, and the future works.



Chapter 2

Overview of Brain-computer Interface
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In this chapter we will give an overview to BCI systems. We first introduce some

categories of BCI systems, then we briefly introduce some present-day BCIs. Next we list

and explain some basic components and nowaday key-issues in a BCI system. In the end

of this chapter we provide the thesis scope.

2.1 Categories of Brain-computer Interface systems

Synchronous and asynchronous systems

In a synchronous BCI, the user is notified to perform a mental activity when a specific

external cue is shown. That means this kind of system operates in a cue-based mode and

has the information about the onset of the mental activity in advance. The analyses and

classification of the brain signals in the system is limited to the predefined fixed time pe-

riod. Besides, the system is active only during the predefined period as well. BCI systems

based on evoked potentials and ERPs belong to this category, such as P300 [2], SCP [8].

Besides EPRs, the BCI developed in Graz [15] that analyzed the spontaneous EEG are also

synchronous BCIs.

The BCI that a user can intend a mental activity whenever he wishes to perform such

mental activity is an asynchronous BCI. In the asynchronous BCI, the brain signals are an-

alyzed and classified continuously. We have to not only classify from the redefined mental

tasks but also discriminate events from noise and nonevents such as resting or idling states.

Such a BCI system is more flexible and attractive to be utilized in practice. Besides the

above advantages, it also offer a rapider response time than synchronous ones. However,

the classification in an asynchronous BCI system is not accurate enough today.

2.2 Basic Components in BCIs

Signal pre-processing

The goal of the stage is to enhance the signal-to-noise ratio. Typical procedures include

amplification, filtering, possible artifact removal. For the filtering, the bandpass filtering

is usually applied. In addition, a notch filter is also used to suppress the 60 Hz power line
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interference. As for the artifact removal, almost all BCIs rule out the signals if the EOG or

EMG is detected to be used or over a predefined threshold.

Feature Extraction

In this stage, certain features are extracted from the preprocessed signals. ERP, ERD/ERS

and brain rhythms are typically used features in a BCI system. Besides the above features,

various feature extraction methods have been studied to extract more discriminative fea-

tures, such as Common Spatial filter, continuous wavelet transform, autoregress model(AR)

or adaptive autoregress(AAR) model, power spectrum. All the above methods can be found

in BCI competition 2003 papers.

Classification

The features extracted from feature extraction are fed to train a classifier. Many clas-

sification methods have been proposed in pattern recognition field. The classifier in a BCI

can be anything from a simple linear model to a complex nonlinear or a machine learning

models. In general, the BCI has two phases training phase and testing phase. The training

phase consists of a repetitive process of cue-based mental tasks to train a classifier. In the

testing phase, we use the classifier built in the training phase to recognize different mental

tasks.

Command Translation

The goal of this step is to translate the classification output in previous step to an oper-

ator command. The command can be, e.g.,a letter in a spelling system or a movement of

a course on the user’s screen or nothing to be performed when the classification is ”rest-

ing” or ”idle”. The design of translation algorithm and device control depends on what

applications the BCI want to provide with.

Biofeedback

A feedback which make the user more easily adaptive to the system is a very important

component for a BCI system. A feedback can indicate how well the asked mental activity
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was recognized by the system. When the system gives the feedback to a user, he will create

a biofeedback which is the process that the user receives information about his biological

state.

By Biofeedback, the user can monitor his physiological states, shape his brain electrical

behavior, and voluntary modification of his EEG response. Today, nearly all BCI systems

provide a feedback to users.

2.3 Present-day BCI systems

Here we introduce some present-day BCI systems, we mainly introduce two kinds of

BCI systems, the ERP-based BCI and the motor-imagery based BCI.

2.3.1 ERP-based BCI

The details about ERP is described in section 2.3.1, because the ERP is evoked by the

external events, this kind of BCI usually depends on the gaze of the user. We can always

detect the ERP as long as we have enough trials. This kind of BCI has its advantages

like the short training time and high accuracy. The drawbacks are the transition rate may

be slow and the users may habituate to the system and lower the performance. Here we

introduce two main ERP-based BCI, the P300-based and SSVEP-based BCI.

P300-based BCI

Farwell proposed a spelling BCI system based on P300 ERP [3]. In this system, users

are gazing at a 6x6 matrix on the screen. In the matrix there are letters, numbers, and

symbols. When the system starts, it flashes each row and column in the matrix with random

sequence. The user is asked to focus his attention on the symbo he wants to select and count

the number of time that this symbol is flashed. This is an oddball paradigm and the there

will be an evoked P300 when the selected symbol is flashed. With enough trials, the system

can predict the selected symbol by detecting the P300 response. That’s the concept of this

BCI system.
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SSVEP-based BCI

The SSVEP is Steady-state Visual Evoked Potential. It is a response to a visual stimulus

with a specific high frequency. The EEG signal power will increase at the specific stimulus

frequency. Therefore with some different frequency stimulus on the screen we can detect

which one has the user’s gaze. There are lots of BCI application using SSVEP, such as

Lalor [9], his team deveoped a game to balance a character on the screen using SSVEP.

2.3.2 Motor-imagery based BCI

Compared to the ERP-based BCI, the motor-imagery based BCI is more independent.

This kind of BCI basically no need to depend on the user’s gaze. The motor-imagery is a

spontaneously induced EEG signal. Therefore this kind of BCI is more difficult to develop

since the imagery and the concentration of each user may be different. This kind of BCI

has its advantages like high transition rate, and users may improve the performance through

constant training. The drawbacks are, the training time is longer than a ERP-based BCI,

and the user’s concentration is very improtant. Here we introduce the Graz group. [13].

The leader of this group is Dr. Gert Pfurtscheller. This group is in the Graz University

of Technology in Austria. The Graz BCI is one of the most successful BCI using motor-

imagery tasks. The development is mostly based on the detection of the ERD and ERS

pattern in a motor-imagery task. Actually the concept of ERD and ERS was proposed by

Pfurtscheller [14]. In their works there are lots of research about different movement that

causes different kind of ERD and ERS. They’ve found some movement related ERD and

ERS [14] such as:

• pre-movement alpha ERD

Different voluntary movement will induce an alpha band (8-12Hz) ERD in the cor-

responding area of motor cortex. The study shows that this alpha ERD starts 1 or 2

seconds before the movement onset. The alpha band power keeps decreasing until

the movement terminates. Then there is a ERS after the execution of movement. This

ERS is seen as a recovery of the pre-movement ERD.

• post-movement beta ERS
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Same as the alpha ERD described above. The study shows that there exists a beta

band (16-32 Hz) ERS after the movement terminates.

Today this group is focus on the feature extraction of the ERD and ERS pattern and the clas-

sification of different movement imagery. The intend to classify left/right hand movement

imagery, foot movement imagery, or tongue movement imagery. They use spatial filter as

Common Spatial Pattern (CSP) or morlet wavelet transforms to extract the features. Fur-

thermore they try Support Vector Machine (SVM) or Linear Discriminant Analysis (LDA)

in the classification part.

2.4 Limitations

Although the BCI systems we introduced above looks well, there are still some lim-

itations in present-day BCI systems. Here we list some normal difficulties when doing

researches on BCI systems.

Habituation

In a ERP-based BCI 2.3.1, we use the evoked potential from the subejcts to develop a

BCI system. For the evoked potential is not controlled by our own will, we may get used

to the BCI system and that affects the performance. Take P300-based BCI for example, if

a user use the BCI system day after day, year after year, he/she may habituates to the BCI,

and his/her P300 response therefore reduces. This kind of habituation restricts the BCI

systems that relys on the ERP responses.

Noise

As we mentioned before, the EEG signal is poor on the Signal-to-noise ratio. The

artifact noise is always a big problem in analysing EEG signals. Eye blinking, eye move-

ments, the heart beating, any possible single small movement causes artifact noises to the

EEG signal. Furthermore, not only an artifact causes noises. The interference from the

environment, the power line, or the devices, they are also contaminating the EEG signal.

In a BCI system, we detect the spontaneous EEG signals or the evoked potential. Both are
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very small changes and can be easily affected by these noises. In addition to the artifacts

and interference, a distraction of the user also causes noises to the EEG signal. As a hu-

man being is very complicated, every little cognitive task has its own response on the EEG

signal. We can’t be sure that every user of the BCI system are always concentrating to the

system, one may easily lose concentration and that reduces the performance of a BCI.

Fatigue

Another limitation to BCI systems is the fatigue of the users. As we introduced in the

previous section, the ERP-based BCI keeps giving stimulus to the users and detect their

responses. These stimuli may be some quickly changed pictures or flashing, and these

fatigue a user easily. Even if in a motor-imagery based BCI, the users may get tired easily

because of the continuous concentrate on the imagenery.

2.5 Key-issues in BCI systems

Here we list some key-issues in BCI systems. The future researches on BCI systems

may be mostly about these difficult issues.

Noise Reduction

As we mentioned in the previous section, the noise is a limitation to the EEG analyses

and BCI systems. How to reduce the noise and the non-interested signals is an issue. Today

there are some practical methods to reduce the noises, such as EOG rejection, bandpass

filtering, Independent component analysis (ICA), or Laplacian spatial filtering. In this

thesis, we designed a spatial filter to filter the data. The filtered data suppresses the non-

target noises and enhanced the motor-imagery induced responses. We’ll discuss this in the

next chapter.

Features

How to find significant features from the EEG signal is an important issue. People have

been trying with many methods to extract significant features from the raw EEG data. In
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this work, we use the designed spatial filter to suppress the noise and enhance the power

change in the signal. Like the CSP [11] method, we can view our spatial filtering approach

as feature extraction.

Adaptation

There are two adaptation issues in a BCI system. The first is the users should adapt

themselves to the system, that is, self-training of the users. The second is, the BCI system

should adapt itselves to the users, that is a machine learning issue. Both adaptation issues

are important, and these two issues work totally different. If we are trying to self-training a

user, we should lower the variability of the BCI system, or the users may not be able to get

himself trained well because the feedback keeps changing. The training of the users is still

a difficult question. In this work, we use a online visual feedback experiment to observe

this user adaptation issue, we’ll discuss this in chapter 5.

Biofeedback

As we mentioned before, the biofeedback is a important component in the BCI sys-

tem. Nearly all BCI systems need a biofeedback to the users. This issue is about how

the biofeedback affects the users, and how to design useful biofeedback. The design of

different biofeedback may result in different mental work and stimulus, which influences

on the signal. Not all the influence of a biofeedback is beneficial, it may be harmful as

well. For example, the biofeedback stimulus may distract the user from the task. The flase

classification may frustrate the user and affect the performance. In a cursor control system,

if the cursor moves too fast, the user may get nervous and therefore lower the performance.

How to design a useful biofeedback to improve the learning between users and computers

is very important. We should always evaluate the effect of biofeedback when designing

online systems. In this work we design some visual feedback, this will be discussed in

chapter 5.
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2.6 Thesis scope

In this thesis, we proposed a Brain-computer Interface using motor-imagery EEG. The

main idea is to apply a spatial filter to the 32 channel data, and after the linear combination

of these channels we can have a more significant signal with a hidden meaning of cortical

activity. The idea of the spatial filter is from the source localization problem. We use a

technique called Maximum Contrast Beamformer, which was originally used in the source

localization probleman. The concept of Beamformer technique is using the minimum vari-

ance and unit gain contrain to find a spatial filter that suppresses the nontarget noises. And

as for Maximum contrast Beamformer, its concept is to use a maximum contrast between

control and active state to optimize the dipole orientation in the Beamformer technique.

Then the filtered result should be 1. nontarget noises suppressed, 2. maximum contrast

between two states, 3. with the meaning of the source signal.

In this thesis, we discussed a lot about the stability and effectiveness of the spatial filter,

including the. Also we compared the results with the well-known CSP spatial filter. We

performed two part of experiments, offline part and online feedback part, to test the using

of this filter. Furthermore, we discuss about the adaptation issue and the visual feedback

issue in a motor-imagery based BCI.



20 Overview of Brain-computer Interface

Figure 2.1: Flowchart of proposed BCI.



Chapter 3

Cortical activity analysis for BCI



22 Cortical activity analysis for BCI

In this chapter we will introduce the techniques we use in this work. First we intro-

duce the main ideas. Then we introduce the details about the techniques we use, including

the data preprocessing methods, the morlet wavelet transform, the spatial filter Maximum

Contrast Beamforming (MCB), and the Receiver Operation Curve (ROC) evaluation tech-

nique [17] for online simulation. In the end of this chapter we give the idea of our offline

and online experiments design. The experiment results will be provided in the next two

chapters.

3.1 Main ideas

We know from the previous researches that when a human performs movement tasks,

there exists pre-movement alpha band ERD and followed by a post-movement beta band

ERS [12] in the EEG recorded from the motor cortex. Different part of the body movement

represents this phenomenon in different area in the mortor cortex. Furthermore, not only

real movement tasks have this response, but also imagery movements [12]. In this work,

first we use this as the most important prior knowledge.

In this work, we mainly try to use a spatial filter to suppress the noise and enhance the

power change in the EEG signal recorded in a motor-imagery task. This spatial filter is

based on Maximum-Contrast Beamformer technique, which was used in the source local-

ization issue. By several advantages of this spatial filter, we can obtain more significant

signal and do the further classification.

After we construct the spatial filter, we test a lot on it to evaluate the effectiveness. Fur-

thermore, we study the feedback issue and the adaptation issue from an online experiment.

3.2 Data acquisition and preprocessing

acquisition

The data is acqured under 1000Hz sampling rate. We use a 32 channel EEG cap in

which the electrodes are placed under international 10-20 rule.
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preprocessing

We mainly use two preprocessing techniques here: The artifact removal and the band-

pass filtering.

As we mentioned in the previous chapter, the artifact exists in EEG signal and signif-

icantly affects the data. We apply the EOG rejection to avoid eye blinking and eye move-

ment in our data. The EOG rejection is to simply decide a threshold. Then we remove any

single trial that has a single sample exceeds the threshold. This procedure may reduce the

trial number used in the further analysis. The threshould we use here is 100 muV.

As for the bandpass filtering, we use a Butterworth bandpass filter to filter the data.

We filter the data from 5Hz to 30Hz, this will eliminate the 60Hz power line effect on

the signal, the low frequency heart beating (ECG), and the high frequency EMG effects.

Before the further analysis on the spatial filter construction, we filter the data from 8Hz to

12Hz (alpha band). This is due to the observation result from our experiments.

3.3 Time-frequency analysis

In this work we use morlet wavelet transform to observe the time-frequency map (TF-

map). Wavelet transform is a signal processing technique. Similar to Fourier transform

analysis which consists of breaking up a signal into sine waves of various frequencies,

wavelet transform is of breaking up a signal into shifted and scaled versions of the original

wavelet. There are many kinds of wavelets, and Morlet wavelet is one of the well-known

wavelets in time-frequency analysis. The basis of Morlet wavelet is

Wf(f, t) = Ae
( −t2

2σt
2 )

e(2iπft) (3.1)

After the morlet wavelet transform we can obtain the coefficients in a time-frequency

map, as figure 3.1 shows. The X-axle is time and the Y-axle is frequency, the color in the

map represents the coefficients. The red color means large coefficients and the blue color

means the small coefficients. We can observe the map and see which frequency band has

explicit power change and at which time point. Take figure 3.1 for example, this is the

TF-map of a left wrist imagery movement task. The visual cue indicating the imagery is
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^ cue

Figure 3.1: Example of a Time-frequency map. This is a left wrist motor imagery task,
and the visual cue is given at 2 second. We use the data recorded from C4 channel in this
analysis.

at 2 second. Here we can see that about 3 seconds after the visual cue, there is a power

increasing lasting for 2 seconds in the frequency band around 10Hz. That is the post-

movement Event-related Synchronization (ERS).

In this work we largely use the TF-map analysis to decide the ERS period and ERD

period in the motor-imagery task. More precisely, we use the data recorded from the C4

channel, which is known as the channel related to left hand movement tasks, and apply the

morlet wavelet transform to plot the TF-map. Then from observing the map we can select

the time period of control state and active state. Then we use this information for the spatial

filter weighting calculation.

3.4 Spatial filtering

In this section we introduce the concept of the spatial filtering technique. We mainly

focus on the introduction of Beamforming technique we applied.
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Original Data

Weightings

Figure 3.2: The concept of spatial filtering. Each channel has its weighting, and the linear
combination of the data acquired from whole channels is called spatial filtering.

3.4.1 Introduction

The spatial filtering technique is as figure 3.2 shows. The EEG cap has lots of elec-

trodes, in our case, 32 channels. If we give every channel a weighting then multyply the

data recorded from each channel by the corresponding weighting and add them together,

we can obtain a new signal. This is for short the linear combination of the channels. We

call this technique as spatial filtering, and the weighting vector is called the spatial filter.

One main objectve in the spatial filtering technique is to enhance the signal-to-noise ratio

(SNR). Obviously the difficulty in this technique is the method in finding the weightings.

There are many simple spatial filters, next we introduce the spatial filtering technique we

use, the Maximum-Contrast Beamformer (MCB), which is developed in our laboratory.

3.4.2 Beamforming technique

Beamformering is a technique to localize the source signal with some measured data

that is produced by the source signal. It is widely used in many fields like radar, sonar, and

astronomical telescope systems. Take rodar for example, if we want to localize the airplane

by its voice signal measured by rodar, we put some rodar array on the ground and apply

this Beamforming technique on the measured data.

In the EEG source localization problem, we can use this technique as well. We use

the EEG electrodes to measure the data as the rodar does in the above case. By applying
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this technique we can give the EEG source localization problem a solution. Here in this

work we are not solving the localization problem. We use the spatial filter trained in this

technique to filter the raw data we have. Then the filtered data will be more significant due

to the constraints in this technique. In the following sections we introduce the main points

in this technique. Then we introduce the use of the developed method Maximum-Contrast

Beamformer (MCB).

Forward Model

The forward model is the information of the measureed data sensors and the source

signal. Given a source, we can calculate the scalp potential induced by the source. In the

Beamforming technique we need the forward model information. In this work we use the

overlapping sphere technique to construct the forward model The idea of the method is

using multi-shell geometry rather than BEM model to estimate the overlapping sphere. By

assuming that human head had m layers and estimate the surface potential by the second

kind Fredholm integral. We use digitizer to measure the surface of realistic head and then

calculate the overlapping sphere for each EEG sensor by minimizing the difference between

the multi-shell sphere and realistic head. The details for constructing the spatial filter using

the forward model will be introduced in next chapter.

Beamforming

Beamforming [1] [7]is a method to localize the signal source during array signal pro-

cessing. It was developed in middle of 20th century and widely used in different field

such as sonar, radar and astronomical telescope array systems. The aim of this method is

to calculate a set of weighting of the physical channels, called beamforming coefficients.

By linearly combine the recording signals with corresponding coefficients, we can cre-

ate a virtual sensor at a specified position with a specified dipole orientation. In , Van

Veen [18]proposed a linearly constrained minimum variance (LCMV) method for imple-

mentation of beamforming on EEG/MEG. First we briefly introduce the data model used

in the beamforming technique and the simple concept of beamforming. Then the detail of

calculating the dipole orientation in this technique will be provided.
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Under the system of N channel EEG sensors, the measured surface potential m at an

instant time can be regarded as an N × 1 vector expressed by

m = G(r)q = G(r)
q

‖q‖
‖q‖ = l(r;q)‖q‖ (3.2)

where G(r) is the gain matrix calculated by forward model and l(r;q) is the leadfield.

More precisely, leadfield means the measurement with the dipole source located at r with

dipole moment q which composed by dipole orientation q
‖q‖ and dipole strength ‖q‖. Fur-

thermore, when there are k dipole sources at an instant time, we model the noise as an

N × 1 vector n. The measured data can be rewritten as

m =
k∑

i=1

l(ri;qi)‖qi‖+ n (3.3)

where qi (i = 1,2,. . . ,k) is the ith dipole moment.

Notice that the equation above represents the measurement at an instant time. In time

domain, bio-medical signal is often modeled as a random signal and thus we take temporal

information into consideration and we use first and second order statistics to describe the

dipole as

q̄i = E{qi} (3.4)

cqi
= E{ [qi − q̄i][qi − q̄i]

T} , (3.5)

respectively, where E stands for expectation. Furthermore, the mean and covariance matrix

of the measurement are

m̄ = E{m} =
k∑

i=1

l(ri;qi)q̄i (3.6)

C = E{‖m(qi)− m̄‖‖m(qi)− m̄‖T} =
L∑

i=1

l(ri;qi)cqi
lT (ri;qi) + Cn (3.7)

respectively, where Cn is the covariance of the noise under an assumption of zero mean.

Practically, C is calculated by using recorded EEG signals.
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C =
1

N − 1
MMDFMT

MDF (3.8)

where T is the sampling number and M is an N × T matrix which represents the recorded

EEG signals. The subscript ”MDF ” denotes Mean-Deviation Form which each element is

substituted by the mean of row of original matrix (i.e. averaged potential of each sensor).

As mentioned in previous section, beamforming is designed to reconstruct the source

activation by linearly combine the recordings from each EEG sensor. The idea can be

written as

y = wT (r0;q0)m (3.9)

where y is the reconstructed moment with dipole location r0 and dipole orientation q
‖q‖ ,

and wT (r0;q0) is an N × 1 vector which denotes the spatial filter. By LCMV, there are

two constraints in finding w. The first one is linearly constrained:

wT (r0;q0)l(r0;q0) = 1 (3.10)

which extracts the target source (r = r0 and q = q0) and suppresses other sources (r 6= r0

and q 6= q0). This constraint is also called unit gain constraint because after filtering

the predicted potential, we would get the original source. The second idea of LCMV is

minimum variance:

min
w(r0;q0)

cys.t.w
T (r0;q0)l(r0;q0) = 1 (3.11)

where cy is the variance of the estimated signal. The reason to minimize the variance of the

filtered signal is that if forward model is exactly correct and without noise, then

y0 = wT (r0;q0)m = wT (r0;q0)l(r0;q0)q0 = 1× q0 = q0 (3.12)

where q0 is the true source moment at the target position. The details in solving the filter

w are in [18] and the equation is:

w = (C + αI)−1l(lT (C + αI)−1l)−1 =
(C + αI)−1l

lT (C + αI)−1l
(3.13)
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where α is a regularization parameter, C is the covariance matrix explained in previous

section and I is the identity matrix. Here we omit (r0;q0) for simplicity.

3.4.3 Maximum Contrast Beamformer

However, there is still one question - ”How do we know the dipole orientation?” . In

accordance with this question, LCMV decomposes the orientation solution space with 3

orthogonal basis in 3D space. Robinson and Vrba proposes synthetic aperture magnetome-

tery (SAM) method to search the orientation such that the resultant value of z-deviate is

maximum. However, we use a new method to calculate the optimal dipole orientation ana-

lytically. In this section we provide the details in this method and explain how we use it in

designing a filter for a BCI system.

The decision of dipole orientation is an important issue in beamforming techniques. A

correct dipole orientation can successfully suppress the undesired noise. The idea of MCB

is finding the optimal dipole orientation by maximizing the ratio of active state and control

state. In the beginning, recall the definition we gave before. The leadfield l = G(r) q
‖q‖ can

be rewritten as l = Gj and substitute it into Eq 3.13 we have

w =
(C + αI)−1l

lT (C + αI)−1l
=

(C + αI)−1Gj

jTGT (C + αI)−1Gj
.
=

Aj

jTBj
(3.14)

where A = (C + αI)−1G and B = GT (C + αI)−1G. Notice that the dipole orientation j

could be extracted. In the idea of MCB, we maximize the ratio between active and control

state by using F statistic for the criterion in deciding the ratio. The formula is

F =
wTCaw

wTCcw
(3.15)

After substituting Eq 3.14 into Eq 3.15, the formula can be translated as:

j̃ = arg max
j

( Aj
jT Bj

)TCa(
Aj

jT Bj
)

( Aj
jT Bj

)TCc(
Aj

jT Bj
)

= max
j

jTATCaAj

jTATCcAj
.
= max

j

jTPj

jTQj
(3.16)

where P = ATCaA and Q = ATCcA. Now we can know that it is a traditional optimiza-

tion problem in solving j and the solution is the eigenvector with respect to the maximum
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eigenvalue of matrix Q−1P. Therefore, we determined the source orientation with deter-

ministic computational steps.

The inter-subject variability is always a critical problem in EEG signal analysis. In the

same motor-related task, two different subjects may have the ERD and ERS in different

frequency range. Therefore, before we start to train this spatial filter, there are few things

we should decide first.

1. Frequency band : The frequency band of the subject should be decided first, we use

the morlet wavelet transform to observe the frequency band as we mentioned before.

From the time-frequency map we can decide not only the frequency band, but also

the time period of active and control state.

2. Selection of active/control state : Here we select the time period of the two state. Our

experience is to select a 0.5 second range time period. We select the ERD period as

the control state and the ERS as the active state. We discuss about the selection issue

in chapter 5.

3. Dipole position : As mentioned before, the dipole position is used to calculate the

forward model. First we observe the MRI and decide the position which is represent-

ing the hand area in the motor cortex. After more experiments have done, we find we

can roughly decide the position and still get good results.

4. Optimal regularization parameter : The regularization parameter refers to the α in

Eq 3.13. A value of 10−7 is applied in the general cases.

5. Feature extraction : After the signal was filtered by the spatial filter, we extract the

feature for classification by calculating the ERD/ERS curve of the signal. We take

the 1 second period before the visual cue as the baseline and continue the calculation

according to the step described in section 1.3.3

All the results of experiments and the details for deciding the parameters above will be

shown in next chapter.
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3.5 Thresholding

After the spatial filtering, the ERD and ERS should be enhanced and the noise should

be suppressed. Here we use a simple scheme illustrated by the paper proposed in 2004 [17]

to evaluate the performance of the spatial filter if we apply it online. That is the sample-by-

sample ROC curve analysis.

Figure 3.3: The ROC curve analysis. [17]

3.5.1 ROC curve analysis

In a ROC curve figure, the x-axle is the False-Positive Rate (FPR) and the y-axle is the

True-Positive Rate (TPR). The TPR and FPR are defined as

TPR =
TP

TP + FN
, FPR =

FP

TN + FP
(3.17)

and the term TP, FN, FP, and TN indicate True-Positive, False-Negative, False-Positive, and

True-Negative. These terms can be seen in figure 3.3. Where the TP means the threshold

classifier classify this sample point as positive (there is a motor movement), and it’s a

correct classification. TN means the classifier classify this point as negative (this is resting

state), and it’s a correct. While FN and FP are the incorrect cases, respectively indicates

type I error and type II error in statistics.
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Chapter 4

Experiments
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In this chapter we show the experiment results in our work. We mainly designed two

part of experiments, the offline training session and the online feedback session. In the

following, first we introduce the detail of the experiment setup, including the experiment

paradigm, the data acquisition, the equipment setup, and the subjects. Second we show the

details of the data preprocessing and the signal processing procedures. Then we provide

the experiment results of all subjects and give some brief observation.

In every dataset, we mainly provide three kinds of analysis result. That is the Time-

frequency analysis results, the spatial filtering results, and the ROC curve analysis results.

We give figures along with tables to help understanding the results.

Further discussions and conclusions will be provided in the next chapter.

4.1 Offline analysis

4.1.1 Experiment setup

Experiment paradigm

The experiment paradigm is as figure 4.1. At the beginning of each trial, a fixation cross

apears on the screen indicating the subject to focus on it. The cross lasts for two seconds,

after then a warning tone sounds and a left/right arrow apears on the screen, lasting for 1.5

seconds. The arrows are cues indicating the subjects to perform either a left or right wrist

lifting imagery task. The subjects are told to perform the task after he/she sees the arrow

disapears. Each trial ends 8 seconds after the cross apears. Because the subjects’ habit to

the regularity might lead to implicit results, we apply a jittering in the paradigm to avoid

so. That is, there is a randomly given 2 to 4 second interval between each trial.

There are two sessions in one experiment. In the first session, subjects are asked to

perform left or right wrist lifting real movement. And in the second session, the tasks are

left or right wrist lifting imagery movement. Each session goes for twenty minutes, and

between two sessions there is a few minute break to avoid fatigue of the subjects. Because

of the random interval between trials, the numbers of trials in each session are not always

the same. But there are at least 50 trials in each task.
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Subjects

We invited five subjects in this experiment, including four males and one female, all

aged 22-24. Each subject participates three to six experiments. We asked these subjects

to participate one experiment about every ten days. The different number of experiment

times are according to his/her performance of the results. Finally, subject A participates

5 experiments, subject B participates 3 experiments, subject C participates 5 experiments,

and both subject D and subject E participate 3 experiments. In the above five, the raw

data of subject E is somehow too bad to analyse. We have too few trials left after the pre-

processing, so in the following results we skip the subject E. Therefore, we’ll show totally

16 experiments, including 16 real movement sessions and 16 imagery movement sessionse.

Figure 4.1: Experiment paradigm. This figure shows the experiment paradigm of wrist
lifting. The time line indicates what the screen shows in every second.

Equipment setup

We prepared two computers and an 32-channel EEG cap connecting to an amplifier.

The subject is asked to wear the EEG cap and sit on a comfortable chair, putting his/her

hands on the table and keep them relax. There is a 17” LCD monitor set in front of the

the subject, and the screen shows the visual cue described in section 4.1.1. This paradigm

is controlled by computer A. The timing of each cue is sent from computer A through a

parallel port to computer B, which is connected to the amplifier and records the data along

with the cue points.
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The data acquisition is under 1000Hz sampling rate. We start the experiment after the

impedence of all 32 channels are below 3k ohm.

After an experiment is done, we use a digitizer to record the exact 3D electrode posi-

tions. This information is needed as head model. We use it to calculate the forward model

described in section 3.4.2 used in the MCB spatial filtering method in section 3.4.3.

Data pre-processing

After the data is recored, we apply some preprocessing:

1 EOG rejection. When the eye blinks, it brings out EOG and strongly affacts the data,

especially the data recorded from the frontal channels. The detail of EOG rejection

was described in section 3.2. Here we use 100 microvolt as the threshold and reject

any trial that has data points exceeding this threshold.

2 Bandpass filtering. We apply a 5-30 Hz bandpass filter to the data. On one hand to

avoid low frequency heartbeat artifacts, and on the other to avoid the 60 Hz power

line effects and high frequency noises.

4.1.2 Data analysis

Here we show the analyses we did after the data was pre-processed.

Time-frequency analysis

First we do some basic analyses to the data. Mainly because we want to make sure the

data is fine before we do any further analysis. The main analysis here is Time-Frequency

analysis using morlet wavelet transform, as we described in section 3.3. We need to ob-

serve some parameters to train the MCB spatial filter described in section 3.4.3, such as

control/active state time period selection.

Spatial filter training

After the basic analysis we select two time periods as control state and active state. We

then use this information along with the forward model to train a MCB spatial filter for
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each data. The filtered result compared to the original C4 channel data is shown in the next

section. Also we analyse the filter weighting and plot it as topography map in the next

chapter.

ROC curve analysis

The ROC curve analysis is used to simulate the offline data as a online recorded data.

The procedure is described in section 3.5. After the training of the MCB spatial filter is

done, we apply the filter to the data and compare the ROC curve between raw C4 channel

data and the filtered data. From the two ROC curves we can observe the best TPR and FPR

that a simple threshold can give. We then compare it to see if this scheme works.

4.1.3 Experiment results

Subject A

• Experiment 1

The TF-map is shown in figure 4.2. The filtered result compared with the C4 channel

data is shown in figure 4.3.

• Experiment 2

The TF-map is shown in figure 4.4. The filtered result compared with the C4 channel

data is shown in figure 4.5.

• Experiment 3

The TF-map is shown in figure 4.6. The filtered result compared with the C4 channel

data is shown in figure 4.7.

• Experiment 4

The TF-map is shown in figure 4.8. The filtered result compared with the C4 channel

data is shown in figure 4.9.
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^ cue

(a) real movement

^ cue

(b) imagery movement

Figure 4.2: The Time-Frequency map of Subject A. The frequency ranges from 6 to 30 Hz,
and the timeline is an eight-second trial. The visual cue indicating the motor movement is
at 2 second. The left figure is the real movement session and the right figure is the imagery
movement session.

(a) real movement (b) imagery movement

Figure 4.3: The ERD/ERS curve of Experiment 1 of subject A, the visual cue appears at 2
second. The red line indicates the filtered data and the blue line indicates the original C4
data. The left figure is real movement session and the right one is imagery session
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^ cue

(a) 1

^ cue

(b) 2

Figure 4.4: The Time-Frequency map of Subject A. The frequency ranges from 6 to 30 Hz,
and the timeline is an eight-second trial. The visual cue indicating the motor movement is
at 2 second. The left figure is the real movement session and the right figure is the imagery
movement session.

(a) 1 (b) 2

Figure 4.5: The ERD/ERS curve of Experiment 2 of subject A, the visual cue appears at 2
second. The red line indicates the filtered data and the blue line indicates the original C4
data. The left figure is real movement session and the right one is imagery session
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^ cue

(a) 1

^ cue

(b) 2

Figure 4.6: The Time-Frequency map of Subject A. The frequency ranges from 6 to 30 Hz,
and the timeline is an eight-second trial. The visual cue indicating the motor movement is
at 2 second. The left figure is the real movement session and the right figure is the imagery
movement session.

(a) 1 (b) 2

Figure 4.7: The ERD/ERS curve of Experiment 3 of subject A, the visual cue appears at 2
second. The red line indicates the filtered data and the blue line indicates the original C4
data. The left figure is real movement session and the right one is imagery session
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^ cue

(a) 1

^ cue

(b) 2

Figure 4.8: The Time-Frequency map of Subject A, Experiment 4. The left figure is the
real movement session and the right figure is the imagery movement session.

(a) 1 (b) 2

Figure 4.9: The ERD/ERS curve of Experiment 4 of subject A, the visual cue appears at 2
second. The left figure is real movement session and the right one is imagery session
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(a) 1 (b) 2

Figure 4.10: ROC curve analysis of Subject A, imagery session 1 and 2. The red line is the
ROC curve of the filtered data and the blue line is the ROC curve of the C4 channel data.

(a) 1 (b) 2

Figure 4.11: ROC curve analysis of Subject A, imagery session 3 and 4. The red line is the
ROC curve of the filtered data and the blue line is the ROC curve of the C4 channel data.
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subject A left wrist imagery movement

Dataset ERS% ERD% ERS%-ERD% TPR FPR

C4 channel data 181% 56% 125% 0.62 0.37

1 MCB filtered data 369% 74% 295% 0.84 0.33

C4 channel data 315% 41% 274% 0.63 0.38

2 MCB filtered data 398% 32% 366% 0.83 0.32

C4 channel data 447% 89% 358% 0.76 0.29

3 MCB filtered data 892% 78% 814% 0.84 0.28

C4 channel data 212% 81% 131% 0.80 0.21

4 MCB filtered data 408% 89% 319% 0.84 0.17

Table 4.1:

Subject B

• Experiment 1

The TF-map is shown in figure 4.12. The filtered result compared with the C4 chan-

nel data is shown in figure 4.13.

• Experiment 2

The TF-map is shown in figure 4.14. The filtered result compared with the C4 chan-

nel data is shown in figure 4.15.

• Experiment 3

The TF-map is shown in figure 4.16. The filtered result compared with the C4 chan-

nel data is shown in figure 4.17.
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^ cue

(a) 1

^ cue

(b) 2

Figure 4.12: The Time-Frequency map of Subject B. The frequency ranges from 6 to 30 Hz,
and the timeline is an eight-second trial. The visual cue indicating the motor movement is
at 2 second. The left figure is the real movement session and the right figure is the imagery
movement session.

(a) 1 (b) 2

Figure 4.13: The ERD/ERS curve of Experiment 1 of subject B, the visual cue appears at
2 second. The red line indicates the filtered data and the blue line indicates the original C4
data. The left figure is real movement session and the right one is imagery session
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^ cue

(a) 1

^ cue

(b) 2

Figure 4.14: The Time-Frequency map of Subject B. The frequency ranges from 6 to 30 Hz,
and the timeline is an eight-second trial. The visual cue indicating the motor movement is
at 2 second. The left figure is the real movement session and the right figure is the imagery
movement session.

(a) 1 (b) 2

Figure 4.15: The ERD/ERS curve of Experiment 2 of subject B, the visual cue appears at
2 second. The red line indicates the filtered data and the blue line indicates the original C4
data. The left figure is real movement session and the right one is imagery session
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^ cue

(a) 1

^ cue

(b) 2

Figure 4.16: The Time-Frequency map of Subject B. The frequency ranges from 6 to 30 Hz,
and the timeline is an eight-second trial. The visual cue indicating the motor movement is
at 2 second. The left figure is the real movement session and the right figure is the imagery
movement session.

(a) 1 (b) 2

Figure 4.17: The ERD/ERS curve of Experiment 3 of subject B, the visual cue appears at
2 second. The red line indicates the filtered data and the blue line indicates the original C4
data. The left figure is real movement session and the right one is imagery session
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Subject C

• Experiment 1

The TF-map is shown in figure 4.18. The filtered result compared with the C4 chan-

nel data is shown in figure 4.19.

• Experiment 2

The TF-map is shown in figure 4.20. The filtered result compared with the C4 chan-

nel data is shown in figure 4.21.

• Experiment 5

The TF-map is shown in figure 4.22. The filtered result compared with the C4 chan-

nel data is shown in figure 4.23.
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^ cue

(a) 1

^ cue

(b) 2

Figure 4.18: The Time-Frequency map of Subject C. The frequency ranges from 6 to 30 Hz,
and the timeline is an eight-second trial. The visual cue indicating the motor movement is
at 2 second. The left figure is the real movement session and the right figure is the imagery
movement session.

(a) 1 (b) 2

Figure 4.19: The ERD/ERS curve of Experiment 1 of subject C, the visual cue appears at
2 second. The red line indicates the filtered data and the blue line indicates the original C4
data. The left figure is real movement session and the right one is imagery session
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^ cue

(a) 1

^ cue

(b) 2

Figure 4.20: The Time-Frequency map of Subject C. The frequency ranges from 6 to 30 Hz,
and the timeline is an eight-second trial. The visual cue indicating the motor movement is
at 2 second. The left figure is the real movement session and the right figure is the imagery
movement session.

(a) 1 (b) 2

Figure 4.21: The ERD/ERS curve of Experiment 2 of subject C, the visual cue appears at
2 second. The red line indicates the filtered data and the blue line indicates the original C4
data. The left figure is real movement session and the right one is imagery session



50 Experiments

^ cue

(a) 1

^ cue

(b) 2

Figure 4.22: The Time-Frequency map of Subject C. The frequency ranges from 6 to 30 Hz,
and the timeline is an eight-second trial. The visual cue indicating the motor movement is
at 2 second. The left figure is the real movement session and the right figure is the imagery
movement session.

(a) 1 (b) 2

Figure 4.23: The ERD/ERS curve of Experiment 5 of subject C, the visual cue appears at
2 second. The red line indicates the filtered data and the blue line indicates the original C4
data. The left figure is real movement session and the right one is imagery session
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Subject D

• Experiment 1

The TF-map is shown in figure 4.24. The filtered result compared with the C4 chan-

nel data is shown in figure 4.25.

• Experiment 2

The TF-map is shown in figure 4.26. The filtered result compared with the C4 chan-

nel data is shown in figure 4.27.
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^ cue

(a) 1

^ cue

(b) 2

Figure 4.24: The Time-Frequency map of Subject D. The frequency ranges from 6 to 30 Hz,
and the timeline is an eight-second trial. The visual cue indicating the motor movement is
at 2 second. The left figure is the real movement session and the right figure is the imagery
movement session.

(a) 1 (b) 2

Figure 4.25: The ERD/ERS curve of Experiment 1 of subject D, the visual cue appears at
2 second. The red line indicates the filtered data and the blue line indicates the original C4
data. The left figure is real movement session and the right one is imagery session
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^ cue

(a) 1

^ cue

(b) 2

Figure 4.26: The Time-Frequency map of Subject D. The frequency ranges from 6 to 30 Hz,
and the timeline is an eight-second trial. The visual cue indicating the motor movement is
at 2 second. The left figure is the real movement session and the right figure is the imagery
movement session.

(a) 1 (b) 2

Figure 4.27: The ERD/ERS curve of Experiment 2 of subject D, the visual cue appears at
2 second. The red line indicates the filtered data and the blue line indicates the original C4
data. The left figure is real movement session and the right one is imagery session
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4.2 Online feedback experiment

In this chapter we show the experiment results of online feedback experiments. First

we introduce the experiment setup, including information about session time, trial time,

experiment paradigm, data pre-processing, and online processing scheme. Then we show

the results of online feedback experiments compared with the offline experiment results. In

the end of this chapter we give a brief discussion about our experiment and the results.

4.2.1 Experiment setup

Figure 4.28: Online experiment paradigm design. This figure shows the experiment
paradigm of online experiment of wrist imagery movement. The time line indicates what
the screen shows in every second. The visual cue appears at 2 second and lasts for 1.5
second. The visual feedback starts at 4.5 second and ends at 8 second.

Figure 4.29: Online experiment visual feedback. The visual feedback is a expanding-
contracting bar, indicating the ERS% at the moment.
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Experiment paradigm

The online feedback experiment paradigm is pretty much like the offline one. As fig-

ure 4.28 shows, a fixation cross appears in the center of the screen at the beginning of a

trial. The cross lasts for 2 seconds and a warning tone sounds, followed with an arrow

appearing on the screen, indicating the subject to perform a left wrist imagery movement

or to keep resting. The arrow lasts for 3 seconds and a visual feedback starts on the screen.

The visual feedback is like figure 4.29. It’s a bar extending or contracting as the power

changes.

In each experiment, we have two sessions. The first session is just like an offline exper-

iment session described in section 4.1.1. Then we use the data recorded in this session to

train a MCB spatial filter, and we apply this spatial filter to online filter the the data in the

second session. The second session will give the subjects a visual feedback on the screen

according to the online filtered results.

Subjects

In the online feedback session, we test only one subject. We pick subject A, the one who

gets significant results in the offline experiments. We can say he’s a well-trained subject.

This subject participates 2 online feedback experiments, with a few days interval between

them.

Data processing

In the first session we do the data processing just like we described in the previous

chapter. As for the second online feedback session, the data is recorded in 1000Hz sampling

rate and is online filtered by an 8-12Hz bandpass filter. We then online apply the spatial

filter trained in the first session to the second session.

Feedback

As for the bio-feedback, we use a expanding-contracting bar indicating the ERS.
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4.2.2 Experiment results

(a) 1 (b) 2

Figure 4.30: The ERD/ERS curve of Experiment 1 of subject A, the visual cue appears at
2 second. The red line indicates the filtered data and the blue line indicates the original
C4 data. The left figure is the first session (offline training) and the right one is the second
session (online feedback).
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4.3 Observations

1. The TF-map analysis is useful

From the TF-map we can see that almost every subject, every data has the same result.

That is, the alpha band power changing dominants in 5-30Hz. To observe more we

can see the alpha band power decreases after the visual cue at 2 second and lasts for

about 1 second. Then it’s followed by a power increasing and lasts for more than 2

seconds. These ERD and ERS are well-known movement related responses. [14]

2. The imagery movement is similar to real movement

We can observe that the imagery movement datasets and the real movement datasets

are having almost the same response. Just the power change of a real movement data

is usually more significant than an imagery one.

3. The MCB spatial filter enhances the power change

Comparing C4 channel data and MCB filtered data, we can observe that when the

original data is not too bad, the filter works very well in enhancing the ERS to

ERD ratio. This performance can be seen especially in the well-trained subject A’s

datasets, both real movement data and imagery data. Take Subject A, dataset 1, im-

agery data for example, the ERS to ERD ratio in the original C4 channel data was

about 250. After the filtering it changes to about 550. We can say that this spatial

filter has its effectiveness.
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Chapter 5

Discussion
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In this chapter we review the brief discussions at the end of experiment results and

give some further dicsussions about the stability and effectiveness of MCB spatial filter,

the adaptation issue, the possible causes of the different results between offline and online

feedback experiments, and the future works.

5.1 Spatial filter

From the experiment results of chapter 4, we believe that the MCB spatial filter has

its effectiveness to enhance the ERS to ERD ratio and also suppress the nontarget source

signal, that is, noise. And by the enhancement of ERD and ERS in a motor-imagery task,

we can make it easier to detect an ERD and ERS pattern using a simple threshold calculated

by ROC curve analysis.

But there are still some important issues considering this spatial filter:

1. Does the same spatial filter weighting suit to every subject?

2. Need one subject train his or her own spatial filter every time he or she uses this

system?

3. What if we choose a different control state and active state?

4. What is the possible explaination of the filter weighting topography map?

5. How does well-known Common Spatial Pattern (CSP) work here?

6. How many trials do we need to construct a good spatial filter?

We’ll discuss these issues.

5.1.1 Stability of the spatial filter

In fact, question 1 and question 2 can be combined as the stability issue. Of course

the best case is that we construct a subject-independent spatial filter that enhances the

ERD to ERS ratio well, but the truth is, the EEG signal is suffering great inter subject

variability. Below we compare every subject’s most representitive spatial filter weighting
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by calculation the correlation coefficient. Furthermore, we compare the correlation and

filter effectiveness between sessions of a same subject, analysing the variability of the filter

between sessions. We split this stability issue to three analyses as below. The correlation

coefficient is calculated as

R(i, j) =
C(i, j)√

C(i, i)C(j, j)
, (5.1)

where C denotes the covariance matrix of two weighting vectors. The correlation coeffi-

cient is close to 1 when the two weighting vectors are highly correlated, and it’s close to 0

when the two vectors are poorly correlated.

Filter weighting correlation between sessions

In this analysis we want to see if the spatial filter weighting changes a lot in different

sessions. We seperately calculate each subject’s correlation coefficients between different

sessions. The result is as table 5.1, table 5.2, table 5.3, and table 5.4 show.

1 2 3 4 5

1 1 0.94 0.93 0.93 0.86

2 1 0.98 0.97 0.85

3 1 0.99 0.91

4 1 0.87

5 1

Table 5.1: Correlation coefficients between different sessions. This table shows the result
using wrist real movement datasets of subject A. The number 1 to 5 denotes the session
number, and the topography map is viewed from the top of the head.

The results in table 5.1 and table 5.2 show the high correlation between different ses-

sions. This means that although the human brain is complicated and suffering great vari-

ability, we can still calculate the similar MCB spatial filter weightings in each session, same
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1 2 3 4 5

1 1 0.88 0.84 0.89 0.87

2 1 0.96 0.98 0.86

3 1 0.97 0.92

4 1 0.87

5 1

Table 5.2: Correlation coefficients between different sessions. This table shows the result
using wrist imagery movement datasets of subject A. The number 1 to 5 denotes the session
number, and the topography map is viewed from the top of the head.

subject. So we may use the stable filter weighting always. From the table, no matter real

movement or imagery movement, the correlation between sessions remain high. Another

special phenomenon observed here is that the latest session, dataset 5 is the most uncorre-

lated dataset compared to the others. We may explain this as after a long period of time,

the subject’s responses of the EEG signal slightly changes.

Filter weighting correlation between real movement and imagery movement

Here we analyse the correlation between tasks. We take the five datasets of subject A

and calculate the correlation coefficient between real movement and imagery movement in

each experiment. The result is in table 5.3.

From table 5.3 we can see that the real movement and imagery movementnt are highly

correlated. It means that if a user wants to use the BCI system, he/she may use the data of

real movement, which is easier, to train a spatial filter for later imagery tasks. Of course this

idea to train the filter using real movement data is unworkable for a motor-disabled patient,

but this may work on a normal user. Furthermore, this supports that the real movement and

the imagery movement have the similar responses.
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real 1 2 3 4 5

img

corr 0.94 0.99 0.97 0.99 0.94

Table 5.3: Correlation coefficients between different tasks. The first row is the five real
movement sessions, the second row is the five imagery sessions, and the third row is the
correlation coefficient between the first and second row. Number 1 to 5 denotes the session
number, and the topography map is viewed from the top of the head.

Filter weighting correlation between subjects

In each subject, we select one representative spatial filter weighting and we calculate

the correlation coefficients between these weightings. This analysis is to observe if dif-

ferent subjects share the similar spatial filter. If they do, the weightings should be highly

correlated, and we may not need to train a new spatial filter every time we have a new sub-

ject. We select the representive spatial filter under this rule: the filter that has the weighting

vector most highly correlated to the other filter weightings. For instance, we observe ta-

ble 5.1 and select number 3 spatial filter as it’s the most representative one that is highly

correlated to the rest four. The result of this analysis is in table 5.4.

From this table we can see that every subject has it’s own style of filter weightings.

They do not share the filter weightings as the correlation coefficients are poor. This means

although each subject has the similar spatial filter trained in different sessions, they should

still use the filter trained by their own data.

We conclude the three sub-issues that, every user using a BCI system based on this
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Subjects

A B C D

A 1 0.34 0.51 0.78

B 1 0.72 0.22

C 1 0.36

D 1

Table 5.4: Correlation coefficients between different subjects. The first row is the five
subjects’ representitive spatial filter weighting topography. Alphabet A to E denotes the
subject identity, and the topography map is viewed from the top of the head.

spatial filter that enhance the motor-imagery ERD and ERS should train his or her own

spatial filter using his own training data. The subject dependent spatial filter weightings

are similar in different sessions every different time we perform the experiment, but after a

long period of time it may changes a little bit from the one trained originally. No matter the

training data is real movement or imagery movement, the spatial filter should be similar if

everything goes fine in the experiments.

5.1.2 Different selection of control/active state

In the MCB method, we find a dipole orientation that maximize the variance ratio be-

tween active state and control state. In our case we choose the alpha band ERD period as

the control state and the ERS period as the active state. How about we choose a totally dif-

ferent period of time as control state or active state? For example, choose the resting period

as control state intead. Here we test three kinds of selection on dataset 1 to 4 of Subject A.

The three different selection of control/active states are listed below. The results of the 4

real movement datasets are presented in table 5.5, imagery datasets in table table 5.6, and

we plot the filtered data compared to the C4 channel data of dataset 1 in figure 5.1.
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(a) 1 (b) 2

Figure 5.1: Different result when choosing different active/control state. The left figure is
using ERD as active state and reting as control state and the right figure is using ERS as
active state and resting as control state.

The resting period as control state and the ERS period as active state

First we test the one that is the most easy selection to guess. We choose the resting

period as the control state and the post-movement ERS period as the active state. In our

offline experiment paradigm, the resting period should start from about one second before

the visual cue appears. As for the ERS period is the same as we selected before, starting

about 3 seconds after the visual cue appears. This selection means to suppress the resting

period power and to enhance the ERS power increasing. The ERS%-ERD% is used to

evaluate the performance of the spatial filter. The plotted result is as figure 5.1 shows and

the ERS%-ERD% evaluation is in table 5.5.

From the result we can see that this scheme works as well as the original scheme, just a

little bit lower in the ERS%-ERD% evaluation. This is because in subject A’s datasets, the

power decrease period is usually not very explicit while the post-movement power increase

period is phenomenal.
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The ERD period as control state and the resting period as active state

Second we select the during-movement ERD period as the control state and the resting

period described above as active state. This scheme means we try to find the optimal

dipole orientation that maximize the power ratio of resting and ERD, that is, to enhance

the ERD%. This scheme should be reasonable since the during-movement alpha ERD is

an important phenomenon.

From the result we can see that this scheme poorly enhance the ERD%. The reason

should be the same as the previous scheme that the ERD is usually not explicit in this

subject. This is depend on the subjects. We can see clear ERD but barely no explicit ERS

in subject B.

The ERD period as control state and the ERS period as active state

This scheme is the one described in chapter 4.

Observing the two result tables of subject A we can see that the different selection

scheme indeed gives slightly different results, and the results are somehow just like what

we expected. But from the comparison figures between subject A and subject B we notice

that the best selection scheme of control state and active state is still unknown. Every kind

of selection has its reason. We can say that which scheme suits which subject by observing

the subject’s EEG signal responses, but we should realize that not every subject represents

the same. The brainwave is complicated and sometimes varied from subject to subject. We

should always observe more in this issue.

5.1.3 Comparison between MCB and CSP

Common Spatial Pattern (CSP) [11] is also called Common Spatial Subspace Decom-

position (CSSD). This spatial filter is known for its ability on classifying the motor-imagery

tasks. The principle of CSP is to simultaneously diagonalize the two covariance matrices

associated with two classes. Then the most discriminative spatial filter can discriminate

the two classes. It makes the projected data of one class has the minimum variance and

the other data has the maximum variance, therefore discriminate them. The variance of
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the sample points on the time domain can be seen as its power. Since the induced power

change (the ERD and ERS) is the most phenomenal characteristic in a motor-related task,

this filter is used mainly in the motor-related tasks.

The algorithm of CSP [11] is as the following:

1. Calculate the two covariance matrices, Σ1 and Σ2, of the two classes.

Σ1
i =

ViVit

trace(ViVit)
(5.2)

where Vi is the raw data of trial i. The size of Vi is N × T , presented as N number

of channels and T samples in time. The t means transpose.

Σ1 =
∑

i

ViViT

trace(ViViT )
(5.3)

2. Calsulate scatter matrix

ΣS = Σ1 + Σ2 (5.4)

, which can be diagonalize as

ΣS = BSλBS
t (5.5)

Here BS is an N ×N matrix of normalized eigenvectors, satisfying

BSBS
t = IN×N (5.6)

λ is the diagonal matrix of eigenvalues.

3. Perform the whitening transformation.

D1 = WΣ1W
t (5.7)

D2 = WΣ2W
t (5.8)

with

W = λ(−1/2)BS
t (5.9)

D1 and D2 have the property of D1 + D2 = IN×N and of sharing the same eigen-

vectors.
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4. Diagonalize D1 and D2.

D1 = UΨ1Ut; (5.10)

D2 = UΨ2Ut (5.11)

, with the property Ψ1 + Ψ2 = I

5. Calculate the projection matrix Pt

Pt = UtW (5.12)

Apply the projection matrix Pt to each Vi and then get projected data Zi as

Zi = PtVi (5.13)

After performing the CSP, we get the projection matrix Pt. Select the two most discrim-

inative filter vectors and project them to each trial. This ensures the projected data having

the property that the variance of the projected data contain the most relevant information

for recognizing the two classes [10]. In fact, it makes the projected data of one class hav-

ing the maximal variance while the projected data of the other class having the minimal

variance.

Here we implement the CSP method and show its results comparing to our results

using dataset 1-4 of subject A, both real movement and imagery movement data. The CSP

method’s principle is to simultaneously diagonalize the two covariance matrices associated

with two classes. The two classes selected here is the ERD period and the ERS period,

same as we input for the MCB spatial filter to maximize its ratio. We input 1 second ERD

period data (about 0.5 to 1.5 second after the visual cue) as the first class and 1 second ERS

period data (about 3 to 4 seconds after the visual cue) as the second class. The trial number

used for training the Common Spatial Patterns is about 50 to 60 in one session, with the

same data preprocessing procedures as we used in the MCB method. The results are as

figure 5.2 shows.

5.1.4 Number of training trials

The last issue of the spatial filter is, does the filter performance increase as the input

trial number increases? If so, what is the relationship between them and at least how many
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(a) 1 (b) 2

Figure 5.2: C4 channel data compared to CSP and MCB filtered data, subject A imagery
session 1 and 2

trials are needed to train a spatial filter? Here we use the dataset 3 and 4 of subject A (well-

trained subject) to analyze this issue. The total accepted trial number in this dataset is about

60 trials. We pick from 1 trial, 4 trials, 5 trials, 10 trials, 20 trials, 40 trials, to 60 trials and

use them to train a MCB spatial filter to enhance ERD to ERS ratio. The ERS% - ERD%

is used to evaluate the performance of the trained spatial filter. Table 5.1.4 and table 5.1.4

show the comparison between different trial number and the performance. Figure 5.4 uses

a figure to show the same result in a better view.

The result is consistent with what we expected, that is, with the growing number or

trials, the performance of the filter enhances. The ERS to ERD ratio increases. The figure

also shows that when the trial number is too less, say, no more than 5 trials, the performance

is unstable. And when we increase the trial number to more than 20 trials, the performance

starts chan-chan-bi to the trial number. When the trial number is more than 40, the perfor-

mance stops rising and stays good performance. According to this result, we conclude that

with more trial number, we can construct a better spatial filter, and the trial number should

not be less than 10 trials. Also if we want to train or retrain a spatial filter in an online

feedback experiment, 40 trials should be enough to train a effective spatial filter. In the first

session of our online feedback experiment, we acquire more than 40 trials. This analysis
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(a) 1 (b) 2

Figure 5.3: C4 channel data compared to CSP and MCB filtered data, subject A imagery
session 3 and 4

supports the scheme we design.
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(a) 1 (b) 2

Figure 5.4: Trial number vs. filter performance. This figure uses the dataset 3 (left) and
dataset 4 (right) of subject A. It shows how the filter performance changes when we use
different trial number to train the filter. The X-axle is the difference between ERS% and
ERD% and the Y-axle is the number of used trials. The blue line represents the C4 channel
data and the red line represents the filtered data.
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subject A left wrist real movement

Dataset ERS% ERD% ERS%-ERD% multiple

C4 channel data 296% 51% 245% 1

1 ERD vs. ERS 518% 51% 467% 1.90

resting vs. ERS 568% 57% 511% 2.08

ERD vs. resting 230% 45% 185% 0.75

C4 channel data 376% 51% 325% 1

2 ERD vs. ERS 671% 46% 625% 1.92

resting vs. ERS 602% 48% 554% 1.70

ERD vs. resting 161% 45% 116% 0.35

C4 channel data 439% 97% 342% 1

3 ERD vs. ERS 1157% 101% 1056% 3.08

resting vs. ERS 1102% 98% 1004% 2.93

ERD vs. resting 979% 104% 875% 2.55

C4 channel data 509% 144% 365% 1

4 ERD vs. ERS 1288% 102% 1186% 3.25

resting vs. ERS 1167% 98% 1069% 2.93

ERD vs. resting 1074% 110% 964% 2.64

Table 5.5: Results of different selection of control/active states. This table shows the results
of four real movement datasets of subject A. Each dataset has four comparisons. They are
unfiltered C4 channel data, ERD as control state while ERS as active state, resting as control
state while ERS as active state, and ERD as control state while resting as active state MCB
filtered data. The table shows the ERS and ERD enhancement as evaluation.
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subject A left wrist imagery movement

Dataset ERS% ERD% ERS%-ERD% multiple

C4 channel data 181% 56% 125% 1

1 ERD vs. ERS 369% 74% 295% 2.36

resting vs. ERS 353% 73% 280% 2.24

ERD vs. resting 122% 36% 86% 0.69

C4 channel data 315% 41% 274% 1

2 ERD vs. ERS 398% 32% 366% 1.36

resting vs. ERS 377% 31% 346% 1.26

ERD vs. resting 126% 24% 102% 0.37

C4 channel data 447% 89% 358% 1

3 ERD vs. ERS 892% 78% 814% 2.27

resting vs. ERS 696% 75% 621% 1.73

ERD vs. resting 967% 81% 886% 2.47

C4 channel data 212% 81% 131% 1

4 ERD vs. ERS 408% 89% 319% 2.43

resting vs. ERS 384% 86% 298% 2.27

ERD vs. resting 366% 89% 277% 2.11

Table 5.6: Results of different selection of control/active states. This table shows the results
of four imagery movement datasets of subject A. Each dataset has four comparisons. They
are unfiltered C4 channel data, ERD as control state while ERS as active state, resting as
control state while ERS as active state, and ERD as control state while resting as active
state MCB filtered data. The table shows the ERS and ERD enhancement as evaluation.
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trial number MCB filtered data C4 channel data

ERS%-ERD% ERS%-ERD%

4 trials 394% 395%

5 trials 422% 360%

10 trials 249% 272%

15 trials 704% 394%

20 trials 843% 399%

40 trials 954% 361%

60 trials 1056% 342%

Table 5.7: The filter performance comparison between different number of trials. This table
shows the trial number analysis using dataset 4 of subject A. The left column is the number
of trials and the two right columns are the comparison of the ERS% - ERD% of the filtered
data and C4 channel data.

trial number MCB filtered data C4 channel data

ERS%-ERD% ERS%-ERD%

4 trials 456% 322%

5 trials 418% 408%

10 trials 370% 370%

15 trials 314% 352%

20 trials 462% 413%

40 trials 1226% 369%

60 trials 1120% 355%

Table 5.8: The filter performance comparison between different number of trials. This table
shows the trial number analysis using dataset 3 of subject A. The left column is the number
of trials and the two right columns are the comparison of the ERS% - ERD% of the filtered
data and C4 channel data.
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5.2 Adaptation

As we introduced in section 2.5, the adaptation issue can be separated into two issues.

The subject adapts to the system and the system adapts to the subject. In this work we

use a visual feedback to study the subject’s adaptation to the system. Then we use the two

session experiment, in which we train a spatial filter in the first session and online apply it

in the second one, to observe the system’s adaptation to the subjects.

5.2.1 The system to user adaptation

In the best case, the learning of the machine should be constantly proceeding. This issue

is online adaptation. It is a difficult question to design a proper online adaptation scheme.

According to some works studying the adaptations [16], the brief training session before

the online test should be enough to obtain good performance. In our previous discussion,

we show the stability of the MCB spatial filter. This supports the idea of the study.

(a) visual feedback on set at 3.5 second (b) visual feedback on set at 4.5 second

Figure 5.5: Results of different onset time of the visual feedback. The visual feedback
onset time is 3.5 second in the left figure and 4.5 second in the right figure. The visual cue
indicating the imagery starts at 2 second.

In the analysis of our online feedback session, we find the pre-trained spatial filter still

works in the online session. The ERS% and the ERD% power changes are enhanced.
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Somehow the performance is not as the offline session, but it’s about the visual feedback.

We discuss this next.

5.2.2 The user to system adaptation

We use the visual feedback to study this issue. As we introduced in chapter 2 the

feedback could be both benefitial and harmful. The original thoughts to design this visual

feedback is to let the user monitor the enhanced post-movement ERS. Therefore comparing

to the resting period, the users may be more concentrated and train himself to obtain higher

ERS.

However, according to the result, we find the visual feedback breaks the alpha band

ERS. The very possible explaination is that the ERS period is seen as a recovery period

after the motor imagery. When we give a visual feedback right after the recovery, our brain

has a new stimulus and starts to process it. Therefore the recovery stops. We’ve tried few

different time points of the visual feedback onset. We find it consistent that the ERS stops

at the onset time of the visual feedback. As figure 5.5 shows. The left figure has the visual

feedback onset at 3.5 second, and the right figure has it onset at 4.5 second. We find poor

ERS in the 3.5 second case.

From this study we want to enhance the ERD and ERS power change and detect this

pattern. But the visual feedback somehow breaks this scheme at the ERS stage. The previ-

ous discussion tells that we may keep moving back the onset time of visual feedback. This

should works, but the meaning of the feedback should be reconsidered since the feedback

is not so real-time.

5.3 Limitations

Here we list the limitations in this work.

Cue-based vs. self-paced motor-imagery

The motor-imagery experiments can be catogorized as cue-based and self-paced. In

our design, we use cue-based experiments in the offline training session. As for the online
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feedback session, there is still a cue as the offline does. However, in a real asynchronous

BCI system, there sould be no cue and the motor-imagery task is self-paced. There are few

reasons we select cue-based experiments in both sessions.

First, although the cue-based and self-paced motor-imagery are to perform the same

task, there exists slight differences. As I am one of the subjects, in a cue-based experiment

I feel more concentrated than in a self-paced experiment, and in a self paced experiment,

”when to perform the task” always distracts my attension. Second, In a cue-based exper-

iment we can always have a cue and record it with the data. After the experiment we can

still analyse the data whatever we want to. But in a self-paced experiment, the timing of

the imagery movement task can not be recorded. That makes it difficult to analyse the data,

such as spatial filter training. Third, the design of a cue-based experiment and a self-paced

experiment will be strongly different. Before we are sure about the expected result, we

should not change the paradigm too much because the EEG signal is unstable.
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Conclusions and Future Works
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6.1 Conclusions

As we describe in chapter 2. The key issues in a BCI system are noise reduction, fea-

tures, classification, adaptation, and biofeedback. In this work we studied a BCI system

using motor-imagery EEG. We mainly use Maximum Contrast Beamformer (MCB) tech-

nique to design a spatial filter, which has the following advantages:

1. Noise suppression

In the constraint of the MCB spatial filter, we suppress the nontarget source signal.

The noise is always a big problem in a BCI system. By applying this spatial filter,

we suppress the nontarget noise and focus on the cortical source activity.

2. ERD/ERS enhancement

In the constraint of the MCB spatial filter, we find the dipole orientation by maxi-

mizing the ratio between the active state and the control state. While in this work we

select the during-movement ERD period as the control state and the post-movement

ERS period as the active state. Therefore the ERD% and ERS% is enhanced. After

the enhancement we can easily use a ROC curve analysis to evaluate the performance,

which is good.

3. Stable weightings

We collect the spatial filter weightings trained in different sessions and same subject.

We find them highly correlated. It means that the spatial filter is somehow stable.

The same subject should be able to use the same spatial filter trained before. And a

scheme like this should be workable: A subject participates an offline training session

and gets his own spatial filter, then in the later online experiments we online apply

this spatial filter to his data.

This spatial filter has its effectiveness because it has a hidden meaning of cortical source

activity. In this work we have experiments on more than five subjects. The filtered results

show good performance of this spatial filter.

In addition to the evaluation on the ERD/ERS ratio. We simlpy use the ROC curve

to find a threshold to classify the resting state and the left wrist imagery movement state.
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In this analysis we get a TPR and a FPR which shows good performance on the filtered

results.

After studying the spatial filter, we implemented the online feedback system to study

the online visual feedback issue. We conclude that a post-movement alpha ERS may be

interrupted by a visual feedback. The further research on the online ERD/ERS detection

may need to consider this visual feedback issue as a problem. In the discussion chapter

we proposed some future work ideas, including the study of the visual feedback and the

steady-state motor-imagery.

As for the adaptation issue, we seperate this issue to two. The system’s adaptation to

the user and the user’s adaptation to the system. We study the former issue by first evaluate

the stability of the spatial filter, which has stable result. Second we design a two session

experiment. In this experiment we train a spatial filter for the user in the first session. Then

we apply this spatial filter online in the second session. The system should adapted to the

user under this scheme. As for the latter issue, we give a visual feedback to the user in the

online session. This expanding-contracting bar should be able to monitor the user’s motor-

imagery. The user can therefore adapt himself to the system by observing this feedback.

According to our results, the visual feedback may affect the post-movement ERS. We’ll

have to study another way to give visual feedbacks.

6.2 Future works

There are many challanges in BCI systems. In the future, We should keep improving

the accuracy, speed, usability and feedback methods in BCI systems. And in addition to

these general challanges, here we list some future works that are related to our work.

More than two classes

In this work we mainly analyse two classes, the resting state and the left wrist imagery

movement state. In the future we may work on more than two classes. For example, left

wrist movement imagery and right foot movement imagery and resting. Right now our

method restricts us in only two classes, so we will have to test some more schemes if we
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want to increase the classes.

Electrode reduction

As we mentioned in the previous section, the electrode number we need in this work is

32, which is not a small number. One possible future work may be to analyse the relation

between the filter performance and the spatial resolution. We are always happy to use less

electrodes.

Online adaptatation

In our work we adapt the system to the user at the beginning of each online feedback

session. We train a new spatial filter in the first offline session and apply it to the next.

The concept is to train a new spatial filter using the data that is most similar to the online

feedback session. Although in our analysis we find the spatial filter

Classification

In this work we did not focus much on the classification issue in this work, in the future

we can test more classification methods on the filtered data.

Filter templates

Our results show that every subject has his or her own type of spatial filter weighting.

In the future, if we have much more subjects participate in these experiments, and we

analyse their MCB spatial filter weightings. With this large amount of data we may use

some techniques like the Principle Component Analysis (PCA) to construct some filter

weighting templates.

More applications

In our work we did not implement the whole procedure as a communication or control

system, like a typing system or a cusor control system. We mainly focus on the effective-

ness analysis of the MCB spatial filter and the adaptation issue along with the online visual
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feedback issue. Recall the results of our online feedback experiments, we find that the vi-

sual feedback somehow affects the post-movement power increase (ERS), and that actually

restricts us. We can not just simply apply the same scheme as the online feedback session

because although the spatial filter still works to enhance the ERD to ERS ratio, it’s not so

explicit as the offline analysis session. Due to this feedback issue suppresses the ERS, next

step we will try to focus on the steady-state motor imagery.
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