
國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

利用網格技巧改善一個大規模工作流程管理系統的

回 應 時 間

Improving the Response Time in a Large-scale WfMS
with Grid Techniques

研 究 生：陳君豪

指導教授：王豐堅 教授

中中中中 華華華華 民民民民 國國國國 九九九九 十十十十 六六六六 年年年年 十十十十 月月月月

利用網格技巧改善一個大規模工作流程管理系統的回應時間

Improving the Response Time in a Large-scale WfMS with Grid Techniques

研 究 生：陳君豪 Student：Chun-Hao Chen

指導教授：王豐堅 Advisor：Feng-Jian Wang

國 立 交 通 大 學
資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

October 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年十月

 I

利用網格技巧改善一個大規模工作流程管理系統的利用網格技巧改善一個大規模工作流程管理系統的利用網格技巧改善一個大規模工作流程管理系統的利用網格技巧改善一個大規模工作流程管理系統的

回應時間回應時間回應時間回應時間

研究生: 陳君豪 指導教授: 王豐堅 博士

國 立 交 通 大 學
資訊科學與工程研究所

碩 士 論 文

摘要摘要摘要摘要

 在現今的商業流程環境中，工作流程管理系統多是集中式的主從架構。當使用者對

伺服器的請求大量增加時，造成請求的回應時間增加。在此狀況下，集中式的單一伺服

器會形成效能瓶頸。為了解決此問題，本篇論文提出了一個利用網格技巧使其具備擴展

性的工作流程平台。它可依需求動態增減資源的使用，維持可接受及穩定的請求回應時

間。最後，我們利用這個架構來實作了一個原始系統(prototype)以及對此系統進行了

一連串的效能測試，結果驗証了處在不同的使用者請求量下，整體系統皆能將請求的回

應時間絁持在能可接受及穩定的狀態。

關鍵字關鍵字關鍵字關鍵字：：：： 工作流程管理系統、網格、依需求動態調整、可擴展性

 II

Improving the Response Time in a Large-scale

WfMS with Grid Techniques

Student: Chun-Hao Chen Advisor: Dr. Feng-Jian Wang

Institute of Computer Science and Engineering

National Chiao Tung University

1001 Ta Hsueh Road, Hsinchu, Taiwan, ROC

Abstract

 In the current business process environment, almost all workflow management

systems are based on the centeralized client/server architecture. The request response time

will increase greatly when the requests arrive at the PASE server at a high rate. In such

circumstances, the single centralized server becomes the performance bottleneck. In order to

solve this problem, thesis proposes a grid-enabled workflow computing platform. It can

dynamically add or remove resources on demand, and maintain acceptable and stable request

response time. We implemented the prototype system based on the proposed architecture and

conducted a series of experiments for performance evaluation. The results of experiments

evidence that under different workloads, ranging from 50 to 2,500 instances, the proposed

architecture can deliver a nearly constant response time, benefiting from its scalable feature.

Keywords: Workflow Management system, grid, on-demand, scalability

 III

Table of Contents

摘要 .. I

Abstract..II

Table of Contents... III

List of Tables ... III

List of Figures………………………………………………… ……......................................III

1. Introduction ... 1

2 Background…………………..………………………………………………………………3

 2.1 Agentflow: A Wrokflow Management System………………………………………3

 2.2 Grid Computing for Dynamic Resource Provioioning……………………………….5

 2.2.1 Types of Grid Computing……………………………………………………...5

 2.2.2 The evolution of the Grid Computing…………………………………………6

 2.2.3 The Grid Architecture…………………………………………………………8

 2.3 Grid Workflow System……………………………………………………………….9

3. A Grid-Enabled Scalable Workflow Computing Platform .. 11

 3.1. The PASE Grid Architecture………………………………………………………..11

 3.1.1. PASE Resource………………………………………………………………11

 3.1.2 Process Definition Repository and Global Runtime Repository…………….14

 3.1.3 PASE Information Server…………………………………………………….14

 3.1.4 PASE Broker…………………………………………………………………16

 3.2. On-Demand Resource Provisioning Strategies……………………………………..19

 3.2.1 User Request Processing……………………………………………………..19

 3.2.2 Adaptable Resource Allocation………………………………………………21

4. Performance Evaluation .. 29

 4.1. Experimental Settings………………………………………………………………29

 IV

 4.1.1. PASE Resources……………………………………………………………..29

 4.1.2 Process definitions and PDR………………………………………………....30

 4.1.3 PASE Information Server…………………………………………………….31

 4.1.4 PASE Broker…………………………………………………………………32

 4.2. The Experiment Driver…………………………………………………………...35

 4.3. Experimental Result………………………………………………………………...37

5. Conclusions and future work... 44

References…………………………………………………………………………………….46

 V

List of Tables

Table 3-1 PASE_Geninf………………………………………………………………………15

Table 3-2 PDR_Geninf………………………………………………………………………..16

Table 3-3 Instance id manipulation and request dispatching…………………………………19

Table 3-4 Returned id manipulation…………………………………………………………..19

Table 3-5 The Dynamic Request dispatching Algorithm for PER……………………………20

Table 3-6 PASE grid Performance Monitor Algorithm……………………………………….22

Table 3-7 Structure of PASEProperty………………………………………………………...24

Table 3-8 Adding Resource Algorithm……………………………………………………….24

Table 3-9 Removing Resource Algorithm……………………………………………………26

Table 3-10 Suspending Checking Algorithm…………………………………………………27

 VI

List of Figures
Fig 2-1 Agentflow System Overview…...4

Fig 2-2 The Grid Architecture…………………………………………………………………9

Fig 3-1 The PASE grid architecture…………………………………………………………..10

Fig 3-2 The architecture of PASE broker……………………………………………………..17

Fig 4-1 PASE_Geninf………………………………………………………………………...31

Fig 4-2 PDR_Geninf………………………………………………………………………….32

Fig 4-3 PIS Configurations…………………………………………………………………...32

Fig 4-4 Performance Monitor Configurations………………………………………………..33

Fig 4-5 Select initial PASE resource………………………………………………………….34

Fig 4-6 System status…………………………………………………………………………34

Fig 4-7 Experiment Driver……………………………………………………………………36

Fig 4-8 Results of createProcess()……………………………………………………………37

Fig 4-9 Results of startTask()…………………………………………………………………38

Fig 4-10 Results of completeTask()…………………………………………………………..38

Fig 4-11 Results of getTaskOfCompany……………………………………………………...39

Fig 4-12 Average response time of all requests………………………………………………40

Fig 4-13 Performance results of createProcess()……………………………………………..41

Fig 4-14 Performance results of startTask()………………………………………………….42

Fig 4-15 Performance results of completeTask()…………………………………………….42

Fig 4-16 Perofrmance results of getTaskOfCompany……………………………………….43

Fig 4-17 Average response time of all requests……………………………………………...43

 1

Chapter 1. Introduction

To manage and automate business processes, workflow management systems (WfMS),

have been broadly adopted by many enterprises to efficiently control the flow of tasks, assign

the needed human resources and the needed artifacts for executing each task, and monitor the

executions of tasks. Most current workflow management systems are client-server

architecture, adopting a centralized workflow engine and a database server used to store

process definitions and runtime data. For example, Agentflow system [4] Flowring

Technology Corp, Agentflow system, http://www.flowring.comis a well-known java-based

workflow management systems in Taiwan, is based on the centralized client-server

architecture.

Obviously, the request response time in such a centralized client-server architecture is

bounded by the computing power of the single centralized server and the capacity of the

database server. The response time will increase greatly when the requests arrive at the PASE

server at a high rate. In such circumstances, the single centralized server becomes the

performance bottleneck.

Grid computing [1][2][3] has been under development and evolvement for many years. It

enables users to access resources across different administrative domain, and aggregate those

resources to solve some problems which otherwise can not be effectively solved on the

resources inside an single administrative domain. To solve the performance bottleneck in

Agentflow system, we extended it to a scalable workflow computing platform based on PASE

grid architecture, which is proposed and described in detail in this thesis.

 2

The rest of this thesis is organized as follows. Chapter 2 introduces Agentflow system,

and grid computing. A scalable workflow computing platform and on-demand resource

provisioning strategies are described in Chapter 3. Chapter 4 illustrates a series of

experiments evaluating the PASE gird architecture and presents discussions of the experiment

results. Chapter 5 concludes the thesis and points some future research directions..

 3

Chapter 2. Background

2.1 Agentflow: A Workflow Management System

Agentflow system [4] developed by the Flowring technology corporation is a java-based

workflow management system based on the centralized client-server architecture. There are

three main components in Agentflow, including PDE, Flow Engine and Agenda.

� PDE (Process Definition Environment) is a graphical editor for modeling different views

of a business, including process view, artifact view and organization view. Each view is

modeled by tools in PDE separately, including an Organization Designer for constructing

the organization view, an e-form Designer for designing the artifact view, and a Process

Designer for modeling process view.

� Flow Engine (also called PASE server) is a workflow enactment environment, which

drives the flow of works and facilitates process enacting, control, management, and

monitoring.

� Agenda is a client-side tool. The users can browse their own task-list, deal with what

they have to do, initiate processes, monitor the states of the flow through the Agenda

An overview of the main components and their relationships in Agentflow is shown in Figure

2-1

 4

Figure 2-1. Agentflow System Overview

The database of Agentflow system contains two repositories, process definition

repository and runtime repository. The process definition repository is used for storing process

definitions, while the runtime repository is used for storing all the workflow instance data.

In addition, Agentflow system provides a java-based interface, Workflow Common Interface

(WFCI), which allows users to interact with the PASE server. For example, WebAgenda is a

web-based agenda which communicates with PASE server through the WFCI.

 5

2.2 Grid Computing for Dynamic Resource Provisioning

In recent years, the computer networks have been evolved rapidly and become more and

more cheaper and faster. This trend contributes to the rapid development of grid computing

technologies. Grid computing [1][2][3] is a distributed computing architecture, increasingly

adopted by both scientific and business domains. Although, until now, there is no commonly

agreeable and precise definition of what a grid is or what components are needed to construct

a grid. Most people think of grid computing as a promising technology for providing a

scalable, secure, and high-performance computing platform through automatically

discovering and integrating geographically distributed resources [2].

2.2.1 Types of Grid Computing

In general, there are five major types of grid computing [1] which are described as

follows:

� Distributed supercomputing

The characteristics of distributed supercomputing applications are that they need to solve

very large problems, like stellar dynamics, required a lots of CPUs, memories, etc. In

order to fulfill these requirements, they use grid technologies to aggregate substantial

computational resources.

� High-throughput computing

Applications of this type need to complete large numbers of loosely coupled or

independent tasks with high throughput, like chip design. Hence, they use grid

tehcnologies to discovery, negotiate, and utilize the idle resources, and then schedule

those tasks run on them.

� On-Demand computing

The characteristics of on-demand computing applications are that they need resources for

 6

short-term requirements and those resources are costly and inconveniently located locally.

Hence, they use grids for meeting their demands.

� Data-intensive computing

This kind of applications focus on collecting large amount of new information from

geographically distributed storage system, like sky survey, and then manipulating them.

There are several data grid technologies which could achieve these requirement, such as

Globus Data Grid [18] and Storage Resource Broker [15].

� Collaborative computing

The characteristics of collaborative computing applications are that they support

communication and collaborative work between multiple groups, like collaborative

design. They use grids to provide a virtual shared data space Many collaborative

computing applications focus on sharing computational resources rather than data

resources, they may also have the characteristic of the others types of grid computing.

The scalable PASE grid architecture proposed in this thesis aims to deal with workflow

computing requests which belong to the high throughput computing as well as the on-demand

computing categories.

2.2.2 The Evolution of the Grid Computing

The three stages of the evolution of grid computing identified in [3] are described below.

These generations are not strictly defined; they are distinguished by philosophies rather than

technologies.

� The first generation

 7

In the early to mid 1990s, the emerging technology, metacomputing [5], is the original

concept of the grid computing. The goal of metacomputing is to provide the high

performance computational resources by linking a number of supercomputer sites

together for solving scientific problems. There are two main projects of the

metacomputing including FAFNER [6] and I-WAY. [7].

� The second generation

The grid environments of this generation are typified by many of today’s grid

applications. They want to solve some issues, arising from the first generation which

include heterogeneity, scalability and adaptability. Middleware is a better choice to

address those issues. In grid environment, the middleware provides a set of services and

hide the heterogeneity for users by defining the interfaces.

In addition, they suggested some design features guide the development of grid

applications including 1) administrative hierarchy (for scalability), 2)communication

services, 3)information services, 4)naming services, 5) distributed file systems and

caching, 6)security and authorization, 7)system status and fault tolerance, 8)resource

management and scheduling, and 9)User and Administrative GUI

Some grid-related projects in this generation of the grid computing include Globus

Toolkit [18], Legion [19], which provide the essential services needed to constructs grid

applications.

� The third generation

This stage shifts focus from large-scale computing to distributed collaboration and

virtual organization [17].. The characteristics of the grids of this generation are that the

grids increasingly adopt service-oriented model and pay more attentions to the metadata.

 8

The service-oriented approach defines the interface of each service component which

describes the availability and functionality. It can assemble grid resources into grid

applications flexibly by those predefined interfaces. The metadata supports dynamic

reconfiguration of grid environment, such as self-organization and self-healing. This will

introduce the new extension of the grid computing, i.e. autonomic computing [8]

Kephart J.O , Chess D.M, “The vision of autonomic computing”, Computer,

Vol:36, Issue: 1, 2003. The autonomic computing will be the next generations of the

grid computing. .

2.2.3 The Grid Architecture

Figure 2-2 illustrates the layered grid architecture proposed by [2]. Included in he lowest

layer, the fabric are physical resources of the grid, such as computers, storage systems,

networks and sensors.

Above the fabric layer are the connectivity and resource layers. The connectivity layer

contains the communication and authentication protocols. Communication protocols are used

by resources to exchange data as well as communicate with each other and authentication

protocols provide secure mechanism for verifying the identity of both users and resources.

The resource layer also contains protocols that utilize the connectivity and authentication

protocols to provide secure initiation, monitoring and control of resource-sharing operation.

The collective services layer contains protocols, services, and APIs that implement

interactions across collections of resources. The services include: 1) Directory and broking

services for resource discovery and allocation, 2)Monitoring and diagnostic services, 3)Data

 9

replication services, and 4)Membership and policy service for keeping track of who in the

grid is allowed to access resources.

The topmost layer is the applications layer. Applications are constructed by using

components in other layers and then can run on the grid.

Tools and applications

Discovery, broking, diagnostics and

monitoring

Secure access to resources and services

Diverse resources such as computers, storage

media, networks, and sensors

 Connectivity and

resource protocols

Collective services

Fabric

User applications

Figure 2-2 The Grid Architecture

2.3 Grid Workflow System

The concepts of workflow are extremely important in grid computing. The systems

manage the job dependencies and control the flows of jobs in a gird computing are called grid

workflow system. Today, there are many grid workflow systems, such as GridAnt [9], Triana

[10], XCAT [11], GridFlow [12], Kepler [13], and Grid-Flow..

 10

All of the grid workflow systems mentioned above are facilitated to orchestrate

grid-enabled programs or services. A common feature for these grid workflow systems is that

they all provide a graphical user interface and a script language for users to model the

workflow process.

 11

� Chapter 3. A Grid-Enabled Scalable Workflow Computing

Platform

In this chapter, firstly, a grid-enabled scalable workflow computing platform based on

Agentflow is introduced. This scalable platform produces acceptable and stable request

response time under a wide range of request workloads. In addition to the system architecture,

the strategies for achieving on-demand resource provisioning are also presented in the chapter.

3.1 The PASE Grid Architecture

The PASE server is a workflow enactment subsystem in an Agentflow system which

drives the flow of works and facilitates process enacting, control, management, and

monitoring. Because there is only one centralized PASE server with a dedicated database

server in the original Agentflow system, the request response time will increase greatly when

the requests arrive at the PASE server at a high rate. In such circumstances, the single

centralized server for the platform becomes the performance bottleneck. In order to solve the

performance issue, this thesis proposes a scalable workflow computing platform, PASE grid

architecture, which extends a Agentflow system to a grid-enable system.

The following three concepts of grid computing guide us in designing the PASE grid

architecture:

� Virtualization

A PASE broker in the PASE grid provides a java-based interface, PASE broker

 12

Common Interface (PBCI), which implements a set of functions supporting users to

query and acquire PASE resources in the grid. Clients interact with PASE grid through

the PBCI and need not know the underlying grid configuration such as the amount of

PASE servers available and the computing speed of constituent machines. The PASE

Grid thus like a powerful and scalable super-PASE server looks to the clients

� Utilizing resources across different administrative domains

With the PASE Information server which will be described in details in section 3.1.3,

resources located in different administrative domains could be dynamically integrated

together to achieve a common goal, in some way realizing the concept of virtual

organization

� On-demand resource provisioning

When all the existing PASE servers have been overloaded, the PASE grid would

automatically discover more computing resources and appropriately configure them to

become newly available PASE servers to share the request workloads. On the other

hand, when the incoming requests decrease and the overall system has been

under-utilized, the PASE grid will remove a portion of the PASE resources to allow

them to be utilized by other demanding PASE brokers or other applications.

The PASE grid architecture is shown in Figure 3-1, the components in which will be

elaborated in the following sub sections.

 13

Figure 3-1 The PASE grid architecture

3.1.1 PASE Resource

A PASE resource is composed of software and hardware resources. The software

resources include a PASE server which is a flow engine derived from the Agentflow system

and a database used to store runtime data for PASE server and replicas of process definitions.

The hardware resource is typically a computer like PC, notebook, or workstation on which the

software resources can run. The PASE server and database of the PASE Resource can run on

one or more site. Each PASE resource is managed by one PASE information server (PIS), and

it can be used by only one PASE broker at any instant.

 A PASE resource must be registered to the PIS in its domain before it can be included

into the PASE grid. When a resource provider wants to withdraw the PASE resource provided

 14

by him, he must ask the PIS to delete the related record of the PASE resource from its

database.

3.1.2 Process Definition Repository and Global Runtime Repository

The process definition repository (PDR) contains some business process definitions

designed by process designer using process definition editor (PDE). When the PASE broker

needs to add a new PASE resource, the PIS will replicate the content of PDR into the database

of the new PASE resource according to the incoming request. In each domain, there can exist

more than one PDR, and each PDR can be accessed by more than one PASE resource. The

administrators are responsible for registering the PDR into the PIS.

The global runtime repository (GRTR) contains those workflow instances which have

finished their execution. The completed workflow instances are kept in the repository for

future references. When the PASE broker wants to remove a PASE resource, it will move the

PASE resource’s runtime data into the GRTR. There is only one GRTR in the PASE grid,

which is managed by the PASE broker.

3.1.3 PASE Information Server

The PASE information server (PIS) plays a role, similar to the MCAT in Storage

Resource Broker [15] or Grid Information Service (GIS) in Globus Tookit [14], which is used

to maintain necessary information about a domain and all the PASE resources in the domain.

Furthermore, it is also responsible for replicating data from the PDR into new PASE resource

and clearing the database of removed PASE resource..

 15

The following tables describe the information maintained by PIS, such as PASE general

information (PASE_Geninf), and process definition repository general information

(PDR_Geninf). The information is required to assist the PASE broker in accessing,

discovering, monitoring, and managing PASE resources.

Table 3-1 PASE_Geninf

Attribute Description

PASE_ID The unique id of PASE Resource

PASE_Host The host of the PASE Resource

PASE_Port The port of the PASE Resource

Database_Name The database name of the PASE Resource

Database_Host The host of the database of the PASE Resource

Database_Port The port of the database of the PASE Resource

Database_User

Database_Password

The user name and password grant for database accessing

PDR_Id The id of PDR to which the PASE can refer

State The state of the PASE Resource.

Load_Max_Limit The limit on the load (instances)

ArrivalRate_Max_Limit The limit on the arrival rate

. Table 3-1 illustrates the general information of PASE resource. The unique id is

composed of (host:port). The state of PASE resource can be ready, reserving, running, or

blocking. The ready state stands for the PASE resource being available, i.e. the database of the

PASE Resource is already created, and the PASE server of PASE resource is started. The

reserving state represents that the PASE resource is reserved by PASE broker, but it is not

 16

connected to the PASE broker yet. The running state stands for the PASE broker being using

the PASE resource for serving incoming requests. The blocking state stands for the failure of

the PASE resource.

‘

Table 3-2 PDR_Geninf

Attribute Description

PDR_ID The unique id of the PDR

PDR_Name The database name of the PDR

PDR_Host The host of the PDR

PDR_Port The port of the PDR

PDR_User

PDR_Password

The user name and password grant for PDR accessing

Table 3-2 describes the general information of PDR. The unique id of PDR is start as

“PDR”. When an administrator registers a new process definition repository into the PASE

grid, the PIS will generate this information according to the properties of the PDR.

3.1.4 PASE Broker

The PASE broker is a vital part of the PASE grid; it is responsible for coordinating the

PISs, PASE resources process definition repositories, and the global runtime repository. It can

manage multiple PISs and use the PASE resources belonging to those PISs. The architecture

of the PASE broker is represented in Figure 3-2.

 17

Figure 3-2 The architecture of PASE broker

PISManager is responsible for managing the PIS connections (PISCs) to all PISs. It

retrieves and caches the information maintained in PISs. Initially, the administrator can select

the PASE resources and the PDRs he/she wants to used, then the PISManager send replication

request to PISs for replicating process definitions into each PASE resource.

The PDRManager manages the PDR connection (PDRCs) to all PDRs. The requests

from clients that want to get the process definition relevant data are manipulated by the

PDRManager. The GRTR Manager backups the workflow instance from the PASE resource

which is to be removed by the PASE broker.

The WFCIPoolManager creates AbstractWFCIs (AWs) to connect to those selected

PASE resources with the RMI mechanism. The AW is a component to wrap the WFCI

connection and records some metadata about the WFCI connection, such as a list of processes

and a list of member records. In addition, AW measures some metrics, like load, average

arrival rate of requests, and average response time of requests. Those metrics are as the

basis used by PerformanceMonitor for monitoring performance.

 18

The WFCIPoolManager contains three kinds of pools corresponding to different states of

AWs, including running pool, suspending pool, and blocking pool. The running pool contains

the healthy AWs. The suspending pool contains AWs which would not take any new create-

process requests but still have some unfinished workflow instances running on it. The

blocking pool contains AWs which run into some kinds of failure founded by the PASE

broker.

The PerformanceMonitor (PM) monitors the performance of the overall system by

different load determination modes. These modes include load (instance), the average request

arrival rate and the average request response time. When the system is overloaded, it informs

the WFCIPoolManager to find out new available PASE resources from PISs and create

connections to them. If there are no new PASE resources found, it sends an alert to

administrators and they can add new PASE resources manually. Moreover, when the system

has been under-utilized for a specific period of time, it also informs the WFCIPoolManager to

remove some AWs.

The PASEDispatcher does some pre-actions for each request to manipulate the some

workflow instance relvant parameters, such as the identity of task (TskID), the identity of

artifact instance (AnsID), the artifact instance (PASEartInstance), and the identity of attached

file (FileID). It then selects an appropriate PASE resource and delegate the request to it Table

3-3 shows an example.

 19

Table 3-3 Instance id manipulation and request dispatching

InstanceID Allocated Resource ID in the Resource

Tsk(140.113.210.11:20000)000000000001 140:113.210.11:20000 Tsk000000000001

Ans(140.113.210.21:20000)000012345678 140.113.210.21:20000 Ans000012345678

Before each request returns to user, the PASE broker does post-actions to append the

identity of PASE resource to instance relevant data, and merge the return data from different

PASE resources. Table 3-4 shows an example

Table 3-4 Returned id manipulation

Returned ID Source Resource Appended ID

Tsk000000000001 140:113.210.11:20000 Tsk(140.113.210.11:20000)000000000001

Ans000012345678 140.113.210.21:20000 Ans(140.113.210.21:20000)000012345678

3.2 On-Demand Resource Provisioning Strategies

This section discusses the resource provisioning strategies used in the PASE grid. There

are two kinds of demand, each of which has different strategies. The following sections

represent the detail of those strategies.

3.2.1 User Request Processing

The response time of each request is determined by the computing capabilities of the

PASE server and the capacity of the database server in the centralized Agentflow system. The

PASE grid architecture alleviates the performance bottleneck of the centralized server with its

 20

scalable computing capabilities, and thus produces shorter response time for user requests.

Among different kinds of requests, manipulate task requests (MTRs) and process enactment

requests (PERs) can benefit from this PASE grid architecture. On the other hand, the collect

data requests (CDRs) would take a little bit longer time than in the original centralized

architecture. Therefore, overall speaking, the proposed PASE grid architecture can effectively

improve the runtime performance for most workflow activities. How each kind of requests is

processed is illustrated in the followings.

� The PER is used to create a workflow instance according to a predefined process

definition, such as createProcess() in the PBCI. When a PER occurs, a PASE resource is

then selected for processing the request according to a dynamic request dispatching

algorithm which is described in Table 3-5. The unique PASE resource will be provided

for PER according to the metric selected by the administrator. The PER resource

provisioning algorithm is represented in Algorithm 3.1.

Table 3-5 The Dynamic Request Dispatching Algorithm for PER

Algorithm 3.1 (Dynamic Request dispatching for PER)

Input:

 The user id U

 The process id P

 The load determination mode M

Output:

 A candidate PASE resource id R

PER_RP (U,P,M):

01 Begin

02 // Get the list of AbstractWFCI which are running

 21

03 List wfciList=wfciPoolManager.getRunnongs();

04 AbstractWFCI t=new AbstractWFCI();

05 For each AbstractWFCI a∈wfciList do

06 // Compare the current workload of each PASE resource

07 If (a.getMaxLoadByMode(M)-a.getLoadByMode(M))>

08 (t.getMaxLoadByMode(M)-t.getLoadByMode(M))

09 t=a;

10 EndIf

11 EndFor

12 R = t.getID();

13 End

� The PASE resources required for the CDR and MTR are not determined by the dynamic

request dispatching algorithm. The CDR is used to retrieve the instance relevant data or

process definition related data, e.g. getTaskList() or getMemberRecrod() in the PBCI. A

CDR may require more than one PASE resources to collaboratively accomplish its

request and these PASE resources are determined by the data to be retrieved. The MTR is

used to manipulate an task or a group of tasks, e.g. startTask(), suspendTask() and

completeTask() in the PBCI. A MTR will be dispatched to the PASE resource where the

workflow instance generating this request was created

3.2.2 Adaptable Resource Allocation

The PerformanceMonitor monitors the performance of each PASE resource in the PASE

grid, it sends the event to the WFCIPoolManager when the entire PASE grid is overloaded or

 22

under-utilized. Table 3-6 describes the PASE grid performance monitoring algorithm.

Table 3-6 PASE grid Performance Monitoring Algorithm

Algorithm 3.2 (Performance Monitoring Algorithm)

Input:

 The monitoring interval I

 The list of running AWs L

 The load determination mode M

/* When a continuous underutilized time period exceeds this predefined

threshold, the system will remove some PASE resources. */

A time period C

PM (I,M,C,L):

01 Begin

02 long u_Time = 0;

03 List pdrList;

04 boolean isUnderUtilized=false;

05 While(true) do

06 sleep(I);

07 int o_count=0;

08 int u_count=0;

09 For each AbstractWFCI a∈L do

10 If a.getLoadByMode(M)>a.getMaxLoadByMode(M)

11 o_count++;

12 Insert a.getPDRID() to pdrList;

13 EndIf

14 If a.getLoadByMode(M)>a.getMinLoadByMode(M)

 23

15 u_count++;

16 EndIf

17 EndFor

18 If o_count==wfciList.size()

19 AR(pdrList,M); // Add new resource (See in Algorithm 3.2)

20 EndIf

21 If u_count==L.size()

22 If !isUnderUtilized

23 u_Time=CurrentTime;

24 isUnderUtilized=true;

25 Else

26 If CurrentTime-u_Time>C

27 RR(L,M); // Add new resource (See in Algorithm 3.3)

28 EndIf

29 EndIf

30 Else

31 isUnderUtilized=false;

32 u_Time=0;

33 EndIf

34 EndWhile

35 End

� Add new Resource

When all the existing PASE server have been overloaded, the PASE grid would

 24

automatically discover more computing resources and appropriately configure them to

become newly available PASE servers to share the request workloads. Table 3-7 shows

the structure of PASEProperty used to describe a PASE resource and its content stored

in the PASE_Geninf in PIS. Table 3-8 describes the adding resource algorithm.

Table 3-7 Structure of PASEProperty

Structure PASEProperty {

 String id;

 String host;

 String port;

 String dbHost;

 String dbPort;

 String dbName;

 String dbUser;

 String dbPassword;

 String pdrID;

 String state

 // Different load determination mode have different value

 double maxLoad;

}

Table 3-8 Adding Resource Algorithm

Algorithm 3.2 (Adding Resource Algorithm)

Input:

 The list of pdr’s id L

 The load determination mode M

AR(L,M):

01 Begin

02 // Get the list of AWs whose states are suspending

03 List sList=wfciPoolManager.getSuspendingPool();

 25

04 If sList.size()>0

05 List temp=new List();

06 For each AbstractWFCI aw ∈sList do

07 If L.contains(aw.getPDR())

08 Insert aw into temp ;

09 EndIf

10 EndFor

11 String pID = getMaxLoadByMode(temp);

12 wfciPoolManager.moveSuspendingToRunning(pI D);

13 return;

14 EndIf

15

16 // Get the PDR to which the most overloaded PASE resources refer

17 String pdrID=mostOccurence(L);

18 List aList=pisManager.getReserving();

19 For each PASEProperty p∈aList do

20 PASEProperty t=new PASEProperty();

21 If p.maxLoad>t.maxLoad

22 t=p;

23 EndIf

24 EndFor

25 Remove t from aList;

26 pisManager.updatePASEState(aList, “Ready”);

27 pisManager.replicatePDR(t.id,pdrID);

28 wfciPoolManager.connectToServer(t.id);

29 End

 26

� Remove Resource

On the other hand, when the incoming requests decrease and the overall system has been

under-utilized, the PASE grid will remove a portion of the PASE resources, allowing

them to be utilized by other demanding PASE broker. Table 3-9 represents the removing

resource algorithm. The algorithm just moves the AW representing the PASE resource to

be removed removing into the suspending pool in WFCIPoolManager.

Table 3-9 Removing Resource Algorithm

Algorithm 3.3 (Removing Resource Algorithm)

Input:

 The list of running AWs L

 The load determination M

RR(L,M):

01 Begin

02 For each AbstractWFCI a∈wfciList do

03 AbstractWFCI t;

04 If a.getMaxLoadByMode(M)<t.getMaxLoadByMode(M)

05 t=p;

06 EndIf

07 EndFor

08 wfciPoolManager.moveToSuspending(t.getID());

09 End

In the WFCIPoolManager, the SuspendChecker periodically uses a suspending

checking algorithm to check all the AWs in the suspending pool. For those AWs in which

all workflow instances have finished, the SuspendChecker informs the GRTRManager to

 27

backup instances data and then asks the PISManager to clear the instance data and

process definition data from the database of the PASE resource. Finally, the

WFCIPoolManager disconnects the PASE resource from the PASE broker. Table 3-10

shows the suspending algorithm.

\

Table 3-10 Suspending Checking Algorithm

Algorithm 3.4 (Suspending Checking Algorithm)

Input:

 The pool of suspending AWs S

 The checking interval I

SC(S,I):

01 Begin

02 List rList;

03 While(true)

04 Sleep(I);

05 For each AbstractWFCI a ∈S do

06 If a.getInstance()==0

07 Insert a into rList;

08 EndIf

09 EndFor

10 For each AbstractWFCI aw∈ rList do

11 grtrManager.backup(aw.getID());

12 pisManager.clearDB(aw.getID());

13 wfciPoolManager.disconnectServer(aw.getID());

14 EndFor

 28

15 EndWhile

16 End

 29

Chapter 4. Performance Evaluation

Based on the PASE grid architecture described in Chapter 3, we have implemented a

prototype system, and conducted a series of experiments for performance evaluation. Section

4.1 describes the configurations of the PASE grid environment and related experimental

settings. A program that drives the series of experiments is described in Section 4.2. Finally,

the results of experiments are shown and discussed in Section 4.3.

4.1 Experimental Settings

4.1.1 PASE Resources

In the following experiment, we include four PASE resources in the PASE grid

environment. The information about the software and hardware configurations of each PASE

resource is shown in Table 4-1. In addition, all PASE resources will use the same process

definition repository in the experiment. The process definitions in the process definition

repository are described in section 4.1.2

.

Table 4-1 PASE resources

Resource Host CPU Memory Database Agentflow

140.113.210.11 AMD Athon64 1.81GHz DDRⅡ 1GB MySQL 4.1 2.2.3.2

140.113.210.18 AMD AthonXP 1.83GHz DDRⅡ 512 MB MySQL 4.1 2.2.3.2

140.113.210.21 AMD Athon64 1.81GHz DDRⅡ 1GB MySQL 4.1 2.2.3.2

140.113.210.23 AMD Athon64 1.81GHz DDRⅡ 1GB MySQL 4.1 2.2.3.2

 30

 In the experiments, we explore three different types of metrics for defining the load limit

on each PASE resource, The three types of metrics are workflow instance number, request

arrival rate, and average response time. The first two metrics are workload directed, and the

third is performance directed. Since the load limits should be directly related to user’s

awareness of system performance, the load limit values for the first two metrics are dependent

on the computing capabilities of the underlying machines, and the load limit values for the

third metric are consistent on all machines. The limit values used in the experiments are

shown in Table 4-2. Since the memory space and the power of the CPU on 140.113.210.18 is

smaller than on other machines, the limit values for the first two metrics on it is set to be

lower than on others..

Table 4-2 Limits on three metrics of PASE resources

4.1.2 Process Definitions and PDR

The process definitions adopted in the experiments are real cases obtained from [16],

which are used to construct a department management system in universities. The department

management system includes several subsystems, such as 1) the working system for master

Resource Host Workflow

instance number

Request arrival rate

(per ms)

Average response time

(ms)

140.113.210.11 300 0.0005 2000

140.113.210.18 250 0.00025 2000

140.113.210.21 300 0.0005 2000

140.113.210.23 300 0.0005 2000

 31

students, 2) the working system for Ph.D. students, 3) bulletin system, 4) department

computer & network center, and 5) laboratory. The services of these subsystems are defined

with specific processes designed by and run on the Agentflow system.

In the following experiments, we created 1,500 member representing faculties,

assistants and students, who manipulate department management system to accomplish all

sorts of tasks which are present in daily operations of a department.

4.1.3 PASE Information Server

To establish a PASE grid, the PASE information server (PIS) first needs to set up several

tables in the database server. These tables maintain the information about the PASE grid status,

which has been described in Section 3.1.2. The following two figures show the essential data

being stored into the database of PIS for the following experiment. In this experiment the PIS

runs on 140.113.210.11:2099.

Figure 4-1 PASE_Geninf

 32

Figure 4-2 PDR_Geninf

4.1.4 PASE Broker

Before the PASE broker start working, we must select some PISs and enter their host and

port information into configure file of PASE broker. We also need to set the values of some

attributes for the performance monitor. The snapshots of these two steps are shown in Figure

4-3 and Figure 4-4.

Figure 4-3 PIS Configurations

 33

Figure 4-4 Performance Monitor Configurations

In Figure 4-4, we can select a monitoring mode for the performance monitor, and set the

lower bound as well as upper bound of that mode. The upper bound values in the Performance

Monitor configurations are default values when the administrator does not set those values in

the PIS. The Arrival Rate Buffer Size is the time interval for the PASE broker to measure the

request arrival rate. The Response Time Buffer Size is the amounts of requests collected to

measure the average response time.

When the above settings are completed, we can then start the PASE broker, and it will

find some ready PASE resources can be used retrieved from PISs. In this experiment, at first

we always add only one PASE resource and configure its corresponding PDR. Later on, if the

incoming requests increasing and the system is overloaded, the PASE broker will

automatically add a new PASE resource to the grid and configure its corresponding PDR. The

snapshot of this step is show in Figure 4-5.

 34

Figure 4-5 Select initial PASE resource

Figure 4-6 is a snapshot of the runtime status of PASE resources in the PASE grid, The

information shown includes the load (workflow instances number), average request arrival

rate, and average request response times. For each PASE resource when one values exceed its

upper bound set in the PIS, the representing progress bar will change its color will change

their color from blue to red. When the overall system has been overloaded and there are no

more available PASE resources, it will show the message ‘No available resource’ on the status

bar of the PASE broker to inform administrators.

Figure 4-6 System status

 35

4.2 The Experiment Driver

A program for driving the following experiments was implemented. The main functions

of the program are 1) generate requests to the PASE broker or to the single PASE server in

original Agentflow architecture and 2) record the response time of each request and calculate

the average response time. This program generates two kinds of random numbers for the

experiments as follows:

� Arrival of requests

The arrival rate of request is assumed to conform to the poisson distribution. In this

experiment, the testing program generates four types of tasks, including createProcess(),

startTask(), completeTask() and getTaskOfCompany().

� Task service time

The task service time is assumed to conform to the exponential distribution just as in

most queuing studies. Since in real workflow cases, most tasks usually involve human

manipulation, such as filling out a form, the task service time here is used to simulate a

user takes to do finish a task. The task service time is also equivalent to the time period

between the startTask() request and the completeTask() request of a specific task.

Furthermore, the experiment driver program must simulate the behavior of the workflow

engine, i.e. when a task is finished, then it needs to trigger the next task according to the

corresponding process definitions. There should record finishing artifact state of each task in

experiment driver program. Since each task could have multiple finishing states, the

elimination of some states is required for prevention of infinite loop.

The experiment driver program requires the following six steps before starting an

experiment:

 36

(1) Select type of server, PASE Server or PASE broker

(2) Enter the host of server,

(3) Enter the port of server

(4) Enter the amounts of workflow instances to be generated

(5) Enter the lambda valuefor generating random number from the poisson distribution, and

(6) Enter the lambda value for generating random number from the exponential distribution.

Figure 4-7 illustrates these six steps.

Figure 4-7 Experiment Driver

 37

4.3 Experiment Results

In the following experiment, the amounts of created workflow instances range from 50 to

2,500, the request average arrival rate is 0.002 requests/ms, and the average task service time

is 1,000 ms. The requests considered in the experiments are createProcess(), startTask(),

completeTask(), and getTaskOfCompany(). Four different experiments are conducted to

evaluate the performance of four different architecture and mechanisms, including the single

PASE server in the original Agentflow system and, the PASE grid architecture with three

different load monitor modes, respectively. The following five figures illustrate the response

time of the four kinds of requests in different workloads and under the four different system

architectures, respectively.

Create Process

0

50000

100000

150000

200000

250000

50 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500

Instances

R
es

po
ns

e
T

im
e(

m
s)

Single PASE

PASE Broker(ins)

PASE Broker(ar)

PASE Broker(rt)

Figure 4-8 Results of createProcess()

 38

Start Task

0

50000

100000

150000

200000

250000

50 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500

Instances

R
es

po
ns

e
T

im
e(

m
s)

Single PASE

PASE Broker(ins)

PASE Broker(ar)

PASE Broker(rt)

Figure 4-9 Results of startTask()

l

Figure 4-10 Results of completeTask()

 39

Collect Data

0

100

200

300

400

500

600

700

800

900

50 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500

Instances

R
es

po
ns

e
T

im
e(

m
s)

Single PASE

PASE Broker(ins)

PASE Broker(ar)

PASE Broker(rt)

Figure 4-11 Results of getTaskOfCompany()

Obviously, the PASE grid architecture improves the runtime performance greatly

compared to the original single-server Agentflow architecture for three of the four kinds of

requests. Moreover, under different workloads, ranging from 50 to 2,500 instances, the PASE

grid can deliver a nearly constant response time, benefiting from its scalable architecture. This

is a desirable feature for moden service-oriented systems which have to confront

unpredictable and dynamically changing amounts of incoming requests, while being expected

to maintain acceptable and stable response time. The getTaskOfCompany() request is a

special case, which must get the task instances from all running PASE resources. Therefore, in

some situations, it may take even much longer time to finish than that in the original

Agentflow architecture.

 40

All

0

20000

40000

60000

80000

100000

120000

140000

50 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500

Instance

R
es

po
ns

e
T

im
e(

m
s)

Single PASE

PASE Broker(ins)

Pase Broker(ar)

PASE Broker(rt)

 Figure 4-12 Average response time of all requests

Figure 4-12, shows the maximum average request response time of the single PASE

server architecture is longer than 100,000 ms, while the maximum average request response

time of the PASE grid architecture is shorter than 4,500 ms. This result includes that the PASE

grid architecture proposed in this thesis, can effectively maintain an acceptable request

response time under request loads of large variation..

The following article presents the comparisons among different monitoring modes of the

PASE broker in detail. As seen the figures, the arrival rate mode and the response time mode

in general outperform the instance mode. Moreover, the PASE broker with the arrival rate

monitoring mode performs best and delivers a shorter and more stable average response time

than with the other two monitoring mode. However, the performance of the arrival rate mode

 41

and the response time mode could be influenced by the corresponding buffer sizes set in the

performance monitor. Therefore, relative performance of these two modes needs further

studies, considering the effects of different sizes. This also raises an important issue that how

to determine an appropriate buffer size becomes critical in delivering good and stable

performance with these dynamic request dispatching algorithms.

Create Process

0

1000

2000

3000

4000

5000

6000

50 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500

Instances

R
es

po
ns

e
T

im
e(

m
s)

PASE Broker(ins)

PASE Broker(ar)

PASE Broker(rt)

Figure 4-13 Performance results of createProcess()

 42

Start Task

0

1000

2000

3000

4000

5000

6000

7000

8000

50 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500

Instances

R
es

po
ns

e
T

im
e(

m
s)

PASE Broker(ins)

PASE Broker(ar)

PASE Broker(rt)

Figure 4-14 Performance results of startTask()

Complete Task

0

1000

2000

3000

4000

5000

6000

7000

50 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500

Instances

R
es

po
ns

e
T

im
e(

m
s)

PASE Broker(ins)

PASE Broker(ar)

PASE Broker(rt)

Figure 4-15 Performance results of completeTask()

 43

Collect Data

0

100

200

300

400

500

600

700

800

900

50 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500

Instances

R
es

po
ns

e
T

im
e(

m
s)

PASE Broker(ins)

PASE Broker(ar)

PASE Broker(rt)

Figure 4-16 Performance results of getTaskOfCompany()

All

0

500

1000

1500

2000

2500

3000

3500

4000

4500

50 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500

Instance

R
es

po
ns

e
T

im
e(

m
s)

PASE Broker(ins)

Pase Broker(ar)

PASE Broker(rt)

Figure 4-17 Average response time of all requests

 44

Chapter 5. Conclusions and future work

The major contribution of this thesis is propose a PASE grid architecture and, based on it,

depelop a grid-enabled scalable workflow computing platform.. It achieves several

on-demand resource provisioning and thus able to produce acceptable and stable request

response time under a wide range of dynamically varying request workloads. A prototype

system has been implemented, and used to conduct a series of experiments for evaluating the

performance of the proposed architecture.

The results of experiments shows that under different workloads, ranging from 50 to

2,500 workflow instances, the PASE grid can effectively deliver a nearly constant response

time, benefiting from its scalable architecture. This is a desirable feature for moden

service-oriented systems which have to confront unpredictable and dynamically changing

amounts of incoming requests, while being expected to maintain a acceptable and stable

response time

 Based on our experience in the work and experiments described in this thesis, we point

our some promising future research topics worth further investigations in the following.:

(1) Determining an appropriate buffer size for measuring average response time and request

arrival rate is crucial for accurately representing the system workload. Further

investigations are required on this issue in order to ensure that the dispatcher can

effectively assign the income requests to appropriate PASE resources for delivering good

and stable runtime performance.

 45

(2) The Globus toolkit is currently the most widely deployed grid middleware. Integrating the

services provided by Globus Toolkit into the PASE grid architecture could make our

scalable workflow computing platform much easier to be adopted and implemented in

current grid environment..

(3) Using history records to help predict future incoming requests is a promising approach to

enable the dispatcher for making more appropriate allocation decisions

(4) Security is always one critical design issue in developing any grid applications and

environments, so is it in our PASE grid architecture. This will be an important aspect in

future extension of the PASE grid architecture.

 46

References

[1] Foster I, Kesselman C and Tuerke S. “The Grid: Blueprint for a New computing

Infrastructure”, Morgan Kaufmann (2003).

[2] Foster I, “The Grid: A New Infrastructure for 21st Century Science”,.Physics Today, 55 (2).

42-47. 2002.

[3] D. De Roure, M. A. Baker, N. R. Jennings, and N. R. Shadbolt. “The Evolution of the

Grid”. In Grid Computing: Making The Global Infrastructure a Reality, pages 65–100.

JohnWiley& Sons, 2003.

[4] Flowring Technology Corp, Agentflow system, http://www.flowring.com

[5] Catlett C, Smart L, “Metacomputing”, Communication of the ACM, vol. 35, no. 6, 1992

[6] FAFNER, http://www.npac.syr.edu/factoring.html

[7] Foster I, Geisler J, Nickless W, Smith W, and Tuecke S, “Software infrastructure for the

I-WAY high performance distributed computing environment”, Proceedings of 5th IEEE

Symposium on High Performance Distributed Computing, 1997.

[8] Kephart J.O , Chess D.M, “The vision of autonomic computing”, Computer,

Vol:36, Issue: 1, 2003

[9] Laszewski Gv, Amin K, Hategan M, Zaluzec NJ, Hampton S, Rossi A, “GridAnt: A

client-controllable Grid workflow system.”, Proceedings of 37th Hawaii International

Conference on System Science, 2004.

[10] Shields M, Taylor I, “Programming scientific and distributed workflow with Triana

services”, Proceedings of Workflow in Grid Systems Workshop in GGF 10, 2004.

[11] Krishnan S, Bramley R, Gannon D, Govindaraju M, Alameda J, Alkire R, Drews T, Webb

E, “The XCAT science portal”, Proceedings of Supercomputing, 2001.

[12] Cao J, Jarvis SA, Saini S, Nudd GR, “GridFlow: Workflow management for Grid

computing”, Proceedings of 3rd International Symposium on Cluster Computing and the

 47

Grid, 2003.

[13] Altintas I, Berkley C, Jaeger E, Jones M, Ludaescher B, Mock S, “Kepler: Towards a

Grid-enabled system for scientific workflows”, Proceedings of Workflow in Grid

systems Workshop in GGF10, 2004.

[14] Czajkowski K, Fitzgerald S, Foster I, Kesselman C. “Grid Information Services for

Distributed Resource Sharing”. Proceedings of 10th IEEE International Symposium on

High Performance Distributed Computing, 2001.

[15] Baru C, Moore R, Rajasekar A, Wan M, “The SDSC Storage Resource Broker”,

Proceedings of the 1998 conference of the Centre for Advanced Studies on Collaborative

research

[16] Shin-Jin Chou, Feng-Jian Wang, “Constructing a Management System for a University

Department”, Master Thesis, National Chiao-Tung University, 2001.

[17] Mowshowitz A, “Virtual Organization”, Communication of the ACM, Vol.40, No. 9 ,

1997

[18] The Globus Alliance, Globus Toolkit, http://www.globus.org

[19] Grimshaw A, Wulf W. et al., “The Legion Vision of a Worldwide Virtual Computer”,

Communications of the ACM, vol.40, 1997.

