
�

������������

��������	
�

�����������������������������

��������	
���
������

� � �

�
A Study on Large-volume Data Embedding and Search

Techniques for Information Hiding Applications

������� � � �

	
 � � �
 � � ��� � �

�

��				������������

�

��������	
���
���������

A Study on Large-volume Data Embedding and Search Techniques for
Information Hiding Applications

� � ��� � � Student�Hsuang-Huang Lai

� � � � �� ! Advisor�Wen-Hsiang Tsai

" # $ % 	 &
� � ' & � () � � *

+ , -

A Thesis

Submitted to Institute of Multimedia Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2007

Hsinchu, Taiwan, Republic of China

� � � � � � � 	 �

 i

� �
 �

������������� �� �� �� �� � �� � �� � �� � � � � � � 	
 � �	
 � �	
 � �	
 � � � �� �� �� �
 � �
 � �
 � �
 � � ����� �� �� �� � ����

"#$%	&��'&�()��*�

����

������������

����

� � � � � � � 	
 � �
 � � � �� � � � � � � �� �
 � � � � �

� � � � ! " # $ % & ' � () * + , � � - . / 0 � 1 2 � � 3 4 5 6 � 7

8 6 9 �: ; < = > ? @ A B 9 ' C D E F � G A H @ A B 9 I J H � K L 9 �

M � � J N < = � G A � 5 O � 3 P Q R C �J ' C D E � F � G A � 5 O �

� S T �U V 4 5 0 W & F X � Y � �: ; & ' � Z [(> ? � - . �\ � �]

� ^ O _ ` � 3 � 8 6 a 8 6 � b 4 5 0 c d e f g A Z [(� h i jk l m n

J � 4 5 S T o 4 5 p q r �: ; � J & ' � 8 6 � @ U f g s t u g s � v

w x j� y z � 3 4 5 r m { | � } 3 ~ r �: ; & ' � . �� � � Z > ? � �

� 9 � � � �m � > ? � 8 6 - . � � � � � � �� � � �� � � � � �� � � � � �� 8 6 �

� a 8 6 9 : ; � � � � 3 � � � 5 H > ? � � � � - . � � � � � �

�� � � � � �� � � � � �� 8 6 �� a 8 6 9 : ; % � > ? | � � r M ¡ � � � � 3

5 H � � � P Q ¢ £ ¤ C ' 7 ¥ 8 6 � ¦ § j� P J ¨ ����

�

�

�

�

 ii

A Study on Large-volume Data Embedding and Search

Techniques for Information Hiding Applications

Student: Hsuang-Hunag Lai Advisor: Prof. Wen-Hsiang Tsai

Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

ABSTRACT

With the advance of computer technologies and the popularity of the Internet,

more and more data can be transmitted speedily and conveniently on public networks.

In this study, first we propose a distortion-free and high-capacity data hiding method

on GIF. This method duplicates colors of high frequencies to fill the unused color

entries in the palette and uses the duplicated colors to hide secret message bits. It is

found that more bits can be hidden by the method if colors with higher appearance

frequencies are duplicated first. For PNG images, we propose a data hiding method

for implanting secret messages in web pages. The hiding capability is achieved by

changing the transparency values of the alpha channel of the pixels of the foreground

PNG image. A scheme to adjust the intensity values of both foreground and

background image pixels to reduce the artifacts caused by data hiding is also proposed.

Finally, we propose two fast methods for searching desired BMP images in databases.

One is a non-block-level method that hides comments in images sequentially, while

the other is a block-level method that divides images into blocks in which comments

are embedded. Good experimental results show the feasibility and applicability of the

proposed methods.

 iii

ACKNOWLEDGEMENTS

I am in hearty appreciation of the continuous guidance, discussions, support, and

encouragement received from my advisor, Dr. Wen-Hsiang Tsai, not only in the

development of this thesis, but also in every aspect of his personal growth.

Thanks are due to Mr. Chih-Jen Wu, Mr. Kuan-Chieh Chen, Mr. Jian-Jhong Chen,

Mr. Tsung-Chih Wang, Mr. Yi-Fan Chang, and Mrs. Kuan-Ting Chen for their

valuable discussions, suggestions, and encouragement. Appreciation is also given to

the colleagues of the Computer Vision Laboratory in the Institute of Computer

Science and Engineering at National Chiao Tung University for their suggestions and

help during my thesis study.

Finally, I also extend my profound thanks to my family for their lasting love,

care, and encouragement. I dedicate this dissertation to my beloved parents.

 iv

CONTENTS
ABSTRACT ...ii
ACKNOWLEDGEMENTS..iii
CONTENTS .. iv
LIST OF FIGURES ..vi
LIST OF TABLES ...vii
Chpater 1 Introduction...1

1.1 Motivation ...1
1.2 Survey of Related Studies ..2
1.3 Overview of Proposed Method...4

1.3.1 Definitions of Terms ...4
1.3.2 Brief Descriptions of Proposed Methods5
1.3.2.1 Proposed Data Hiding Method for GIF (Graphics Interchange
Format) Images ..5
1.3.2.2 Proposed Data Hiding Method for PNG (Portable Network Graphics)
Images..5
1.3.2.3 Proposed Fast Search Methods for Retrieving Desired Images fro
Image Databases...6

1.4 Contributions ...7
1.5 Thesis Organization ...7

Chpater 2 A High-capacity and Distortion-free Data Hiding
Method for GIF Images ..8

2.1 Introduction ...8
2.1.1 Usages of GIF Images ...8
2.1.2 Properties of GIF Images ..9

2.2 Proposed Data Hiding Method ... 10
2.2.1 Principle of Proposed Method ... 11
2.2.2 Data Embedding Process... 14
2.2.3 Data Extraction Process .. 15

2.3 Experimental Results ... 16
2.4 Discussion and Summary... 18

Chpater 3 Data Hiding by Stacking Up Two PNG Images 19
3.1 Introduction ... 19

3.1.1 Uses of PNG Images ... 19
3.1.2 Properties of PNG Images ... 20

3.2 Proposed Data Hiding Method ... 22

 v

3.2.1 Proposed Idea ... 22
3.2.2 Data Embedding Process... 24
3.2.3 Data Extraction Process .. 25

3.3 Experimental Results ... 25
3.4 Discussion and Summary... 28

Chpater 4 Fast Search Methods via Hidden Messages in Images 31
4.1 Introduction ... 31

4.1.1 Need of Fast Search of Desired Images 31
4.1.2 Possible Techniques for Speeding Up Searches 32

4.2 Proposed Search Method ... 32
4.2.1 Proposed Ideas .. 32
4.2.2 Non-block-Level Search Method... 35
4.2.3 Block-Level Search Method.. 36

4.3 Experimental Results ... 38
4.4 Discussion and Summary... 41

Chpater 5 Conclusions and Suggestions for Future Works 42
5.1 Conclusions ... 42
5.2 Suggestions for future works.. 42

References ... 44

 vi

LIST OF FIGURES
Figure 3.1 An experimental result of the proposed method: (a) the background image;

(b) the foreground image; (c) the piled-up cover image; (d) the
stego-image without modifications. (e) the stego-image with
modifications. (continued) .. 28

Figure 3.2 An experimental result of the proposed method: (a) the background image;
(b) the foreground image; (c) the piled-up cover image; (d) the
stego-image without modifications. (e) the stego-image with
modifications. (continued) .. 30

Figure 4.1 The data structure of the non-block-level method. 34
Figure 4.2 The data structure of the block-level method. .. 34
Figure 4.3 Result of hiding comment words. (a) A cover image bee.bmp. (b) The

resulting stego-image.. 35
Figure 4.4 Result of hiding comment words. (a) A cover image beauty.bmp. (b) The

resulting stego-image.. 37
Figure 4.5 The particular image, Lena.bmp. ... 39
Figure 4.6 Image database used in the experiment. (a) Some images in the database

and the first two images are Lena1.bmp and Lena2.bmp with comments
“Lena is a model” and “The girl who lives in the U.S. and studies
computer science is called Lena Wang.”, respectively. (b) Two desired
images found in 0.04842 and 0.1046 seconds, respectively. (continued) 41

 vii

LIST OF TABLES
Table 2.1 Characteristics of tested images and their hiding capacity 16
Table 2.2 The comparison of cover images and stego-images. 17
Table 3.1 The structure of IHDR chunk.. 21

 1

Chpater 1
Introduction

1.1 Motivation

With the popularity of computer networks, more information is transmitted

speedily through the public network environment with the risk of being detected or

intercepted illegally. To avoid this, the idea of hiding data in images had been

suggested. Various existing data hiding methods focus on different aspects. Some of

them focus on hiding great amounts of data since more and more data are transmitted

via the Internet. To develop a high-capacity data hiding method is necessary for such

applications and is the first goal of this study.

Some other methods focus on raising the quality of the resulting image with

hidden data (called stego-image in the sequel) since in fields like military and medical

applications this is an urgent issue. In these fields, the distortion produced after data

hiding may result in great danger. A general may misjudge due to a building-like

object in the picture, but the object is actually noise yielded by data embedding. This

is probably the cause of the death of the whole army in a battle, the loss of a war, or

even the ruin of a country. A doctor may make wrong diagnosis due to some

unknowns in an X-ray or a CT (computer tomography) image. This may result in a

wrong treatment of the patient and is really a serious problem. To develop a

distortion-free data hiding method is the second goal of our study.

Nowadays, images can easily be made by digital cameras, scanners, or be

available on the Internet. We sometimes may want to find out a desired image in discs

 2

at once but fail to recall the name of it. To solve this dilemma, we can hide the related

information (we call such information a comment in the sequel) inside an image and

build a searching mechanism based on that information. And this is the third goal of

our study.

1.2 Survey of Related Studies

1.2.1 Review of Existing Data Hiding Techniques for

Images
In recent years, several data hiding methods in images have been proposed and

they can be roughly categorized into two groups: one includes spatial-domain

methods and the other frequency-domain ones. In spatial-domain ones, secret data are

directly embedded in the pixels of the cover image by replacing the least significant

bits (LSBs) in it. On the contrary, in frequency-domain ones, the cover image is first

transformed into the frequency domain, and then the secret data are embedded in the

coefficients of the frequency domain.

One of the simplest ways of hiding secret messages in a cover image in the

spatial-domain is to replace the LSBs of each image pixel. The LSB method was first

proposed by Adelson [1] in 1990. Its advantages are fast and easy to implement, and

being able to hide a great amount of information without causing perceptible

distortion to the image. To increase the data hiding capacity, more LSBs may be

altered to hide data but the expense is the quality degradation of images. It is common

nowadays that two or more bits are used for embedding [2, 3].

Though LSB replacement methods are easy to implement as mentioned above,

they are easy to detect by statistical analysis. An attacker can just apply simple signal

 3

processing techniques to destroy the whole hidden data. The frequency-domain

methods that hide data in significant areas of the cover image are much more robust

against attacks, such as compression, resizing, and so forth, than the LSB methods.

Nevertheless, they still remain imperceptible to the human visual system. Among the

existing frequency-domain methods, one popular one is to use the discrete cosine

transform (DCT) coefficients [4]-[7] for data hiding. In Yen and Tsai’s [8] method, the

cover image is first transformed into the frequency domain and then the DCT

coefficient replacement method is utilized to accomplish the data hiding task. Another

approach is the use of wavelet transforms [8]-[9]. Chang and Tsai [10] proposed an

image data hiding based on the wavelet transform. Secret messages are embedded

within the cover image by replacing the wavelet coefficients of the middle and high

frequencies. Xuan and Zhu et al. [11] also proposed a data hiding method based on the

integer wavelet transform that can invert the stego-image into the original image

without any distortion after the hidden data are extracted.

1.2.2 Review of Existing Data Hiding Techniques for

Palette Images
For the topic of data hiding in palette images, either the palette or the image data

can be used to hide secret data. A program called “Gifshuffle” was developed by

Kwan [12] to embed data in GIF images. The principle is to permute the colors in the

palette of the image in a specific order in accordance with the secret data. So there are

totally 256! possible permutations of the 256 entries of the color palette. It means that

at most log 2(256!) bits can be embedded into a GIF image. The advantage is that no

perceptible distortion is introduced to the cover image. However, it has a fatal

shortcoming that palette image software usually rearranges the order of the colors in

 4

an image’s palette so that the secret data will be dismissed when the image is being

loaded and saved. Besides, a palette with randomly-ordered color entries might also

be suspected as a stego-image. In some steganographic applications [13-16], by using

the dithering method, the palette size can be doubled and thus utilized to choose

appropriated colors to replace those of the pixels where data are embedded. But it was

reported in [17] that if data hiding is achieved by manipulation of the color palette,

hidden data is much likely detected by steganalysis.

Fridrich and Du [18] proposed a method that embeds data in palette images by

first assigning a parity bit to each color in the palette and then adjusting the pixel

index values in such a way that the parities of the new index values are equal to the

message bits to be embedded. They also proposed an optimal parity assignment

algorithm so that the data embedding process guarantees that an index is always

replaced by the index of the closest color. Their adaptive method can be employed to

conceal a moderate amount of data with least modification of pixel values.

1.3 Overview of Proposed Method

1.3.1 Definitions of Terms
The definitions of several terms used later are given first as follows.

1. Cover image: a cover image is an image into which a watermark signal is

embedded.

2. Stego-image: a stego-image is an image that is produced by embedding a

watermark signal into a cover image.

3. Embedding process: an embedding process is a process to embed data into

an image.

 5

4. Extraction process: an extraction process is a process to extract a watermark

from a stego-image.

1.3.2 Brief Descriptions of Proposed Methods

1.3.2.1 Proposed Data Hiding Method for GIF

(Graphics Interchange Format) Images
A steganographic method is proposed in this study, which exploits the use of GIF

images’ characteristics. First, a given GIF file is processed with some analyses to

count the number of appearing colors and their appearing frequencies in that GIF

image. Then the palette (consisting of squares) of it is modified by duplicating the

high-frequency colors and put them into the palette’s unused squares. Then the index

array of the GIF image is modified according to the messages to be embedded. Since

each of the colors used for embedding has more than one index, the changes of the

indices after embedding do not result in any distortion. And since the hiding capacity

is calculated by multiplying the number of bits a hiding color can hide and the

appearing frequencies of the hiding colors, the more frequently the hiding colors

appear, the more secret data the image can hide.

1.3.2.2 Proposed Data Hiding Method for PNG

(Portable Network Graphics) Images
In this study, we propose a method to hide data in PNG images. First, we pile a

PNG image on a gray-level one and then hide some secret data in the alpha channel

(which determine the transparency of a PNG image) of it by hiding the data in its

LSBs. Then a calculation is made to determine how many bits each byte of the

 6

gray-level image can be used for hiding for the sake of reducing the resulting

distortion.

1.3.2.3 Proposed Fast Search Methods for Retrieving

Desired Images fro Image Databases
We proposed two fast search methods which can be used to find out the desired

images efficiently. One applies both techniques of hashing and word-length counting

while the other divides the image into several blocks and then conducts the hashing

operation. And then the results of them are hidden altogether with the secret messages

into the image. In another word, we sacrifice the hiding capacity for reaching faster

search. With these preprocesses, the time for comparison of the keyword and the

hidden messages in the search process can be reduced.

Some major contributions of the study are listed as follows.

(1) A complete system for automatically creating personal talking cartoon faces is

proposed.

(2) A method for construction of 3D cartoon face models based on 2D cartoon face

models is proposed.

(3) A method for simulation of head tilting and turning using 3D rotation techniques

is proposed.

(4) Some methods for automatically gathering audio features for speech segmentation

are proposed.

(5) A method for simulation of the probabilistic head movements and basic emotions

is proposed.

(6) Several new applications are proposed and implemented by using the proposed

system.

 7

1.4 Contributions

Several contributions have been made in this study, as described as follows.

1. A steganographic method with distortion free capability is proposed for hiding

large-volume secret messages in GIF images.

2. A steganographic method piling up two different kinds of images for hiding

secret messages is proposed.

3. A fast search method for retrieving desired images from image databases is

proposed. We directly use what are hidden inside the images and a key word for

finding out the images we want. This saves spaces since no additional space is

required to save those comments in images.

1.5 Thesis Organization

In the remainder of this thesis, the proposed high-capacity and distortion-free

method for hiding data in GIF images is described in Chapter 2. In Chapter 3, the

proposed method for hiding data in PNG images and gray-level images is described.

In Chapter 4, a fast image search method via the hidden messages in images is

described. Experimental results are shown at the end of each chapter. Finally, some

conclusions and suggestions for future works appear in Chapter 5.

 8

Chpater 2
A High-capacity and Distortion-free
Data Hiding Method for GIF Images

2.1 Introduction

Nowadays, data hiding in images has become more and more popular and drawn

lots of attention. This technique has been used in various areas, such as digital

watermarking, secret transmission, secret sharing, and so on. Nevertheless, most of

the existing data hiding methods introduce some noise after embedding. Though the

noise is usually not imperceptible by human eyes, in some fields, such as military and

medical ones, the quality of the stego-image is a critical issue. A malpractice will

happen if there exist some unknown artifacts produced after hiding.

Since the GIF image will be used as the cover image for hiding data in this study,

some properties and usages of the GIF image will be described in the rest of this

section. In Section 2.2, the data hiding and extracting methods for GIF images will be

described. In Section 2.3, some experimental results of applying the proposed

methods will be illustrated. At last in Section 2.4, some discussions and the summary

of the proposed method will be made.

2.1.1 Usages of GIF Images
GIF is the abbreviation of Graphics Interchange Format which was developed by

CompuServe Inc. in 1987. Since it’s widely supported by its portability and web

browsers, it has become one of the most famous image formats on the World Wide

 9

Web. GIFs are suitable for sharp-edged art that is of a limited number of colors. The

most representative sharp-edged art is logo. The reason why GIFs are suitable for

logos is that the lossless compression method used for creating the GIF image

preserves sharp edges. This is an obvious advantage, as compared with JPEGs.

GIFs are also useful for short animations and low-resolution film clips. The GIF

format allows a user to combine several GIFs into a single one to create animations.

However, this has two drawbacks. One is that the GIF format applies no compression

between the image frames of an animation so that if several larger GIFs are combined

into one, a large-sized animation will be created. This contradicts one of the

objectives of GIF development: being small in size. The other drawback is that no

control interface exists, and the animation will play automatically, when downloaded,

even if the user does not want the play. What even worse is that if looping is enabled,

the animation will continue to play again and again. Actually the animation

functionality of it is seldom used in a meaningful way and usually a disturbance to

readers.

2.1.2 Properties of GIF Images
Each GIF image has a palette containing numerous squares and each of which

has a color from the 24-bit RGB color space. The number of squares of a GIF image

is a power of two and the maximum of it is 256. Besides the palette, a GIF image file

also contains a two-dimensional index array in which each element is a number

ranging from 0 to the size of the palette. Each pixel is associated with an index in the

array and each index points to a color in the palette. So pixels with the same index

values have the same color.

GIFs apply the LZW(Lempel Zev Welch) compression method that compresses

an image without losing data and distorting the image itself. It is the method that best

 10

compresses images with large fields of homogeneous colors. Less efficiency appears

when a picture is of many colors and complex textures. It can be improved by

reducing the number of colors in a GIF to be as small as possible. This is achieved by

removing stray colors that are not required to represent the image, hence shrinking the

size of it.

Another feature of the GIF file format is that the user is able to decide whether

an image is interlaced or not. It means that if a GIF image is interlaced, supporting

browsers display it in a low-to-high order of resolution, or if this is not the case, they

do it in a raster order. This not only has the “fuzzy-to-sharp” effect that attracts the

reader but gives the reader a preview of the full version of the image also. The feature

is much more suitable for displaying larger GIF images since when displayed, a

smaller interlaced one consumes more time than one without the interlacing feature.

And generally speaking, the interlacing feature has little effect on the size of GIF

images.

The last feature introduced here is free control of its transparency. This allows

the users to pick colors in the palette of a GIF image to be transparent. Usually the

background colors are selected for transparency when the image is to be displayed as

a foreground. Unfortunately, if a color is chosen to be transparent, all of the pixels

with that color will become transparent. So if a foreground pixel happens to have the

same color as a background one, the foreground pixel will become transparent, which

is usually undesired.

2.2 Proposed Data Hiding Method

 11

2.2.1 Principle of Proposed Method
As mentioned above, the palette consists of several squares and each pixel has an

index associated with a color square in the palette. We denote the “index-and-square”

pair as (index, square). For example, we denote the color a pixel has as (5, square5) if

and only if the index of the pixel is 5. So if two different squares are of the same RGB

value, the pixels associated with either one of the squares will have the same color.

That is, if square5=square6 (meaning that the two squares in the palette are of the

same color), those pixels with index values 5 and 6 will have the same color when

displayed. It means that if we change a pixel’s value from 5 to 6, no change will be

introduced into the image. We can take advantage of this property to achieve

high-capacity and distortion-free data hiding, as done in this study.

Plenty of 8-bit GIF images do not use all of the squares in the palette [18]. We

name such squares unused squares. The principle of the proposed data hiding

algorithm is to duplicate colors appearing in used squares and fill them into the

unused squares. But not all of the used squares are duplicated; only those colors with

high appearance frequencies will be duplicated and we call them “copy colors.”

Suppose that one of the copy colors is A and its index-and-square pair is (A,

squareA) and the duplicated color is B and its index-and-square pair is (B, squareB).

When embedding certain given secret data, we first conduct raster scanning and let

the pixel currently being scanned be denoted as p. The scan is to check which pixel in

the index array of a given cover image is of color value A. Then the data embedding

rule proposed in this study goes as follows:

regard bit 0 being embedded at p if p has color A;

regard bit 1 being embedded at p if p has color B.

Since SquareB is duplicated from SquareA (so the colors in squares A and B are

 12

identical), we know that the stego-image will appear to be completely the same as the

cover image no matter how many As are modified to be Bs.

An example is given here. Suppose color A is in the ith square of the color

palette, and let it be copied into the jth square of the palette and named color B. So we

have two identical colors A and B in the palette with indices i and j, respectively. Now,

to embed a bit 0 in the currently-scanned pixel p, we just associate the index i with p,

and to embed 1, associate the index j with p.

The following section discusses how “high capacity” is achieved in this study. It

is inspired from the previous section that if we duplicate a square more and more

times, that copy color can hide more bits every time it appears. For example, if the

copy color A is duplicated three times and the copy colors are named B, C, and D

respectively. When embedding secret data, we can first find which pixel value is A

and then embed secret bits as follows:

regard “00” being embedded in p if p(x, y) = A;

regard “01” being embedded in p if p(x, y) = B;

regard “10” being embedded in p if p(x, y) = C;

regard “11” being embedded in p if p(x, y) = D;

The same principle applies when a copy color is to be used to embed more bits.

That is, if we duplicate a copy color seven times so that the copy color repeats eight

times in the palette, the copy color and each duplicated color can hide three bits. The

data extraction process is the same as described previously.

To maximize the data hiding capacity, we have to choose appropriate colors as

the copy colors. The copy colors are chosen to be the most frequently appearing ones

in the cover image. Basically the more times a copy color appears, the more unused

squares are allocated to it. But consider the following case: the palette of a cover

 13

image is of the size 256 and there are 3 unused squares. And we also assume that the

top three frequently appearing colors are A, B, and C, and the times they appear in the

cover image are 200, 150, and 100, respectively. If we allocate all 3 unused squares to

A, it means A is used for hiding 2 bits and the hiding capacity will be 2*200=400 bits

totally. However, this allocation is not optimal. The maximum data hiding capacity

can be achieved when we allocate each color a square such that each color can hide

only 1 bit. In such a case the total data hiding capacity becomes 200*1+150*1+100*1

= 450 bits, which is larger than the previous one. So we can only grantee that a color

with a higher appearing frequency will not be assigned fewer squares than a color

with a lower appearing frequency. To find out which assignment is optimal, we use a

brute-force method in this study to enumerate all possible frequency-bit combinations.

This process seems time-consuming. But actually since the size of the palette is at

most 256, the process will not take too long. And since the data embedding process

need not be conducted in real time in most applications, the waiting time for using the

above-mentioned brute-force method to select the best color copying way is

acceptable.

Before the secret messages are really embedded, we have to do a preprocessing

to prevent the secret messages from being dismissed by the reordering of the palette.

This preprocessing also makes it clear that the bit pattern that a color hides. We use an

example to illustrate this. Let A be the copy color with index 10 in the palette and B,

C, and D be A’s duplicated color with index 11, 12, and 13 in the palette, respectively.

The preprocessing is that on scanning the index array, we change the index values of

the first four pixels whose color is A. We keep the 1st pixel’s index unchanged and

modify the 2nd, 3rd, and 4th pixels’ to be 11, 12, and 13, respectively. Note this

preprocessing does no data hiding. It just means that indices A, B, C, and D are used

for hiding bit patterns 00, 01, 10, and 11, respectively. With this preprocessing, if the

 14

palette is reordered such that the indices of A, B, C, and D in the palette become 4, 3,

2, and 1, respectively, we can still know the bit pattern that A, B, C, or D hide. It is

due to the fact that we will first meet index 4 on scanning, which means we can

extract 00 from every pixel with index 4 on the rest of the scanning. If we do not do

the preprocessing, we will not be able to know which bit pattern that a color hides

since we will not be able to know which color is the copy color and which are

duplicated colors on decoding.

The data extraction process is intuitive. The first thing we have to do is to scan

the palette of the stego-image to see how many copy colors are used. Then we

construct a decoding table by recording the indices of colors that appear more than

once in the palette. During decoding, we scan the stego-image’s index array in the

raster scan order and look up the decoding table. If the index value being scanned is in

the decoding table, several bits will be extracted. The number of bits each time we can

extract depends on the appearing times of that copy color in the palette. If the index

value being scanned is not in the decoding table, we will just continue to scan the next

pixel.

2.2.2 Data Embedding Process
We describe the data embedding process step by step as follows according to the

previous discussions.

Algorithm 1. Hiding secret messages in a GIF cover image.

Input: A given GIF cover image I and given binary secret messages.

Output: A stego-image S.

Steps:

1. Check the palette of I and count how many squares are used and unused. Record

the indices of used squares and unused squares, respectively. Also record the times

 15

each index (pointing to a used square) appears in I.

2. Apply the above-mentioned brute-force method to calculate the maximum data

hiding capacity and decide how many bit(s) each copy color can hide.

3. Construct an encoding table with each element of it being the index of a copy

color or the index of a duplicated color.

4. Hide the secret message into the image pixels by the principle described in

Section 2.2.1 in a raster scan order to obtain S.

2.2.3 Data Extraction Process
We describe the data extraction process step by step as follows.

Algorithm 2. Extracting secret messages from a given stego-image.

Input: A stego-image S.

Output: Binary secret messages.

Steps:

1. Analyze the palette of S to see how many copy colors exist by examining the

repetitions of each color. Then calculate the bits each copy color can hide and

record them. Also determine and record the bit pattern that a copy or a duplicated

color can be extracted by looking up the first n pixels (which are of the same color

as that of copy or duplicated color) if the color repeats n times in the palette.

2. Construct a decoding table and assign each element of it the index of a copy color

or a duplicated color.

3. Start to extract secret bits in a raster scan order. If the index happens to be one of

the index values in the decoding table, several bits can be extracted according to

the record we made in Step 1. If this index is not one of the indices in the

decoding table, do nothing but go forward to the next index until the end of the

index array.

 16

4. Obtain the binary secret messages.

2.3 Experimental Results

In this section, we show the experimental results on several images in Table 2.1 and the comparison

before and after data hiding in

Table 2.2. Note that the file size of the stego-images is slightly larger than that of

cover images. This is due to the compression method used on GIFs. Since the method

proposed in this study is distortion-free, the experimental results focus on the data

hiding capacity.

Table 2.1 Characteristics of tested images and their hiding capacity

File Name File Size(KB) Resolution Capacity(KB) Icon

50years 32.8 355x217 31.35

bbb 2.07 85x28 0.91211

book 41.6 751x440 157.53

ipod 71.3 500x532 151.65

leo 44.9 450x437 105.01

ship 15.3 300x247 13.819

 17

Table 2.2 The comparison of cover images and stego-images.

File
Name

Cover
Image

File Size
(KB)

Stego-im
age

File Size
(KB)

Cover Image Stego-image

50years 32.8 32.9

bbb 2.07 2.16

book 41.6 41.6

ipod 71.3 71.5

leo 44.9 44.9

ship 15.3 15.3

 18

2.4 Discussion and Summary

In this chapter, a high-capacity, adaptive, and distortion-free data hiding method

has been proposed. As shown in the previous sections, some images can even have

data hiding capacities larger than the file sizes of themselves. And the proposed

adaptive approach yields the maximum data hiding capacity. Since this method

establishes a relationship between the palette and the pixel values carrying secret bits,

the reordering of the palette does not destroy the secret messages. Although the

proposed method is of several advantages, it has a shortcoming on security. A

malicious attacker can easily detect the existence of secret messages by simply

examining the palette to see if there are identical colors in it. To improve the security

is a future work of this research.

 19

Chpater 3
Data Hiding by Stacking Up Two
PNG Images

3.1 Introduction

3.1.1 Uses of PNG Images
PNG is the abbreviation of Portable Network Graphics. It is a format of images.

As its name suggests, one of its two uses is on the World Wide Web. Since the patent

of the LZW (Lempel-Ziv-Welch) lossless data compression algorithm had been

enforced by Unisys, the PNG format which uses a non-patented compression method

was first developed in early 1995 for replacing the GIF format. Besides the patent-free

advantage, PNGs have three other advantages over GIFs: the alpha channel, the

gamma correction option, and the two-dimensional interlacing progressive display

capability. PNGs that have alpha channels are of variable transparency while GIFs are

only of single-level transparency, namely, fully transparent or opaque. As to the

progressive display capability, PNGs are superior to GIFs since users can see the

complete PNG image earlier than the GIF image when they are loaded at the same

time. Details of the display method of PNGs on the Internet will be described in the

following section.

The other use of PNG is image editing. PNG is a useful format for the storage of

intermediate stages of editing. This benefits from PNG’s lossless data compression

and its support of up to 48-bit truecolors or 16-bit graylevels. This means that saving,

restoring, or re-saving will not degrade its quality, unlike the standard JPEG. Like GIF,

 20

PNG is a raster format, which means that it represents an image as a two-dimensional

array of pixels. PNG is not explicitly a vector format which allows users to store

shapes (lines, boxes, etc.) and can be scaled arbitrarily without any loss of quality.

3.1.2 Properties of PNG Images
The fundamental building block of PNG images is ‘chunk.’ With the exception

of the first 8 bytes in the file, a PNG image consists of nothing but chunks. Every

chunk has the same structure: a 4-byte length, a 4-byte chunk type, a 4-byte cyclic

redundancy check value (CRC). The simplest PNG file contains three chunks. They

are the image header chunk, IHDR; the image data chunk, IDAT; the end-of-image

chunk, IEND. An IHDR must be the first chunk in a PNG image, and it includes all of

the details about the type of the image: its height and width, pixel depth, compression

and filtering methods, interlacing method, whether it has an alpha (transparency)

channel, and whether it is a truecolor, grayscale, or palette image. An IDAT contains

all of the image’s compressed pixel data. Each IDAT can contain at most 2 gigabytes

of compressed data. An IEND is the simplest chunk of all. It contains no data, and just

indicates that no chunk follows. These three chunk types are sufficient to build

truecolor and grayscale PNG files, with or without an alpha channel, but palette-based

images require one more type of chunk: PLTE, the palette chunk, which consists of

lots of squares like GIF. But the number of squares is not necessarily a power of two.

A byte called ColorType in the IHDR chunk indicates what kind the image is of.

If ColorType equals 0, the image type is gray-level; if ColorType equals 2, the image

type is truecolor; if ColorType equals 3, the image type is palette; if ColorType equals

4, the image is gray-level with an alpha channel; if ColorType equals 6, the image is

truecolor with an alpha channel. As to the pixel depth, it is indicated by another byte

named Bit Depth. A palette PNG image can be of pixel depth 1, 2, 4 or 8; a gray-level

 21

one can be of pixel depth 1, 2, 4, 8 or 16; and a truecolor one can be of 8 or 16.

Another byte in the IHDR chunk, called Interlace, indicates how the PNG image

is displayed. If the byte is 0, the image is displayed with interlacing; if it is 1, the

image is displayed without interlacing. The interlacing method of PNG is a

two-dimensional scheme with seven passes, known as the Adam7 method (after its

inventor, Adam Costello). The primary benefit of the PNG’s two-dimensional

interlacing, contrasting with the GIF’s one-dimensional scheme, is that one can view a

crude approximation of the entire image roughly eight times as fast.

The PNG specification defines a single compression method, the ‘deflate’ algorithm, for all image

types. Although not the best compression algorithm known so far, ‘deflate’ has a very desirable mixture

of characteristics: high reliability, good compression, good encoding speed, excellent decoding speed,

and minimal overhead on incompressible data. The IHDR chunk is illustrated in

Table 3.1.

The above three types of chunks, IHDR, IDAT, and IEND, are named critical

chunks. There are 10 other types of chunks that do not necessarily exist in a PNG

image. They are bKGD (background color), cHRM (primary chromaticities and white

point), gAMA (gamma), hIST (image histogram), pHYs (physical pixel dimensions),

sBIT (significant bits), tEXt (textual data), tIME (image last-modification time), tRNS

(transparency), and zTXt (compressed textual data), respectively. They are named

ancillary chunks.

Table 3.1 The structure of IHDR chunk.

 22

Field Name Byte Number Comment

Width 4 bytes width of the image, measured in pixels.

Height 4 bytes height of the image, measured in pixels.

Bit depth 1 byte palette image:1,2,4,or 8
gray-level image:1,2,4,or 8
truecolor image:8 or 16

ColorType 1 byte gray-level image:0
truecolor image:2
palette image:3
gray-level image with alpha channel:4
truecolor image with alpha channel:6

Compression method 1 byte LZ77-derived algorithm,
deflate.

Filter method 1 byte method of filtering

Interlace method 1 byte non-interlaced:0
interlaced:1

3.2 Proposed Data Hiding Method

3.2.1 Proposed Idea
In this study, we pile up two gray-level PNGs for data hiding and the upper

image is created with an alpha channel. The upper one is called a foreground image

while the lower one is called a background image. We name the resulting new image a

piled-up image. According to the PNG standard, if the upper image contains an alpha

channel or is with some pixels fully transparent or opaque, the color that a transparent

pixel of the piled-up image presents is calculated in the following way.

First, denote F and A, respectively, as the intensity and the alpha value that a

 23

pixel of the foreground image presents; B as the intensity that a pixel of the

background image presents; and P as the intensity that a pixel of the piled-up image

presents. Then the grayscale value P of a pixel in the piled-up image with

transparency is computed by

P = (F×A + B×(255 − A))/255.

This formula is adopted by most graphic cards for showing the pixel value on the

screen. The alpha value A can be treated as the weight that determines how many

percentages the foreground and background colors should present. Note that the

foreground image and the background image need not be of the same size. But at least

the background image should be no smaller than the foreground image.

Our idea of data hiding is to embed secret messages in the alpha channel of the

foreground image with the 5-bit LSB method. For each pixel, since bit embedding in

the alpha channel might result in an increase or decrease of the alpha value, the value

P will also be increased or decreased. In order to increase the quality after data

embedding, we make use of the above-mentioned formula to increase the PSNR. The

details are described as follows.

For each pixel, let the alpha value after embedding be A’. We adjust F and B to

be F’ and B’, respectively, according to the difference D defined by F×A+B×(255 − A)

minus F×A’+B×(255 − A’). If D is greater than zero, we first subtract floor(D/A’) from

F to form F’. Then we define the difference D’ by F×A+B× (255 − A) minus

F’×A+B×(255 − A). Since D’ must be greater than zero, we further subtract

floor(D’/(255-A’)) from B to form B’; If D is smaller than zero, we first add

floor(D/A’) to F to form F’ and since D’ must be smaller than or equal to zero, we

further add floor(D’/(255 − A’)) to B to form B’.

The philosophy of the above idea is as follows. We first reduce the difference

 24

between F×A+B×(255 − A) and F×A’+B×(255 − A’) by adjusting the intensity F to be

F’. Since F’ is gained from F plus or minus floor(D/A’), we can guarantee that D’ and

D are of the same sign. Keeping the consistency of the sign makes it easier to program.

More specifically, if F’ is produced by an adding operation on F, B’ will also be

produced by an adding operation on B; if F’ is produced by a subtracting operation on

F, B’ will be produced by a subtracting operation on B.

It is common that two or more images are piled up on web pages. Usually a web

page consists of a background image and some foreground images. If we want to hide

secret messages in pixels that are formed by piling up two images on a web page, we

can use the method mentioned above.

3.2.2 Data Embedding Process
The data embedding process is described step by step in Algorithm 1 as follows.

Secret messages are embedded in a raster scan order.

Algorithm 3.1. Hiding secret binary messages in two images.

Input: A cover image that is formed by piling up a foreground image with an alpha

channel and a background image.

Output: A stego-image S made of two piled-up images.

Step:

1. Use a key to randomize the secret data to be embedded and then embed five

randomized secret bits in the alpha channel of the foreground image of the current

pixel.

2. Handle the “salt-and-pepper” problem for the alpha channel with the following

rule: Add 32 to those values that are smaller than 0. Subtract 32 from those values

that are larger than 255.

 25

3. For each pixel, do the following operations:

compute D = (F*A+B*(255-A) - F*A’+B*(255-A’));

if (D > 0), compute

F’ = F - floor(D/A’);

D’= (F*A+B*(255-A) - F’*A+B*(255-A));

B’= B - floor(D’/(255-A’));

else if (D < 0), compute

F’= F+ floor(D’/A’);

D’= (F*A+B*(255-A) - F’*A+B*(255-A));

B’ = B - floor(D’/(255-A’)).

4. Obtain the stego-image S.

3.2.3 Data Extraction Process
We describe the data extraction process as follows.

Algorithm 2. Extracting secret from a given stego-image.

Input: A piled-up stego-image S.

Output: Binary secret messages.

Steps:

1. Extract five bits from the alpha channel of the current pixel by A’ modulo 32.

2. Combine the secret bits together extracted from each pixel to form the randomized

secret messages.

3. Use the same key used in the data embedding process to get the real secret

message.

3.3 Experimental Results

 26

In this section, we show the experimental results on some background and

foreground images. We show the total hiding capacity that each stego-image can hide

and also show the PSNR before and after adjusting the foreground and background

values.

An experimental result is shown in ��������! � � � � � � 	� � � � � � 	� � � � � � 	� � � � � � 	

. Figure 3.1(a)

shows a 333x250 background cover image, box.png. Figure 3.1(b) shows a 128x128

foreground image, photo.png. And Figure 3.1(c) shows the piled-up image where no

secret bit is embedded . Figure 3.1(d) shows the stego-image without adjusting the

foreground and background intensities. Figure 3.1(e) shows the adjusted stego-image.

The data hiding capacity is 128×128×5 = 10KB. The PSNR is 30.8941 without

adjusting the foreground and background intensities and 47.6422 with adjusting. We

pile the foreground image on the background image at the upper leftmost corner.

(a)

Figure 3.1 An experimental result of the proposed method: (a) the background image; (b)

the foreground image; (c) the piled-up cover image; (d) the stego-image without

modifications. (e) the stego-image with modifications.

 27

(b)

(c)

(d)

Figure 3.1 An experimental result of the proposed method: (a) the background image; (b)

the foreground image; (c) the piled-up cover image; (d) the stego-image without

modifications. (e) the stego-image with modifications. (continued)

 28

(e)

Figure 3.1 An experimental result of the proposed method: (a) the background image; (b)

the foreground image; (c) the piled-up cover image; (d) the stego-image without

modifications. (e) the stego-image with modifications. (continued)

Another experimental result is shown in Figure 3.2. Figure 3.2(a) shows a

584x457 background cover image, pirate.png. ��������! � � � � � � 	� � � � � � 	� � � � � � 	� � � � � � 	

(b) shows a

128x128 foreground image, walker.png. And Figure 3.2(c) shows the piled-up image

where no secret bit is embedded. Figure 3.2(d) shows the stego-image without

adjusting the foreground and background intensities. Figure 3.2(e) shows the adjusted

stego-image. The data hiding capacity is 128×128×5 = 10KB. The PSNR is 37.8782

without adjusting the foreground and background intensities and 59.4150 with

adjusting. We pile the foreground image on the background image at the upper

leftmost corner.

3.4 Discussion and Summary

In this chapter, a method that embeds secret data in piled-up images has been

 29

proposed. This method can be used in data hiding on web pages. In this method, only

the alpha channel of a given image is used for hiding data. Note that we adjust the

intensity of the foreground image and the intensity of the background image without

hiding secret data in them. We can make use of both of the intensities to increase the

data hiding capacity. But this may result in a decreasing of the PSNR value. To

develop a method that not only has a high hiding capacity but also a high PSNR value

after embedding is a good topic for future works of after this study.

(a)

(b)

Figure 3.2 An experimental result of the proposed method: (a) the background image; (b)

the foreground image; (c) the piled-up cover image; (d) the stego-image without

modifications. (e) the stego-image with modifications.

 30

(c)

(d)

(e)

Figure 3.2 An experimental result of the proposed method: (a) the background image; (b)

the foreground image; (c) the piled-up cover image; (d) the stego-image without

modifications. (e) the stego-image with modifications. (continued)

 31

Chpater 4
Fast Search Methods via Hidden
Messages in Images

4.1 Introduction

4.1.1 Need of Fast Search of Desired Images
Digital image technology continues progressing and image libraries and

databases are widely used in recent years. Images are created or available much more

easily than they are in the past ten years. One can create images in the following two

main ways. One is to create images by a scanner to scan paper and store what is

scanned in a digital form. The other is to create images by digital cameras. A digital

camera usually stores what has been shot in a compressed form to save spaces. It is

common that hundreds of pictures are created during one’s journey. Plenty of images

are also easily available through the Internet. A part of the functionalities of Google is

one of the examples. People can get images they want by using keywords to search on

Google at the IP address http://images.google.com.tw/. So it is critical to manage

images more efficiently and effectively. Sometimes people want to load and view a

desired image from their disks but it is quite hard or even impossible for them to

remember all of the names of the images or to check all of the images in their

computer. To develop a fast method for searching desired images is the goal of this

study.

 32

4.1.2 Possible Techniques for Speeding Up Searches
Databases are usually used for storing huge amounts of data or records and a

program can consult it to answer queries. The records retrieved in answer to queries

become information that can be used to make decisions. The computer used to

manage and query a database is known as a database management system (DBMS).

One of the possible techniques for speeding up searches is to use an image database to

record and manage images in it.

4.2 Proposed Search Method

4.2.1 Proposed Ideas
In this study, we propose two methods that can achieve faster searches for image

databases. The idea is described as follows.

Before an image is stored into the image database, users have to enter some

comment and we use data hiding techniques to hide the comment into that image for

the search purpose. That means what we really store is a stego-image instead of a

cover image. This scheme also has the advantage of requiring no additional space to

save the comment for each image. In this study, we use BMPs as cover images and

stego-images. And we conduct the 4-bit least-significant-bit (LSB) method to hide a

comment into the red channel of a BMP file. Then we propose two methods to

accomplish fast searches of the image database.

A. Method 1 --- non-block-level search

The first method we propose to conduct fast searches is called “the

non-block-level search method.” We achieve this by storing additional information

 33

into images. We store two additional pieces of data so that we can search for desired

images in a two-level hierarchical way. The first-level hierarchy is that, for each

single word of the comment, we sum up the ASCII code values of all the letters of that

word and store the value of the sum modulus 255. Actually, this is a hashing approach,

and what we actually do is to hash the ASCII sum into a hash table of size 255. The

second hierarchy is that, for each single word of a comment, we calculate the word

length of it (i.e., the number of letters that make up the whole word) and store the

result. So what we finally store are the ASCII sum, the word length, and the word

itself. This is shown in Figure 4.1. In this study, we only allow users to search for

desired images by a single key word and we return the file names of desired images as

output as long as a word of their comment matches the key word. After the single key

word is entered, we calculate the ASCII sum and the word length of it and then start

the search. First, we compare the ASCII value of the current comment word and that

of the key word. If the two values match, we further compare the word lengths of

them and if the two values still match, we then compare the two word letter-by-letter.

And of course, if all of the letters and the positions of the letters of the two words are

the same, the user will get the desired images and their titles. If any of the ASCII sum

value, word length, and the letters being compared of the two words does not match,

we just go further to compare the next comment word with the key word until a

comment word that matches or until the end of the comment of the image.

In the above process, since we record the word length, we do know how many

letters we should skip if a mismatch occurs. To store the word length is the key to

speeding up searches since it erases the comparison times of letters to facilitate

looking forward to the next comment word. This is by far an advantage when the

comment word is of a long length. Consider the following case: suppose that a part of

the comment is “misunderstandings with…” and the key word is “my.” We first store

 34

the comment, say, in the form of “57 16 misunderstandings 189 4 with…” and

transform the key word, say, to the form of “230 2 my”. Since 57 is not equal to 230,

we know that a mismatch occurs and we can directly skip at least 16 letters and start

to compare 57 and 184. Without the store of the word length, we will have to know

the starting point of the next comment word by checking each letter until the

appearance of the character, space.

B. Method 2 --- block-level search

The first method is a sequential approach, which means not until the current

comment word is compared can we process the next comment word. The second

method is a block-level search method which can be applied in a non-sequential order.

First, we divide the cover image into several blocks and each block is used to hide a

single comment word. And we need not to store the length of comment words this

time; since we store each comment word from the upper left most pixel of a block, we

know exactly the place where the next comment word will appear. The only additional

information we have to store is the comment word’s ASCII sum modulus 255. This is

shown in Figure 4.2. The overall comparison procedure is the same as the first method,

so we do not describe it in detail.

Figure 4.1 The data structure of the non-block-level method.

ASCII sum Comment word

Figure 4.2 The data structure of the block-level method.

ASCII sum Word length Comment word

 35

4.2.2 Non-block-Level Search Method
In this section, we describe the algorithms for implementing the non-block-level

search method as follows.

Algorithm 4.1. Hiding comment words in a BMP cover image file for later search.

Input: A given BMP cover image and comment words to be embedded.

Output: A stego-image S.

Steps:

1. Grab a comment word and calculate both the ASCII sum modulus 255 and the

word length of it.

2. Embed the ASCII sum modulus 255, the word length, and the comment word

itself in order by applying the 4-bit LSB method to the red channel of the cover

image.

3. Repeat the previous two steps until all the comment words are embedded.

4. Take the resulting image as the desired stego-image S.

As an illustration of the data embedding result of applying the above algorithm,

Figure 4.3(a) shows a cover image and Figure 4.3(b) shows the resulting stego-image

after embedding the comment “This is a lemon butter cuticle crème.”

(a) (b)

Figure 4.3 Result of hiding comment words. (a) A cover image bee.bmp. (b) The resulting

stego-image.

 36

Algorithm 4.2. Searching for desired images.

Input: A key word used for search and a set of stego-images forming an image

database.

Output: Desired images with comments matching the key word.

Steps:

1. Calculate the ASCII sum modulus 255 and the word length of the key word.

2. Grab an image from the image database.

3. Compare the key word and the comment word in the following order:

(1) compare the ASCII sums modulus 255;

(2) compare the word lengths;

(3) compare the words letter by letter.

As long as the values or the letter being compared fails to match, skip to check

the next comment word. Return the file name of the image if all of the

comparisons succeed. Grab the next image if all of the comment words of the

current image fail to match the key word.

4. Repeat Step 1, 2, and 3 until every image in the database has been checked.

5. If no desired image exists, return the message of ‘no such file.’

4.2.3 Block-Level Search Method
In this section, we describe the algorithms for implementing the block-level

search method as follows.

Algorithm 4.3. Hiding comment words in a BMP cover image file for later search.

Input: A given BMP cover image and some comment words to be embedded.

Output: A stego-image S.

Steps:

 37

1. Divide the image into several blocks and each block is of size n×n or m×n, where

m is not equal to n.

2. Grab a comment word and calculate the ASCII sum modulus 255 of it.

3. Embed the ASCII sum modulus 255, and the comment word itself in the current

block, starting from the upper left most pixel of the block, by applying the 4-bit

LSB method to the red channel of the pixel’s color values.

4. Repeat the previous two steps until all the comment words are embedded.

5. Take the resulting image as the desired stego-image S.

As an illustration of the data embedding result of applying the above algorithm,

Figure 4.4(a) shows a cover image and Figure 4.4(b) shows the resulting stego-image

after embedding the comment “This is a Japanese girl beside the window.”

(a)

(b)

Figure 4.4 Result of hiding comment words. (a) A cover image beauty.bmp. (b) The resulting

stego-image.

 38

Algorithm 4.4. Searching an image database for desired images.

Input: A key word used for search and a set of stego-images forming an image

database.

Output: Desired images with their comments matching the key word.

Steps:

1. Calculate the ASCII sum modulus 255 of the key word.

2. Grab an image from the image database.

3. Compare the key word and the comment word with the following order:

(1) compare the ASCII sums modulus 255 after extracting the value of the ASCII

sums modulus 255 from the 4 LSBs of the pixels of the image blocks;

(2) compare the words letter by letter after extracting the current comment word

from the 4 LSBs of the pixels of the image blocks.

As long as the values or the letters compared fails to match, skip to check the

next comment word. Return the file name of the image if all of the comparisons

of a comment word match. Grab the next image if all of the comment words of

the current image fail to match the key word.

4. Repeat Steps 1, 2, and 3 until every image has been checked.

5. If no desired image exists, return the message of ‘no such file.’

4.3 Experimental Results

In this section, we show some experimental results. We show a result of

non-block-level method first and then that of the block-level one. For the first

experimental result of the non-block-level method, we embed different comments into

a particular image. The smaller the difference is, the fewer times we need to judge

 39

whether this image is desired or not. The particular image we use is Lena.bmp (shown

in Figure 4.5) with its size 512×512 and the first comment we embed is “Lena is a

model.” And the second comment we embed is “The girl who lives in the U.S. and

studies computer science is called Lena Wang.” Then we use “Lena” as the key to

search. Note that the first comment has “Lena” as the first word while the second

comment has “Lena” as the second last word. The time elapsed using the first

comment to search for the desired image is 0.042153 seconds while the time elapsed

using the second comment to find out the desired image is 0.061118 seconds, which is

less than a 0.1 second.

Figure 4.5 The particular image, Lena.bmp.

For the second experimental result of the block-level method, we tried to find

two desired images (Lena1.bmp and Lena2.bmp) from an image database containing

200 images. Some of the images in the database are shown in Figure 4.6(a). The key

word is the same as the previous one (i.e., the key word is Lena) and the comments

we embed in the two images are again “Lena is a model.” and “The girl who lives in

the U.S. and studies computer science is called Lena Wang.”, respectively The times

elapsed to find out the two desired images are around 0.04842 and 0.1046 seconds,

respectively. Figure 4.6(b) shows the search results, including the two images with the

 40

key word ‘Lena.’

Lena1.bmp Lena2.bmp AMIGO001.bmp AMIGO002.bmp

AMIGO003.bmp AMIGO004.bmp AMIGO005.bmp AMIGO006.bmp

AMIGO007.bmp AMIGO008.bmp AMIGO009.bmp AMIGO0010.bmp

AMIGO0011.bmp AMIGO0012.bmp AMIGO0013.bmp AMIGO0014.bmp

(a)

 Figure 4.6 Image database used in the experiment. (a) Some images in the database and the first two

images are Lena1.bmp and Lena2.bmp with comments “Lena is a model” and “The girl who

lives in the U.S. and studies computer science is called Lena Wang.”, respectively. (b) Two

desired images found in 0.04842 and 0.1046 seconds, respectively.

 41

Lena1.bmp Lena2.bmp

(b)

Figure 4.6 Image database used in the experiment. (a) Some images in the database and the first two

images are Lena1.bmp and Lena2.bmp with comments “Lena is a model” and “The girl who

lives in the U.S. and studies computer science is called Lena Wang.”, respectively. (b) Two

desired images found in 0.04842 and 0.1046 seconds, respectively. (continued)

4.4 Discussion and Summary

In this chapter, two methods for fast search of image databases have been

proposed. We hide comments inside images so that we do not need additional space to

save the comments and as shown in the previous section. Although we can find out

desired images in a short time by using either one of the methods, we still feel that

there is space to improve the efficiency of both methods. To make the search faster for

both methods is our future work.

 42

Chpater 5
Conclusions and Suggestions for
Future Works

5.1 Conclusions

In this study, we have proposed several methods for different purposes, including

a data hiding method for GIFs, a data hiding method for use on web pages, and two

methods for fast image searches. All of them are implemented in a PC environment.

The proposed data hiding method for GIFs can be used to hide huge amounts of

data in a GIF file without distorting the image. For the data hiding method used on

web pages, we pile up two gray-level PNG images and hide secret data in the alpha

channel of the foreground image. And then we adjust both the intensity of the

foreground image and that of the background image such that the intensity that the

pixel presents after embedding will not be too far away from the original intensity. In

this way, we can hide secret messages in a web page without being detected easily.

As to the two methods for fast searches of images in databases, one method is a

non-block-level method while the other is a block-level method. Both methods use the

comments hidden in images as indices to search and both can find out desired images

in a very short time.

5.2 Suggestions for future works

 43

Several suggestions for future researches are listed as follows.

1. Developing a distortion-free and high-capacity data hiding method for GIF images,

such that the embedded secret messages are not easily detected by an attacker.

2. Developing high-capacity data hiding methods on other image formats.

3. Developing a data hiding method, based on the proposed concept of piling up two

PNGs, which hides secret messages in the alpha channel and the intensity channel

of the foreground image, as well as the intensity channel of the background image

without producing serious artifacts in the stego-image.

4. Developing faster search methods for the BMP image file and other image

formats.

 44

References

[1] E. H. Adelson, “Digital signal encoding and decoding apparatus,” U.S. Patent

4939515, 1990.

[2] D. C. Lou and J. L. Liu, “Steganographic Method for Secure Communications,”

Computers and Security, Vol. 21, Issue 5, pp. 449-460, October 1, 2002.

[3] Y. K. Lee and L. H. Chen, “High Capacity Image Steganographic Model,”

Vision, Image and Signal Processing, IEE Proceedings-, Vol. 147, No. 3, pp.

288-294, June 2000.

[4] N. F. Johnson and S. Jajodia, “Steganalysis: The Investigation of Hidden

Information,” Information Technology Conference, 1998. IEEE, pp.113-116, 1-3

Sep 1998.

[5] M. D. Swanson, B. Zhu, and A. H. Tewfik, “Robust Data Hiding for Images,”

IEEE Digital Signal Processing Workshop Proceedings, pp.37-40, 1-4 Sep

1996.

[6] Y. J. Cheng, C. Y. Yin, D. C. Wu, and W. H. Tsai, “Copyright Protection and

Authentication of Image Information in Digital Libraries,” Proceedings of 2001

Conference on Trends and Perspectives in Digital libraries and Digital

Museums, Hsinchu, Taiwan, Republic of China, pp. VIII 1~11 (in Chinese).

[7] Chen and Lee, “Non-Photorealistic 3D Rendering in Chinese Painting Style,” M.

S. Thesis, Department of Computer Science and Information Engineering,

National Cheng Kung University, Tainan, Taiwan, Republic of China, July

2003.

[8] T. K. Yen, “Image Hiding by Random Bit Replacement and Frequency

Transformations,” M. S. Thesis, Department of Computer and Information

Science, National Chiao Tung University, Taiwan, Republic of China, 1998.

 45

[9] N. Abdulaziz and K. K. Pang, “Wavelet Transform and Channel Coding for

Data Hiding in Video,” Info-tech and Info-net, 2001. Proceedings. ICII 2001 -

Beijing. 2001 International Conferences, Vol. 2 , 2001, pp. 791 –796.

[10] H. Y. Chang, “Data Hiding and Watermarking in Color Images by Wavelet

Transforms,” M. S. Thesis, Department of Computer and Information Science,

National Chiao Tung University, Taiwan, Republic of China, 1999.

[11] G. Xuan, J. Zhu, J. Chen, Y.Q. Shi, Z. Ni, and W. Su, “Distortionless Data

Hiding Based on Integer Wavelet Transform,” Electronics Letters, Department

of Computer Science, Tongji University, Shanghai, China, 2002.

[12] M. Kwan, “GIF Colormap Steganography,” 1998.

[13] R. Machado, “EzStego, Stego Online, Stego”, 1997.

[14] H. Repp, “Hide4PGP,” 1996.

[15] A. Brown, “S-Tools for Windows,”1996.

[16] C. Maroney, “Hide and Seek,” 1994-1997.

[17] N. F. Johnson and S. Jajodia, “Steganalysis of Images Created Using Current

Steganography Software,” New York: Springer-Verlag, Vol. 1525, Lecture Notes

in Computer Science, pp. 273–289, 1998

[18] J. Fridrich and R. Du, “Secure Steganographic Methods for Palette Images,”

Proc. 3rd Int. Workshop Information Hiding, Dresden, Germany, pp. 47–60,

1999.

[19] L. Hongmei, Z. Zhefeng, H. Jiwu, H. Xialing, and Y. Q. Shi, “A High Capacity

Distortion-free Data Hiding Algorithm for Palette Image,” Proc. IEEE Int. Symp.

on Circuits and Systems 2, pp. 916–919, 2003.

