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摘要 

 

 

無線通訊和嵌入式微感測器技術顯著的進步使得結合這兩種技術的無網線

感測網路成為可能。環境觀測，用於收集並分析位於遠端環境的感測器回傳的數

值，便成為一種無線感測網路中具有商業發展潛力的應用。在環境觀測的應用

中，減少無線感測網路中節點能源的消耗對於系統壽命以及系統穩定度是非常重

要的。在這篇論文中，我們提出了利用資料在時間和空間上有相似性的資料壓縮

演算法來減少無線感測網路中的資料傳輸，進而延長無線感測網路的系統壽命。

此外，我們實作了利用上述的資料壓縮演算法的資料收集及查詢平台，並且此平

台上作了相關實驗來檢測它的效能。實驗的結果表示我們的系統可以在維持高度

的資料正確性之前提下有效地減少資料傳輸。 

 

 

  關鍵字: 資料相似性，訊息壓縮，普及運算，感測器資料管理，無線感測網

路。 
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Abstract 

 

The remarkable advances of wireless communication and embedded micro-sensing 

MEMS technologies have made wireless sensor networks possible. Environment 

monitoring - the collection and analysis of sensor readings to observe remote region - is 

an important application of networked embedded sensing with significant commercial 

potential. In monitoring applications, reducing energy consumption is crucial to the life 

time and system reliability of wireless sensor networks. In this paper, we propose data 

compression algorithms exploiting spatial and temporal data correlation to reduce the 

amount of transmission and then prolong the system life time of wireless sensor networks. 

Besides, we also implemented a query and monitoring system based on these data 

compression algorithms and do some experiments to test its performance. The results 

show our system can save energy efficient while maintains data accuracy at the same 

time. 

 

 

Keyword: data correlation, message compression, pervasive computing, sensor data 

management, wireless sensor networks. 
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Chapter 1

Introduction

Wireless sensor networks (WSNs) provide a new opportunity for pervasive and context-aware

monitoring of physical environments. Such a network is composed of numerous sensor nodes,

each being a tiny wireless device that continuously collects information from its vicinity and

reports to the remote sink through a multi-hop ad hoc manner [2]. A WSN is usually deployed in

a region of interest to observe particular phenomena or track objects inside the region. Practical

applications of WSNs include, for example, habitat monitoring, health care, smart home, and

surveillance [22, 12, 19, 23].

Because sensor nodes are operated by small batteries and it is infeasible to recharge them

or deploy new nodes in many scenarios, how to extend the network lifetime is a critical issue.

In this paper, we consider WSNs that possess the following characteristics:

• These WSNs are deployed to provide long-term monitoring of some specified regions. In

this case, since sensor nodes continuously report what they sense to the sink, the commu-

nication overhead will dominate their energy consumption. Moreover, sensor nodes close

to the sink will suffer from heavy loads of message transmission, which leads to network

congestion [6] and rapidly consumes their energy. As these nodes exhaust their energy,
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the network will be destroyed. Thus, how to reduce the amount of message transmissions

of sensor nodes plays a leading role in extending the network lifetime.

• Sensing data reported from sensor nodes often exhibit a certain degree of data correlation.

Specifically, the sensing readings of neighboring nodes may present highly spatial corre-

lation because they sense the same environment. These nodes may detect either the same

phenomenon or nothing from the environment. Besides, the sensing data collected by a

single node may present highly temporal correlation when its surrounding environment

remains stable. Fig. 1.1 illustrates an example, where we use four sensor nodes to collect

the indoor temperatures during a day. From Fig. 1.1, we can observe that the temperatures

reported by sensor nodes 1, 2, and 4 are quite similar (i.e., exhibit spatial correlation) be-

cause they are close to each other, while the temperatures collected by an individual node

during the time periods [12:35 PM, 05:35 PM] and [08:05 PM, 01:05 AM] remain stable

(i.e., exhibit temporal correlation). With this observation, we can properly compress the

sensing reports of nodes to reduce the amount of message transmissions.

• Users will query different “resolutions” of sensing data from the network [10, 8]. They

may periodically request a rough report from the sink to obtain an overview of the moni-

toring environment. Occasionally, users could have interest to query detailed information

from a subset of sensor nodes. With this requirement, sensor nodes should not only sim-

ply report what they sense to the sink, but also have to maintain the sensing data in their

local memories for further queries.

In this paper, we propose a multi-resolution compression and query (MRCQ) framework to

provide message compression and multiple resolutions of sensing data in WSNs. The basic

concept of our MRCQ framework is to organize the WSN into a hierarchical architecture and
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Figure 1.1: Indoor temperatures collected by four sensor nodes during a day.

then establish multi-resolution summaries of sensing data by spatial and temporal compressions.

These summaries of sensing data will be stored in the network for further query. Specifically,

we organize the sensor nodes in a WSN into multiple layers. Messages transmitted by nodes

in a lower layer will be compressed by a certain node in the upper layer through the spatial

coding technology. Meanwhile, each node can also compress its sensing report by temporal

coding method. In this way, the amount of message transmissions can be significantly reduced

and thus the network lifetime can be prolonged. Moreover, in the MRCQ framework, nodes

in each layer will keep a copy of their historical sensing data. Thus, users can query different

resolutions and views of sensing data from different layers. In particular, they can obtain a

coarser resolution but broader view of sensing data from a higher layer, and a narrower view

but finer resolution from a lower layer.

Major contributions of this paper are three-fold:

• We develop a spatial and a temporal compression algorithms to help reduce the amount

of message transmissions in a WSN. Thus, not only the network lifetime can be extended,
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but also the network congestion can be alleviated. In addition, our spatial compression

algorithm allows users to set up different compression ratios. This can help users to bal-

ance the tradeoff of data accuracy and energy consumption (due to message transmission)

according to their application requirements.

• We design an efficient storage scheme to help sensor nodes to maintain a copy of their

historical sensing data in their local memories. This storage scheme considers the small

size of sensors’ memories and attempts to record as much data as possible. This allows

users to efficiently query long-term and finer data from sensor nodes.

• Our proposed compression and storage algorithms consider the limitation of computation

power and memory size of sensor nodes, so that they can be applied to practical sensor

networks. To evaluate the performance and practicality of our MRCQ framework, we not

only perform simulation studies but also implement a prototyping system on the MICAz

MOTE platform [4].

The rest of this paper is organized as follows. Chapter 2 reviews some related works in

the literature. Chapter 3 proposes the design of our MRCQ framework. Chapter 4 discusses

the implementation of our prototyping system. Chapter 5 evaluates the system performance

through simulations. Chapter 6 concludes this paper.
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Chapter 2

Related Work

Data compression for textual content has been well studied in the literature. Huffman coding

[17] and Lempel-Ziv-Welch (LZW) algorithm [21] are two popular text-coding compression

schemes. They can provide lossless compression, in the sense that data can be completely

recovered after decompression. However, the results of these text-coding compression schemes

cannot be applied to the message compression in WSNs because the textual data are composed

of a finite set of alphabets while the sensing readings in WSNs are usually continuous values.

They cannot define the alphabets of sensing readings and thus fail.

On the other hand, wavelet transforms [24,20] are widely used in signal and image compres-

sion. They attempt to preserve important features in a signal or an image while reduce those data

that possess highly spatial and temporal correlation to the features to achieve data compression.

For example, one well-known image compression algorithm, JPEG (joint photographic experts

group) [18], divides an image into multiple small square (called pixels), and then compress the

image by spatial correlation of these pixels. The concept of such wavelet compressions could

be adopted to message compression in WSNs. However, these wavelet compression schemes

usually suffer from high computation and space complexity. Thus, they may not be directly
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applied to sensor nodes with very limited resources.

In-network data aggregation [13, 14, 16, 25, 7] also discusses how to reduce the amount of

message transmissions by data similarity in WSNs. These methods attempt to “fuse” a set of

similar sensing reports and generate one representative value to stand for these reports. For

example, TAG [15] organize a sensor network into a tree structure and propose SQL-like se-

mantics to construct streaming data aggregates such as histograms. Nevertheless, unlike data

compression, this fusion operation is irreversible in the sense that the original sensing reports

cannot be recovered. Thus, the subtle difference between sensing reports cannot be reflected

since they have been fused together.

The work in [9] proposes a storage architecture called DIMENSIONS to support multi-

resolution storage in a WSN. It organizes the network into multiple levels and adopts a wavelet

compression scheme [5] in each level to generate spatiotemporal summarization of sensing data.

Users then can obtain different resolutions of sensing reports from different levels via drill-

down queries. However, as mentioned before, such a wavelet compression scheme requires a

large cost of computation power and memory size. In DIMENSIONS, these high-cost wavelet

compression and decompression operations are performed in each level, so that nodes in the

network may suffer from higher computation and space complexity.
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Chapter 3

Architecture

Fig. 3.1 illustrates the system architecture of our MRCQ framework. We assume that sensor

nodes are homogeneous and are randomly deployed in the sensing field. In MRCQ, we recur-

sively divide the network into quadruple blocks. In this way, the network will be organized

into multiple layers, where a block in layer i + 1 contains four blocks in layer i. In each layer,

we select a node in each block as the processing node [3, 11] to collect and compress sensing

reports from the corresponding four blocks in the lower layer. The number of layers decides

the resolutions and message sizes of sensing reports, and can be adjusted by users depending

on their application requirements.

In layer 1 (i.e., the lowest layer), the processing node is responsible for compressing sensing

reports from sensor nodes. In this layer, we further divide these nodes into k × k grids (called

pixels), where k is a small integer. Ideally, each pixel should contains exactly one node and we

use the sensing report of this node as the pixel’s value. Nevertheless, since sensor nodes are

randomly deployed in the sensing field, it is possible that one pixel contains two or more nodes.

In this case, we take the average of the sensing reports from these nodes as the pixel’s value.

One the other hand, when a pixel contains no node, we will use the average of the values from
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Figure 3.1: System architecture of the MRCQ framework (with three layers).

the neighboring pixels as the value of this pixel.

In MRCQ, sensing data reported by sensor nodes are transmitted to the sink layer by layer.

Messages passed through each layer will be compressed by the corresponding processing node

in each block, through the spatial compression algorithm (discussed in Section 3.0.1). Sensor

nodes and layer-1 processing nodes will also compress their data along the time axis by the tem-

poral compression algorithm (discussed in Section 3.0.2). To help users query past data from

the network, each node will storage the historical data in its local memory by the exponentially

shrinking storage (ESS) algorithm (discussed in Section 3.0.3).

Since the spatial and temporal compression algorithms will cause some loss of data preci-

sion during the compression operation (depending on the compression ratio), processing nodes
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in different layers will provide different resolutions of sensing data. In particular, users will

obtain a coarser resolution (but broader view) by querying processing nodes in a higher layer.

When they have interest in accessing more precious data, they can query the processing nodes

in a lower layer. Note that each processing node stores and reports compressed data and these

data are decompressed only at the sink. In this way, both the computation and space complexity

of processing nodes can be greatly reduced.

3.0.1 Spatial Compression Algorithm

The spatial compression algorithm is performed by each processing node to compress sensing

data from its lower layer. Users can specify a compression ratio γ (0 < γ ≤ 1) and this

algorithm will compress these data based on their spatial correlation. According to the layer

number, the spatial compression algorithm contains two parts: layer-1 compression and layer-i

compression (i > 1).

Layer-1 Compression

A layer-1 processing node collects the sensing data from its corresponding sensor nodes and

will store them in a k × k matrix M = (si,j)k×k. Then, we apply the 2D discrete cosine

transform (2D-DCT) [1] on M to generate a new matrix M′ = (ti,j)k×k. In particular, for each

element ti,j ∈M′, we have

ti,j =
2

k
C(i)C(j)

k−1∑
x=0

k−1∑
y=0

cos
(2x + 1)iπ

2k
cos

(2y + 1)jπ

2k
· si,j, (3.1)

where

C(i) =

{ 1√
2

if i = 1

1 otherwise
.
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The 2D-DCT is widely used in image processing. It can transform an image from spatial domain

to the frequency domain and extracts significant values of the image. In particular, the 2D-

DCT will compact those significant values in the upper-left part of the transformed matrix M′,

while leaving other insignificant values in the opposite part. In this way, we can still maintain

most characteristics of the original matrix M by preserving only the upper-left part of the

transformed matrixM′ and thus achieve message compression. However, the cosine operations

in Eq. (3.1) are too complicated for sensor nodes to calculate. Fortunately, the values of these

cosine operations only depend on the system constant k (i.e., the length of matrix M). Thus,

we can maintain a small table to keep the results of these cosine operations in each sensor node

so that the complicated cosine calculation can be simplified as a table lookup operation.

After calculating the matrix M′, we propose a reduced zigzag scan (RZS) method to trans-

late M′ into an 1D array D. In particular, the RZS method begins at the upper-left corner of

M′ and sequentially scan the diagonals of M′, as shown in Fig. 3.2. The RZS method stops

when it has scanned dk2 · γe elements of M′. Then, we transmit the array D to the layer-2 pro-

cessing node. With the property of 2D-DCT, the RZS method is guaranteed to maintain most

significant values of the matrix M in the array D. Note that the compression ratio γ affects

the data precision after decompressing D to the original matrix M (how to decompress will be

discussed in Section 3.0.1). Specifically, we can maintain more information in the array D as γ

becomes larger. Thus, the data precision can be increased after decompressing D.

Layer-i Compression

A layer-i (i > 1) processing node will further compress the data from its corresponding four

blocks in the lower layer. Intuitively, one possible method is to first decompress the data from

the lower layer and then apply the 2D-DCT method on these decompressed data to recompress
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Figure 3.2: An example of the RZS method, where the compression ratio γ = 0.9.

them again. Nevertheless, this method has two drawbacks. First, since the 2D-DCT method and

its inversion are two expensive operations (for sensor nodes), the processing node will suffer

from high computation complexity. The situation becomes worse in a higher layer because the

processing node should handle a large amount of data from many sensor nodes. Second, this

method may not help compress more data since in a large range of sensing field, the degree of

spatial correlation of sensing data will degrade. Therefore, in layer-i compression, we simply

reduce the length of array D (passed from the layer i − 1) to dγi · k2e elements by discarding

the last bγi−1 · k2 − γi · k2c elements of D. Recall that the array D stores data in an decreasing

order by the data importance. Thus, we can compress the sensing data with the compression

ratio γi in layer i and still maintain the significant values of these data.

The processing node then combines these recompressed data of the corresponding four

blocks in layer i − 1 in a clockwise sequence (i.e., following the sequences of the numbers

marked in circles in Fig. 3.1). This makes the transmitted packet possess a structural form (as

shown in Fig. 3.3) and thus can help the sink to recover the positions of blocks in each layer.
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Next, we analyze the length of packets transmitted in each layer. Suppose that a sensor node

takes l bits to transmit its sensing report and the length of a packet header is h. In layer 1,

since the processing node maintains a k × k matrix to record the reports from sensor nodes,

the length of packet transmitted by a layer-1 processing node is thus h + dγ · k2le. For layer

2, the processing node further recompresses the data of its corresponding four layer-1 blocks,

so the length of packet transmitted by a layer-2 processing node is h + d(γ · k2l) × γ × 4e =

h + d4γ2 · k2le. Similarly, the length of packet transmitted by a layer-i (i > 1) processing node

is h + d(4i−2γi−1 · k2l)× γ × 4e = h + d4i−1γi · k2le.

header
layer-3

block 1

layer-3

block 2

layer-3

block 3

layer-3

block 4

layer-2

block 1

layer-2

block 2

layer-2

block 3

layer-2

block 4

layer-1

block 1

layer-1

block 2

layer-1

block 3

layer-1

block 4

an array recording the

result of 2D-DCT and RZS

on the sensing reports

Figure 3.3: The format of packet transmitted by a layer-3 processing node.

Decompression Procedure

To reduce the computation overhead in each processing node, the decompression procedure

is performed only at the sink. In particular, once the sink has collected the reports from the

processing nodes in the highest layer, it first recovers the spatial locations of blocks in each

layer according to the message received, as shown in Fig. 3.1. Then, for each layer-1 block, the

sink translates the corresponding array D (which records the result of 2D-DCT and RZS on the

original sensing reports) into a 2D matrix M′ = (ti,j)k×k by the RZS method. Since the array

D contains only d4d−1γd · k2e elements of compressed data, where d is the number of layers

in the network, we will fill the remaining bk2 − 4d−1γd · k2c elements with zeros in the matrix
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M′. Finally, we adopt the inverse 2D-DCT to transform M′ to a new matrix M′′ = (si,j)k×k.

In particular, for each element si,j ∈M′′, we have

si,j =
2

k

k−1∑
x=0

k−1∑
y=0

C(x)C(y) cos
(2i + 1)xπ

2k
cos

(2j + 1)yπ

2k
· tx,y.

Note that since the matrix M′ is incomplete, the transformed matrix M′′ by the inverse 2D-

DCT may not be necessarily equal to the original matrix M in Section 3.0.1 (i.e., lose some

data precision). The compression ratio γ decides both the message size and data precision of

sensing reports, which is a tradeoff between each other.

3.0.2 Temporal Compression Algorithm

The temporal data compression algorithms in data-collection tier and data-compression tier are

similar. After the network is formed, the sink will broadcast the update threshold, δ to the

whole network. The update threshold is used to design whether to update the value at higher

level node or not. For a sensor node, once it sends its reading to its processing node, it will

record this reading to be the reference of comparison (vref ). Next time before a sensor node

reports its reading, it compare the current reading (vcurrent) with (vref ) first. Let d denotes the

difference between vcurrent and vref , then d = |vref − vcurrent|. If d < δ, which means the

difference between the current reading and the previous reported reading is not significant, then

the sensor node will not report vcurrent. Otherwise if d ≥ δ, this means the difference cannot be

neglected, then the sensor node will report this reading and replace its vref with vcurrent.

The temporal data compression algorithm of level-1 processing nodes is similar to that of

sensor nodes. However, the reference of comparison is not a value but the whole matrix of

sensor readings. For a processing node at level 1, let Mref denotes the matrix of sensor readings

last time it sends to its parent and Mcurrent denotes its current reading. If a sensor node does
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not report its current reading because of the spatial correlation, the processing node will not

update the value of the sensor node, either. Before a spatial data compression is invoked, the

processing node will verify whether the difference exceeds δ . The difference is denoted by:

d =
1

N2

N−1∑
i=0

N−1∑
j=0

|Mref [i, j]−Mcurrent[i, j]| (3.2)

If d < δ, the processing node will not send the result of applying spatial compression

algorithm on Mcurrent. Otherwise, if will send Mcurrent to its parent and replace the old Mref

with Mcurrent.

Unlike sensor nodes and processing nodes at level 1, processing nodes at higher levels do

not keep a piece of reference data to decide whether to send current data. Since processing

nodes will not decompress the data to retrieve the original reading, they are unable to estimate

the difference between two sets of compressed data. Therefore, they only need to recompress

received data with proper size and send these data to their parents. They do not apply any

temporal compression algorithms.

3.0.3 Exponentially Shrinking Storage (ESS) Algorithm

In MRCQ, the compression rate of SDCM increases with level. Therefore, the sink, which is

at the highest level of MRCQ, can only provide environment information with larger error and

user can only be aware of the brief situation of the sensing field. Note that the precise sensing

readings were not disappear; instead, they are scattered in the WSNs. Each processing nodes

and sensing nodes keep a piece of data with higher accuracy, and users can query these nodes

to retrieve data with higher accuracy. Therefore, storage mechanism are necessary for sensing
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nodes and processing nodes. The storage mechanism must take the feature of limited-storage of

devices in WSNs into consideration. Processing nodes and sensor nodes periodically store the

current data with constraint space, and free space will definitely being exhausted. Therefore,

some data must be discarded or merged to reduce the volume of used space to store more

incoming data. This is a key feature of storage algorithm. In this subsection, we will introduce

our exponential shrinking room storage algorithm (ESS), a storage algorithm to store past data

of long time.

The concept of ESS is shown in Fig. 3.4. Each processing node and sensor node keeps

a timer and a periodically incremented timestamp. Once the timer is fired, the timestamp is

incremented and each processing node and sensor node stores the current data. We define a

frame as the data that a sensor node or processing node stores when the timer is fired and fi

as frame generated at timestamp i. The frame for a processing node is a single newly sensed

sensing reading, while that of a processing node is the compressed data. Fig. 3.4 shows the data

that a sensor node or a processing node stores at timestamp t. Suppose the memory space of a

node is capable of storing k frames, then a node will store ft, ft − 1, ft − 3, ft − 7, ... ft−2k−1+1.

When a node receives a query message regarding timestamp q, it first checks whether fq is in

the memory. If so, fq will be reported to the sink and the sink will show this sensing reading,

or decompress this frame; otherwise, this node will find two frames that q lies between these

two timestamps and no other timestamp of available frames lies between this two timestamps,

then send these two frames to sink. The sink will find the sensing reading or a set of data by

interpolation.

Let the sequence of t, t− 1, t− 3, ... ,t− 2k−1 + 1 being the exponential sequence of

timestamp t. Ideally, the frames in the memory matches the exponential sequence of current

timestamp. However, the memory space of devices in WSNs are limited, and it is impossible
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Figure 3.4: Concept of ESS

for each node to store every frame of the past timestamp. When the memory space if full and

a new frame requires a space, some frame will be discard. Unfortunately, this discarded frame

will show in the exponential sequence of some timestamp but it no longer exists. Therefore,

matching the exponential of each timestamp is impossible, but we can still try to approximate

the exponential sequence by selecting the victim frame properly.

The detailed operation of ESS is described in this paragraph. Initially, all frames will be

stored until the timestamp is larger than k, which means the space is not large enough to keep

all frames, and some frame will be discarded. Actually, instead of discarding a frame, the ESS

picks the k frames that approximate the current and following exponential sequences. Firstly,

the oldest frame will be picked to guarantee that at least one frame with data describing situation

long time ago exist. Therefore, this frame can be used as a reference of interpolation of query

regarding data long time a ago. Note that frames of timestamp long time ago may gradually

become insignificant. Therefore, if the difference between timestamp of the oldest frame and

the current time stamp is larger than a pre-defined age, then the oldest frame is ”old enough to

die” and loose the privilege of being the first picked frame. The privilege will be transferred to
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the oldest and ”alive” frame.

After picking the oldest frame, ESS will pick k-1 frames with timestamps show in the cur-

rent exponential sequence and future exponential sequence. The current exponential sequence

is the first exponential sequence used as a target exponential sequence. For each timestamp si

in the target exponential sequence, ESS first finds a frame with timestamp as an agent which

equals to or has the least difference with si. Then ESS picks these agents in the order of the

differences. That is, agents equal to their si will be picked first, and agents with large difference

to their si will be picked after those with little difference have been picked. If ESS picks frames

for all si and the number of picked frame is less than k, then ESS selects the next exponential

sequence as the target exponential sequence and continues the frame picking procedure. Note

that if an agent has already been picked, ESS will not pick this frame again to avoid keeping

redundant frames. If an si has two agent candidates, which means these tow agents have the

same difference with si, and one is larger than another, then ESS tends to pick the smaller one

as the agent. If the The frame procedure will be repeated until ESS picks k frames.

Fig. 3.5 shows examples of ESS frame picking procedure at timestamp 6 and timestamp 13

with k = 5. f5, f4 ... f1 represent the memory space, and f0 is the temporary storage. The

number in the rectangle is the timestamp of data that this frame stores. When the timestamp

is 6, obviously the timestamps of stored data are 1 to 5 and there the temporary storage stores

data generated at timestamp 6. Now ESS will discard one frame. The oldest while alive frame,

which is f5, is first picked. Then ESS find the current exponential sequence and their agents.

The agents of timestmap 3, 5 and 6 are f3, f1 and f0 respectively, whose timestamp are 3, 5

and 6. These three frames are not picked, so ESS picks these three frame. Then ESS find the

next exponential sequence, which is 4, 6 and 7. The agents of this exponential sequence are f2

and f0. Since frame storing timestamp 7 has not shown, agent of 7 doesn’t exist yet. f0 has
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Figure 3.5: examples of ESS with timestamp = 6 and timestamp = 13

been picked, so ESS pick f2. After picking f2, ESS has picked 5 frames, which is the size of

memory, so the picking procedure ends, and the data of frame f4 is discarded. Another example

shows the behavior of ESS at timestamp 13. The content of memory is shown if Fig. 3.5. As

mentioned above, the oldest while alive frame is first picked. Then ESS find the agents of

timestamps of the current exponential sequence. Frames with timestamp 6 and 10 are discard

in past ESS, so the agent of 6 and 10 are frames with timestamp 8 and 9, which are closest to

6 and 10 respectively. The agents of timestmaps of the current exponential sequence are not

picked, so ESS pick these frames and the number of picked frames are 5, then ESS terminate

the frame-picking procedure at timestamp 13.

Each processing node store the compressed data received from lower layers. The recom-

pression procedure is to discarding data at tail part of the compressed array generated by layer-1

processing nodes according to the compression rate and their layer. In this manner, the front

part of compressed data are redundant because many processing nodes keeps the same piece
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Figure 3.6: Redundant Storage and Solution

of data, resulting in inefficient storage usage. Fig. 3.6(a) is an example of this problem. From

Fig. 3.6, we can see that the stored data of processing nodes at layer i is the subset of that of

processing nodes at layer i-1. Therefore, processing nodes at layer i-1 need not to store the data

that processing nodes at layer i stores. They only need to store the data that processing nodes at

layer i lacks. Fig. 3.6(b) shows the behavior.
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Chapter 4

Implementation

We implemented ComBase a monitoring system with spatial compression algorithm and tempo-

ral compression algorithm to evaluate the efficiency of MRCQ. In this section, we will introduce

the ComBase, and show the experiments of our system.

The system overview of ComBase is shown in Fig. 4.1. In ComBase, the sensor nodes are

viewed as a virtual database storing sensor reading with different space, different time, and

different resolution. Processing nodes at highest level periodically reports the compressed data

to the controller middleware, then the controller middleware writes these data to the physical

database. Users can query data of the sensing field through internet. The WEB user interface

is connected to the database directly. Since only processing nodes at highest level will report

data to the controller middleware, the database only possesses data from processing nodes at

highest level. If the query is targeted to sensor or processing nodes at lower levels, the controller

middleware will send query messages to acquire data with higher precision. The result will be

shown on the user interface and stored in database. Thus, next time when these data are queried,

no extra query and transmission of data will be invoked.

Our sensor sensors are MICAz motes [cite]. A MICAz is a 2.4-GHz, IEEE 802.15.4- com-
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Figure 4.1: MoteBase architecture.

pliant module allowing lowpower operations and offering a 250-Kbps data rate. In our experi-

ment, we deploy 17 micaz motes in a 4× 4 squares with 12 motes being sensor nodes ,4 motes

being processing nodes, and one mote being the sink. The scenario is shown in fig XX. In this

scenario, the size of a macro-block is 4. A processing node will collect sensor readings from 3

sensor nodes and compress these data with its own sensor readings. The controller middleware

will decompress these data and the results will be shown on the WEB user interface. Besides

monitoring the current status of the sensing field, users can query the database and ComBase

for sensor readings with higher precision and old sensor readings.

We deployed the system with spatial compression algorithm and temporal compression

algorithm in a meeting room and measure the temperature to compare its data accuracy and

number of transmission with the straightforward data reporting method. The topology of our

network is shown Fig. 4.2, and the reporting routes of straightforward data reporting method fol-

low the arrows in Fig. 4.2. The reporting interval is ten minutes, and the experiment lasts eight

21



hours, and the threshold of temporal compression algorithm is 0.5 centigrade. We choose the

compression rate as 75% in spatial compression algorithm. The packet size of sensor reading

reporting packets is 15 bytes with 11 bytes being header and trailer and 4 bytes being payloads.

The packet size of compressed data is 19 bytes with 11 bytes being header and trailer and 8 bytes

being payloads. For processing nodes in straightforward reporting method, forwarding every

packets from its sensor nodes wastes a lot bandwidth because of the redundant packet header.

The processing nodes will wait for merge sensor readings from its children to reduce the number

of packets and the redundant header at the same time. The packet size from processing nodes

to base station is 21.

The experimental results are shown if Fig. 4.3. In Fig. 4.3 (a), the decompressed data after

temporal compression algorithm and temporal compression algorithm is close to the real en-

vironment. The the average error is 0.4853 centigrade, but the sum of decompressed sensor

readings at each interval is very close to that of reading reading. Fig. 4.3 (b) shows the number

of transmission of straightforward data reporting method and our compression algorithms. The

number of packet is constant in straightforward is constant even if the environment changes

slightly. In our data compression algorithms, since temporal compression algorithm exploits

temporal data correlation well and spatial compression algorithm reduce the number of less

important data. The result shows our algorithms performs much better than that of straightfor-

ward data reporting. The number of transmission is only 33% of that of straightforward data

reporting. To conclude, our data compression algorithms achieve the goal of reducing energy

consumption while maintains good data accuracy at the same time.

The snapshot of the system is shown in Fig. 4.4. The system includes two parts: wireless

sensor network and web and database server. The topology of these micaz motes follows is

shown in Fig. 4.2. The web and database server will stores the received sensing reading and
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display the newly received sensing reading by the means of web. Fig. 4.5 denotes the user

interface of the implementation of MRCQ. This is a web user interface that users can access data

from remote sensors and control these sensors through the user interface. The upper portion is

information of the 16 deployed sensors, including their number, location, and status, and the

sensed temperature, which is denoted by blue numbers. The temperature of sensors is updated

every 15 seconds. The green light/red circle denote the status of a sensor. If a red light appears,

this means this sensor is inactive. The middle part of the web user interface is flow statistics.

This part shows flow size without any compression, flow size with spatial compression and flow

size with spatial and temporal compression at the same time. Initially, no data compression

algorithm is used to reduce the flow size. Users can turn on functions of spatial compression

and temporal compression through the web user interface and observe the difference of flow

size. The lower part of the user interface is query field. In the query field, users can specify

the query conditions, including the time, location and data source. If the data source is from

sensing reading database, no query is injected into WSNs. The database will response the query

according to the local database. Note that the database can only supply the sensing reading with

larger error because the characteristics of spatial compression. Data with higher precision must

be required from WSNs. Therefore, users can select the data source option as ”from wireless

sensor networks” to query the WSNs.
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Chapter 5

Simulation

In previous section, we have demonstrated our Multi-resolution query system. Due to the lim-

itation of number of devices, we cannot do experiments with larger scale. In this section, we

evaluate the performance of our system, such as data error rate and the flow amount by simula-

tion.

In our simulation, we randomly scatter 1000 sensors into a sensing field with size 256

feet × 256 feet. The transmission range of these nodes are identical, and we select 20 feet

as the transmission rage. There are 21 nodes elected as the processing nodes, with 20 level

1 processing nodes, 4 level 2 processing nodes, and 1 serves as the sink. In the following

experiments, we will evaluate data amount and error rate. The data amount is the sum of total

bytes transmitted in the WSNs. The sum of header and trailer length of a packet is 8 bytes, and

the payload of each compressed data packet is 28 bytes, and that of a sensor reporting is 2 bytes.

The error rate er is defined as follows:

er =
1

N2

N−1∑
i=0

N−1∑
j=0

|Mdecomp[i, j]−Mreal[i, j]|
Mreal[i, j]

(5.1)
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Where Mdecomp[i, j] represents the decompressed Matrix by sink, and Mdecomp[i, j] repre-

sents the real reading at cell [i, j].

Our system is used to sense the environment. Before we start the simulation, we should

generate datasets for experiment first. In order to evaluate the precision of the decompressed

data after SDCA and TDCA, we generate virtual events in our simulation. The event sensing

reading r(x, y) at location (x, y) is represented as:

r(x, y) = rnormal + rfluc + max e(x, y) (5.2)

where rnormal is the default sensing reading, rfluc is the tiny fluctuation of sensing readings,

and e(x, y) is the value that a sensor at (x, y) influenced by nearby events. For an event, the

reading at (x, y) influenced by this event is:

e(x, y) =

{
amp× (top− grad ∗ ((xevent − x)2 + (yevent − y)2))
0 if e(x, y) < 0

where top (xevent, yevent) is the center of this event, and the maximum sensing reading of

this event shows at (xevent, yevent), with the value being top. The sensing readings decay as

the distance between (xevent, yevent) and (x, y) increases, and the grad defines the rate that the

sensing readings decay. amp is the degree of the event. For an event, a larger amp means

this event poses larger impact. amp is one of the variable condition in our simulation. Finally,

r(x, y) is decided by rnormal , rfluc and the maximum of e(x, y). In our simulations, we choose

the number of events as a random number between 1 to 8.

Fig. 5.1 shows the data error rate under different degree of events. The simulation results

show that larger degrees of events cause higher error data rate. SDCA tends to keep data with
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Figure 5.1: Data error rate under different degree of events (amp)

higher similarity. Larger degree of events causes the sensing readings much larger than that

of a default reading. Compared with default sensing readings, the number of sensing readings

under influence of events are minority that their readings are lowered during the compression

procedure.

Figure 5.2: Data error rate v.s. Flow amount

The relationship of error rate and flow amount are shown in Fig. 5.2. Obviously, the error
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rate decreases as the compression rate increases. The higher the compression rate, the more

data are available to decompress. The flow amount increases with compression rate. High

compression rate can reduce the energy consumption, but the high error rate makes the data

untrustful. On the other hand, low compression rate helps to reduce the error rate, but it requires

large amount of transmission. The intersection of these two lines lays between compression rate

of 60 percentage to 70 percentage. Compression rate at this interval can reduce the total energy

consumption while maintains acceptable data rate.
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Chapter 6

Conclusion

In this paper, we proposed data compression algorithms suitable for monitoring applications

of WSNs. We also implemented a query system exploiting these data compression algorithms

and do some experiments on measuring temperature in laboratory using micaz motes . Exper-

imental results indicates our system can largely prolong the system life time. Our experiments

are small scale because of equipment limitation. Our future work is evaluating system perfor-

mance bye simulations. Furthermore, we are modifying temporal data compression algorithm

for automatically adapt the update threshold to arise the data accuracy.
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