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Abstract

High performance InAlAs/InGaAs metamorphic high electron mobility
transistors (MHEMTs) have been®fabricated and. characterized for high frequency
applicatiions. The performance- of.the MHEMTs was improved by optimizing the
device structure and reducing-the gatelength using several novel gate-shrinking
techniques. The epi-structure, layout.design’ and electrical measurements of the
MHEMTs were also discussed.

In this dissertation, several novel gate shrinking processes for MHEMTs
fabrication were developed. For cost-effective production of submicron MHEMTs, a
0.15-um I'-shaped gate MHEMT technology using Deep UV lithography and a tilt
dry-etching technique was developed and demonstrated for the first time. The
fabricated 0.15-um MHEMT using this novel technique shows a drain-source current
of 680 mA/mm and transconductance of 728 mS/mm. The cutoff frequency fr and
maximum oscillation frequency f,,. of the MHEMT are 130 GHz and 180 GHz,
respectively. In addition, a 0.1 pum T-gate was achieved by thermally reflowing the
bi-layer E-beam resist using hotplate and the 0.1-um T-gate was applied to the

MHEMT manufacture. Comparing with 2 step lithography of the conventional



E-Beam T-gate process, the reflowed gate process is a much simpler, relatively
inexpensive and flexible process.

Under 100-nm scale, a low-noise MHEMT using 90-nm sidewall T-gate process
was also successfully fabricated. The noise figure of the 160um-width MHEMT was
0.69dB and the associated gain was 9.76dB at 16GHz. Moreover, a 70-nm
Ing soAlp43As/Ing GapsAs power MHEMT with double &-doping for power
application was also fabricated and evaluated. The device has a high transconductance
of 827 mS/mm, high saturated drain-source current of 890 mA/mm, high f7 of 200
GHz, and a high f,,,, of 300 GHz was achieved due to the nanometer gate length and
the high Indium content in the channel. When measured at 32 GHz, the device
demonstrates a maximum output power of 14.5 dBm with P1dB of 11.1 dBm and the
power gain is 9.5 dB. The excellent DC and RF performance of the 70-nm MHEMT
shows a great potential for the Ka band power-applications.

In addition, electrical characteristics.and.thermal stability of the Ti/Pt/Cu contact
on InAlAs Schottky layer of the MHEMT were ‘investigated. The Ti/Pt/Cu Schottky
contact had comparable electrical properties compared to the conventional Ti/Pt/Au
contact after annealing. As judged from the material analysis, the Ti/Pt/Cu on InAlAs
after 350°C annealing showed no diffusion sign into the InAlAs. After 400°C
annealing, the interfacial mixing of Cu and the underlying layers occurred and
resulted in the formation of Cu4Ti. The results show that the Ti/Pt/Cu Schottky
contact using platinum as the diffusion barrier is very stable up to 350°C annealing

and can be used for the InAlAs/InGaAs HEMTs and MMICs fabrication.
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