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發展及整合一個以尼摩繞線器為核心的繞線軟體工具 

研究生 : 徐浩天      指導教授: 黃俊龍、李毅郎 博士 

國立交通大學 資訊科學與工程研究所 

摘要 

對現代的超大型積體電路設計來說，如何互相連接實體設計的端點深深地影

響了一個設計的效能、可靠度以及製作成本。一些處理非單一規則設計的非格線

的繞線模型已經被提出了。就在最近，一個非格線的精細繞線器”尼摩”被發表了； 

它結合了隱涵連接圖以及磚瓦基礎圖這兩種非格線的繞線模型的優點。 

以尼摩為基礎，我們首先修改及加強它的一些內部結構以及輸出結果的資

訊；之後我們把它跟一個以繞線擁擠度為導向的廣域繞線器做結合，並且提供一

個簡單的圖型使用者介面，提供簡單的展示功能如縮小及放大，使其成為一個完

整的繞線工具。 
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Development and integration of a Gridless Routing Tool Based on 

NEMO Detailed Router 

 
Student: Hao-Tien Hsu      Advisor: Dr. Jiun-Long Huang 

                             Dr. Yih-Lang Li 
 

Institute of Computer Science and Engineering 
National Chiao Tung University 

Abstract 

In modern VLSI designs interconnection deeply affects performance, reliability, 

and manufacturing cost. Some gridless routing models were proposed to handle 

variable-width and variable-space routing problems. In a recent work, a gridless 

detailed router called NEMO, was presented to gain the advantages of the implicit 

connection graph and tile-based approaches, two gridless routing models.  

Based on NEMO, we first enhance and improve its’ structure and output 

information, and then we combine NEMO and a congestion-driven global router into 

a routing tool with GUI that provide fundamental display feature such as zoom-in and 

zoom-out. 
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Chapter 1 
Introduction 

 

As very large scale integrated (VLSI) circuits step into the era of deep submicron 

(DSM) technology and System on Chip (Soc) design methodology, layout 

optimization issues concerning feature size reduction and design rule variation 

become more complex and substantial than before. Interconnection design deeply 

affects performance, reliability, and manufacturing cost, thus interconnection 

optimization has been well studied these years, such as wire sizing, buffer insertion, 

double via insertion, etc. For detailed routing, variable-width and variable-space 

routing request attracts some researcher to get involved in developing gridless routing 

model and algorithm. 

Conventional routing consists of global routing and detailed routing. In global 

routing stage, the routing region is partitioned into tiles or channels and a global 

routing path is composed of a series of connected tiles to direct the following detailed 

router, which identifies precise position and layer of the routing path in each tile. 

From the viewpoint of routing graph, detailed routers are categorized in two types: 

grid-based and gridless routers. Their differences mainly reflect on the flexibility of 

dealing with variable-width and variable-space routing. Grid-based routers search 

paths on a uniform grid graph. On the contrary, gridless routers search path on a 

non-uniform grid graph or a non-grid graph, such as a tile-based graph. Compared 

with grid-based routers, gridless routers are more suitable to complete variable-rule 

routings.  
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(a) (b)

(c) (d)

(e) (f) 

Figure 1 (a) Layout with two obstacles and two terminals; (b) fine uniform 
grid graph of the layout; (c) connection graph of the layout; (d) implicit 
connection graph of the layout; (e) maximum horizontally stripped tile plane 
for the case in (a); (f) maximum vertically stripped tile plane. 
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Figure 1 display four kinds of routing graphs for gridless routers. Figure 1(a) 

shows a layout containing two obstacles with two routing terminal S and T; Figure 1 

(b) presents the routing graph in uniform fine grid graph model. This model requires 

substantial runtime and memory usage for a large design. Some approaches for 

decreasing the complexity of routing graph have been explored in [1][1]~[12]. Among 

them, the connection graph and tile-based graph are the most widely used approaches. 

In the work of [10], connection graph is constructed by first extending the boundary 

of all obstacles until reaching other obstacles or routing boundary (Figure 1(c)). 

However this approach has expensive cost of representing a connection graph and 

non-optimal multilayer routing. An implicit presentation for connection graph is 

presented in [12]. The extension of boundary lines in an implicit connection graph 

does not halt until reaching the boundaries of routing region (Figure 1 (d)). The final 

routing graph is produced by integrating the routing graphs of all layers into a routing 

plane. In an implicit connection graph, a grid point may locate in a blockage; thus we 

have to decide if it is legal or not when entering a new unvisited grid point. Although 

the implicit presentation has more grid nodes than that in [10] and has to spent 

additional time in checking the legality of a move to an unvisited node, optimal 

multilayer routing, fast query about the legality of a move, and fast construction of a 

non-uniform grid graph in array data structure are the primary contributions of [12]. 

The other well-known approach is the tile-based router [2]~[8]. It partitions the 

total routing region through existing blockages into two tile types, space tiles and 

block tiles; then corner-stitching data structure [13] is employed to organize all tiles 

on a tile plane. The routing plane of a horizontal/vertical routing layer is presented in 

a maximum horizontal/vertical stripped (MHS/MVS) property, where MHS/MVS 

property is implemented by extending all horizontal/vertical border lines of obstacles 

until reaching any other obstacle or routing boundaries (Figure 1(e)(f)). 
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Both the implicit connecting graph and tile-based approaches can find an optimal 

path in point-to-point routing. The former has the advantages of fast graph 

construction and query operation; however, the large number of grid points for a big 

design make fast path searching infeasible. On the contrary, corner-stitching tile 

planes realize effective path searching for tile-based routers, but require relative large 

runtime for their construction. In a recent work, a new modified implicit connection 

graph based router with multi-layer planes, called NEMO [14], was presented to gain 

the advantages of the implicit connection graph and tile-based approaches. NEMO 

seeks path like a tile-based router while constructing routing planes like an implicit 

connection graph based router.   

In this thesis, we implement a gridless routing tool combing a congestion-driven 

global router and NEMO with some improvements and enhancements in NEMO’s 

structures and output format. This routing tool possesses fundamental GUI features 

such as zoom in and zoom out. 
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Chapter 2 
Preliminary 

 

In this chapter, we overview NEMO[14] in four parts – routing model, routing 

feature, main concept, and full-chip routing. 

2.1 Routing Model of NEMO 

2.1.1 Multi-plane routing graph 

The original implicit connection graph uses two arrays to memorize horizontal 

and vertical gridlines that are generated by the extending lines of all obstacles on all 

routing layers. However, the underlying routing graph tends to be too large to fast 

search path because the border lines of expanded obstacles of different layers 

probably do not match. NEMO constructs a routing plane for a routing layer to solve 

this problem. Each plane graph only records the expanded obstacles of its layer. 

Figure 2(a) presents a 3-layer routing layout; Figure 2(b), (c) and (d) show its 

associated three routing planes. 

2.1.2 Non-zero width wire model 

NEMO inserts a contour to every obstacle to prevent from design rule violation. 

The contour size is ws + ww/2 - vs, where ww is the wire width, ws is the wire space, 

and vs is a unit of width. NEMO considers a routing plane as grouped tiles instead of 

an array of grid points. In Figure 3, a space tile of width of two times of vs will appear 

between two blockages in the non-zero width wire model. 
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(a) (b) 

(c) (d) 

Figure 2 (a) Example of three-layer routing; (b) routing plane for the V1 
layer, (c) routing plane for the H1 layer, and (d) routing plane for the V2 
layer. 

 

 

Figure 3 Example of two obstacles separated by a distance of 2×ws+ww. A 
space tile of width of two times of vs exists between two expanded obstacles 
for the non-zero width wire model. 
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2.1.3 Multi-layer model 

For layer switching, NEMO builds projection array to store the first tile on 

adjacent layer to overlap current tile. For example, in Figure 4, Lnx(m) presenting the 

m th gridline in n layer in x direction, gridline L2x(2) in projection array points to 

gridline L1x(1). Through the projection arrays of x- and y-coordinate, we can simply 

calculate all the tiles overlapping current tile in constant time.  

2.2 Routing Feature 

Because this work focuses on improvement and enhancement of implementation, 

we introduce some routing feature of NEMO that related our implementation issue in 

this section. 

2.2.1 Minimum cost point   

This concept is from the work [6]. When tile propagate every tile records a 

minimum cost rectangle for path construction. In NEMO we records a point called 

entry point; every tile searched has an entry point which is on the location most close 

to last entry point, and source pin is the entry point of the source tile. Figure 5 shows 

 

(a) (b)

Figure 4 (a) New implicit connection graph for two-layer routing plane with 
gridline notation; (b) the projection array of (a). 
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tiles and entry points. The main purpose of entry points is that help us estimate 

approximate cost when tile propagate and NEMO also use it to construct path by 

connecting entry points. 

use pin-to-pin routing to perform pseudo pin-to-path routing. If the 

ot include two pins, we route this two-pin net with 

pseu

(a) (b)

 
2.2.2 Pseudo pin-to-path routing 

NEMO 

Figure 5 (a) Entry points on two tiles in the same layer ;(b) entry points on 
two tiles in different layer. 

global path of a two-pin net does n

do pin-to-path routing method. This is an example showed in Figure 6. If we have 

a net with three pins：A, B, and C, and A has already connected with B (Figure 6(a)). 

Now we want to connect A and C, but the global path only include C (Figure 6(b)). So 

we search weather a segment of this net is in the terminal of the global path, and set a 

point A’ on the segment, if there is one (Figure 6(c)). Finally we connect C to A’ 

instead of connect C to A (Figure 6(d)).  
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(b)(a) 

(c) 

 

2.3 Main Concept 

NEMO takes the advantages of the quick and simple graph construction of 

implicit connection graph model and th

(d)
Figure 6 Pseudo pin-to-path routing (a) A net with three pins A, B, and C, 

global path, and mark a point A’ on the segment. (d) Connect C to A’ indeed 

and A was connected to B. (b) Connect A and C with global path that not 
include A. (c) Find a segment belong this net in a terminal global cell of the 

of connect C to A. 

e fast path searching on maximum 

ripped tile plane. 

NEMO regards a routing plane as comprising tiles, each of which is identified by 

its left bottom corner. To behave as a pseudo corner-stitching tile plane, it groups 

adjacent tiles as a pseudo maximum horizontally or vertically stripped tile, called 

PMT. Furthermore, adjacent PMTs with equal height or width are merged in advance 

to produce a tile list totally equivalent to the tiles generated in the tile-based approach. 

For example, there are three space tiles, say P1, P2 and P3, on a maximum vertically 

horizontal/vertical st
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stripped routing plane (Figure 7). P1 and P2 have the same height, so they can be

merged as a PMT. Subsequent merging fails since the height of the new PMT differs 

that of P3. The results of PMT extraction is shown in the right side of Figure 7. PMT 

extraction can offer much simplified routing plane for path searching to greatly 

diminish its runtime. Figure 8 shows a move reduction from six to two. 

 

 

 

(b)(a) 

Figure 8 Routing example with three obstacles. (a) The shortest path from A 

Figure 7 Exam
new PMT
P3 ferent heights; (b) PMT extraction generates seven 
PMTs. 

ple of PMT extraction. (a) P1 and P2 have the same height and a 
 is generated by merging them. The new PMT can not be merged with 

 because they have dif

(a) (b)

to B on an implicit connection graph requires six propagation steps; (b) PMT 
extraction offers a move reduction from six to two. 
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2.4 Full-chip Routing 

h net. NEMO 

first initialized a new implicit connection routing graph and a slit-interval tree. All 

two-pin nets are inserted in a queue and then routed one by one. For each two-pint net 

routing, NEMO first constructs its relative routing graph and projection array, and 

then inserts pseudo blockages to speed up routing. If a feasible path is found, the new 

path is inserted to multiple-layer routing graph and layer-switching mechanism and 

slit and interval tree are updated. If routing fail, current net is put in an incomplete net 

list. When the queue is empty, NEMO enters rip-up and rerouting stage to complete 

the e 

rou

 

Before detailed routing, each net is first divided into several two-pin nets based 

on a routing topology produced by minimum spanning tree algorithm and a 

congestion-driven global router is invoked to find the global path for eac

 routings of the incomplete nets in the list. The routing process proceeds until th

tings of all nets are complete or time is up. 
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Chapter 3 

e straight implementation, 

 without overlapping any gridline, and has 

the same distance to PMT boundary (Figure 10(a)). In original implementation, the 

center line area overlaps gridlines on bottom or left side, and distance to PMT 

boundary is different (Figure 10(b)). 

After we modified the implementation, all center points’ coordinate of pins that 

always are even will generate gridlines that always are odd coordinate due to contours. 

And for using space more efficient, we will let the center lines always go through the 

boundary of center line area in a PMT (Figure 10(a)). Then all center lines’ coordinate 

of nets are even. Now the gridline system is clear that all coordinate of gridlines are 

always odd, and all center lines’ coordinate of nets are even. 

Implementation Issues 

 

3.1 Implementation of non-zero width wire model 

The original implementation of non-zero width wire model in NEMO did not do 

straight as the way showed in Figure 9(a). Instead of shrinking the contour width by a 

half unit width, it only shrinks left and bottom boundary of the contour by a unit 

width (Figure 9(b)). When NEMO read input, it will multiple all input coordinate by 2, 

and then all coordinate of pins are even, a unit width is 2,and a half unit width is 1 in 

the routing system. Although these two kinds of implementations will lead to the same 

result, the original way makes people confused easily. In Figure 10, shows where a 

center line can pass in a PMT with adjacent blockages. In th

the center line area is always in the PMT
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3.2 Enhancement of path search

(a) (b)
Figure 9 Two implementation (a) Contours will be shrunk by a half unit 
width (b) Only left and bottom boundaries shrink a unit width. 

(b)(a) 
Figure 10 Center line area in a PMT (a) straight implementation (b) original 
implementation 

ing and construction 

segments. Our cost function is defined as p+ np+ v, where p is length of 

preferred segments, np is length of non-preferred segments, v is number of vias and

α、β、γ are constants and α<γ<β. Before we add overlap area information, path 

We add extra information in tiles to record the overlap area with other tiles when 

tiles propagate. If last tile is in the same layer, the overlap area is a line; if last tile is in 

different layer, the overlap area is a rectangle that showed as Figure 11. It can help us 

estimate path cost accurately and construct path correctly when there exist non-prefer 

α* β* γ*
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cost was over-considered when count non-prefer segments in tile propagation because 

original path cost only depends on the location of entry points, which mentioned at 

section 2.2. Figure 12 showed an example that how the cost is over-considered, when 

we propagate from tile1 to tile3, the minimum cost path only has a short non-prefer 

cost in tile1 (Figure 12(a)), but if we estimate cost only by entry point, there is a 

redundant non-prefer segment cost in tile2 (Figure 12(b)). After we record overlap 

area, we have complete information in estimating path cost. In Figure 12(c) when we 

propagate to tile3, we can find the two overlap areas are overlapped in x-coordina

then we will count the cost of the horizontal segment in tile

te, 

and 2 as a preferred 

segment. Because we know the region of overlap area and we can estimate that the 

 

ect 

bac nt. When we connect path from tile2 to tile1, if we only consider 

entry points’ information, we will connect entry point3 to entry point2 and can not get

inimum cost path. When we have information of overlap area, we know entry 

e constructed as showed 

in (Figure 13(b)).  

entry point of tile2 can shift right and the horizontal segment will on tile1 not tile2

when path construct. 

In path construction, information of overlap area will lead us construct a 

minimum cost path. If we only have information of entry points, we will construct a 

path as showed in Figure 13(a). We construct path from target pin, and then conn

k to last entry poi

 

a m

point2 can shift to right, and then a minimum cost path will b
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(a) (b)
Figure 11 Overlap area (a) two tiles are in the same layer (b) two tiles are 
in different layer 

 

(a) (b) (c) 
Figure 12 Estimating cost in tile propagation (a) a possible minimum cost 

estimate cost accurately 

path only has a non-prefer segment cost in tile1 (b) only use entry points 
we will overconsider cost (c) with complete overlap information we can 
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3.3 Wire refinement 

NEMO apply pin-to-pin routing, so some segments of a multi-pin net could

cover each other or have design rule viol

(a) (b)
Figure 13 Path Construction (a) We can not find a minimum cost path only 
with information of tiles and entry points (b) If we know overlap 
information, entry poin2 will shift to right, and then we find a minimum 
cost path 

 

n. We solve this problem case by case 

after 

ntal 

segments at layer1 that produce space rule violations. We find a rule to solve this kind

of cases. First we try to find a short vertical segment at layer1 which attached a 

horizontal segment at the same layer (Figure 15(a)) and then search other two-pin nets 

for a horizontal segment at the same layer that attach the vertical segment at the other 

head(Figure 15(b)). And then we will shift the vertical segment right or left to reduce 

this violation as Figure 15(c). This rule can apply on any layer, horizontal or vertical 

layer, Figure 16 shows that how it works in vertical layer.  

atio

routing process.  

There are two cases showed as Figure 14, all of them have two horizo
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(a) (b)
Figure 14 Two cases of space violation 

 

(a) (b) (c) 
Figure 15 Steps to Rule1 (a) Find a short vertical segment in horizontal 
layer which attach a horizontal segment. (b) Search other two-pin nets for a 
horizontal segment attaching at the other head of the vertical segment. (c) 
Shift the vertical segment left and then violation clear. 

 

 

(a) (b) (c) 

Figure 16 Rule1 apply to vertical layer (a) Find a short horizontal segment 
in vertical layer which attach a vertical segment. (b) Search other two-pin 
nets for a vertical segment attaching at the other head of the horizontal 
segment. (c) Shift the horizontal segment up and then violation clear. 
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Another kind of common cases is like Figure 17(a). The horizontal segments of 

two two-pin nets overlap each other and the two attached vertical segments have 

space violation at the two corners. We solve this case by changing the endmost part of 

the longer horizontal segment to vertical layer as showed in Figure 17(b). This rule 

also can apply on different direction as Figure 18 showed. 

 

 
One more kind of cases showed as Figure 19(a). A horizontal segment attached a 

short vertical segment has space violation with the other horizontal segment. After we 

change the short segment to horizontal layer

(a) (b)

Figure 17 (a) A case with space violation (b) Reduce the violation by 
changing the endmost part of the longer horizontal segment to vertical 
layer. 

(a) (b) (c) 

Figure 18 Rule2 apply on different direction (a) left (b) down (c) up 

, the violation was reduced. 
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(a) (b)

Figure 19 (a) A case with space violation (b) After we change the short 
vertical segment to horizontal layer, there is no violation. 



Chapter 4 
Tool integration 

 

4.1 Nets decomposition 

 20

topology, 

separating a net into two-pin nets before global routing stage will not benefit by this 

character. Below I will explain how we divide a steiner tree topology, a result of 

global router, and separate it into two-pin pairs. 

The global router returns a steiner tree that comprises many dot-to-dot segments, 

a dot may be a steiner point or a pin. First we categorize all dot-to-dot segments into 

three types：pin to pin as type0, pin to steiner point as type1 and steiner point to 

steiner point as type2. All type0 segments already connect two pins so we only need 

to handle type1 and type2 segments. We start from a type2 segment (Figure 20(b)) 

and extend from one end until attached a type1 segment, e.g. find a pin (Figure 20(c)) 

and then we extend from the other end (Figure 20(d)), and then we get a pin-to-pin 

pair and path. We call this kind of two-pin nets a trunk. After we get a trunk we extend 

from its’ steiner point to get other two-pin nets called a branch. A branch record the 

path extending from a steiner point to a pin, and we will take a pin of the trunk that is 

nearest to the steiner point as the other pin of the pin pair of the branch (Figure 21). 

This is for the pseudo pin-to-path routing in NEMO, which mentioned at section 2.2. 

If there is no type2 segment, we can form a trunk from a type1 segment (Figure 22). 

And if a branch has any steiner point, we will get sub-branches from it. 

Because we now have a global router that produces steiner tree routing 
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(a) (b) (c) (d) 

Figure 20 Separate a steiner tree into two-pin nets (a) A steiner tree with 

one end (d) extend from the other end and get a trunk. 
many dot-to-dot segments (b) start from a type2 segment (c) extend from 

(a) (b) (c) 

Figure 21 Separate a steiner tree (continued) (a) find a branch from a 
steiner point of the trunk (b) find an other branch (c) branches record path 
extending from steiner point and a addition pin of trunk. 

(a) (b) (c) 

Figure 22 Separate a steiner tree (continued) (a) find an other trunk from a 
type1 segment (b) get a trunk (c) find a branch and stop the separating 
process. 
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4.2 Tool design flow 

The design flow is showed as Figure 23. We maintain a routing database that 

initially record the input information, and then give global router necessary 

information to produce topology. After separate steiner tree topology into two-pin nets 

topology, NEMO will query data from routing databas  and then start detailed routing. 

Final ow 

on th d a routing result. As the 

figure you can see that there are some buttons at left-top, they are open file, routing

e

ly the routing result that already fixed will save in the routing database and sh

e screen. Figure 24 shows the screenshot of the GUI an

, 

fit, zoom-in, zoom-out, and redraw. And at right, you can see the control panel from 

top to down：cursor coordinate, metal and via layer checker buttons (choose to show) 

and routing result information. 

 
Figure 23 Tool design flow 
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Figure 24 Screenshot of the GUI 
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Chapter 5 
Experiment Results 

 

To compare with old version NEMO, we perform this tool on a 1.2GHz Sun 

Blade-2000 workstation with 2GB memory. We route ISCAS89 benchmarks showed 

as Table 1; “#Lay” shows the number of available routing layer; “#2-pin nets” shows 

the number of two-pin connections after net decomposition. Table 2 shows the result 

of old version NEMO with an old version global router, and result of this work with a 

new global router. In this table, “# of Vias” shows the number of vias, “WL” shows 

the total wire length in micrometer, “Non-prefer” shows the non-prefer length in 

micrometer and the percentage of WL. Compare with old version, we can see that 

non-prefer length are reduced at all six cases and run time are reduced at large test 

cases. Due to precisely estimating path cost, non-prefer length should be reduced. And 

accurately constructing minimum cost paths is helpful to reduce the run time when 

uting a large case. 

Table 1. Statistics of ISCAS89 series benchmark circuits 
Circiut Size(μm) Pins # Lay # 2-pin nets 

ro

s9234 4040×2250 4260 3 2774 

s5378 4350×2390 4818 3 3124 

s13207 6600×3650 10776 3 6995 

s15850 7050×3890 12793 3 8321 

s38417 11440×6190 32344 3 21035 

s38584 12950×6720 42931 3 28177 
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Table 2. Comparison of the rout eries benchmarks 
 NEMO (old ve NEMO (this version) 

ing result of ISCAS89 s
rsion) 

 Time(s) # o

Via

WL 

(μm) 

Non-prefer f 

s 

WL 

(μm) 

Non-prefer Time(s) # of 

Vias 

s9234 2.09 5885 5.5e4 591 1% 2.79 6310 5.8e4 103 0.2%

s537 2.95 6951 7.5e4 790 1% 3.93 7388 7.7e4 199 0.3%8 

s13207 7.87 15098 1.8e5 1482 0.8% 9.95 15993 1.8e5 76 0.0%

s15850 21.68 18019 2.2e5 1546 0.7% 10.93 18740 2.3e5 435 0.2%

s38417 38.73 49117 4.8e5 16908 3.5% 31.23 47215 5.0e5 1350 0.3%

s38584 70.03 59956 6.7e5 4942 0.7% 53.01 63502 6.9e5 1497 0.2%

 
Table 3. Statistics of Ibm-series Benchmark circuits 

Circiut Size(μm) Pins # Lay # 2-pin nets 

Ibm01 7676*7678 44265 4 32758 

Ibm02 8745*8753 78170 5 59741 

Ibm07 12745*12751 164368 5 119974 

Ibm08 13246*13255 198179 5 150235 

Ibm09 13444*13446 187871 5 137478 

Ibm10 17233*17231 268999 5 204772 

Ibm11 15187*15193 237061 5 170045 

Ibm12 18540*18541 294185 5 226446 

Besides we route the ISPD98 benchmarks [15], which originally only provide 

partition information, but people set some detail information for placement. We use 

the result of a placer ragon [16 ich generate

route these benchma workstatio th AMD Opte n 2.0GHz processor and 

16GB me . We modify some routing information for NEMO. First the pins are a 

line not a point, NEMO can not handle ituation yet, s ed t ns to a 

point. Second, all layers have different rule but for convenience and simplification we 

ade all layers with the same rule. Table 3 lists the statistics for eight circuits of 

arks. Our result is showed as Table 4, and we compare it with the 

sult of a commercial tool called Nanoroute. Only the first case we have shorter run 

time, and it shows that our tool need much more time to handle dense cases. We may 

 called D ], wh s LEF/DEF output files, and 

rks on a n wi ro

mory

 this s o we chang he pi

m

ISPD98 benchm

re
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improve that by a better rip-up and reroute method. Wire length is similar, but we 

roduce 0% s m han e. W k i y be sed d 

wire refinement. Our wire refinement just handles a few cases for DRC, and there still 

exist many redundant wires and vias in the final result. We

, esu ld  les e th onl tle  via an

result of Nanoroute. 

. C ris the seri u res
Our Tool Commercial Tool 

p about 1  via ore t Nanorout e thin t ma  cau by the ba

 believe if we can solve this 

problem the r lt shou  have s wir  leng  and y a lit  more s th  the 

Table 4 ompa on of  Ibm es ro ting ult 
 
 Global Detailed # of  WL Gl

routing time 

m:ss) 

r Vias )

obal 

routing time

(mm:ss) 

Detailed 

ting time 

(mm:ss) 

# of  WL 

μm)

(m

outing time 

(mm:ss) 

(μm  rou Vias (

ibm01 :01 117221 00:05 02:26 1 7.8e5 00 01:07 7.3e5 02106 

Ibm02  267496 00:37 03:56 2 2.2e6 00:02 17:49 2.0e6 38484 

Ibm07 :05 531796 00:59 10:29 4 4.4e6 00 48:54 4.4e6 68562 

Ibm08  626731 00:44 06:57 5 4.8e6 00:07 40:03 4.8e6 63441 

Ibm09 :04 531335 00:28 05:30 4 3.8e6 00 16:08 3.9e6 78666 

Ibm10  829871 00:56 09:14 7 7.2e6 00:10 73:22 7.3e6 45601 

Ibm11 :08 684663 00:44 08:37 6 5.5e6 00 30:57 5.6e6 18555 

ibm12 00:21 X X X 01:42 16:44 903122 1.0e7
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Chapter 6 
Conclusions 

 

We improve and enhance NEMO’s structure in the aspect of gridline system, 

path searching and construction. The gridline system is clear in present 

plementation. And path searching is estimated pre uction is 

tel to rec addi iles orma utpu atio E

will be m  by n rule checker and s  generate a DRC free result. 

we bine ges iv lobal ter wi EMO a 

position process. Finally ck rogra s a routing tool w raphic 

nter hich p es ba pl erati ch as z   

 

 

 

 

 

 

 

im cisely and constr

accura y due 

odified

ording 

a desig

tion t  inf tion. O

olver to

t inform n of N MO 

Also  com a con tion-dr en g  rou th N  by net 

decom we pa  all p ms a ith a g

user i face w rovid sic dis ay op ons su oom in and zoom out. 
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