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Abstract

Software testing is expensive, time consuming and is often restricted by budgets. Given
different input parameters with ‘distinct values,_exhaustive testing which tests all possible
combination needs lots of money and time. Paitwise testing requires that, for each pair of
input parameters of a system, every combination of valid values of any two parameters must
be covered at least once in a test case set. In this paper, we present a testing generation
strategy for pairwise testing. The algorithms are constructed by improving the testing
strategy /PO and the simulation is then made for comparison with /PO. Besides, a study for
quick extension of test cases is presented. Under some constraints, the existent test cases can

be extended quickly by using the extension method.

Keywords: software testing, pairwise testing, testing generation, test case set.
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Chapter 1.  Introduction

Software testing becomes more and more important due to complexity and increment
size of software systems. However, software testing is an expensive and time consuming
process often restricted by budgets. Given different input parameters and each parameter
with different values, exhaustive testing to all possible combinations costs lots of time and
money. To balance the budget and efficiency, pairwise testing is frequently adopted for

different types in software testing [3][4].

Given numbers of input parameters with different values to the system, pairwise testing
tests every combination of valid values of any two parameters in a test case set. For example,

a function with three three-valued parameters A, B;-C, is awaited to be tested

Parameter.4" [ Parameter B | Parameter C
Value 1 aj b, C1
Value 2 a by C2
Value 3 as bs C3

It needs 27 (3*3*3) test cases to exhaust the testing. However, with pairwise testing
technique, only nine test cases are required to cover all of the pairwise combinations, as

shown in Table 1.

Test cases Parameter A | Parameter B | Parameter C
1 a by Ci
2 a b, C2




3 aj bs C3
4 a b Co
5 a b, C3
6 a bs C1
7 az by C3
8 a3 b, Ci
9 a3 bs C2

Table 1. Test cases for three three-valued parameters

Many test generation strategies for pairwise testing are published. The strategy
proposed in [3][13][14] starts with an empty set and test cases are added one by one for
testing. A number of candidate test cases_are produced by a greedy algorithm, and the one
covering the most uncovered pairs is' chosen. Adopting greedy algorithm makes the strategy

time and space consuming.

Another pairwise testing strategy is called “Orthogonal Latin squares” [7][11]. If all
parameters have the same number of values, Orthogonal Latin squares can be used to

generate optimal test case set.

In [2], an approach called /PO to generate pairwise test cases is raised. The /PO
strategy consists of three parts, a set storing all uncovered pairs, /PO_H (Horizontal), and
IPO _V (Vertical). IPO_H extends original test cases when adding parameters, and /PO _V

increases the number of test cases.

However, /PO may generate unnecessary test cases during execution. In this thesis, we

propose two test generation strategies, called in-values-order (/VO). During the experiment, a

.



critical disadvantage of /VO is found and a modified /VO is presented to overcome the
disadvantage of 7VO. The reminder of the paper is organized as follows. Section 2 describes
an overview of testing and some papers about pairwise testing published. Section 3 shows a
new strategy for pairwise testing called /O and a modified /VO. Section 4 describes the

duplicate algorithm. Conclusion and future work is in section 5.



Chapter 2 Background

Section 2.1  Overview Of Testing Techniques

In a program, there might exist several kinds of errors, e.g., control flow errors,
data-declaration errors, and, ... etc. Testing is the process of executing a program with the

intent of finding errors. [5]

A strategy for software testing may be viewed as the set of testing with the spiral shown

in Figure 1.

System testing

validation testing

g

integration testing

unit testung

/

code

design

requirements
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Figure 1 Testing strategy [6]
Testing within software engineering is implemented sequentially in three steps, which

are unit test, integration test and high-order tests, as shown in Figure 2.
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Figure 2 Software testing steps [6]

Unit testing makes heavy use of testing techniques that exercise specific paths in a
component’s control structure to ensure complete coverage and maximum error detection.
Next, components must be assembled or integrated'to form the complete software package.
Integration testing addresses the issues associated with the problems of verification and
program construction. Test case design techniques that focus on inputs and outputs are more
prevalent during integration. The last ‘high-order testing step falls outside the boundary of

software engineering and into the broader context of computer system engineering. [6]

Resources for testing such as resource time, budget, and computing time are limited. To
achieve complete testing for a program is impossible. The key issue of testing becomes “To
find the subset among all possible test cases has the highest probability of detecting the most

errors” [6]. The most important part in program testing is to design effective test cases.

Another issue for testing is the test case prioritization [8][9][10][12]. Test case
prioritization is to permute the execution of test cases according to some criterion. The

benefit for test case prioritization is to help in early detection of faults during regression



testing.

Given different input parameters with distinct values, exhaustive testing needs lots of
money and time. Pairwise testing is effective for different types in software testing. Pairwise
testing requires that the input parameters have their own values to the system, and every
combination of valid values of any two parameters must be covered at least once in a test

case set.

The problem of generating a minimum set of pairwise test cases is proved NP-complete
[1]. Finding strategies which generate pairwise test set is necessary. Many test generation
strategies for pairwise testing are published [2][3][7]. The strategy proposed in [3][13][14]
starts with an empty set and test cases are added one by one for testing. A number of
candidate test cases are produced.by a greedy algorithm, and the one covering the most
uncovered pairs is chosen. Adopting greedy algorithm makes the strategy time and space

consuming.

Section 2.2 The /PO Strategy

In [2], the approach called /PO to generate pairwise test cases is raised. In order to
explain the /PO clearly, some terms are defined as follows. Parameters are denoted with
capital letters such as 4, B, ..., etc. Values for each parameter are denoted as corresponding
lowercase letters with foot marks. For examples, values of parameter 4 are a;, ay, ..., etc. A
test case denoted as [a;, by, ... ] is a combination of values for each parameter. A pair is
denoted as (a, b) which is the combination of values for two different parameters. Uncovered
pairs are the pairs which are not found in existent test cases. In a test case, * is used to

represent any possible values of some designated parameters.



The IPO strategy consists of three parts, a set i stores all uncovered pairs, /PO H
(Horizontal), and /PO_V (Vertical) shown in Figure 3 and Figure 4. I[PO_H extends original

test cases when adding parameters, and /PO _V increases the number of test cases.

In /PO_H, the initial pairwise test set is generated for the first two parameters, and each
possible value of the new parameter is added to each existent test cases one by one as
extension. Therefore, there’re unextended test cases if number of possible values is less than
number of original test cases. For each unextended test case, the value covering the most
uncovered pairs with it is added to accomplish the extension. If there are uncovered pairs in
11, these pairs are merged to generate test cases until all pairs are covered, and these new

generated test cases are added to the test case set.

Algorithm IPO_H{T, p;)
/7T is a test set. But T is also treated as a list with elements in arbitrary order.

{ assume that the domain of p; contains values v, vs, ..., and vy
7 = { pairs between values of p; and values of pi.ps, ..., and p; | }
if (|T| < q)

{ for 1 < 7 < |71, extend the jth test in 7 by adding value v; and
remove from w pairs covered by the extended test;

else

{ for 1 < j < g, extend the jth test in 7 by adding value v; and
remove from 7 pairs covered by the extended test:
for g < j < |T|. extend the jth test in 7 by adding one value of p;
such that the resulting test covers the most number of pairs in 7, and
remove from 7 pairs covered by the extended test;

Figure 3 Algorithm /PO_H [2]

Algorithm /PO_V('T, w)
{ let 7' be an empty set:
for each pair in w
{ assume that the pair contains value w of py, 1 < k < i, and value u of p;;
if (77 contains a test with “=7" as the value of py and u as the value of p;)
maodify this test by replacing the “—" with ur;
else
add a new test to 77 that has w as the value of pg, u as the value of p;,
and “—" as the value of every other parameter;
I8
=TUuTh
¥

Figure 4 Algorithm /PO V' [2]



Parameter A

Parameter B

Parameter C

Parameter D

Values 1 a; b, Ci d
Values 2 a b, ) d>
Values 3 C3 d;

Take Table 2 as an example. There are four parameters 4, B, C, and D. 4 and B are
two-valued; C and D are three-valued. Initially, /PO H works for the first two parameters 4
and B; four test cases [a;, bi], [ai, b2], [a2, bi], [az, ba] are generated and /7 is empty. Then
parameter C is added to generate twelve uncovered pairs (a;, ¢1), (a1, ¢2), (a1, c3), (a2, 1), (az,
C2), (a2, ¢3), (by, c1), (b, 2), (b1, c3)5(b2. c1)s(ba €2) @and (ba, c3). Because there are three values
in parameter C, c;, ¢y, czareadded to [a;, bi],[a;, bo],{a2, bi] respectively, and the extended
test cases are [a;, by, ¢i], [a1, ba, €2, [a2, b1 €3] Then these pairs (a;, c1), (bi, ¢1), (a1, c2), (ba,
C2), (a2, ¢3), (by c3) are removed from I/, To-extend [a, b,], the three possible extensions are

shown as follows.

Table 2 Example for /PO strategy

e [a, by, ci] which covers two uncovered pairs (a, ¢1), (ba, ¢1).

* [ay by, 2] which covers one uncovered pair (az, c).

e [a, by, c3] which covers one uncovered pair (by, c3).

Since [ay, by, ¢1] covers the most uncovered pairs. [az by, ¢1] is chosen as extension [ay,

b,], and (a,, ¢;) and (by, c;) are removed from /1.

After IPO_H, there are still four pairs (aj, c3), (a, ¢2), (b, ¢2) and (by, ¢3) in I1.  The
test case [a;, *, c3] is generated to cover the pair (a;, c3). Because [a;, *, c3] and (a,, c,) are

not the same values, (a;, ¢;) can’t be merged in to [a;, *, c3] and the test case [ay,*, c;] can be




generated to cover (a, ¢). The position of parameter B in [ay,*, ¢;] is *, and the value of
parameter C in (by, cy) is ¢;, so the * is changed for b;. The test case [ay,*, c,] is changed to
[a2, by, c2]. For (by, c3), the execution process is the same with above, and the test case [a;, *,
c3] is changed to [a;, by, c3]. The two new test cases are added to the test case set, and there
are six test cases [a;, by, ¢1], [a1, ba, ¢2], [a2, b1, ¢3], [a2, ba, c1], [a2, by, c2], [a1, b2, c3] in the test

case set, and no pairs are in /7.

Then parameter D is added, the execution process is the same with the above /PO _H.
Finally in /PO_H, the six extended test cases are [a;, by, ¢i, di], [a1, ba, ¢2, d2], [a2, by, ¢3, d3],
[a2, by, ¢1, di], [a1, by, 3, d3] and [ay, by, ¢z, d2], and there are still six pairs (¢, dz), (¢, d3),
(c2, dy), (c2, d3), (c3, dy), (c3, d2) in 1. Because these pairs can not merged together, the six
test cases [*,*, ¢1, da], [*,%, c1, 3] [*%, o, dils [£,%, c2, d3], [*,%, c3, dil, [*,%, ¢35, d2] are
generated and * can be assigned-any. values of-the designated parameter. Finally, the twelve
test cases [ay, by, ¢, di], [a1, by, €2, da]s f82,b4,C5, d3], {22, by, ¢4, di], [ai, by, ¢3, ds], [a2, by, ¢,
da], [*,%, c1, da], [%,%, c1, ds], [*.% €. di], [, o, d3], [*,*, c3, di]and [*,*, c3, da] are

generated by the /PO, and * can be assigned any values of corresponding parameters.

But in /PO, because each * must be assigned a value of corresponding parameter after
each /PO _V, assignment of values to *’s may result that more test case are required to cover

all pairs.

For example, there are five two-valued parameters 4 = {a; a,}, B = {b;, b2}, C = {ci,
c2}, D = {d;, d2}, E = {e1, ey}. For the first two parameters 4 and B, four test cases are
generated [a; bi], [a;, b2], [a2, bi], [a2, bo]. After execution /PO_H for adding parameter C, the
extended test cases are [a; by, ¢i], [a1, b2, c2], [a2, b1, C2], [a2, b2, 1], and no uncovered pairs.

Then parameter D is added, after execution /PO_H, the four extended test cases are [a; by, ¢,

-9.



di], [a1,ba, 2, d2], [a2, b1, €2, di], [a2 b2, 1, d2], and there are two uncovered pairs (b;, d2) and
(bz,d;). Because (b;,dz) and (b2, d;) can not be merged together, the two test cases [* by, * da],
[* by, * di] are generated in /PO V. Different assignment of values to *’s in [* by, * d;] leads

to different results when parameter E is added:

o If [* by, * di] is assigned to become [ay ba, ¢i di] and [* by, * dy] is assigned to
becomes [a; by, ¢; d2]. Then parameter £ is added, after /PO_H, the six extended test cases
are [a; by, ¢1,di e1], [a1, by, €2, dy €], [a2, by, €2, dy €2], [a2, b2, €1, 2, €1], [a1, by, ¢1,dy, €2] and
[a2, by, c1,d;, €], and there is one uncovered pair (c,, e;), therefore, the extra test case [* *, ¢,

* e1] is need to cover pair (cz, €1).

o If [* by, * di] is assigned, to become [az by, ¢, di] and [* by, * dy] is assigned to
become [a; bi, ¢ dz]. Then parameter £ is added; after /PO _H, the six extended test cases
are [a; by, ¢, di €], [a1, by, c2, da €], ffas, bi,-Codi €2]; [a2 b, ¢, dy 1], [a1, b1, ¢1,d> €5] and

[a2, by, €2, d; €1], and no uncovered pairs:

In above example, different assignment of values to *’s in test cases for former

processes to cover all pairs lead different number of test cases for five parameters.

Section 2.3 Orthogonal Latin Squares

Another pairwise testing strategy is called “Orthogonal Latin squares” [7][11]. If all
parameters have the same number of values, Orthogonal Latin squares can be used to
generate optimal test case set. Optimal test case set is the minimum set of test cases which

cover all pairs. A Latin square is usually represented by a square matrix as follows:

1 2 3

-10 -



Values in the column 1 are the values of parameter 1, so are the values in column 2 and
column 3, correspondingly. The Latin square has the property that each value in a column or

row is distinct.

Assume that there are two matrixes [A;] and [B;], if the combined matrix is [Cj] = (Ajj,
Bj). For Cjj, Cyy, 1 # x and j # vy, if Cjj # Cyy, [Ajj] and [B;j] are orthogonal. If there are k
parameters, the methodology needs k-2 orthogonal Latin squares. For example, there are four
parameters and three values for each parameter, two Orthogonal Latin squares are required

and shown as follows:

1 2 3 . 2 3
3 1 2 2 %3 1
2 3 1 381 2

The following matrix is obtainéd through superimposing the above matrix.
LnH 22 @G3
3,2 (1,3) @D

(2,3) 3,1 (1,2)

The methodology represents the configuration (2, 1, 3, 2): row 2, column 1, entry (3, 2)

and the complete set of test configurations is shown as follows:

Configuration | Parameter] | Parameter2 | Parameter3 | Parameter4

number

1 1 1 1 1

11 -



2 1 2 2 2
3 1 3 3 3
4 2 1 3 2
5 2 2 1 3
6 2 3 2 1
7 3 1 2 3
8 3 2 3 1
9 3 3 1 2

Table 3 Test configurations of orthogonal latin squares

For each row in Table 3, each configuration number means a test case, and the numbers

from column 2 to column 5 mean the values’ combination of each test case. Therefore, for

four three-valued parameters 4 = {a;, a; as}, B.= {by b, b3}, C = {c| ¢c2, c3} and D = {d; dy,

ds}. According to Table 3, the optimal nin€ test cases dre [a; by ¢; di], [a1, ba, ¢z do], [a1, b3 c3,

ds], [a2, b1, c3,d2], [a2, b2, €1, d3], [a2, b3 €a:dy], [as:b1 €2, d3], [a3, b2, ¢3,d1] and [a3, b3 ¢1 d2].

However, Orthogonal Latin squares have the following limitation:

1.

2.

Orthogonal arrays might not exist.

Every parameter must be with the same number of values.

|N] means the number of parameters, and |V| means the number of values for each
parameter. Orthogonal Latin squares require that || isless than |V]+1, and |V] is a
power of a prime.

For |V] = 6, Orthogonal Latin squares do not exist.

-12 -



Chapter 3 The /VO Strategy

To solve the disadvantage of /PO (In Parameters Order), in this chapter, a test
generation algorithm for pairwise testing called In Values Order (/VO) is described. VO is
improved from the /PO strategy [2] with the execution order of /PO _H and IPO_V. Chapter
3 is organized as follows. Section 3.1 describes the VO strategy, the simulation results and
companion between /7O and IPO. During the simulation, a critical disadvantage of 7VO is
found, and modified 1VO (MIVO) is proposed in section 3.2. Section 3.3 compares with

MIVO and [PO.

3.1 The IVO Strategy

The execution order of /PO-is different from that of /0. For IPO, IPO_H and IPO V
are sequentially operated for each parameter._In JVO, it is assumed that all the input
parameters are known and ordered accerding to the number of values. /VO extends the test
cases until all parameters are added, then all uncovered pairs are merged to test cases until all

pairs are covered. To explain /VO clearly, the notations are defined as follows.

e P={P;, P, ..., Py} is a set of parameters.
e Vs the value set of P;, and |Vi|> | Vi

e v; is the jth element of V;.
* PS§ is the set of uncovered pairs PS = {(a, b) |a € V;,b € Vji#J, and (a, b) is
uncovered pair}.
e Atestcase 7= {[a;, az, ... ,an] | ai € Vi }.

e IS={T;, T), ..., T} is the set of test cases.

-13-



Algorithm: In-Value-Order

00 Begin:

01 for the first two parameters, P, and P,

02 IS:={[vi, 2] | Vi€ V1,v2 € Va}

03 if n = 2 then stop;

04 V parameter P;, i =3, ..., n;

05 {

06 Vyernu 7 u...ulud e

07 add (y, d) to PS

08 for 1 <j<|Vj that T;=[ ar, as, i+, ai1]

09 {

10 extend 7; with vy suchthat 7/-[ @), ao, ..., ai1, vi]
11 and remove @y, Vi), (a2, Vij)y ++,(ai1, vij) from PS
12 }

13 for |Vi| <j<|TS|

14 {

15 can_count=0

16 I=[ aj, ay, ..., ai1]

17 for 1 <k<| Vi

18 {

19 count = | {(a,, viv)| z= 1,2,...i-1, (a,, vik) € PS} |
20 if(count > can_count)

21 {

-14 -




22 can_count = count

23 c=k

24 }

25 }

26 extend 7; with v such that 7;-[ a;, ay, ... , ai.1, vik Jand remove
27 (a1, viv), (a2, Vik), -..,(ai.1, vik) from PS

28 }

29 }

30 let 7S is a test case set, 75" = @

31 V(a,B)ePSacV,Bel,

32 {

33 if (I some test cases 7= [ay, ass’... , an), 7€ TS’ that (a;= a, g;
34 =B)or (a;i=*, a;5 B)or (a;=a,=%*))

35 set a;="0,,.@; = B and remove (o, B) from PS

36 else

37 generate a new test case 7= [ay, aa, ... , a,] in which
38 Vz=1...n z#1i,j,a.=* a;=0,a,=p,add 7to TS’
39 remove (a, B) from PS

40 }

41 IS=TSUTS

42 end

In 7VO algorithm, test cases are generated by the first two parameters in line 02. When
parameter is introduced in line 06, new generated uncovered pairs are added to PS in line 07.

Because parameters are sorted, |7'S| must be large than j in line 13. Existing test cases are

-15-



extended until all parameters are added from line 08 to line 28. Finally, the uncovered pairs

are merged to test cases from line 30 to line 41.

For example, there are four parameters P; = {Vvi1, Vi2, Viz}, P2 = {Va1, Voo, va3}, P3 = {3,
v} and Py = {va1, va2}. Initially in 7VO, for the first two parameters P; and P,, nine test cases
[Vir, vail, [Vir, vazl, [vin, vasl, [Via, vail, [Viz, va2l, [Vi2, vas], [Vis, vail, [Vis, va2] and [vi3, va3] are
generated to 7'S. Then parameter P; is added, the twelve uncovered pairs (vii,v31), (Vi1,V32),
(Vi2, va1), (V12,V32), (V13, V31), (V13, V32), (V21, V31), (V21, V32), (V22, V31), (V22, V32), (V23,v31) and (a3,
v3y) are added to PS. Because there are two values in parameter P;, vs3; andvs; are added to
[vi1,v21] and [vi1, va2] respectively. The extended test cases are [vi Va1, vai], [Vi1, V22, v32], and
the pairs (vi1,v31), (Va1, v31), (V11,V32) and (va2, v32) are removed from PS. To extend [vi;, va3],

two possible extensions, are shown.as follows, are introduced.

 [vi1, V23, v31] which Covers uncovered pair (va3, v31) in PS

e [vi1, V23, v32] which coversuncovered pair (vas, vi2) in PS
Both test cases cover only one uncovered pair, [vi1, V23, v31] is chosen, and (va3, v3;) is
removed from PS. For the rest test cases, the extension process is the same as above. Finally,
the rest six extended test case are [Via, Va1, Va2l, [Vi2, Va2, Vail, [Vi2, Va3, Va2l [Vi3, Va1, Va1l [Vi3, Va2,

v32] and [vi3, V23, v31] and no pairs are left in PS.

When parameter P, is added, the execution process is the same as above. Nine test cases,
[Vi1, Va1, V31, Varl, [Vi1, Va2, V32, Vazl, [V, V23, Va1, Vazl, [Viz, Va1, Va2, Vail, [Viz, Va2, V31, vatl, [Viz, V3, vaz,
Vail, [Vis, Va1, V31, Vazl, [Vi3, V22, V32, va1] and [vi3, va3, v31, va1] are extended. However, there is
still one pair (vi2, v42) left in PS, and test case [via, *, *, vay] is generated to 7S in merging
process, and * can be assigned any value of corresponding parameter. The ten test cases are

generated by /VO for pairwise testing.
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We have implemented a program for simulation of /VO and IPO. The program was
written in j2sdk 1.4.2 06 and the computer hardware and software are listed as follows:
operation system is windows XP, the cpu is AMD Athon(tm)64 processor(1.81GHz) and the

memory is DDR 512MB.

In the program, the input is a set containing numbers of values for each parameter, and
the output is all the test cases. Each number in test cases represents the value of the
corresponding parameter, i.e., according to the input order, if the first parameter is P; = {vi;,
Vi2,Vi3}, Vi1 1s represented as “1”, vy is represented as “2”, and vi3 is represented as “3” in
the first number of each test case, so are the other parameters. The output is composed of
three parts, the first part is the extended test eases which are generated by the first two
parameters, the second part is the test cases which are generated by merging in the last step
and the third is a statement describing.the number of uncovered pairs before merging. In the

program, the first part and the other parts are separated by a dotted line.

The simulation result for five three-valued parameters is shown in figure 5. All the
combination pairs which are generated by two parameters are covered by the thirteen test
cases, and * in test cases can be assigned any values of corresponding parameter. Before

merging, there are ten uncovered pairs in PS.
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£ VO Simulation

3 || et || start |

[1.1.1.1.1] =

[1.2.2.,2.2]

[1.3.3.3.3]

[2.1.2.3.1]

[2.2.1.1.3]

[2.,3.1.,2.,2]

[3.1.3.2.1]

[3.2.1.,3.2]

[3.3.2.1.,3]

[2.23.1.1]

["1.3.1.2]

["1.7.2.3]

[*3.°7°.1]
The most number of uncovered pairs in storage space is 10
13

Figure 5 The userinterface for simulation

Table 4 and Table 5 show the simulation résult of :] VO and IPO for five different inputs,
and the details of order of the pafamete‘fé for &ie ﬁVe examples are shown in appendix A. In
Table 4, the number of uncovered pairs is the sum of all the numbers of uncovered pairs
before merging.. Obviously, test cases generated by /O are less than /PO for the first four
examples.

Experiment cases:

E;: five parameters (5 3-valued).

E,: seven parameters (1 6-valued, 2 5-valued, 1 4-valued, 2 3-valued, 1 2-valued).
E;: ten parameters (2 7-valued, 2 6-valued, 3 5-valued, 3 4-valued).

E4: twenty-five parameters (5 7-valued, 4 5-valued, 4 4-valued, 6 3-valued, 6
2-valued).

Es: forty parameters (8 7-valued, 8 5-valued, 8 4-valued, 8 3-valued, 8-2valued).
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Vo E; E> E; E4 Es

# of test cases 13 33 55 78 131

# of uncovered pairs 10 6 18 132 613

Table 4 Result of the five examples for 71O

1PO E; E> E;3 E4 Es
# of test cases 14 37 61 86 107
# of uncovered pairs 7 10 45 141 150

Table 5 Result of the five examples for /PO

However, in the fifth example; the number of test cases generated by /VO is more than
that by /PO. To clarify such a condition, two.experiments, E¢ and E; are designed. Eg is the
case for two-valued of 10, 20,730 and-407parameters corresponding. E; is three-valued
instead. The result for E¢ and E; are show-in Figure 6 and Finger 7 respectively. From the
results of Eqand E; a critical disadvantage for /7O found. If all input parameters are given

the same number of values, the simulation result of /VO is worse than /PO.

45

10 F /
35

30 yd

25 F / ——1V0
20 —8—1P0
15 é._’-./'

10 |

10 20 30 40

# of 2-valued parameters

# of test cases

Figure 6 Simulation results of 770 and IPO for Eg
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Figure 7 Simulation results of /VO and /PO for E;

In Figure 6, the input is 40 two-valued parameters and the difference in test case size of
IVO and IPO is 26. Furthermore, intFigure 7, the inputs are 40 three-valued parameters, the
difference in test case size between /VO and IPO'is 74. With the inputs are n k-valued

parameters, larger n and k are, larger the-difference in test case size becomes.

The reason is described as follows. Because /O merges all the uncovered pairs in the
last step, the number of test cases can be increased heavily during in this step. If all input
parameters are given the same number of values, more uncovered pairs (v, Viq) are generated
when later parameters P; are added, 1<i<k, 1 <j<|Vi|, 1 < ¢=< |Vy|. The size of test cases in

IVO is larger than that with /PO after uncovered pairs are merged.

Section 3.2 The Modified IVO (MIVO)

To overcome the disadvantage of /7O discussed in above section. We propose another
algorithm, called modified 1VO (MIVO). MIVO executes mergence once when k new

parameters are added. If the number of parameters left is less than & and PS is not empty,
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MIVO execute the final mergence in the last step. According to the experiment shown in

Figure 8 and Figure 9, the MIVO gets better result when & is assigned 4.

—— 10 3-valoed prmmneters — 38— 10 d-valued prrarneters 10 S-valned pararnetes
10 Fvaloed piramoeters —F— 10 11-valved pacrosters —®— 10 1 3-valued parameters
00
A
B 300 - - —*
o= » » » w__/_/_—x’//
== 200 = 2 2 =
100
! o [ . » ¥ v g n
2 3 4 5 7 10
—— 10 3-valued pararaetes 0 19 12 21 21 25
—— 10 d-valued, pararnstess 35 33 k3| 40 32 40
10 S-vralued pararneters 52 52 50 54 56 T
10 P-valued pararasters a3 ™ o a5 104 139
—#— 10 1 1-valued pararoeters 213 214 213 217 242 330
unecered pairs are mersed when k new pammetes ae added

Figure 8 Simulation result fordifferent £’s with 10 n-valued parameters

—— 20 Fvalued pararneters . — 8 20 4-valued pararnetes 20 5-valved paaraeters
20 F-valved pamarneters . —F— 20 1 1-valoed pamroeters —%— 20 1 3-valued paarnsters
s00
i — - o O - -./"/
=
g o ——
He E = e A *
52
200
100
a 1
. ——9p——§ — 9 —F
2 3 4 5 7 10
—— 20 3-valued parametes 25 25 24 24 25 7
— B 20 4-valued, pararastes 39 39 35 42 38 42
20 Soyalued pararneters % &l [ =3 &l 78
20 F-vralued pararnetss 112 120 116 113 120 145
—— 20 11-valved parametes a7e 276 . | 275 231 340
—— 20 13-valued parametes 379 375 375 374 378 454
unoovEred paick ane merged When k new pararnetes aoe added,

Figure 9 Simulation result for different £’s with 20 n-valued parameters

221 -



We analyze above experiments of figure 8 and 9, and find that when £ is assigned 2, 3 or 4,
the situation of the disadvantage of /O is not happened, and it gets better result when £ is
assigned larger number. But when £ is assigned 5, the situation of the disadvantage of VO
appears, and the situation is the main reason that the number of test cases for & = 5is larger
than that £ =4.

MIVO algorithm shows as follows:

Algorithm: Modified In-Value-Order (MIV0)

00 Begin:

01 for the first two parameters, P, and P,

02 TS: = {[vi, v2] | i€ V1, v2 € V2}

03 if n = 2 then stop;

04 V parameter P;, i = 3, ... , n;

05 {

06 Vyenu V, ..UV, 6V

07 add (y, d) to PS

08 for 1 <j<|Vi| that T=[ a;, aa, ..., ai-1]

09 {

10 extend 7; with vjjsuch that T/=[ a;, ay, ... , ai.1, vi]
11 and remove (a1, Vi), (a2, Vij), -..,(ai1, vij)from PS
12 }

13 for |Vi| <j<|TS|

14 {

15 can_count =0

16 I=[ aj, ay, ..., ai1]
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17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

for 1 <i<| Vi
{
count = | {(a,, viv)| z= 1,2,...i-1, (az, vik )€ PS } |

if(count > can_count)

{

can_count = count

c=k

b
extend 7; with vic such that 7=[ a;, aa, ..., ai1, Vi
and remove (ay, Vi), (a2, Vi), -..,(ai.1, Vik) from PS
}
if (i mod 4 = 0)
{
let 7S’ is a test case set, 7.S° = @

V(a,B)EPS, ac V,BEV,

{

if (dsome test cases 7= [a;, az, ..., an], T€ TS’

that(a;= a, 4= ) or (a;= *, 4= ) or(a;= &= *))
set a;= 0, a;= B and remove (a, B) from PS
else
generate a new test case 7= [ay, aa, ... , ay] in
which Vz=1...n z#£i,j,a.=*, a;=a, a;=

B, add 7'to TS, remove (a, B) from PS
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41 }

42 1f(PS 1s empty)

43 * is assigned any values of corresponding

44 parameter

45 IS=TSVUTS

46 }

47 }

48 =0

49 V(a,B)E PS o€ Vi,PBeV;

50 {

51 if (dsome test cases 7=.[a;, az, ..., an], 7€ TS’ that (a;=
52 a, a;=PB) or (a;=*-a;= P)or(a;= a;=*))

53 set a;= o, a;= Prand remove (a, B) from PS

54 else

55 generate a new test case 7= [ay, aa, ... , ay] in which
56 Vz=1...nz#1i,j,a.=* a;=a,a;=B,add 7'to TS’
57 remove (a, B) from PS

58 }

59 IS=TS OTS

60 end

In MIVO algorithm, test cases are generated by the first two parameters in line 2. When
parameter is introduced in line 6, the generated uncovered pairs are put in PS in line 7. The
extension for existing test cases is similar to previous algorithm, except that each mergence

is done for adding every 4 new parameters from line 8 to line 46. Finally, the rest uncovered
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pairs are merged to test cases from line 48 to line59.

The extension results of MIVO for E¢ and E; are shown in Figure 10 and Figure 11.

Obviously, MIVO have great improvement in the number of test cases of MIVO for

parameters with the same number of values.

20
215
e ——MIVO
= —&10
- 5T

0

10 20 30 40

# of two-valued parameter

Figure 10 Simulation results of MIVO and IPO for n two-valued parameters

40

35 F

30 F

25

ol '//0/ ——MIVO
+

s | IPO

10

# of test cases

10 20 30 40

# of three-valued parameters

Figure 11 Simulation results of MIVO and IPO for n three-valued parameters

Table 6, 7 and 8 show the simulation results of MIVO, IPO, and IVO for the examples
E4 Es E¢ E; Egand Eg the parameters input order is recorded in Appendix A.

Experiment cases:

Es: twenty parameters (20 4-valued).
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Eo: twenty-five parameters (6 13-valued, 5 11-valued, 7 9-valued, 7 7-valued).
Ejo: thirty parameters (10 15-valued, 10 13-valued, 10 10-valued).

Ei: forty-three parameters (5 10-valued, 6 8-valued, 8 6-valued, 4 5-valued, 6

4-valued, 6 3-valued, 8 2-valued).

Ey: fifty-four parameters (6 10-valued, 6 9-valued, 6 8-valued, 6 7-valued, 6

6-valued, 6 5-valued, 6 4-valued, 6 3-valued, 6 2-valued).

MIVO E4 Es Eg Eo Eo En Ein
# of test cases 70 89 35 262 420 152 178
# of uncovered pairs 46 108 76 218 602 110 200
time in seconds 0.016 | 0.031 | 0.016 | 0.032 | 0.062 | 0.047 | 0.063
Table 6 Simulation result of MIVO for six examples.
IPO E4 Es Exg E9 Eio En Ei
# of test cases 86 107 43 298 483 184 216
# of uncovered pairs 141 150 28 424 828 395 312
time in seconds 0.016 | 0.048 | 0.015 | 0.047 | 0.094 | 0.063 | 0.109
Table 7 Simulation result of /PO for six examples.
Vo E4 Es Eg Eog Eio En Ei3
# of test cases 78 131 64 419 1040 221 385
# of uncovered pairs 132 613 432 1770 | 8673 639 3058
time in seconds 0.016 | 0.031 | 0.015 | 0.016 | 0.157 | 0.031 | 0.046

Table 8 Simulation result of 7O for six examples.
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Chapter 4 Extending A Test Case Set Based On Duplication

In the chapter, we discuss an algorithm to duplicate the data pairs. In the algorithm, test
cases can be quickly extended under some constraints. Section 4.1 introduces the duplicate
algorithm. Section 4.2 introduces a pairwise graph model. Section 4.3 proves the correctness
of the duplicate algorithm and discusses influence when adding a k-valued parameter to a test

case set which covers pairwise perfectly for n.

Section 4.1 An Extension Algorithm With Duplicate Technique

Definition 4.1. (pairwise perfectly coverage): A test case set 71 is claimed to cover
pairwise perfectly for n, when there are n+I parameters, each of which has n

values and all pairs appears distinctly.in 7.

For example, given three three-valued parameters P; = {vii, Viz, Vis}, P> = {V21, V22, V23}
and P; = {V31, V32, vs33}, and the test case set 7S :{[Vll,Vzl,V31][V11,V22,V32][V11,V23,V33][V12,V21,
V32][Vi2, Va2, V33][Vi2, Va3, V31 ][ Vi3, Va1, V33][ Vi3, Va2, V31][V13, V23, v32] } which cover all pairs without

repetition. Thus, 7S covers pairwise perfectly.

Consider the system which has n+/ parameters, and each parameter contains » distinct
values, n> 1. The testing data need n’(n) + n*(n-1) + ... + i**1 = n* [(n) + (n-1) + ... +1] =
n’(n+1)/2 pairs at most. Let each test case have n+1 values and each pair be generated by
choosing any two values of them. Each of these test cases covers n(n+1)/2 pairs at most and

the least number of test cases is [1n° (n+1)/2]/ n(n+1)/2 = n*.
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Definition 4.2. (block): Let a test case set 7S cover pairwise perfectly for n. A block
is a set containing n test cases which have the same value of parameter P;. A block B

= {Ti| 1<i<n, Tiis a test case and 7; has the same value of P,}.

Proposition 4.1: Let a test case set 7S cover pairwise perfectly for n. Each test case

can be assigned to some block and the 7S can be divided into » different blocks

Proof: Because 7S covers pairwise perfectly for », all combination pairs are in 7.S. Consider
vy and vy;, 1< i< n The n pairs (V11,V21), (V11,V22), cees (V]l,Vzn) are in T8S. VVU, IS]S n,

there are n test cases whose first value is vy;, thus 7S can be divided into # different blocks.o

Let a test case set 7S cover pairwise perfectly for n. According to proposition 4.1, there
exist a block in which all test cases-for P; have the 'same value, and these test cases can be
formed as [vii, V2, V3j, ... , Vaidjl, IS Gsgs#pSuch a block is called the first block, and
W.L.O.G, in following sections, the first:block:is used to prove or clarify the property for the

duplicate algorithm.

Figure 12 is an example that the test case set 7S covers pairwise perfectly for 3 and test cases

are divided into three blocks.

first ¥ 41]
block "'n ‘“"w Vi Vao
: Vaal

— [v,
[
I
Lv |2@”32 Vsl
% 12 """rz Vi3
v,
[v
[V,

vV, ’}'-': Ofb Vaol
W

Vi3 Vil

13; "'2’: ""31 Vaz

Figure 12 Pairwise perfectly for 3.
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There’re three properties for a test case set 7.S which covers pairwise perfectly for 7.

Property 1. Vtestcases T, Ty € Be, 1< c<n, if vij € Ty, vij & Tp, 1<i<n+1, 1<j<n.
Property 1 holds because for any two test cases 7, and 7 in the same block, if vi; € T,

Vi€ Tp, 1<i< n+1 and 1< ;< n, the pair (viy, vij), 1< k< n, appears repeatedly,

Property 2. Vtest case T, € B, c# 1, if vij € T, ,viy & Tu, i# k 1<i, k<n+1, 1<j<n.

Property 2 holds because V'test case T, € B, ¢ 1, if vij € T, ,vij € Ty, the pair (vjj, Vi)

appears repeatedly with test cases in the first block.

The Duplicate Algorithm:

Input: A test case set 7S covers pairwise perfectly forz, and m n-valued parameters
waiting to be extended, where 1< m<n+1.

00 Begin:

01 V parameter Py, 1< i< m.

02 YV test case T, a=1,2,...,n°

03 Vvjjis the i™ value of parameter P; 1< < n.

04 if (vij€ T,) extend T, by adding Vi1

05 End

The extended test case set loses n(n-1) pairs for each new added parameter. This is
proved in section 4.3. Take figure 13 as an example, there are four three-valued parameter P;
= {vi1, Vi2, Vis}, P2 = {va1, Vo2, Vas}, P3 = {v31, V32, v33} and Py = {v41 Va2 v43} and the test case

set covers pairwise perfectly for 3. For four three-valued parameter Ps = {vsj, vsy, Vs3}, Ps =
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{Ve1, Ve2, Ve3}, P7 = {V71, V12, v73} and Pg = {vs1, Vg2, vg3} being added, each test cases are

extended according to the duplicate algorithm and the extension result is shown in figure 13.

duplicate

(Vi1 Var, Var Vail [Vi1, Va1 Var Varl| [Vsy, Ve, Vo1, Vel
[Vi1 Vas Via Vgl [Vi1. V22 Vo Vaol| [Vsy Vo Vo Veol
[\"| |_x"23‘ 1“'33_ 1‘"43] four three-valued [vl I.v23‘ Vjfj‘. V43 [VS 1, v(-.}, \’?3‘ V&;,}]
[‘U 12, Vz L 1"'32. v43] parameters are added [V 12, \-'2 1, '\-"524 '\.-'43] [\-'52. \-’6 . V:,E, ‘\.-"83]
[Vi2. Vs Vi3 Vgl [Vi2 Vas Vi3 Va1 [Vsa Ve Vs Vgl
[Vi2, Va3 V31 Vol [Vi2. Va3 Vay Vol | [Vsy Vs Vo Viol
[V13. Va1, V33, Vaol [Vi3. Va1, Vs Vaol | [Vss. Ve Yoz, Veol
[Vi3, Vs, Vi, Vsl [Vi3. Vo, Va1, Vasl| [Vss Vo, V1. Vs

[Vi3 Va3 V3o V4l [Vi3. Va3 Viz Varl| [Vs3 Ve V72 Ve ]

six pairs are losed for
adding each parameter

Figure 13 Example of the duplicate algorithm

After executing the duplicate algorithm; there are some uncovered pairs, and the form
of uncovered pairs must be (V15 Vintizn2)s (4 itsVam#i®1)3)s - - -» (Vi V @it 1n)se - (Vins V (it 1)1),
(Vin, V(tith)n-1)), 1< i< nt1l. Because n*(n<1) pairs are lost for adding each new parameter,
n*(n-1) test cases are need to cower these uncovered pairs. The test cases generation

algorithm is as follows:

Incremental -Test case - generation algorithm (ITG)
Input: The input is a 7S which is generated by executing the duplicate algorithm,
and the input to the duplicate algorithm is a test case set which covers pairwise

perfect for n, and m n-valued parameters are waited to be extended, 1< m< n+1.

00 Begin

01 Vi=l1,...n

02 {

03 Vi=1,...nand i#]j
04 {
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05 vij1s the i™ value of parameter P; 1< /< |Vj.

06 generate a test case [Vii, V2i,..., Vnri)is V(n+2)js V(n3)js- - -» V (nrm+1)j] 1O
07 s

08 }

09 }

10 End

Section 4.2 The Pairwise Graph Model.

To assist the proof of the duplicate algorithm, the pairwise graph model is introduced first.

Definition 4.3. (pairwise graph model): A pairwise graph is an undirected graph G =

(N, 4). N is a set of nodes, of-whi¢ch’a-nede-is named as n; 1< ij< n, and n;
represents the j* value of P,. For any areje"€ A, ¢ connects n; and nry 2> 1, 1</<

Vi, 1S k< | Vinl.

Definition 4.4. (complete path): Given n parameters, a complete path is defined as a
path in a pairwise graph that starts from 7; and ends in ny;, 1< i< |Vy, 1<j<|Vy|. Ina

pairwise graph, loops are not allowed.
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Test cases

® (v, v, v,
[Vll Vaz. V3
3

|_||_||_._||_||_u_|'|_|-_|

Figure 14. Pairwise graph

Consider the example shown above, where three three-valued parameters are P; = {vi;,
Viz, Viz}, P2 = {va1, vaa,va3}, P3 = {Vv31, V32 va3}. In the pairwise graph, N = {ny1, niz ni3, nai,
N, Ma3, N3, N3, 133} and path 1 coensists of [vi vaiivs1] and path 2 consists of [vi2, Va1, V2],

and both paths are complete paths.

If a test case set covers pairwise perfectly for n, its corresponding pairwise graph has

the following properties:

Property 1. For all complete paths, each arc is walked through once.

Property 1 holds because for each arc, if the arc is walked through twice, the
corresponding pair appears twice in the test case set.
Property 2. For any paths, the pairs of the start and end nodes for any path are different to
other paths that of another path.

Property 2 holds because for all paths, if the pair of the start and end nodes for any path

is the same with another path, the corresponding pair appears twice in the test case set.
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Take figure 15 as an example, there are three three-valued parameter, P; = {vi, vi2, vi3},
P> = {va1, vio,va3} and P; = {v3;, v32, v33}. Consider the paths for [vi3, va1, Vs3], [Vi3, V21, Vai]
and [vi3, va3, v31]. The paths corresponding to [vi3, va1, v33] and [vi3, v21, v3i] go through arc 1,
and the property 1 is violated. For [vi3 va1, v31] and [vi3, Va3, v31], the pairs of start and end

node are the same. Therefore the property 2 is violated.

Test cases

MTRZTRZE
[Vi1. V22, V3
(V11 Va3, Var ]
(V2. V21 Vs

21,
(V2. Va2 V33
[Vi2, Va3 V3.

—[Vi3. V21 V33

T [Vi3 vy Ve

. 4

— Vi3, Va3 Vyy |

e e

—

Figure 15. Example for violating twoproperty of pairwise perfectly

Section 4.3 Proof Of The Duplicate Algorithm

To prove the correctness of the duplicate algorithm, some propositions are introduced firstly.

Definition 4.5. (value independent): If all the pairs generated for two parameters P;
and P; are distinct in the test case set 7S, P; and P; are claimed "value independent"

in the 7.

For example, there are three parameters P; = {vi1, vi2, Vi3}, P2 = {Va1, vio.} and P3 = {vs,

V32, v33} and the test case set 7'S = {[vi1, Va1, V3], [Vi1, V22, V32], [Vi2, Va1, V33], [Vi2, V22, V32],
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[V13, V21, V31], [V13, V22, v32]}. Each pair (vi;, v3) 1s distinct in the 7S, 1<, j< 3, and parameter
P; and P; are value independent in the 7S. Because (v21, v31) and (va2, v32) appear twice,

parameter P, and P; are not value independent in the 7S

To prove the following propositions, an Incremental-7S-extension (ITE) method is
introduced. The ITE method is used to duplicate the permutation of pairs for a parameter in

the test case set.

Incremental- 7S -extension (ITE) method

Input: A 7S covers all pairs which are generated by the k& parameters. Let the
parameter P;be one of the k parameters, and Py, is a new parameter which is waited
to be added to T, |Vi|< | Vit

00 Begin

01 YV testcase 7,€ TS

02 {

03 vij1s the i™ value of parameter P; 1< < |Vj.

04 if(vii€ T,)

05 extend 7, by adding vi+1);

06 }

07 End

Proposition 4.2: Let two parameters P; and P; be value independent in the test case
set 7S, 1<, j< k. When a new parameter Py is added, | Vi[> |Vi|. After executing

the ITE method of the input parameters are P;and Py.i. The two parameters P; and
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Py are also value independent in the extended test case set.

Proof: Assume that P; and P; are value independent in the extended test case set, but
parameters Pj and Py are not value independent. There are some pairs (Vim, V(k+1)yn) Where 1<
m<= |V, 1< n< |Vi+1], which appear repeatedly in the extended test case set. The pairs (Vin, Vim)
also appear repeatedly in the extended test case set, and parameters P; and P; are not value
independent. That is a contradiction, and therefore parameters P; and Py are value

independent.o

Proposition 4.3: Let the test case set 7S cover pairwise perfectly for n. For any two

test cases in different blocks, there is only one value in common.

Proof: V testcase T, € B; T, € B;, i# j, if there are two values in common in 7, and 7}, the

pair generated by the two values appears twice'and 7S doesn’t cover pairwise perfectly for n.
That is a contradiction.

Because test cases are divided into blocks according to the value of parameter P, the
value of P; is different for any two test cases in different block. Consider the values of

parameter P> to Pny1 because TS cover pairwise perfectly for n, all values appear once in a

block. Veach value vy in the test case T,€ B;where k# 1 and 1< i ,I< n the test case T,E B;

can be found that vy is in T3, i# j. For any two test cases in different blocks, there is only one

variable that has the same value.

Proposition 4.4: Let the test case set 7S cover pairwise perfectly for n. If an n-valued
parameter is added, the extended test case set lose n(n-1) pairs at least without

increasing the number of test cases.
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Proof: W.L.O.G, assume that the first value is v; for each test case in the first block and
figure 16 is the corresponding pairwise graph. When parameter Py, 1s added, two cases are
discussed as follows. In case 1, all test cases in the first block are extended by adding n
values of V12 In case 2, test cases in the first block are extended by adding j values of Vy2,

0<j<n-1.

Casel: The i™ test case in the first block is extended by adding V), | <1, j< n. There
are n+1 space for n+2 parameters and n-1 space for n values in pairwise graph. For each
complete path except the first block, if i = and the last node is nu+2), the node nj can be
found in the same complete path and is shown in the case 1 of figure 17. The pair (Vi, Vn+2)k)
appears repeatedly with the pair in the first blocksIf i j, the proof is the same with above

and the repeated pairs become (Vi Vms2)l); k% 4 and the corresponding graph is the case2 of

Figure 17. V test case T, €By k# 1, eachextended test case has least one repeated pairs and

the extended test case set loses n(n-1) pairs at least.

Case2: Test cases in the first block are extended by adding j values of V1o, 0< /< n-1. If
all test cases in the first block are extended, there are n-j repeated pairs in the first block.
According to proposition 4.3, there is one same value for any two test cases in different
blocks. For the remainder n(n-1) test cases, only n-j test cases have no repeated pairs, and
each of the n>-2n+; test cases has least one repeated pair, so the total lost pairs are n>-2%n+ j+

n-j =n (n-1).0
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Proof of the correctness of the Duplicate Algorithm: A test case set 7S covers
pairwise perfectly for n. m n-valued new parameters are waited to be extended, 1<
m< n+1. After extension by using duplicate algorithm, the test case set 7S loses
n(n-1) pairs for adding a new parameter and the test cases set has the most pairwise

coverage than other test case sets with the same size.

Proof: Because the test case set TS covers pairwise perfectly for n, any two parameters
between P; and P,:; are value independent in 7S. According to proposition 4.2, the
parameter Py is value independent with former parameters except parameter P;, 1< i< m,
and the number of repeated pairs generated by P; and P+ is n (n-1). According to

proposition 4.4, the least number of lost pairs is n (n-1) when adding a new parameter.
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Therefore, the 7S extended by the duplicate algorithm still cover the most pairs without

increasing number of test cases.O

The advantage for using the duplicate method is when new parameters are added, the
test cases can be extended quickly. The duplicate method reduces large time in extension and

retains high coverage rate.vy;,

Finally, some situations are discussed as follows. Let the test case set 7S cover pairwise
perfectly for n. There are k*n(n+1) new pairs are generated when a k-valued parameter is
added, &# n. Without increasing the number of test cases, how many pairs are lost at least

after extension for kA< n, n< k< n? and k>n*?

k< n: the least number of lost pairs is zero. There are k*n(n+1) new pairs are generated
when adding a new parameter and the extended test cases can cover n’(n+1) new pairs at

most, so the least number of lost paifs is.zero.

n< k< n*: the least number of lost pairs is n(n+1)(k-n)+n’-k. If there are no repeated
pairs in the extended test cases, the extended test cases cover n’(n+1) new generated pairs.
Because k< n” repeated pairs are not found in only k extended test cases, and the remainder
n’- k test cases have more than one repeated pair. The reason is same with the case 2 of

proposition 4.4, so the number of lost pairs is n(n+1)k-n*(n+1) + n*-k.
k>n*: the least number of lost pairs is n(n+1)(k-n). If there are no repeated pairs in the

extended test cases, the extended test cases cover most n°(n+1) new pairs, so the number of

lost pairs is n(n+1 Ye-r*(n+1) = n(n+1)(k-n).
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Chpater 5 Conclusion and Future Work

Pairwise testing is a special case of n-way testing. In this paper, MIVO test generation
strategy for pairwise testing is presented and implemented. With our simulation, to reach the
same coverage, MIVO generates fewer test cases than /PO, i.e., in test cases generation,

MIVO i1s more effective.

The duplicate algorithm is also introduced and clearly proved in this paper. Using the
duplicate algorithm, the extended test cases retain high pair’s coverage. With the advantage
of using the algorithm is that test cases can be easily extended and large amount of

computing time for extension can be saved

Much works also remains to be doneto-validate the result of MIVO. In the future, we

hope that MIVO testing strategy .can be implemented to test real software systemes and more

empirical results are gathered to confirm the-usefulness of MV O.
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Appendix A

The input order of the example for simulation
E;: five parameters (5 3-valued).

E,: seven parameters (5, 6, 3, 2, 3, 4, 5)

E;: ten parameters (7,4, 6,5, 7,5, 5, 6, 4, 4)

E4: twenty-five parameters (3, 3,4,7,2,5,4,2,7,3,5,2,2,2,4,3,3,7,2.,4,3,5,5,7,7)
Es: forty parameters (5,4, 2,3,7,2,4,4,5,3,2,2,5,7,4,7,3,3,4,5, 3,4,5,2,2,7,2,3,
7,7,5,4,7,2,3,3,4,5,5,7)

Eg: twenty parameters (20 4-valued).

Eo: twenty-five parameters (11, 11, 13,7,9,9, 13, 13, 11,7,7,7,13,11,9,7,9,7, 13, 11, 7,
9,9,13,7,9)

Eio: thirty parameters(10, 13,10,15,13,13,10, 15,13,15,10,10,15,13,13,10, 15,15,10,13, 10,15,
13,10,15,10,13, 13,15,15)

Ei: forty-three parameters (6, 5, 5, 4, 3,2,6,8,4,2,6,5,3,3,10,4,2,8,2,2,6,8, 3, 10, 2,
6,6,5,4,4,10,2,8,8,6,4,10,2,3,3,6,8, 10).

E,: fifty-four parameters(6, 9, 2, 10,3;'5,5,7,6,3,2,4,4,9,8,2,10,7,3,9,5,5,8,4,8,
10,6,3,3,8,9,5,7,6,7,5,3,10;10;2,8,6,7,4,7,6,8,4,10,2,2,9,4,9).
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