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Abstract

This study is devoted to providing precise predictions of the dc dynamic pull-in voltages of a
clamped–clamped micro-beam based on a continuous model. A pull-in phenomenon occurs
when the electrostatic force on the micro-beam exceeds the elastic restoring force exerted by
beam deformation, leading to contact between the actuated beam and bottom electrode. DC
dynamic pull-in means that an instantaneous application of the voltage (a step function such as
voltage) is applied. To derive the pull-in voltage, a dynamic model in partial differential
equations is established based on the equilibrium among beam flexibility, inertia, residual
stress, squeeze film, distributed electrostatic forces and its electrical field fringing effects. The
method of Galerkin decomposition is then employed to convert the established system
equations into reduced discrete modal equations. Considering lower-order modes and
approximating the beam deflection by a different order series, bifurcation based on phase
portraits is conducted to derive static and dynamic pull-in voltages. It is found that the static
pull-in phenomenon follows dynamic instabilities, and the dc dynamic pull-in voltage is
around 91–92% of the static counterpart. However, the derived dynamic pull-in voltage is
found to be dependent on the varied beam parameters, different from a fixed predicted value
derived in past works, where only lumped models are assumed. Furthermore, accurate
closed-form predictions are provided for non-narrow beams. The predictions are finally
validated by finite element analysis and available experimental data.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent advances in the technology of micro-electro-
mechanical systems (MEMS) have accelerated the design
and application of micro-sensors and actuators based on
electrostatic actuation, such as pressure sensors [1, 2],
microphones [3, 4] and optical/RF switches [5–9] in varied
structures. Electrostatic devices are, in fact, capacitors
that are composed of one deformable electrode and another

fixed electrode (backplate). With the application of a cross
voltage the flexible electrode deforms and then touches the
fixed electrodes for different application objectives. Some
applications, such as microphones [3, 4] or pressure sensors
[1, 2], must be only operated within a safe range without
pull-in occurrence, while others, such as optical/RF switches
[5–9], need to tune the bias voltage across the pull-in back and
forth to alternate switch on and off. In all the aforementioned
applications, information on the critical bias voltage as the
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pull-in occurs (so-called pull-in voltage) must be precisely
computed before usage, and thus provided to designers for
meeting the required device specifications.

There have been some research works devoted to
predicting pull-in occurrence for a variety of electrostatic
sensors and actuators [10]. In these studies, pull-in problems
were initially predicted without considering the dynamics of
the deformed electrode, deriving the so-called static pull-in
condition. In later works, to reflect operation reality, the
applied voltage is considered in varied fashions of dc voltage
(step voltage input), ac voltage (harmonic-like voltage input)
or combined ac/dc voltage to consider the dynamics of the
deformed electrode for rendering more precise pull-in voltage
predictions. Note that the present study is primarily devoted to
the precise prediction of dc dynamic pull-in voltage with clear
comparison with static counterparts to stress the necessity for
dc dynamic pull-in voltage prediction.

For static pull-in, early works [11–13] assumed a 1D
lumped model to approximate the behaviors of deformed
beams/plates, with the aim to predict the static pull-in
phenomenon. Recognizing that the inevitable error resulted
from the approximation of the deformed plates/beams by the
lumped model, some researches were conducted based on
continuous models [14–25] or finite element models (FEM)
[13, 18, 20, 26]. These works, which use continuous models,
aim to obtain analytical predictions on the static pull-in
position and voltages. Younis et al [14] presented a continuous
reduced-order model for predicting the pull-in of electrically
actuated MEMS micro-beams. Vogl et al [17] also presented
a continuous reduced-order model taking into consideration
a uniform residual biaxial plane stress for actuated circular
plates instead of beams, as in [14]. Chao et al [19] proposed a
novel computation procedure to predict the static pull-ins and
verified it by experiments.

In addition to the above studies devoted to static pull-in,
research works [27, 28] began to realize that in most practical
operations of the aforementioned electrostatic devices, voltage
starts to be applied when the micro-beam is not deformed,
i.e., an instantaneous application (step-function) of voltage—
called a dc dynamic pull-in voltage. It should be noted
that most previous studies on static pull-ins [10–18, 23, 26],
strictly speaking, are for ‘quasi-static’ pull-in prediction. For
microphones and pressure sensors with an initial bias voltage
applied for better performance and for micro-switches, it
is very important to re-estimate the pull-in voltage with an
applied voltage in the form of a step function, since the actual
pull-in voltage is lower than the one predicted based on the
quasi-static pull-in assumption due to the inertial effect of the
deformed electrode. This pull-in at lower voltage is generally
referred to as ‘dc dynamic pull-in’, or simply ‘dynamic pull-
in’ by [27, 28]. For simplicity, this dc dynamic pull-in is
abbreviated as ‘dynamic pull-in’ from now on. To predict this
dynamic pull-in voltage/position, Neilson and Barbastathis
[27] analyzed lumped parallel-plate and torsional electrostatic
MEMS actuators. Elata and Bamberger [28] considered a
lumped multiple degrees of freedom system to derive the
dynamic pull-in voltage. Both works [27, 28] arrive at the
ratio between static and dynamic pull-in voltages close to

91.9% for the lumped parallel-plate actuator. In order to
pursue more precise dynamic pull-in predictions than those
[27, 28] based on simple lumped models, the present study
aims to find precise dc dynamic pull-in voltages based on a
comprehensive continuous micro-beam model, even providing
closed-form predictions with some level of accuracy.

Other than re-forging actuation strategies based on
previous analytical works, some studies investigate the
dynamics of micro-beams subjected to persistent ac voltage
application [29–35], dc/ac voltage [36] and those with a
time-varying capacitor [37], while others are devoted to
the development of control strategies [38–42]. They use
either feedback control [38–40] to prevent pull-in or a series
inductance or capacitor in a control circuit [41]. A promising
method is charge control [42], which successfully extends
the travel range, as compared to voltage-controlled devices.
Although these feedback control approaches prevent pull-in,
it requires substantial effort to design and realize the control
algorithm.

The present study is primarily devoted to the precise
prediction of dc dynamic pull-in voltage with clear comparison
with static counterparts to stress the necessity for dc
dynamic pull-in voltage prediction. In order to predict
the precise dc dynamic pull-in voltage, the present study
starts with an establishment of continuous governing partial
differential equations (PDEs) in section 2 for a micro-beam
clamped at both ends. The built system PDEs are capable
of describing vibrations of the micro-beam, squeeze film
damping and fringing electric field effects. The Galerkin
method is then employed to decompose the governing
PDEs into discrete ordinary differential equations (ODEs) in
section 3. The Taylor series approximation is adopted to
represent the nonlinear electrostatic force term for integration
in the process of Galerkin’s decomposition. From the derived
ODEs, the static pull-in voltages and positions are obtained
via bifurcation analysis in subsection 4.1. A closed-from
prediction of the static pull-in voltage is finally derived for
cases of non-narrow beams. In the next step, phase portraits
are depicted, where homoclinic orbits are present for system
dynamic characteristics. Based on these orbits, dynamic pull-
ins are predicted in subsection 4.2 and the dependence on
varied beam parameters are computed and analyzed in section
5 to provide design and operation guidelines for the considered
micro-beams. A closed-from prediction of the dynamic pull-
in voltage is also derived for cases of non-narrow beams.
Prediction results are finally validated in section 6 by finite
element modeling/analysis and experimental data. Finally,
section 7 concludes this study.

2. Dynamic model

A micro-beam clamped at both ends as shown in figure 1 is
considered for the present study. This beam has an electrode
backplate much thicker than the top micro-beam. With the
application of a bias voltage across the beam and electrode
backplate, a distributed electrostatic force between the beam
and electrode is generated, thus deforming the micro-beam.
As the applied step-like voltages increased to some level,
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Figure 1. Cross-section and top views of the continuous model of
the parallel charged micro-plates.

the restoring force induced by the deflected beam would not
be able to balance the electrostatic force increased by the
deformed beam, then leading to contact between the beam
and electrode. This phenomenon is commonly referred to as
‘pull-in’ or ‘pull-in instability’. For optical switches, the bias
voltage is tuned to be above or below the pull-in voltage to
emulate switch on and off, respectively. A precise prediction
of the pull-in plays an important role in device operations.
The prediction of the pull-in is started herein by establishing
the governing distributed equations of motion for the top
deformable thin beam in figure 1, that is,

E′I
∂4w

∂x4
+ ρbh

∂2w

∂t2
+ c

∂w

∂t
− N

∂2w

∂x2
= FE − FA, (1)

subjected to the boundary conditions

w(0, t) = w(L, t) = 0, (2a)

∂w(0, t)

∂x
= ∂w(L, t)

∂x
= 0, (2b)

where w = w(x, t) is the deflection of the deformed micro-
beam, x is the coordinate originated at the left beam anchor
point and along the length of the micro-beam, and h, c, b and ρ

are the thickness, material damping, beam width and density
of the micro-beam, respectively. In addition, E′ is an effective
Young’s modulus, i.e., E′ = E/(1 − ν2) where ν is Poisson’s
ratio. A = bh and I = bh3/12 are the cross section area and the
associated moment of inertia, respectively. Finally, N denotes
the axial force of the deformed beam, which can be expressed
as

N = σbh, (3)

where σ is the residual stress arising from the heat generated
during the etching process to form the deformed micro-beam.
Note that the deflection of the micro-beam is small compared
to its thickness; thus, the beam behavior is bending dominant.
The linear stretching force by equation (3) is consequently
adequate as opposed to other nonlinear stretching forces in
[18] for the present study. Also appearing in the governing
equation (1), FE represents the equivalent pressure on the
deformed plate due to the applied electrostatic force per unit
beam length of the plate, while FA is the equivalent pressure
force per unit beam length due to the squeeze film effect.

Considering the fringing effects of the charged beam, the
electrostatic force term FE can be prescribed by [13, 20, 43]

FE = εV 2b

2(d − w)2

[
1 + 0.65

(d − w)

b

]
, (4)

where ε, V and d are the permittivity of free space in the air gap
per unit area of the deformed micro-beam, applied bias voltage
and the initial air gap between the beam and the electrode,
respectively. On the other hand, to obtain FA, a 2D Reynolds
equation is first derived from the Navier–Stokes equation under
the assumptions that (1) the effects of air inertia are negligible
as compared to viscosity, (2) the pressure gradient across
the thin film is near zero and then the flow in the direction
perpendicular to the plates is negligible, yielding

∂

∂x

(
ρag

3

12μ

∂p

∂x

)
+

∂

∂y

(
ρag

3

12μ

∂p

∂y

)
= ∂ (ρag)

∂t
, (5)

where μ, p, ρa and g represent the effective air viscosity,
pressure, air density and film thickness, respectively. The
effective air viscosity can be captured by μ = μ0/ (1 + 6Kn)

in order to take into account the correction on the slip-
boundary condition. μ0 is the absolute air viscosity, while
Kn is the Knudsen number [44, 45] and Kn = λ/g, where
λ = 0.064 μm for air. For the present study, since the air film
is approximately 1 μm, Kn is small. The effective viscosity μ

can then be captured by the absolute viscosity μ0. On the other
hand, based on other previous definitions, g = d − w. In the
next step, the air in the squeeze film is assumed incompressible
since the calculated squeeze numbers for the designed micro-
beams listed in the tables are all small [18]. The associated
pressure can further be assumed to be

p̃ = p − pa, (6)

where pa is the ambient atmospheric pressure. Following the
analysis steps in [18, 46], which are essentially assuming (1)
the distribution pressure as a parabolic function and (2) the
gap is much smaller than the beam length, i.e., d, g � L, one
can arrive at

FA = −KB

∂ĝ

∂t
(7)

where ĝ = g/d, KB = (3μb̂2)/(2ĝ3) and b̂ = b/d.
In common practice, since b � g, KB could be large
enough such that FA is too large to neglect in the governing
equation (1), as compared to the electrostatic force term FE .
To this point, with FE and FA obtained in equations (4) and (7),
respectively, the governing equation (1) is ready to be solved
to decipher the dynamics of the deformed micro-beam. For
the convenience of ensuing analysis, the system equation (1)
is further nondimensionalized to be of the form

∂4ŵ

∂x̂4
+

∂2ŵ

∂t̂2
+ (ĉ + K̂B)

∂ŵ

∂t̂
− N̂

∂2ŵ

∂x̂2
= αF̂E, (8)

where

ŵ = w

d
, x̂ = x

L
, t̂ = t

T
, b̂ = b

d
,

T =
√

ρAL4

EI
, ĉ = cL4

EIT
, N̂ = NL2

EI
,

3



J. Micromech. Microeng. 18 (2008) 115008 P C-P Chao et al

F̂ E = V 2

(1 − ŵ)2

[
1 + 0.65

(1 − ŵ)

b̂

]
, α = εbL4

2EId3
,

μ̂ = L4

EIT
μ, K̂B = μ̂ · b̂3

(1 − ŵ)3
.

Note in equation (8) that the beam width b̂ affects the squeeze
film effect through the term associated with K̂B . With a
complete system equation in hand, a modal decomposition is
performed in the following section to derive pull-in positions
and voltages.

3. Modal equations

The method of Galerkin decomposition is employed herein to
approximate the system equation (8) by a reduced-order model
composed of a finite number of discrete modal equations. The
process starts by separating the dependences of the deflection
of the deformed thin plate, ŵ(x̂, t̂ ), into temporals and spatials
by the functions ŵm(t̂)s and φm(x̂)s, respectively, in the form
of a series of products, i.e.,

ŵ(x̂, t̂ ) ≈
n∑

m=1

ŵm(t̂)φm(x̂), (9)

where ŵm(t̂)s capture the temporal dependence of the beam
deflection by the forms of a series of time-varying coefficients,
while φm(x̂)s do the corresponding spatial dependence, which
are the trial functions to emulate the mode shapes of the
deformed thin plate with expected satisfaction of boundary
conditions (2a) and (2b). Based on continuous mechanics,
φm(x̂)s are assumed, as below, to render well approximation
even with a low number of terms (modes) considered in
equation (9), i.e.,

φm(x̂) = C0

[
sinh(b∗x̂) − b∗

a∗ sin(a∗x̂)

+

(
sinh(b∗) − b∗

a∗ sin(a∗)
cos(a∗) − cosh(b∗)

)
(cosh(b∗x̂) − cos(a∗x̂))

]
,

(10)

where

a∗ =

√√√√
√

N̂2 + 4ω2
i − N̂

2
, b∗ =

√√√√ N̂ +
√

N̂2 + 4ω2
i

2
,

and C0 is the coefficient to be determined. Note that N denotes
the axial force and ωis represent the ith natural frequency of
the beam structure. The functions φm(x̂)s in equation (10)
are, in fact, the mode shapes of the considered micro-beam,
and the undetermined C0s are incorporated in ŵm(t̂)s, which
are to be sought in the following computation. Substituting
equation (9) into (8), multiplying by the functions φm(x̂),
1 � m � n, in equation (10) on both sides and integrating the
substituted equations over the considered surface domain of the
deformed beam, the coupled nonlinear modal discrete ODEs
of the system can be derived, based on mutual orthogonality
between different φm(x̂)s, as

Mẅ + Cẇ + Kw = fe, (11)

where the vector w contains all ŵm(x̂)s, 1 � m � n, specified
by equation (9). The elements associated with parametric
matrices in equation (11) can be obtained by

M : mmm =
∫ 1

0
φ2

m(x̂) dx̂, (12)

C : cmm = ĉ

∫ 1

0
φm(x̂) · φm(x̂) dx̂

+
∫ 1

0
K̂B · φm(x̂) · φm(x̂) dx̂ (13)

K : kmm =
∫ 1

0

[
d4φm(x̂)

dx̂4
− N̂ · d2φm(x̂)

dx̂2

]
· φm(x̂) dx̂. (14)

Also on the right-hand side of the reduced model equation (11)
is the electrostatic force term fe, which can be derived by

fe : fem = α

∫ 1

0
F̂ E · φm(x̂) dx̂ (15)

where F̂ E is the electrostatic distributive force between the
beam and electrode, which is, in fact, a nonlinear function
of the plate deflection ŵ(x̂, t̂ ), as given in equation (8).
Observing the obtained decomposed equations (11)–(14), one
could arrive at the following. First, the derived kiis are
the stiffness elements associated with the eigenmodes of the
deformed beam. Second, the orthogonality between different
modes results in diagonal matrices M and K, as evidenced
from the computed right-hand sides of equations (12)–(14),
while matrix C is not diagonal due to the fact that K̂B is a
function of beam deflection. Therefore, the second term on
the right-hand side of equation (13) results in nonzero coupling
(non-diagonal) terms in matrix C.

4. Pull-in predictions via bifurcation analysis

With the system discrete ODEs (11) in hand, bifurcation
analysis is performed in this section to find static and
dc dynamic pull-in voltages and positions. Note that for
simplicity, this dc dynamic pull-in is abbreviated as ‘dynamic
pull-in’ in what follows. Owing to the relative closeness
between the first mode shape and practical deformed micro-
beam, the analysis herein considers only the first mode in the
decomposition (9), i.e., ŵ(x̂, t̂ ) ≈ w1(t̂)φ1(x̂), where w1(t̂) is
then the largest deflection of the deformed fixed–fixed beam at
the center point. The effectiveness of this first-mode approach
to represent practical full-order micro-beam dynamics will
be validated in section 6 via finite element modeling and
experimental data.

4.1. Static pull-in

The static pull-in is predicted based on the dynamic equation
for the first mode, as shown in equation (11). Expanding the
squeeze film term associated with K̂B in equation (13) and
the electrostatic force term F̂ E in equation (15) to the Taylor
series, and then incorporating them into equation (11), one
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can obtain the dynamic equation for the first mode to the fifth
order in a state-space form as follows:

˙̂x = ŷ

˙̂y = γ0 + γ1x̂ + γ2x̂
2 + γ3x̂

3 + γ4x̂
4 + γ5x̂

5 (16)

+ μ1ŷ + μ2x̂ŷ + μ3x̂
2ŷ + μ4x̂

3ŷ + μ5x̂
4ŷ + H.O.T.

where x̂ ≡ w1, ŷ ≡ ẇ1, and H.O.T. denotes summation
containing higher-order terms above the fifth order, which,
based on the smallness of normalized states w1, are omitted
with satisfactory accuracy. Note that equation (16) is truncated
to the fifth order for considering the nonlinear terms with
order slightly higher than the first nonlinear order, the third
order. This is aimed for relative accuracy in predicting
beam deflection, which is basically an odd function of an
applied external force. The validity of the fifth-order truncated
expression (16) will be proven effective by later finite element
analysis and experimental data. Performing integrations
in equations (12)–(14) for Galerkin’s decomposition, the
parameters in equation (16) can be derived as

γ0 = −(1.32 + 0.8576/b̂)αV 2,

γ1 = (2 + 0.65/b̂)αV 2 − 500.544 − 12.31N̂,

γ2 = −(2.5 + 0.544/b̂)αV 2,

γ3 = (3 + 0.4773/b̂)αV 2, γ4 = −(3.31 + 0.43/b̂)αV 2,
(17)

γ5 = (3.6447 + 0.395/b̂)αV 2,

μ1 = −ĉ − 1.01μ̂b̂3, μ2 = 2.5μ̂b̂3,

μ3 = −4.406μ̂b̂3, μ4 = 6.62μ̂b̂3,

and μ5 = −9.112μ̂b̂3.

It can be seen from equations (16) and (17) that the electrostatic
force, which is induced by the bias voltage V, influences
the system dynamics through the terms with parameters γ s
in equation (16), while the other terms with coefficients
μs are affected by the squeeze film effect and the material
damping c of the deformed beam. Furthermore, the electrical
field fringing affects the first-mode dynamics through the
parameters b̂s in γ s. To perform bifurcation analysis, new
variables {u ≡ x̂ + γ1/2γ2, v ≡ ŷ} are introduced to transform
equation (16) into

u̇ = v

v̇ = γ̃1 + γ̃2u
2 + μ̃1v + μ̃2uv + H.O.T.

(18)

where γ̃1 ≡ γ0 − γ 2
1

/
4γ2, γ̃2 ≡ γ2, μ̃1 ≡ μ1 − μ2γ1/2γ2 and

μ̃2 ≡ μ2, while considering the system dynamics to the second
order for bifurcation analysis. Bifurcation analysis starts by
seeking the fixed-point solutions of equation (18), which can
be easily derived as

(u, v) = (±
√

−γ̃1/γ̃2, 0) ≡ (u±, 0). (19)

Based on the definitions in equation (17), γ̃1 > 0 and γ̃2 < 0
for most practical designs cases in the present study; thus,
the Jacobian of the system equation (18) with respect to the
derived fixed-point solutions in equation (19) becomes

D =
[

0 1
±2γ̃2

√−γ̃1/γ̃2 μ̃1 ± μ̃2
√−γ̃1/γ̃2

]
. (20)

1 2/μ μ−

1 2/γ γ−

1 2 1 2/ /μ μ γ γ− = − −

1 2 1 2

5
/ /

7
μ μ γ γ−− = −

Figure 2. Bifurcation diagram.

A simple calculation with solution (19) and Jacobian
matrix (20) reveals that (u+, 0) is a source for {−μ̃1/μ̃2 <√−γ̃1/γ̃2, γ̃2 < 0, γ̃1 > 0} and a sink for {−μ̃1/μ̃2 >√−γ̃1/γ̃2, γ̃2 < 0, γ̃1 > 0}, while (u−, 0) is a saddle for γ̃2 < 0.
Checking the solution characteristics associated with the
changes in the eigenvalues of D, it is found that a Hopf
bifurcation occurs on the curve {−μ̃1/μ̃2 = √−γ̃1/γ̃2}, while
a saddle-node bifurcation on the boundary of {−γ̃1/γ̃2 =
0,−μ̃1/μ̃2 	= 0}. One can further follow the similar
analysis procedures presented in [47–49] to arrive at a global
bifurcation diagram, as shown in figure 2. It should be noted at
this point that to describe properly the dynamic characteristics
of electrostatic actuators, infinite order of the expansion should
be preserved [18, 33, 37]. Furthermore, figure 2 presents
only the general bifurcation results near the neighborhood
of the origin, (x̂, ŷ) = (−γ1/2γ2, 0) based on the reduced
equation (16), which do not necessarily reflect the actual
responses of the full-order system. Examining the entire
bifurcation diagram in figure 2, one can find that the stable
fixed point at (u+, 0) = (

√−γ̃1/γ̃2, 0) actually gives rise to
a stable center position of the deflected micro-beam before
the pull-in occurs. The disappearance of this stable (u+, 0) =
(
√−γ̃1/γ̃2, 0) occurs as the bias voltage increases to cross the

bifurcation boundary

−μ̃1/μ̃2 =
√

−γ̃1/γ̃2, (21)

leading to the static pull-in phenomenon. Therefore,
equation (21) is, in fact, the static pull-in condition, based
on which the solution of equation (21), the static pull-in
voltage, can be obtained. However, due to its complexity,
the expression of this static pull-in voltage is only listed in the
appendix. The associated pull-in position can then be derived
by incorporating condition (21) into (u+, 0) = (

√−γ̃1/γ̃2, 0),
yielding, after simplification,

w1,pi ≈
√

0.340 04/b̂ + 0.523 138√
0.215 742/b̂ + 0.995 732

, (22)

5
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where the micro-beam material damping c is considered small
as compared to the squeeze film effect and then neglected.
Note that the resulting static pull-in voltage and position
from equations (21) and (22) are not exact, since they are
derived only based on the truncated dynamics of the original
equation (16) up to the second order. To increase prediction
precision, the higher order terms in equation (16) are
considered to solve for pull-in voltage/position. However,
limited by the computation capability of manipulating
complicated equations, the closed-form prediction of the static
pull-in voltage can only be derived up to the fourth order.
Due to its lengthy expression, it is not reported here. For
better precision in predictions, equation (16) up to the fifth
order are directly solved for steady-state solutions and then
the associated Jacobian is computed for deriving bifurcation
condition, which leads to numerical solutions of static pull-in
position/voltages. These fifth-order solutions could be used to
explore the correctness of the previously derived low-ordered
solution. It is pertinent to note at this point that the previous
lengthy solutions are primarily due to the consideration of
field fringing effects. Without taking fringing effects into
consideration, the static pull-in voltage can be solved to the
fifth order in a closed-form as follows:

Vs,pi ≈ 0.927 783
√

82.2287 + 2.021 65N̂√
α

, (23)

where the subscripts stand for ‘static pull-in’. The associated
pull-in deflection is

w1,pi ≈ 0.414311, (24)

which is close to those static pull-in predictions in
[13–19]. Finally, full-order solutions are also sought based on
equation (11) and following the detailed procedure provided
by [19], which adopts the well-known numerical approaches
of Simpson’s integration and Newton’s method for solving
nonlinear algebraic equations on the right-hand sides of
equation (11).

Based on the aforementioned solution process,
figures 3(a) and (b) depict the resulting static pull-in
voltages and positions, respectively, with respect to the varied
normalized beam width b̂. This normalized parameter b̂ is
actually the ratio of actual beam b width to the gap d. Based on
figure 3, the effects of the fringing field can be derived, which
generally follows those discovered by the analysis in [20]. It
is seen from figure 3(a) that the derived static pull-in voltages
in cases without fringing effects considered do not depend on
the beam width, while in cases with field fringing considered
the pull-in voltages are smaller at low b̂, but approach those
without field fringing considered as b̂ increased. Based on
the above observation, it can be deducted that if the width
of the micro-beam considered is narrow, i.e., approximately
b̂ < 30, the fringing field effects should be considered to render
accurate predictions on static pull-in voltages; otherwise, the
static pull-in voltage could be approximated well by the fifth-
order approximation in equation (23), which is in a closed
form. It is also seen from figure 3(a) that the static pull-in
voltages with field fringing considered decreases substantially
as the beam width is close to zero (for narrow beams). This is
due to the fact that the field fringing effect is strong for narrow
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Figure 3. (a) Static pull-in voltages and (b) the associated center
deflection (downward), with respect to the beam width b̂.

beams, thus causing earlier pull-ins at small levels of applied
voltages.

Regardless of whether field fringing is considered or not,
it is seen from figure 3(a) that the fifth-, full-order and second-
order (bifurcation results from equation (21)) predictions are
close to each other, while the second-order has slightly higher
predictions, indicating that the second-order predictions might
not be the suitable choices for designers to seek precise pull-in
voltages. However, it should be recalled that compared to the
results in the literature [13–19] where lumped models or low-
order predictions are performed, predictions without fringing
effects considered still present a fair correctness for the MEMS
micro-beam designer, while b̂ is above the moderate level. On
the other hand, figure 3(b) shows the corresponding center
deflection of the micro-beam at the occurrence of pull-in,
where it is also seen that second-order (bifurcation) analysis
predicts much larger pull-in deflections (in magnitude) than
fifth- and full-orders, indicating that second-order deflection
predictions are not reliable.

4.2. Dynamic pull-in

Analysis of the transient response is pertinent at this point,
since for common operations of micro-beam devices a bias
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voltage is applied when the beam is not deformed, i.e.,
ŵ(x̂, 0) = 0. Besides, the beam inertia and viscosity arising
from the squeezed film in the gap play a part in dynamic
pull-in occurrence. Therefore, the pull-in voltage has to
be re-estimated with the micro-beam dynamics considered.
Note that the corresponding bias voltage leading to the pull-in
is defined herein as ‘the dynamic pull-in voltage’ [27, 28].
The related deformation of the beam as the pull-in occurs is
called “dynamic pull-in deformation (roughly ‘position’)”.
Based on the above-defined dynamic pull-in, the associated
pull-in voltage is sought to be smaller than static
counterparts derived by equation (21). To find an
exact prediction of the dynamic pull-in, the related
position/voltage are then derived based on the Hamiltonian
formulation and homoclinic bifurcation analysis. This
process starts by assuming that the air viscosity in the
squeezed film and the material damping of the deformed
beam are small; thus, the parameters μs defined in
equation (17) are small, enabling the scaling of μ = εμ̄, which
can be utilized to re-express the truncated state equation (18)
as

u̇ = v

v̇ = γ̃1 + γ̃2u
2 + ε (μ̄1v + μ̄2uv) + H.O.T.

(25)

With the above scaled equations, the bifurcation problem is
reduced to a two-parameter problem with a small scaling
parameter ε. Considering ε → 0, i.e., zero dampings,
equation (25) becomes an integrable Hamiltonian system

u̇ = v

v̇ = γ̃1 + γ̃2u
2 (26)

with the Hamiltonian

H (u, v) = v2

2
− γ̃1u − γ̃2

3
u3. (27)

The motivation for introducing an unperturbed (undamped)
system in equation (26) is to predict the occurrence of the
dynamic pull-in first based on this simpler system; thus,
the precise dynamic pull-in could be derived by extending the
results to the perturbed system. Typical phase portraits of the
above unperturbed system near the dynamic pull-in can easily
be depicted, which are shown in figure 4 for before, at and
after the dynamic pull-in. The parameters of a typical micro-
beam listed in table 1 are used for calculations to generate
figure 4. Note that figure 4 is presented in the axes of pre-
defined x̂ = w1 and ŷ = ẇ1, different from u and v in
equation (25), for an easy ensuing analysis. It is seen from
figure 4 that there is a particular orbit �0 originating from and
ends at a saddle point S, which is called the ‘homoclinic orbit’.
Based on the theory for classic Hamiltonian systems, the value
of the Hamiltonian H defined in equation (27) is preserved
along an orbit. Since this orbit passes the equilibrium of the
system equation (26), the saddle point in figure 4, the following
can be obtained:

H�0(u, v) = 4(γ̃1)
3/2/3(−γ̃2)

1/2, (28)

which is a positive real number since γ̃2 is negative. While
looking for dynamic pull-ins, we need to determine whether

Table 1. Typical baseline parameter values of the micro-beam for
pull-in analysis [22].

Symbol Parameters Value/unit

h Beam thickness 3.0 μm
L Beam length 350.0 μm
d Gap thickness 1 μm
b Beam width 50 μm
E Young’s modulus 169 GPa
σ Residual stress 40 MPa

the orbit starting from the origin of figure 4, (x̂, ŷ) ≡
(w1, ẇ1) = (0, 0), is located inside the homoclinic orbit �0.
It is seen from figure 4(a) that with a smaller bias voltage, the
origin is located inside �0, the consequent dynamics starting
from the origin oscillates and never diverges outside of the
homoclinic orbit �0, i.e., no pull-in occurs. In contrast, if
the bias is increased, the homoclinic orbit �0 moves to the
left direction in the phase portrait, as shown in figures 4(a)–
(c), until �0 is outside of the origin, causing dynamic pull-in.
Therefore, it can be concluded that the dynamic pull-in occurs
when the homoclinic orbit �0 passes (x̂, ŷ) ≡ (w1, ẇ1) =
(0, 0), or (u, v) = (γ1/2γ2, 0). The corresponding dynamic
pull-in voltage can be found by solving

4(−γ̃1)
3/2/3(γ̃2)

1/2 = H�0

(
u = γ1

2γ2
, v = 0

)
. (29)

Due to high nonlinearity involved in equation (29), only
numerical solutions of the dynamic pull-in voltage can be
obtained. It should be noted at this point that since the
dynamic pull-in prediction based on equation (29) results from
the previous zero-dissipation assumption, the solved dynamic
pull-in voltage is, in fact, the lower bound of the true value.
On the other hand, if the field fringing effects are neglected, a
much simpler closed-form of the dynamic pull-in voltage can
be derived to the fifth-order terms of the original expanded
equation (16), which is

Vd,pi = 0.777 372
√

99.2355 + 2.439 78N̂√
α

, (30)

where the subscripts stand for ‘dynamic pull-in’. Note that
the derived dynamics pull-in voltage in equation (30) is in a
similar form to its static counterpart in equation (23), but with
different parameter values.

In addition to using truncated equations for predicting the
dynamic pull-in voltage, one can perform direct simulation
on the reduced-order governing equation (11) for the first
mode via the well-known Runge–Kutta method to find
the full-order dynamic pull-in voltages. This process can
be illustrated by the related phase portraits, as shown in
figure 4, where two equilibria {F, S} and a homoclinic orbit
�0 are present. In these figures, F is a sink while S is a saddle.
First, considering a voltage level well under the possible
range of pull-in voltage, the location of S is solved based on
equation (16). Second, taking S as the initial states,
equation (16) are simulated backward in time to generate the
homoclinic orbit �0 as shown in figure 4(a) and then find
its intersection with the horizontal axis. If the intersection
is relatively right to the origin of figure 4, the rest position
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Figure 4. Typical phase portraits: (a) before the dynamic pull-in,
V < Vd,pi ; (b) at the dynamic pull-in, V = Vd,pi ; (c) after the
dynamic pull-in, V > Vd,pi .

of the vibrating beam, the voltage is increased to repeat
the simulation process until the voltage level leads to the
intersection at the origin, as shown in figure 4(b). The final
voltage level is the ‘full-order’ pull-in voltage.
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Figure 5. Dynamic pull-in voltages.

With the previous methods developed, the dynamic pull-
in voltages can now be calculated and then depicted versus
the beam width b̂, as shown in figure 5. Note that the
normalized parameter b̂ is actually the ratio of the actual beam
b width to the gap d, as defined in equation (2a). It is seen
from figure 5 that the fifth- and full-order dynamic pull-in
voltage predictions are close to each other and both lead to
substantially smaller dynamic pull-in voltages than the second-
order (bifurcation) predictions. Therefore, for accurate and
safe operations, only the fifth- or full-order predictions are
recommended to approximate the dynamic pull-in voltage.
On the other hand, for all order results, the predictions with
fringing effects considered are close to those without only in
a range of higher beam width, indicating that if the width of
the micro-beam considered is narrow, i.e., approximately b̂ <

30, the fringing field effects should be considered to render
accurate predictions on dynamic pull-in voltages; otherwise,
the dynamic pull-in voltage could be approximated well by the
closed-form expression (30).

5. Prediction results

With the prediction methods well established in the last
section, the pull-in voltage is calculated with respect to varied
parameters of the micro-beam in this section, aiming to distill
design guidelines for micro-beam-type MEMS devices. The
parameters listed in table 1 are used as baseline parameter
values in the following analysis with some key parameters
varied.

Figure 6(a) depicts the dependence of the pull-in voltage
on the beam length L for four different cases: (1) static pull-in
voltage; (2a) dynamic pull-in voltage; (3) dynamic pull-in
voltage with fringing effects considered; (4) dynamic pull-
in voltage with fringing and further squeeze film effects
considered. Figure 6(b) shows the ratio of the three
aforementioned predicted dynamic pull-in voltages to static
counterparts. First seen from figure 6(a) is that the static pull-
in voltages are clearly larger than all the other three dynamic
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Figure 6. (a) Pull-in voltage versus micro-beam length; (b) the ratio
of dynamic to static pull-in voltages.

ones regardless of beam length, while all of them decrease
as the beam length increases, which is due to an increase in
beam flexibility regarding tip displacement. Also seen from
figure 6(a) is the closeness between three differently predicted
dynamic pull-in voltages, indicating that as the beam length
changes, the electric field fringing and squeeze film effects
do not significantly affect the dynamic dc pull-in voltage due
to the change in beam length. On the other hand, the ratios
presented in figure 6(b) are seen all below one and around 91–
92%, among which the cases considering the compete effects
of field fringing and squeeze film lead to 91.64%, which is
close to those predictions in past theoretical studies [27, 28].
The reason why the ratio is below one is that dynamic pull-in
should occur at a lower level than its static counterpart. This
alerts designers that they should avoid the pull-in much earlier
than the commonly acknowledged one-third of the gap, the
static pull-in position.

Figure 7(a) depicts the dependence of the pull-in voltage
on the beam width b for the four different cases identical to
those in figure 6, while figure 7(b) shows the ratio of the
dynamic to static pull-in voltage for cases with and without
fringing effects considered. Note that although some of the
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Figure 7. (a) Pull-in voltage versus micro-beam width; (b) ratios of
dynamic to static pull-in voltages.

information shown in figure 7 is seen in figures 3 and 5,
the latter two figures are plotted with the primary focus on
discussing the legitimacy of the different computation methods
applied in this study to find pull-in voltages, while figure 7 is
depicted to show the relevance between the static and dynamic
pull-in voltages and their dependences on the beam width. It
is seen from figure 7(a) that without considering fringing and
squeeze film effects, both static and dynamic pull-in voltage
are constants, as shown in figure 7(a), reflecting the fact that the
beam width does not affect the pull-in phenomenon unless the
fringing effect and/or squeeze film are considered. Once they
are considered, the pull-in voltage is increased while the beam
width increases, to a value close to that of the dynamic pull-
in without fringing and/or squeeze film effects considered.
Another observation seen from figure 7(a) is that the case with
squeeze film considered renders larger (safer) dc dynamic pull-
in voltage than that without squeeze film. Figure 7(b) shows,
on the other hand, that the ratios of dynamic to static pull-in
voltages are below one and around 91–92%, among which the
ratio resulting from the complete effects of field fringing and
squeeze film increases to approximately 91.72% as the beam
width increases.
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Figure 8. (a) Pull-in voltage versus micro-beam thickness; (b)
ratios of dynamic to static pull-in voltages.

Table 2. Parameter values of the micro-beam for static pull-in
analysis [22].

Symbol Parameters Value/unit

h Beam thickness 2.94 μm
d Gap thickness 1.05 μm
b Beam width 50 μm
E Young’s modulus 138 GPa
σ Residual stress 10 MPa

Figure 8(a) depicts the dependence of the pull-in voltage
on the beam thickness h for the four different cases identical
to those in figure 8, while figure 8(b) shows the ratio of the
dynamic to static pull-in voltage for cases with and without
fringing effects considered. It is seen from figure 8(a) that
all three dynamic pull-in voltages are close to each other
and clearly smaller than the static counterpart. As the beam
thickness increases, all pull-in voltages are increased due to an
increase in beam flexural rigidity. On the other hand, the ratios
of dynamic to static pull-in voltages, as shown in figure 8(b),
are kept around 91–92% as constants, among which the cases
considering compete effects of field fringing and squeeze film
leads to 91.64%.
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Figure 9. (a) Pull-in voltage versus the micro-beam gap; (b) ratios
of dynamic to static pull-in voltages.

Table 3. Parameter values of the micro-beam for dynamic pull-in
analysis [19].

Symbol Parameters Value/unit

h Beam thickness 2.2 μm
L Beam length 610.0 μm
d Gap thickness 2.3 μm
b Beam width 40 μm
E Young’s modulus 149 GPa
σ Residual stress −3.7 MPa

Figure 9(a) depicts the dependence of the pull-in voltage
on the air gap g for the four different cases identical to those
in figure 7, while figure 9(b) shows the ratio of the dynamic to
static pull-in voltage for cases with and without fringing effects
considered. It is seen from figure 9(a) that three dynamic pull-
in voltages are close to each other and clearly smaller than the
static counterpart; furthermore, among three dynamic pull-in
voltages, the case without fringing effects and squeeze film
considered renders the largest pull-in voltage, while the case
considering both fringing and squeeze film effects leads to the
smallest pull-in voltage, the easiest case to induce pull-in. On
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Figure 10. (a) The established micro-beam FEM model; (b) computed deflection of the thin plate by the FEM model; (c) the theoretical first
mode shape and FEM micro-beam deflection in normalized fashion, -ŵ(x̂, 0).

the other hand, it is clearly seen from figure 9(b) that as the
gap increases, the ratio with field fringing and/or squeeze film
considered decreases, which is due to the fact that an absolute
increase in the gap means a decrease in the normalized beam
width b̂, resulting in decreases in the ratio due to the effect of
field fringing intensifies. On the other hand, it is clear from
figure 9(b) that the effect of the squeeze film does not play a
more important role than field fringing. Based on the above,
it is suggested that the designer has to consider the effects

of field fringing while utilizing the pull-in phenomenon for
operation.

6. Validation

The pull-in voltages and positions predicted in the previous
section are validated herein by (1) finite element modeling
and (2a) experimental data.
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Figure 11. Comparison of static pull-in voltages between
experimental and theoretical studies.

In addition to the theoretical continuous model presented
in section 1, a finite element model (FEM) is established
to predict the micro-beam deflection, the results of which
are supposed to be close to those based on finite-order
approximations and the first mode derived in section 4, in order
to justify all the previous reduced-order approximations. The
modeling is accomplished using a commercial FEM package,
Intellisuite [50]. The required analysis falls in the category
of a coupled-field system of mechanical and electrical ones.
For computation, two approaches, the sequential and direct
methods, are offered by Intellisuite to solve the problem. The
direct method is adopted in this study for less error.

Figure 10(a) shows the configuration of the established
FEM micro-beam model. Figure 10(b) presents the computed
deflection of the thin beam by the FEM model with a 50 V bias
voltage applied and the parameters values listed in table 1 for
a typical micro-beam. Note that the computation is completed
with the convergence criterion set to 0.0001 um. It is seen that
the deflection reaches 0.34 μm at the center position of the
deformed beam. Figure 10(c) shows the downward (negative
ŵ(x̂, 0) for easy visualization) normalized plate deflection
along the x axis and its counterpart predicted by the first-
mode approximation presented in equation (10). General
closeness is clearly seen between the deflection profiles. The
results obtained validate the effectiveness of the first-mode
approximation to predict the pull-in phenomenon. Therefore,
the established FEM model would be utilized further for
validating the correctness of the previous predictions derived
from bifurcation.

With theoretical predictions and finite element modeling
accomplished, a comparison between varied predictions and
experimental data reported in the previous literature is
performed. Figure 11 presents the static pull-in voltages
from experiments [43], the fifth-order predictions from
section 4.1, and finite element modeling, where it is seen that
three series of predictions are extremely close to each other,
showing the validity of the fifth order predicted in section 4.1.
Note that the parameters of the micro-beam considered are
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Figure 12. Comparison of dynamic pull-in voltages between
experimental and theoretical studies.

those considered in [43], as listed in table 2. On the other
hand, figure 12 presents the dynamic pull-in voltages, where
the single experimental data come from the study [26]. The
parameters are those in table 3, which are obtained from [26].
It is seen from this figure that the single experimental data
are close to its counterparts from the fifth-order predictions
and finite element model, showing again that the method of
the fifth-order dynamic pull-in approximation established in
section 4.2 is capable of reaching fairly accurate prediction
of the dynamic pull-in voltage. Therefore, users of MEMS
devices in the structure of a deformed micro-beam could follow
the prediction procedure provided by the present study to avoid
dynamic pull-in.

7. Concluding remarks

The techniques of bifurcation and phase portrait analyses are
utilized in this study to predict dc dynamic and static pull-in
voltages. This study offers designers and operators of MEMS
micro-beam devices a precise prediction of dc dynamic and
static pull-in voltage, since the resulting voltage is derived
from continuous modeling of the micro-beam, modal analysis,
and followed by bifurcation and state-space analysis on the
modal equations with high-order terms. The aforementioned
analytical approaches are further validated by finite element
analysis via Intellisuite and some experimental data in the
literature. The following conclusive remarks are presented:

(1) The static pull-in center position of the micro-beam
derived in this study based on bifurcation analysis to the
fifth-order term is about 41% of the gap, as shown in
equation (24), which is the same as those in past studies
[13–19]. Furthermore, this fifth-order approximation is
shown as a valid choice as compared it to full-order
analysis, finite element analysis and experimental data in
the literature. With a non-narrow beam being considered,
i.e. the ratio of actual beam width to the gap exceeds
30, an accurate closed-form expression of static pull-in

12



J. Micromech. Microeng. 18 (2008) 115008 P C-P Chao et al

voltage is provided by fifth-order analysis and neglecting
field fringing.

(2) The dc dynamic pull-in voltage is also derived in this study
by bifurcation and phase-portrait analyses. The derived
dynamic pull-in voltage is found around 91–92% of the
static pull-in counterpart, depending on varied parameters
of the micro-beam. This is, of course, indicates an earlier
dc dynamic pull-in than static case. The derived dc
dynamic pull-in voltage is also close to past theoretical
studies on the dynamic pull-in voltage [27, 28], where
only lumped models are considered. With a non-narrow
beam being considered, i.e. the ratio of actual beam width
to the gap exceeds 30, an accurate closed-form expression
of dynamic pull-in voltage is provided by fifth-order
analysis and neglecting field fringing.

(3) Taking advantage of considering the continuous model in
this study, the dependence of pull-in voltage on varied
micro-beam parameters is explored. In compliance with
physical intuition, it is found that the dc dynamic pull-in
voltage increases with increases in beam thickness and air
gap, but decreases as the beam length increases.

(4) While exploring the dependence of the dc dynamic pull-
in voltage to micro-beam width, it is found that the beam
width does not affect the pull-in voltage until the effect
of electric field fringing and squeeze film is considered.
This is all due to the fact that a decrease in beam width
strengthens the field fringing, causing an earlier pull-in.
Therefore, the narrower the beam is, the smaller the dc
dynamic pull-in voltage is.

The study could be extended in the future to conduct
experiments for a series of data to confirm the prediction about
dc dynamic pull-in voltages, and also to consider different
shapes and structures of MEM capacitor-type devices, such
as circular or square types, to derive expressions for the dc
dynamic pull-in voltage.
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Appendix

The expression of the static pull-in voltage found based on
Hopf bifurcation is

Vs,pi =

√√√√√√√√
− 2b̃(−2.69×1015−6.62×1013N̂)

α·(−0.1763×1013 c̃2+2.69×1012b̃2−1.08×1013 ãc̃)

+2 ·
√√√√ b̃2(−2.69×1015−6.62×1013N̂)2

α2(−0.1763×1013 c̃2+2.69×1012b̃2−1.08×1013 ãc̃)2

− 4(6.74×1017+3.31×1016N̂+4.08×1014N̂2)

α2(−0.1763×1013 c̃2+2.69×1012 b̃2−1.08×1013 ãc̃)

where

ã = −(1.32 + 0.8576/b̂),

b̃ = (2 + 0.65/b̂),

c̃ = −(2.5 + 0.544/b̂).
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