Improving the Respanse Time in a Large-scale WIMS
with Grid“Techniques

FU* PR priccd - B RPL FIARE I L Sy R pE

Improving the Response Time in a Large-scale WiMtB @rid Technigues

oy oA TmE R Student Chun-Hao Chen
hERE 2 EY Advisor: Feng-Jian Wang
Bz i+ 7
T Baena f2 g Af
AL hie?
A'Thesis

Submitted to Institute of Computer Science and &egjing
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Computer Science
October 2007

Hsinchu, Taiwan, Republic of China

PER R LA EL

U ey d - B RHEL ITRARE L K S

&

w

G35 N FINARTRR Y 3 L TR R I R S AR SN ehd O R H 8

PIRE ket B AP b Bk Rler e L A o APRRT 5 B Rl - @R

?8

BEA XA o 2 T fRAY AR, ARBERD - B R E L FGE
Pend TRART & o v W R G KRB AR R T RO > T L2 ARy B
Boo B s 20 1% 2 BEH KT T - B R4k S(prototype) 4 & bk RAE (7
- B TR R B RRGET R R F G RET o Bk LY i R Repw

BPF G545 il 7 % 5 AR -

MgtF @ LOTINARE IR KA R T REEDESTVHENL

|mproving the Response Timein a Large-scale
WM Swith Grid Techniques

Student: Chun-Hao Chen Advisor: Dr. Feng-Jian §Van
Institute of Computer Science and Engineering
National Chiao Tung University

1001 Ta Hsueh Road, Hsinchu, Taiwan, ROC

Abstract

In the current business 'process: environment, dlratbsworkflow management
systems are based on the centeralized client/sarchitecture. The request response time
will increase greatly when the requests arrivehat PASE server at a high rate. In such
circumstances, the single centralized server besdhee performance bottleneck. In order to
solve this problem, thesis proposes a grid-enaleckflow computing platform. It can
dynamically add or remove resources on demandjadtain acceptable and stable request
response time. We implemented the prototype sybtesad on the proposed architecture and
conducted a series of experiments for performamnvetuation. The results of experiments
evidence that under different workloads, rangingmr50 to 2,500 instances, the proposed

architecture can deliver a nearly constant respomse benefiting from its scalable feature.

Keywords. Workflow Management system, grid, on-demand, siha

B B Rt Rt |
Y 0153 = ox ST PPPPPPPPPPPPP Il
Table Of CONENTS......eiiiiii i e e e e e e s e e e e e e n e M
LISt Of TADIES ...ttt e e e e e e e e r e e e e e e e e e eeeeas 1]
0 0 T T =P 1]
IR [11 (0o [BTt 1o] o HF PP PPPPPPPPPPPPPPPP 1
FZZ = = Lo 0| 0¥ o o 3
2.1 Agentflow: A Wrokflow Management System.oovovviiiiiiiiiiennnn. 3
2.2 Grid Computing for Dynamic Resource Prasiding...........ccoeveereveriennennanenn. 5
2.2.1 Types Of Grid COMPULING wvn - v veeeeee et aie et e e emmi e e e e enns 5
2.2.2 The evolution of'the Grid:CoOmMPULING . coeun e v vne e e e e eeveiieenenn, 6
2.2.3 The Grid ArChitECUIE. ... oiit e e e e e e e e 8
2.3 Grid WOrkflow System . e e e e 9
3. A Grid-Enabled Scalable Workflow Computing P&oooeeiiiiiiiiiiiiiiieeenn. 11
3.1. The PASE Grid ArChiteCtUIe.t e e e e e e 11
3.1.1. PASE RESOUICE.....ii ittt ittt e et e et e e e 11
3.1.2 Process Definition Repository anddaldRuntime Repository............. 14
3.1.3 PASE Information Server...........oocuuiiii i i e e 14
3.1 4 PASE BIOKETttt et e e e e e e e e e e 16
3.2. On-Demand Resource Provisioning Strategies............cvovveviiiiiieennnnn. 19
3.2.1 User RequesSt PrOCESSING......cuuii i i et et ee e e somssm e e eeeee enen 19
3.2.2 Adaptable Resource Allocation............oov i iomicmiiie e 21
4. Performance EVAIUALIONooooo ettt e e smmee e e e e e 29
4.1. Experimental SettiNgS.......c.uiuuie i ——— 29

Table of Contents

4. 1.] PASE RESOUICES. ..ttt ittt it i ettt e e e e et et et aan e e e s bm— 29

4.1.2 Process definitions and PDR... ..o e cciia30

4.1.3 PASE INfOrmation Server..........co.ve oo 31
4.1.4 PASE BIOKET.t e e e 32
4.2. The EXPeriment DIiVETot e e e e e et re e e e eeeaans 35
4.3. Experimental RESUIL. e 37
5. Conclusions and fULUIE WOTK...........oii et 44
REIEIENCES. ..o e e 46

List of Tables

Table 3-1 PASE_Geninf........cooiiiiiii i e e e e ne e e ee 2. AD
Table 3-2 PDR _GeNIN e — 16
Table 3-3 Instance id manipulation and requestadepng.............ccooiviiiiiiiiinn s 19
Table 3-4 Returned id manipulation................cooiiiiiiiii i e 19

Table 3-5 The Dynamic Request dispatching AlgoriftomPER................................20

Table 3-6 PASE grid Performance Monitor Algorithm. ..o, 22
Table 3-7 Structure of PASEPTIOPErtY.......ccov i e e e 24
Table 3-8 Adding Resource Algorithm....... ... e e 24
Table 3-9 Removing Resource Algorithm....... ... e, 26

Table 3-10 Suspending Checking Algorithm.............oo i 27

List of Figures

Fig 2-1 Agentflow SYStemM OVEIVIEW.uuuuiiccmreeeeeeeeeiiiiiieiess s e e e e e e e eaeeeeeeeseeeeeeeeeennnnne 4
Fig 2-2 The Grid ArChItECIUIE.t e e e e e e 9

Fig 3-1 The PASE grid architeCture.............ovvieiii e e e e e e e 10
Fig 3-2 The architecture of PASE DroKer........ ..ot it e e e 17
Fig 4-1 PASE_Geninf... ..o e e e e e s e e aeeae e 3
FIg 4-2 PDR _GeNINT. ..o e e e 32
Fig 4-3 PIS CoNfigurations..........ocuie it e s s e et e e ee e e ee e enaes 32
Fig 4-4 Performance Monitor Configurations.............coooiiiicin i, 33
Fig 4-5 Select initial PASE rE€SOUICE.......oviit it e e e e e e e e et e e e 34
Fig 4-6 SYSTEM StAtUS.ottt et ettt cieeie et eesren e ieneniee e e eneens . 34
Fig 4-7 EXPeriment DrIVer... ... k.. e it s ot e e e e e e e e e e e e e e e aneeen s 36
Fig 4-8 Results Of CreatePrOCESS() .. . ot e e e et e e e e e amean e e e een s 37

Fig 4-9 Results of StartTask(). . . e e e e e e e e e e et e e e 38
Fig 4-10 Results of completeTask() i i e e e e 38
Fig 4-11 Results of getTaskOfCOMPaNY........ooi v e e e s e e e eneees 39
Fig 4-12 Average response time of all requests..........ccooe i 40
Fig 4-13 Performance results of createProCesS().....eoweea e ereiieeieeieieiinieiiaenannns 41
Fig 4-14 Performance results of startTask()..........coouiirimmmoer e 42

Fig 4-15 Performance results of completeTask()........ccccecevvvvviiiiii i 42

Fig 4-16 Perofrmance results of getTaskOfCompany.....cccc..vviviiiiiiiiniiiiininnnnn. 43

Fig 4-17 Average response time of all requests.........coveviiiiiiiiiii e, 43

VI

Chapter 1. Introduction

To manage and automate business processes, workflovagement systems (WfMS),
have been broadly adopted by many enterpriseditteetly control the flow of tasks, assign
the needed human resources and the needed artdaetsecuting each task, and monitor the
executions of tasks. Most current workflow managemeystems are client-server
architecture, adopting a centralized workflow eregend a database server used to store
process definitions and runtime data. For examplgentflow system [4] Flowring
Technology Corp, Agentflow system, http://www.flamg.comis a well-known java-based
workflow management systems in_Taiwan, is based tlom centralized client-server

architecture.

Obviously, the request response time:in such aralerdd client-server architecture is
bounded by the computing power of 'the ‘'single céméd server and the capacity of the
database server. The response time will increasslgrwhen the requests arrive at the PASE
server at a high rate. In such circumstances, thgles centralized server becomes the

performance bottleneck.

Grid computing [1][2][3] has been under developmemd evolvement for many years. It
enables users to access resources across diféehembistrative domain, and aggregate those
resources to solve some problems which otherwise e be effectively solved on the
resources inside an single administrative domao.sdlve the performance bottleneck in
Agentflow system, we extended it to a scalable Wowk computing platform based on PASE

grid architecture, which is proposed and describeatktail in this thesis.

The rest of this thesis is organized as followsagitér 2 introduces Agentflow system,
and grid computing. A scalable workflow computintatform and on-demand resource
provisioning strategies are described in ChapterCBapter 4 illustrates a series of
experiments evaluating the PASE gird architectuiet @resents discussions of the experiment

results. Chapter 5 concludes the thesis and psime future research directions..

Chapter 2. Background

2.1 Agentflow: A Workflow Management System

Agentflow system [4] developed by the Flowring tealogy corporation is a java-based
workflow management system based on the centratiiedt-server architecture. There are
three main components in Agentflow, including PBEw Engine and Agenda.
® PDE (Process Definition Environment) is a graphexditor for modeling different views

of a business, including process view, artifactwand organization view. Each view is

modeled by tools in PDE separately, including agadization Designer for constructing
the organization view, an-e-form Designer for desig the artifact view, and a Process

Designer for modeling pracess view.
® Flow Engine (also called PASE server) is a workflemactment environment, which

drives the flow of works and facilitates processaaimg, control, management, and

monitoring.
® Agenda is a client-side tool. The users can brotusg own task-list, deal with what

they have to do, initiate processes, monitor tatestof the flow through the Agenda

An overview of the main components and their retahips in Agentflow is shown in Figure

2-1

Process definition

repository and
runtime repository

-%

PDE
3
plugin
componetnts Form
Designer
Design phasze

Ubject Broker

Flow
Engine

L

Agenda

RN

usets

Euntime phase

Figure 2-1."Agentflow. System Overview

The database of Agentflow system contains two liéposs, process definition

repository and runtime repository. The processnitedn repository is used for storing process

definitions, while the runtime repository is usext &toring all the workflow instance data.

In addition, Agentflow system provides a java-basedrface, Workflow Common Interface

(WFCI), which allows users to interact with the FAServer. For example, WebAgenda is a

web-based agenda which communicates with PASE rsémaaigh the WFCI.

2.2 Grid Computing for Dynamic Resource Provisioning

In recent years, the computer networks have beelvey rapidly and become more and
more cheaper and faster. This trend contributebeaapid development of grid computing
technologies. Grid computing [1][2][3] is a distuied computing architecture, increasingly
adopted by both scientific and business domainthodigh, until now, there is no commonly
agreeable and precise definition of what a gridrisshat components are needed to construct
a grid. Most people think of grid computing as @mising technology for providing a
scalable, secure, and high-performance computingtfopin through automatically

discovering and integrating geographically disttéalresources [2].

2.2.1 Typesof Grid Computing
In general, there are five: major types:.of grid catmy [1] which are described as

follows:

® Distributed supercomputing
The characteristics of distributed supercomputipgjiaations are that they need to solve
very large problems, like stellar dynamics, redqdiieelots of CPUs, memories, etc. In
order to fulfill these requirements, they use gedhnologies to aggregate substantial
computational resources.

® High-throughput computing
Applications of this type need to complete largembers of loosely coupled or
independent tasks with high throughput, like chipsign. Hence, they use grid
tehcnologies to discovery, negotiate, and utilize tdle resources, and then schedule
those tasks run on them.

® On-Demand computing

The characteristics of on-demand computing apptinatare that they need resources for

short-term requirements and those resources atly ansl inconveniently located locally.
Hence, they use grids for meeting their demands.

® Data-intensive computing
This kind of applications focus on collecting largenount of new information from
geographically distributed storage system, like sigvey, and then manipulating them.
There are several data grid technologies whichdcaahieve these requirement, such as
Globus Data Grid [18] and Storage Resource Brok®gy. [

® Collaborative computing
The characteristics of collaborative computing agpions are that they support
communication and collaborative work between midtigroups, like collaborative
design. They use grids to provide a virtual shadetlh space Many collaborative
computing applications focus on sharing computatioresources rather than data

resources, they may also-have the characteristieeabthers types of grid computing.

The scalable PASE grid architecture proposed is tiinesis aims to deal with workflow
computing requests which belong to the high thrpugltomputing as well as the on-demand

computing categories.

2.2.2 The Evolution of the Grid Computing

The three stages of the evolution of grid compuidentified in [3] are described below.
These generations are not strictly defined; theydistinguished by philosophies rather than

technologies.

® The first generation

In the early to mid 1990s, the emerging technolaggtacomputing [5], is the original
concept of the grid computing. The goal of metacotimg is to provide the high
performance computational resources by linking anlmer of supercomputer sites
together for solving scientific problems. There am®o main projects of the

metacomputing including FAFNER [6] and I-WAY. [7].

The second generation

The grid environments of this generation are tgpoifiby many of today’s grid
applications. They want to solve some issues,grifiom the first generation which
include heterogeneity, scalability and adaptabilMiddleware is a better choice to
address those issues. In grid environment, the Iswdde provides a set of services and

hide the heterogeneity for users by defining therfaces.

In addition, they suggested some design: featuradegthe development of grid
applications including 1) ‘administrative :hierarcfipr scalability), 2)communication
services, 3)information services, 4)naming services) distributed file systems and
caching, 6)security and authorization, 7)systentustand fault tolerance, 8)resource

management and scheduling, and 9)User and AdnatiisrGUlI

Some grid-related projects in this generation a grid computing include Globus
Toolkit [18], Legion [19], which provide the essetservices needed to constructs grid

applications.

The third generation

This stage shifts focus from large-scale computiogdistributed collaboration and
virtual organization [17].. The characteristicstioé grids of this generation are that the

grids increasingly adopt service-oriented model pag more attentions to the metadata.

7

The service-oriented approach defines the intertdceach service component which
describes the availability and functionality. Itncassemble grid resources into grid
applications flexibly by those predefined interfacdhe metadata supports dynamic
reconfiguration of grid environment, such as seffamization and self-healing. This will
introduce the new extension of the grid computing, autonomic computing [8]
Kephart J.O, Chess D.M, “The vision of autonomiomputing”, Computer,
\Vol:36, Issue: 1, 2003. The autonomic computingl & the next generations of the

grid computing. .

2.2.3TheGrid Architecture

Figure 2-2 illustrates the layered:grid architeetproposed by [2]. Included in he lowest
layer, the fabric are physical resources of thal,gsuch as computers, storage systems,

networks and sensors.

Above the fabric layer are the connectivity andotese layers. The connectivity layer
contains the communication and authentication pat Communication protocols are used
by resources to exchange data as well as commana#t each other and authentication
protocols provide secure mechanism for verifying ttientity of both users and resources.
The resource layer also contains protocols thdizeitthe connectivity and authentication

protocols to provide secure initiation, monitorigd control of resource-sharing operation.

The collective services layer contains protocoksyvises, and APIs that implement
interactions across collections of resources. Tdrgices include: 1) Directory and broking

services for resource discovery and allocation, @)bring and diagnostic services, 3)Data

8

replication services, and 4)Membership and poliegvise for keeping track of who in the

grid is allowed to access resources.

The topmost layer is the applications layer. Amtliens are constructed by using

components in other layers and then can run ogridde

Tools and applications User applications

Discovery, broking, diagnostics and
monitoring

Connectivity and
resource protocols

Diverse resources such as computers, storage

) Fabric
media, networks, and sensors

Figure 2-2 The Grid Architecture

2.3 Grid Workflow System

The concepts of workflow are extremely importantgnd computing. The systems
manage the job dependencies and control the fléyabe in a gird computing are called grid
workflow system. Today, there are many grid wonkflsystems, such as GridAnt [9], Triana

[10], XCAT [11], GridFlow [12], Kepler [13], and @Gi-Flow..

All of the grid workflow systems mentioned abovee diacilitated to orchestrate
grid-enabled programs or services. A common fedturéhese grid workflow systems is that
they all provide a graphical user interface andcaps language for users to model the

workflow process.

10

B Chapter 3. A Grid-Enabled Scalable Workflow Computing

Platform

In this chapter, firstly, a grid-enabled scalablerkiiow computing platform based on
Agentflow is introduced. This scalable platform gwoes acceptable and stable request
response time under a wide range of request walklda addition to the system architecture,

the strategies for achieving on-demand resourcégoming are also presented in the chapter.

3.1 ThePASE Grid Architecture

The PASE server is a workflow enactment subsysterani Agentflow system which
drives the flow of works and. facilitates- processaamg, control, management, and
monitoring. Because there is only one centralizA&S P server with a dedicated database
server in the original Agentflow system, the requesponse time will increase greatly when
the requests arrive at the PASE server at a high ta such circumstances, the single
centralized server for the platform becomes théopmiance bottleneck. In order to solve the
performance issue, this thesis proposes a scahladidlow computing platform, PASE grid

architecture, which extends a Agentflow system gpid-enable system.

The following three concepts of grid computing guids in designing the PASE grid
architecture:
® Virtualization

A PASE broker in the PASE grid provides a java-dasaterface, PASE broker

11

Common Interface (PBCI), which implements a sefurictions supporting users to
guery and acquire PASE resources in the grid. @iarieract with PASE grid through
the PBCI and need not know the underlying grid murition such as the amount of
PASE servers available and the computing speedmdtituent machines. The PASE

Grid thus like a powerful and scalable super-PA8Eer looks to the clients

® Utilizing resources across different administratilenains
With the PASE Information server which will be deked in details in section 3.1.3,
resources located in different administrative dorsaould be dynamically integrated
together to achieve a common goal, in some wayiziegl the concept of virtual

organization

® On-demand resource provisioning
When all the existing PASE servers_have been omddd, the PASE grid would
automatically discover more computing resources aupropriately configure them to
become newly available PASE servers to share theest workloads. On the other
hand, when the incoming requests decrease and Veeallo system has been
under-utilized, the PASE grid will remove a portioh the PASE resources to allow

them to be utilized by other demanding PASE brokersther applications.

The PASE grid architecture is shown in Figure 3k components in which will be

elaborated in the following sub sections.

12

PBC]
C
W PASE Broker

PASE Information Server

(Domain A \

PASE Information Server
(Domain B!

PASE Resource 1 PASE Resource 2

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

PASE ourc< 3 PASE ourc< 4

Figure 3-1 The PASE grid architecture

3.1.1 PASE Resource

A PASE resource is composed of software and hamlwasources. The software
resources include a PASE server which is a flowirenderived from the Agentflow system
and a database used to store runtime data for R&Btr and replicas of process definitions.
The hardware resource is typically a computer Bk notebook, or workstation on which the
software resources can run. The PASE server amadhase of the PASE Resource can run on
one or more site. Each PASE resource is manageadyASE information server (PIS), and

it can be used by only one PASE broker at any imsta

A PASE resource must be registered to the RI&idomain before it can be included

into the PASE grid. When a resource provider wémisithdraw the PASE resource provided

13

by him, he must ask the PIS to delete the relassdbrd of the PASE resource from its

database.

3.1.2 Process Definition Repository and Global Runtime Repository

The process definition repository (PDR) containgnsobusiness process definitions
designed by process designer using process defingilitor (PDE). When the PASE broker
needs to add a new PASE resource, the PIS wilicegplthe content of PDR into the database
of the new PASE resource according to the incomaggiest. In each domain, there can exist
more than one PDR, and each PDR can be accessareythan one PASE resource. The

administrators are responsible for registeringRBR into the PIS.

The global runtime repository (GRTR) contains thesmkflow instances which have
finished their execution. The-completed.-workflovstamnces are kept in the repository for
future references. When the PASE broker wantsrtowve a PASE resource, it will move the
PASE resource’s runtime data into the GRTR. Therenly one GRTR in the PASE grid,

which is managed by the PASE broker.

3.1.3 PASE Information Server

The PASE information server (PIS) plays a role, similar to the MCAT in Storage
Resource Broker [15] or Grid Information Servicd${in Globus Tookit [14], which is used
to maintain necessary information about a domadhahthe PASE resources in the domain.
Furthermore, it is also responsible for replicattdaga from the PDR into new PASE resource

and clearing the database of removed PASE resource.

14

The following tables describe the information mained by PIS, such as PASE general
information (PASE_Geninf), and process definitiorpasitory general information
(PDR_Geninf). The information is required to assise PASE broker in accessing,

discovering, monitoring, and managing PASE resairce

Table 3-1 PASE_Geninf

Attribute Description

PASE_ID The unique id of PASE Resource

PASE_Host The host of the PASE Resource

PASE_Port The port of the PASE Resource

Database Name The database name of the PASE Resourc

Database Host The host of the database of the R&SEurce

Database_ Port The port of the database of the FR&SBurce
Database_User The user name-and-password grant for databasesauges

Database Password

PDR_Id The id of PDR to which the PASE can refer
State The state of the PASE Resource.
Load Max_Limit The limit on the load (instances)

ArrivalRate_Max_Limit | The limit on the arrival rate

. Table 3-1 illustrates the general information RASE resource. The unique id is
composed of (host:port). The state of PASE resouese be ready, reserving, running, or
blocking. The ready state stands for the PASE mesdoeing available, i.e. the database of the
PASE Resource is already created, and the PASErsefvPASE resource is started. The

reserving state represents that the PASE resosroeserved by PASE broker, but it is not

15

connected to the PASE broker yet. The running sttaeds for the PASE broker being using
the PASE resource for serving incoming requests. @lbcking state stands for the failure of
the PASE resource.

Table 3-2 PDR_Geninf

Attribute Description

PDR_ID The unique id of the PDR

PDR_Name The database name of the PDR

PDR_Host The host of the PDR

PDR_Port The port of the PDR

PDR_User The user name and password grant for PDR accessing
PDR_Password

Table 3-2 describes the general information of PDRe unique id of PDR is start as
“PDR”. When an administrator registers a new preagsfinition repository into the PASE

grid, the PIS will generate this information acdagdto the properties of the PDR.

3.1.4 PASE Broker

The PASE broker is a vital part of the PASE gridsiresponsible for coordinating the
PISs, PASE resources process definition reposgoaied the global runtime repository. It can
manage multiple PISs and use the PASE resourceadirg to those PISs. The architecture

of the PASE broker is represented in Figure 3-2.

16

PBCI
PASEDispatcher PerformanceMonitor
PIS PDR
WFCIPoolManager; Manag Manag GRTR
er er Manag
er
2| 2|2 2 o3 oZ| ¢ g

Figure 3-2 The architecture of PASE broker

PISMlanager is responsible for managing the PIS connectiodS(B) to all PISs. It
retrieves and caches the information maintainegei8s. Initially, the administrator can select
the PASE resources and the PDRs he/she.wantsdothse the PISManager send replication

request to PISs for replicating-process definitiome each PASE resource.

The PDRManager manages the PDR connection (PDRCs) to all PDRs. réquests
from clients that want to get the process definitiglevant data are manipulated by the
PDRManager. Th&RTR Manager backups the workflow instance from the PASE reseur

which is to be removed by the PASE broker.

The WFCIPoolManager createsAbstractWFCls (AWs) to connect to those selected
PASE resources with the RMI mechanism. The AW isomponent to wrap the WFCI
connection and records some metadata about the \édfDkction, such as a list of processes
and a list of member records. In addition, AW measusome metrics, like load, average
arrival rate of requests, and average response dimrequests. Those metrics are as the

basis used by PerformanceMonitor for monitoringgrenance.

17

The WFCIPoolManager contains three kinds of pootsesponding to different states of
AWSs, including running pool, suspending pool, ahacking pool. The running pool contains
the healthy AWs. The suspending pool contains AViigclwwould not take any new create-
process requests but still have some unfinishedkfleor instances running on it. The
blocking pool contains AWs which run into some landf failure founded by the PASE

broker.

The PerformanceMonitor (PM) monitors the performance of the overall system by
different load determination modes. These moddsidiecload (instance), the average request
arrival rate and the average request response When the system is overloaded, it informs
the WFCIPoolManager to find out new available PASE resources from Pd8d create
connections to them. If there are no new PASE messufound, it sends an alert to
administrators and they can add new PASE resoumnegsially. Moreover, when the system
has been under-utilized for a specific periodmig;] it also informs thévWClPoolManager to

remove some AWS.

The PASEDispatcher does some pre-actions for each request to mamgthe some
workflow instance relvant parameters, such as tleatity of task (TskiD), the identity of
artifact instance (AnsID), the artifact instancA$Eartinstance), and the identity of attached
file (FilelD). It then selects an appropriate PARISource and delegate the request to it Table

3-3 shows an example.

18

Table 3-3 Instance id manipulation and requestadctpng

InstancelD

Allocated Resource ID in the Resource

Tsk(140.113.210.11:20000)0000000000

0140:113.210.11:20000 | Tsk000000000001

Ans(140.113.210.21:20000)000012345¢

y71810.113.210.21:20000| Ans000012345678

Before each request returns to user, the PASE brid&es post-actions to append the

identity of PASE resource to instance relevant ,datal merge the return data from different

PASE resources. Table 3-4 shows an example

Table 3-4 Returned id manipulation

Returned ID Source Resource Appended ID
Tsk000000000001 140:113:210.11:20000°+, Tsk(140.10312120000)000000000001
Ans000012345678 140.113:210.21:20000- Ans(140.10322120000)000012345678

3.2 On-Demand Resource Provisioning Strategies

This section discusses the resource provisioniragegfies used in the PASE grid. There

are two kinds of demand, each of which has differgrategies. The following sections

represent the detail of those strategies.

3.2.1 User Request Processing

The response time of each request is determinethdyomputing capabilities of the

PASE server and the capacity of the database siertlee centralized Agentflow system. The

PASE grid architecture alleviates the performanuttiéneck of the centralized server with its

19

scalable computing capabilities, and thus prodstester response time for user requests.
Among different kinds of requestsianipulate task requests (MTRS) anprocess enactment
requests (PERs) can benefit from this PASE grid architeetu®n the other hand, tivellect
data requests (CDRs) would take a little bit longer dirthan in the original centralized
architecture. Therefore, overall speaking, the psep PASE grid architecture can effectively
improve the runtime performance for most workflogtiaties. How each kind of requests is
processed is illustrated in the followings.
® The PER is used to create a workflow instance anegrto a predefined process
definition, such as createProcess() in the PBCleiVé PER occurs, a PASE resource is
then selected for processing the request accorting dynamic request dispatching
algorithm which is described in Table 3-5. The weidPASE resource will be provided
for PER according to the. metric selected by the iadhtnator. The PER resource

provisioning algorithm is represented in Algoritta.

Table 3-5 The Dynamie Request-Dispatching AlgorifiomPER

Algorithm 3.1 (Dynamic Request dispatching for PER)
Input:
The user idJ
The process i
The load determination modié
Output:
A candidate PASE resourceRd
PER_RP (U, P, M:

01 Begin

02 /I Get the list of AbstractWFCI which are nimg

20

03 List wfciList=wfciPoolManager.getRunnongs();
04 AbstractWFCI t=new AbstractWFCI();

05 For eaci\bstractWFCI aOwfciList do

06 /l Compare the current workload of each PA&source

07 If @.getMaxLoadByMode(M)-a.getLoadByMode(M))>

08 (t.getMaxLoadByMode(M)-t.getLoadByMode(M))
09 t=a,

10 EndIf

11 EndFor

12 R =t.getID();
13 End

® The PASE resources required for the CDR ahd MTRhataletermined by the dynamic
request dispatching algorithm:The CDR is usedctoave the instance relevant data or
process definition related da&g: getTaskList() or getMemberRecrod() in the PBCI. A
CDR may require more than one PASE resources tabmyhtively accomplish its
request and these PASE resources are determiribé loata to be retrieved. The MTR is
used to manipulate an task or a group of tasls, startTask(), suspendTask() and
completeTask() in the PBCI. A MTR will be dispatdht® the PASE resource where the

workflow instance generating this request was exckat

3.2.2 Adaptable Resour ce Allocation

The PerformanceMonitor monitors the performanceaufh PASE resource in the PASE

grid, it sends the event to the WFCIPoolManagernthe entire PASE grid is overloaded or

21

under-utilized. Table 3-6 describes the PASE gedggmance monitoring algorithm.

Table 3-6 PASE grid Performance Monitoring Algomith

Algorithm 3.2 (Performance Monitoring Algorithm)

Input:

The monitoring intervdl

The list of running AW&

The load determination modé

/* When a continuous underutilized time period ed=this predefined
threshold, the system will remove some PASE ressure

Atime periodC

PM (I, M C, L):

01 Begin

02 long u_Time = 0;

03 List pdrList;

04 boolean isUnderUtilized=false;

05 While(true) do

06 sleep(l);

07 int o_count=0;

08 int u_count=0;

09 For eachAbstractWFCI allL do

10 Ifa.getLoadByMode(M)>a.getMaxLoadByMode(M)
11 0_count++;

12 Inserd.getPDRID() to pdrList;

13 EndIf

14 Ifa.getLoadByMode(M)>a.getMinLoadByMode(M)

22

15 u_count++;

16 EndIf

17 EndFor

18 Ifo_count==wfciList.size()

19 AR(pdrList,M); /l Add new resource (See in Algorithm 3.2
20 Endlf

21 Ifu_count==L.size()

22 IflisUnderUtilized

23 u_Time=CurrentTime;
24 isUnderUtilized=true;

25 Else

26 [fCurrentTime-u_Time>C
27 RR(L ,M); /I'Add new resource (See in Algorithm 3.3
28 Endlf

29 EndIf

30 Else

31 isUnderUtilized=false;

32 u_Time=0;

33 Endlf

34 EndWhile

35 End

® Add new Resource

When all the existing PASE server have been oveddathe PASE grid would

23

automatically discover more computing resources aupropriately configure them to
become newly available PASE servers to share tingest workloads. Table 3-7 shows
the structure of PASEProperty used to describe @EPfesource and its content stored

in the PASE_Geninf in PIS. Table 3-8 describesath@ing resource algorithm.

Table 3-7 Structure of PASEProperty

Structure PASEProperty {

String id;
String host;
String port;

String dbHost;

String dbPort;

String dbName;

String dbUser;

String dbPassward;

String pdriD;

String state

// Different load determination-mode have dif& value
double maxLoad;

Table 3-8 Adding Resource Algorithm

Algorithm 3.2 (Adding Resource Algorithm)
Input:
The list of pdr’s idL
The load determination modé
AR(L, M:
01 Begin

02 /Il Get the list of AWs whose states are suspendi

03 List sList=wfciPoolManager.getSuspendingPool();

24

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
29

If sList.size()>0

wfciPoolManager.moveSuspendingToRunning(pl

List temp=new List();
For eacbstractWFCl aw UsList do
IfL.contains(aw.getPDR())
Inseraw into temp ;
EndIf
EndFor

String pID = getMaxLoadByMode(temp);

return;

EndIf

D);

/I Get the PDR-to.which the:most overloada&E resources refer

String pdrID=maostOceurence(L);

List aList=pisManager.getReserving();

For eacPASEProperty pllaList do

PASEProperty t=new PASEProperty();
Ifp.maxLoad>t.maxLoad
t=p;
Endif
EndFor

Remové from aList;

pisManager.updatePASEState(aList, “Ready”);

End

pisManager.replicatePDR(t.id,pdrID);

wfciPoolManager.connectToServer(t.id);

25

Remove Resource

On the other hand, when the incoming requests dserand the overall system has been
under-utilized, the PASE grid will remove a portioh the PASE resources, allowing
them to be utilized by other demanding PASE brokable 3-9 represents the removing
resource algorithm. The algorithm just moves the #ptesenting the PASE resource to

be removed removing into the suspending pool in PBGIManager.

Table 3-9 Removing Resource Algorithm

Algorithm 3.3 (Removing Resource Algorithm)
Input:
The list of running AW4.
The load determinatiol
RR(L, M:
01 Begin

02 For eackbstractWFECIl alwfciList do

03 AbstractWFCI t;

04 Ifa.getMaxLoadByMode(M)<t.getMaxLoadByMode(M)
05 t=p;

06 Endif

07 EndFor

08 wfciPoolManager.moveToSuspending(t.getiD());

09 End

In the WFCIPoolManager, the SuspendChecker pematlgiaises a suspending
checking algorithm to check all the AWSs in the srmging pool. For those AWs in which

all workflow instances have finished, the SusperatRbr informs the GRTRManager to

26

backup instances data and then asks the PISMataggear the instance data and
process definition data from the database of theSEPAresource. Finally, the
WFCIPoolManager disconnects the PASE resource tt@mPASE broker. Table 3-10
shows the suspending algorithm.

\

Table 3-10 Suspending Checking Algorithm

Algorithm 3.4 (Suspending Checking Algorithm)
Input:
The pool of suspending AWS
The checking interval
SC(S, 1):
01 Begin
02 List rList;
03 While(true)
04 Sleep(l);
05 For eachAbstractWFCla US do
06 Ifa.getinstance()==0
07 Inserta into rList;
08 EndIf
09 EndFor
10 For each AbstractWFCI &List do
11 grtrManager.backup(aw.getiD());
12 pisManager.clearDB(aw.getlD());
13 wfciPoolManager.disconnectServer(aw.getiD());
14 EndFor

27

15
16 End

EndWhile

28

Chapter 4. Performance Evaluation

Based on the PASE grid architecture described iap@n 3, we have implemented a
prototype system, and conducted a series of expatsrfor performance evaluation. Section
4.1 describes the configurations of the PASE gndirenment and related experimental
settings. A program that drives the series of a@rpants is described in Section 4.2. Finally,

the results of experiments are shown and discusssdction 4.3.

4.1 Experimental Settings
4.1.1 PASE Resources

In the following experiment, we include four PASEsources in the PASE grid
environment. The information about'the software hatiware configurations of each PASE
resource is shown in Table 4-1. In addition, allSBAresources will use the same process
definition repository in the experiment. The pracatefinitions in the process definition

repository are described in section 4.1.2

Table 4-1 PASE resources

Resource Host | CPU Memory Database | Agentflow

140.113.210.11 AMD Athon64 1.81GHzDDRII 1GB MySQL 4.1 | 2.2.3.2

140.113.210.18 | AMD AthonXP 1.83GHzDDRII 512 MB | MySQL 4.1 | 2.2.3.2

140.113.210.21 | AMD Athon64 1.81GHzDDRII 1GB MySQL 4.1 | 2.2.3.2

140.113.210.23 | AMD Athon64 1.81GHzDDRII 1GB MySQL 4.1 | 2.2.3.2

29

In the experiments, we explore three different sypkmetrics for defining the load limit
on each PASE resource, The three types of metreesvarkflow instance number, request
arrival rate, andaverage response time. The first two metrics are workload directed, dhe
third is performance directed. Since the load Brshould be directly related to user’s
awareness of system performance, the load limitegafor the first two metrics are dependent
on the computing capabilities of the underlying maes, and the load limit values for the
third metric are consistent on all machines. Theitlivalues used in the experiments are
shown in Table 4-2. Since the memory space angalaer of the CPU on 140.113.210.18 is
smaller than on other machines, the limit valuesthe first two metrics on it is set to be

lower than on others..

Table 4-2 Limits ' on three:metrics of PASE resources

Resource Host Workflow Request arrival rate | Average response time
instance number (per ms) (ms)
140.113.210.11 300 0.0005 2000
140.113.210.18 250 0.00025 2000
140.113.210.21 300 0.0005 2000
140.113.210.23 300 0.0005 2000

4.1.2 Process Definitions and PDR

The process definitions adopted in the experimargsreal cases obtained from [16],
which are used to construct a department managesgst&gm in universities. The department

management system includes several subsystemsasuththe working system for master

30

students, 2) the working system for Ph.D. studeB)sbulletin system, 4) department
computer & network center, and 5) laboratory. Thevises of these subsystems are defined

with specific processes designed by and run oAgeatflow system.

In the following experiments, we created 1,500 memibepresenting faculties,
assistants and students, who manipulate departmanagement system to accomplish all

sorts of tasks which are present in daily operatioina department.

4.1.3 PASE Information Server

To establish a PASE grid, the PASE information sef1S) first needs to set up several
tables in the database server. These tables math&information about the PASE grid status,
which has been described in Section 3.1.2: Thewatlg two figures show the essential data
being stored into the database of RIS for-the ¥allg experiment. In this experiment the PIS

runs on 140.113.210.11:2099.

e CAWINDOWSisystem32'cmd exe - mysql -u root -p -h 140.113 210.18

mysgl> select * From pase_geninf;

4
1 149.113.210.18:20008 | 14B.113.210.18 ! | 1 148.113.210.18 | 3366 | ! Ready

1140.113.2108.21:21900 | 148.113.218.21 | i i 140.113.210.21 | 3386 i i Ready
1 148.113.2109.23:20000 | 148.113.218.23 | ! | 14@.113.218.23 | 3386 ! ! Ready !
1 148.113.210.11:20000 | 148.113.218.11 | ! | 14@.113.21@.11 1§ 3386 ! ! Bunning !

4 rouws in set (B.080 sec)

mysgl>

Figure 4-1 PASE_Geninf

31

AWINDOWS\system32cmd exe - mysql -u root -p -h 140.113.210.18

mysgl> select * from pde_geninf;

| PDROGOAGEEAAZ | pde

e e R A e R 1

L row in set (B.00 sec)

nysql>

Figure 4-2 PDR_Geninf

4.1.4 PASE Broker

Before the PASE broker start working, we must dedeme PISs and enter their host and
port information into configure file of PASE broké&ie also need to set the values of some
attributes for the performance monitor. The snagshbthese two steps are shown in Figure

4-3 and Figure 4-4.

General | PIS | PM |
Initial PASE Information Server
140.113.210.11:2099 Add
Remove
Detail
Save Quit

Figure 4-3 PIS Configurations

32

Confignre E|
(General |’ PIS Wﬁ

Select Monitox Mode

Metric Lower Bound Upper Bound

{_ Instance 1000.0 a2000.0

{_» Arrival Rate 0.00002 0.oo0z2

® Response time (ms) |0.0 | |s000.0

i) Mix 1.3 17.3

(expression)

Monitor Interval 3000.0

Axvival Rate Buffer Size 10000

Responze Time Buffer Size 200.0

Save Quit

Figure 4-4 Performance Monitor Configurations

In Figure 4-4, we can seleé:t a monitbﬁng moaetmerperformance monitor, and set the
lower bound as well as upper Bound of théf mode. Upper bound values in the Performance
Monitor configurations are default values when dloeninistrator does not set those values in
the PIS. The Arrival Rate Buffer Size is the tim&rval for the PASE broker to measure the
request arrival rate. The Response Time Buffer &zbe amounts of requests collected to

measure the average response time.

When the above settings are completed, we candtaehthe PASE broker, and it will
find some ready PASE resources can be used redrfeom PISs. In this experiment, at first
we always add only one PASE resource and configsi@rresponding PDR. Later on, if the
incoming requests increasing and the system is laaded, the PASE broker will
automatically add a new PASE resource to the grdia@nfigure its corresponding PDR. The

shapshot of this step is show in Figure 4-5.

33

PASE Chooser

Choose PASE Resources
Host Fort FDR LoadLimit ArrivalRatelimit FIS
[| (14011321018 |20000 240 0.000245 140113.21011:2009
[| [140113.210.21 |20000 200 0.0005 140113.21011:2009
[| [140113.210.23 |20000 200 0.000a 140113.210.11:2009
w| 14011331011 (20000 |PDROOOODO0OOOOZ [= | 300 0.0005 140113.210.11:2099
PDRODDOOOD0ODZ

Ok

Figure 4-5 Select initial PASE resource

Figure 4-6 is a snapshot of the runtime statusA&HEresources in the PASE grid, The
information shown includes the Ioad (work,flow ingtas number), average request arrival
rate, and average request response tlmes FonP@zSiE resource when one values exceed its
upper bound set in the PIS, the representlmg. eseglar will change its color will change
their color from blue to red. When thle overall eystrllas been overloaded and there are no

more available PASE resources, |t will show thesage ‘No available resource’ on the status

bar of the PASE broker to inform administrators.

£ PASE Brokex

Setting

& DB

PASE Resources Status

FASE ID ArrivalRate Avg. Response Time
140113.210.11:20000 . 0.0054869684499314125 Fr NI BN 3705103448 |
140113.210.18:20000 K 0.007361268403171008 kil 1. 1363636363636
140113.210.21:20000 0.007223942208462332

140.113.210.23:20000 0.00654911838 7909352 9.0506329113924

Mo available Resource

Figure 4-6 System status

34

4.2 The Experiment Driver

A program for driving the following experiments wasplemented. The main functions
of the program are 1) generate requests to the RASker or to the single PASE server in
original Agentflow architecture and 2) record tlesponse time of each request and calculate
the average response time. This program genenateskinds of random numbers for the
experiments as follows:
® Arrival of requests

The arrival rate of request is assumed to confaynthe poisson distribution. In this

experiment, the testing program generates fourstgbe¢asks, including createProcess(),

startTask(), completeTask() and getTaskOfCompany().
® Task service time

The task service time is assumed to conform toettionential distribution just as in

most queuing studies. Since in real workflow casesst tasks usually involve human

manipulation, such as filling out'a form, the taskvice time here is used to simulate a

user takes to do finish a task. The task servioe is also equivalent to the time period

between the startTask() request and the compldifTragjuest of a specific task.

Furthermore, the experiment driver program musutate the behavior of the workflow
engine, i.e. when a task is finished, then it nedsigger the next task according to the
corresponding process definitions. There shouldre@inishing artifact state of each task in
experiment driver program. Since each task couldehmultiple finishing states, the

elimination of some states is required for prevantf infinite loop.

The experiment driver program requires the follayisix steps before starting an

experiment:

35

(1) Select type of server, PASE Server or PASE broker

(2) Enter the host of server,

(3) Enter the port of server

(4) Enter the amounts of workflow instances to be gateelr

(5) Enter the lambda valuefor generating random nurftbar the poisson distribution, and
(6) Enter the lambda value for generating random nurftbar the exponential distribution.

Figure 4-7 illustrates these six steps.

o+ Response Time Tester

D:~RIT>rtt
Java directory : C:xjdki.5.8_18

30303030 -J0E 30 3030 - J0E -0~ 300630 - JoE-3nE- 0 - JoE -3 ~30E -0~ -J0€ o0 -0 o3~ 30 -0~ - JoE-JoE-30E 300630 3000 - JoE-0E—0E-Jof-3eE-Jok-JoE-eE-0E-E-E

ad Rezponse Time Tester 3*
3o -3of-JmE o -JuE~3nE-Jof-of-ef-Jof - Inf-JoE~Jf~oE- oo~ Jof- 0 ~oE-Jof~3nE-Jef 30 -ef-Jof - uE-JoE-Jmf~eE-Jo~eE-Jof- e -eE-Jof~nE-JoE -3 -ef-Jof-eE-JeE-Juf~oE-Jef-eE-Tef- ook E-E-3E

Choose the server type: (1: PASE Server. 2: PASE Broker

2
Enter Host:
14@.113.218.141
Enter port:

« instance count

Enter lambda for poisson

21515]

Enter lamhda for exponential
1 ABA

Test iz Starting...
: ThreadPool Setup Success
: Connect to PASE Broker ...
: Connecting Success

Test finish

Figure 4-7 Experiment Driver

36

4.3 Experiment Results

In the following experiment, the amounts of createakflow instances range from 50 to
2,500, the request average arrival rate is 0.0Qdests/ms, and the average task service time
is 1,000 ms. The requests considered in the expeatsnare createProcess(), startTask(),
completeTask(), and getTaskOfCompany(). Four difierexperiments are conducted to
evaluate the performance of four different archiuez and mechanisms, including the single
PASE server in the original Agentflow system arte PASE grid architecture with three
different load monitor modes, respectively. Thddwing five figures illustrate the response
time of the four kinds of requests in different Wloads and under the four different system

architectures, respectively.

Create Process

250000

200000 //‘/‘

% 150000 ~— —&— Single PASE

= —®— PASE Broker(ins)
2 PASE Broker(ar)
[}

§ 100000 —*—PASE Broker(t)

50000 /
e

50 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500

Instances

Figure 4-8 Results of createProcess()

37

Response Time(ms)

250000

200000

150000

100000

50000

50

100

200

300

400

500

Start Task

600 700

Instances

38

800

900

1000

1500 2000 2500

—— Single PASE

—8— PASE Broker(ins)
PASE Broker(ar)

— PASE Broker(rt)

Collect Data

900

800

700

—— Single PASE

—8— PASE Broker(ins)
PASE Broker(ar)

—%— PASE Broker(rt)

Response Time(ms)

50 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500

Instances

Figure 4-11'Results.of getTaskOfCompany()

Obviously, the PASE grid architecture improves thmtime performance greatly
compared to the original single-server-Agentflowhstecture for three of the four kinds of
requests. Moreover, under different workloads, mrapdgrom 50 to 2,500 instances, the PASE
grid can deliver a nearly constant response tiraeefiting from its scalable architecture. This
is a desirable feature for moden service-orientgdtesns which have to confront
unpredictable and dynamically changing amountscbining requests, while being expected
to maintain acceptable and stable response time. géiTaskOfCompany() request is a
special case, which must get the task instances &lbrunning PASE resources. Therefore, in
some situations, it may take even much longer timdinish than that in the original

Agentflow architecture.

39

All

140000

120000

100000 / /
80000 —— Single PASE

—=#— PASE Broker(ins)
Pase Broker(ar)
60000 A

/ ~v —*— PASE Broker(rt)
40000

20000 /

0 W

50 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500

Instance

Response Time(ms)

Figure 4-12:Average.response time of all ests!

Figure 4-12, shows the maximum average requesbmegptime of the single PASE
server architecture is longer than 100,000 ms,enttie maximum average request response
time of the PASE grid architecture is shorter tAg500 ms. This result includes that the PASE
grid architecture proposed in this thesis, cancéiffely maintain an acceptable request

response time under request loads of large vamiatio

The following article presents the comparisons agndifferent monitoring modes of the
PASE broker in detail. As seen the figures, thevakrate mode and the response time mode
in general outperform the instance mode. Moreotrer, PASE broker with the arrival rate
monitoring mode performs best and delivers a shartd more stable average response time

than with the other two monitoring mode. Howevbg performance of the arrival rate mode

40

and the response time mode could be influencedéyorresponding buffer sizes set in the
performance monitor. Therefore, relative perforneard these two modes needs further
studies, considering the effects of different siZgss also raises an important issue that how
to determine an appropriate buffer size becomesicalriin delivering good and stable

performance with these dynamic request dispatchliggrithms.

Create Process

—=#— PASE Broker(ins)
PASE Broker(ar)
—*— PASE Broker(rt)

Response Time(ms)

A/‘\‘/‘\k/_‘_‘_‘_“‘_‘_‘___‘_‘

50 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500

Instances

Figure 4-13 Performance results of createProcess()

41

Response Time(ms)

Response Time(ms)

8000

7000

6000

5000

4000

3000

2000

1000

7000

6000

5000

4000

3000

2000

1000

50

50

100

100

Start Task

200 300 400 500 600 700 800 900 1000 1500 2000 2500

Instances

200 300 400 500 600 700 800 900 1000 1500 2000 2500

Instances

Figure 4-15 Performance results of completeTask()

42

—=#— PASE Broker(ins)
PASE Broker(ar)

—*— PASE Broker(rt)

—=— PASE Broker(ins)
PASE Broker(ar)
—*— PASE Broker(rt)

Response Time(ms)

Response Time(ms)

50

50

100

100

Collect Data

200 300 400 500 600 700 800 900 1000 1500 2000 2500

Instances

200 300 400 500 600 700 800 900 1000 1500 2000 2500
Instance

Figure 4-17 Average response time of all requests

43

—=#— PASE Broker(ins)
PASE Broker(ar)
—*— PASE Broker(rt)

—=— PASE Broker(ins)
Pase Broker(ar)
—>— PASE Broker(rt)

Chapter 5. Conclusions and future work

The major contribution of this thesis is propodeASE grid architecture and, based on it,
depelop a grid-enabled scalable workflow computip@tform.. It achieves several
on-demand resource provisioning and thus able tmlyme acceptable and stable request
response time under a wide range of dynamicallyimgrrequest workloads. A prototype
system has been implemented, and used to condugetes of experiments for evaluating the

performance of the proposed architecture.

The results of experiments shows, that under diffeveorkloads, ranging from 50 to
2,500 workflow instances, the PASE grid.can effedii deliver a nearly constant response
time, benefiting from its scalable architecture:isTlis a desirable feature for moden
service-oriented systems which. have \to-confrontresfiptable and dynamically changing
amounts of incoming requests, while being expecttednaintain a acceptable and stable

response time

Based on our experience in the work and expmarisndescribed in this thesis, we point

our some promising future research topics wortth&rinvestigations in the following.:

(1) Determining an appropriate buffer size for meaguanerage response time and request
arrival rate is crucial for accurately representitige system workload. Further
investigations are required on this issue in ortterensure that the dispatcher can
effectively assign the income requests to approp®ASE resources for delivering good

and stable runtime performance.

44

(2) The Globus toolkit is currently the most widely td grid middleware. Integrating the
services provided by Globus Toolkit into the PASEd garchitecture could make our
scalable workflow computing platform much easierb® adopted and implemented in
current grid environment..

(3) Using history records to help predict future incogirequests is a promising approach to
enable the dispatcher for making more appropriébeation decisions

(4) Security is always one critical design issue inaleping any grid applications and
environments, so is it in our PASE grid architeetufhis will be an important aspect in

future extension of the PASE grid architecture.

45

References

[1] Foster I, Kesselman C and Tuerke S. “The Gmdueprint for a New computing
Infrastructure”, Morgan Kaufmann (2003).

[2] Foster I, “The Grid: A New Infrastructure fod& Century Science”,.Physics Today, 55 (2).
42-47. 2002.

[3] D. De Roure, M. A. Baker, N. R. Jennings, andR Shadbolt. “The Evolution of the
Grid”. In Grid Computing: Making The Global Infragtture a Reality, pages 65-100.
JohnWiley& Sons, 2003.

[4] Flowring Technology Corp, Agentflow system,gttwww.flowring.com

[5] Catlett C, Smart L, “Metacomputing”, Communiicat of the ACM, vol. 35, no. 6, 1992

[6] FAFNER, http://www.npac.syr.edu/factoring.html

[7] Foster |, Geisler J, Nickless W, Smith W, angetke S, “Software infrastructure for the
[-WAY high performance distributed 'computing enviroent”, Proceedings of 5th IEEE

Symposium on High Performance Distributed Compuytire97.

[8] Kephart J.O, Chess D.M, “The vision of automo computing”, Computer,
\Vol:36, Issue: 1, 2003

[9] Laszewski Gv, Amin K, Hategan M, Zaluzec NJ,ri#on S, Rossi A, “GridAnt: A
client-controllable Grid workflow system.”, Proceegs of 37th Hawaii International
Conference on System Science, 2004.

[10] Shields M, Taylor I, “Programming scientifime distributed workflow with Triana
services”, Proceedings of Workflow in Grid SysteWisrkshop in GGF 10, 2004.

[11] Krishnan S, Bramley R, Gannon D, GovindarajuAfameda J, Alkire R, Drews T, Webb

E, “The XCAT science portal”, Proceedings of Supenputing, 2001.
[12] Cao J, Jarvis SA, Saini S, Nudd GR, “GridFloWwbrkflow management for Grid

computing”, Proceedings of 3rd International Symgason Cluster Computing and the

46

Grid, 2003.

[13] Altintas I, Berkley C, Jaeger E, Jones M, Lesigher B, Mock S, “Kepler: Towards a
Grid-enabled system for scientific workflows”, Peadlings of Workflow in Grid
systems Workshop in GGF10, 2004.

[14] Czajkowski K, Fitzgerald S, Foster |, Kesseim@. “Grid Information Services for
Distributed Resource Sharing”. Proceedings of 1B6E International Symposium on
High Performance Distributed Computing, 2001.

[15] Baru C, Moore R, Rajasekar A, Wan M, “The SDSfbrage Resource Broker”,
Proceedings of the 1998 conference of the CentrAdganced Studies on Collaborative
research

[16] Shin-Jin Chou, Feng-Jian Wang, “Constructnilanagement System for a University
Department”, Master Thesis; National Chiao-Tunguérsity, 2001.

[17] Mowshowitz A, “Virtual Organization”, Commuration of the ACM, Vol.40, No. 9 ,
1997

[18] The Globus Alliance, Globus Toelkit, - http:tw.globus.org

[19] Grimshaw A, Wulf W. et al., “The Legion Visioaf a Worldwide Virtual Computer”,

Communications of the ACM, vol.40, 1997.

47

