
 i

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

利 用 圖 形 處 理 器 加 速 鉅 量 多 人

連 線 遊 戲 伺 服 器 端 之 運 算

Using GPU as Co-processor in MMOG Server-side Computing

研 究 生：宋牧奇

指導教授：袁賢銘 教授

 ii

利用圖形處理器加速鉅量多人連線遊戲伺服器端之運算

Using GPU as Co-processor in MMOG Server-side Computing

研 究 生：宋牧奇 Student：Mu-Chi Sung

指導教授：袁賢銘 Advisor：Shyan-Ming Yuan

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis
Submitted to Institute of Computer Science and Engineering

College of Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master
in

Computer Science

June 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年六月

 iii

中 華 民 國 九 十 六 年 六 月

利用圖形處理器加速鉅量多人連線遊戲伺服器端之運算

研究生: 宋牧奇 指導教授: 袁賢銘

國立交通大學資訊科學與工程研究所

摘要

一般來說，MMOG（鉅量多人連線遊戲）主要包含了一個廣大的虛擬世界，

容許成千上萬的玩家在這個世界裡進行遊戲以及互動。然而，當我們要設計一個

MMOG 的平台（或中介軟體）來協助遊戲的開發時，我們常常會碰到各式各樣

的瓶頸，限制了在單一平台上最多能容許的玩家人數。本研究探討了這限制之最

根本的原因，就是在 CPU 上循序的處理遊戲邏輯；我們提出了一個革命性的方

法，讓 GPU（圖形處理器）來加速這些遊戲邏輯的計算，減低 CPU 的負擔，讓

CPU 更專心於處理 OS 以及 I/O 方面的訊息。

 本論文是目前為止第一個利用了 GPU 的計算能力，來加速 MMOG 伺服器

端之運算的研究。我們提出了數個平行的演算法，將用來原本該在 CPU 上之邏

輯運算，轉換成可以在 GPU 上平行處理的演算法。在我們的實作中，隨著玩家

人數的增加，我們觀察到在 GPU 提供了超過 100 倍目前 CPU 所能提供之運算能

力。搭配適合的 IO 架構，在單一伺服器上服務超過 50 萬個玩家即可被實現。

 iv

Using GPU as Co-processor in MMOG Server-side Computing

Student: Mu-Chi Sung Advisor: Shyan-Ming Yuan

Department of Computer Science and Engineering

National Chiao Tung University

Abstract

In general, MMOG (Massively Multiplayer Online Game) consists of virtual

worlds where thousands or millions of people can login into the same place and

interact with each other. However, when designing a generic MMOG platform to

support game development, there are always bottlenecks which limit the maximum

number of concurrent players within a single server cluster. In this paper, we identify

the source of the limitation, which comes from sequential processing overhead, and

propose an innovative approach to solve the scalability problem in parallel by GPU

(Graphics Processor Unit).

This is the first research that exploits GPU computation power to accelerate

MMOG server-side computing. Several parallel algorithms handling server-side

computation of MMOG are derived and implemented on GPU. In our implementation,

we observed the performance improvement of GPU is more than 100 times, compared

to modern CPU. Together with underlying supporting network communication

infrastructure, we build a scalable and high performance MMOG platform that serves

up to 500k players on line with a single server at low cost.

 v

Acknowledgement

首先我要感謝袁賢銘教授給我的指導，在我的研究領域裡給予我很多的意見，並

且給予我最大的空間來發揮我的創意。也感謝所有幫助我的學長蕭存喻、葉秉哲，

在我研究的過程中給我不少的指導跟建議。還有感謝我的同學林志達，在一起討

論的過程中激盪出不少的想法。還有所有實驗室內提供電腦給我做實驗的同學，

沒有你們我無法完成實驗。最後我要感謝我的爸媽，給予我這個良好的環境讓我

求學生涯毫無後顧之憂，專心於學業，謹以這篇小小的學術成就來感謝您們的養

育之恩。

 vi

Table of Contents

Acknowledgement ... v

Table of Contents .. vi

List of Figures .. viii

List of Tables .. x

Chapter 1 Introduction ... 1

1.1. Preface .. 1

1.2. Motivation .. 1

1.3. Problem Description .. 2

1.4. Research Objectives ... 4

1.5. Research Contribution ... 5

Chapter 2 Background and Related Work ... 6

2.1. Graphics Processor Unit (GPU) ... 6

2.1.1. From OpenGL to High-Level Shader Language 7

2.1.2. Compute Unified Device Architecture (CUDA) by NVIDIA 8

2.1.3. Close To Metal (CTM) by AMD/ATI .. 12

Chapter 3 Parallelize the MMOG Server ... 13

3.1. GPU-Assisted MMOG System Architecture ... 13

3.2. Parallel Algorithm on CUDA... 15

3.3. Parallel Logic Processing Algorithm ... 15

3.4. Parallel Conflict Merge Algorithm .. 18

3.5. Parallel Range Query Algorithm .. 24

Chapter 4 Experimental Results and Analysis 33

4.1. Experimental Setup .. 33

 vii

4.1.1. Hardware Configuration .. 34

4.1.2. Software Configuration .. 35

4.2. Evaluation and Analysis ... 36

4.2.1. Comparison of CPU and GPU ... 36

4.2.2. Detail Performance of GPU ... 40

4.2.3. Comparison of CPU and GPU with Computation Only 41

4.2.4. Comparison of Different AOIs ... 45

Chapter 5 Conclusions and Future Works ... 47

5.1. Conclusions .. 47

5.2. Future Works .. 48

Bibliography .. 50

 viii

List of Figures

Fig 2-1 Floating-Point Operations per Second for the CPU and GPU 6

Fig 2-2 Shared Memory Architecture for GPU .. 9

Fig 2-3 Massively Threaded Architecture .. 10

Fig 2-4 Physical Memory Model on GPU ... 11

Fig 3-1 The count phase of the parallel move logic ... 17

Fig 3-2 The store phase of the parallel move logic .. 18

Fig 3-3 The parallel move logic on GPU ... 18

Fig 3-4 Separation mark for the parallel merge conflict algorithm 21

Fig 3-5 Store separation indices for the parallel merge conflict algorithm 21

Fig 3-6 Merge conflict intervals for the parallel merge conflict algorithm 22

Fig 3-7 The parallel merge conflict algorithm ... 23

Fig 3-8 Multiple update ranges in a grid .. 25

Fig 3-9 Write affected bucket indices for the parallel range query algorithm 27

Fig 3-10 Mark separation for the parallel range query algorithm 28

Fig 3-11 Store separation indices for the parallel range query algorithm 29

Fig 3-12 The two-way binary search in the parallel range query algorithm 30

Fig 3-13 Count the number of updates for the parallel range query algorithm 31

Fig 3-14 Enumerate the updates for the parallel range query algorithm 31

Fig 3-15 The parallel range query algorithm ... 32

Fig 4-1 Average Execution Time for map size 2500x2500 .. 37

Fig 4-2 Average Execution Time for map size 5000x5000 .. 38

Fig 4-3 Performance Improvement Ratio of GPU over CPU 39

Fig 4-4 Average Execution Time for map size 2500x2500 (GPU w/ Computation Only)

 ix

.. 42

Fig 4-5 Average Execution Time for map size 5000x5000 (GPU w/ Computation Only)

.. 43

Fig 4-3 Performance Improvement Ratio of GPU over CPU (GPU w/ Computation

Only) .. 44

 x

List of Tables

Table 2-1 Memory Addressing Spaces available on CUDA .. 10

Table 4-1 Hardware Configuration .. 34

Table 4-2 NVIDIA 8800GTX Hardware Specification ... 34

Table 4-3 Software Configuration ... 35

Table 4-4 Tested Scenarios .. 36

Table 4-5 Average Execution Time for map size 2500x2500 37

Table 4-6 Average Execution Time for map size 5000x5000 38

Table 4-7 Performance Improvement Ratio of GPU over CPU 39

Table 4-8 Detailed Execution Time of GPU Algorithm at Each Step 41

Table 4-9 Average Time for map size 2500x2500 (GPU w/ Computation Only) 42

Table 4-10 Average Time for map size 5000x5000 (GPU w/ Computation Only) 43

Table 4-11 Performance Improvement Ratio of GPU over CPU (GPU w/ Computation

Only) .. 44

Table 4-12 Compare Different AOI with Same Client Density in the Virtual World .. 46

 1

Chapter 1 Introduction

1.1. Preface

MMOG (Massively Multiplayer Online Game) could be the biggest revolution in

computer game industry in recent years. As network technology evolved rapidly,

thousands or millions of people can login into the same virtual world, stand at the

same position, and play the same game together just like they are virtually in the same

room at the same place. This has been such a great success since Korea became the

world largest exporter of online games in the year of 2002, and it is now a

billion-scale global market expected to continue its impressive growth.

1.2. Motivation

However, right now, it takes at least three two to three years and $20 million USD

to build a MMOG, due to challenges in the areas of engineering, asset-creation, and

marketing. For engineering, to build an enterprise-level network infrastructure that

can scale to millions of simultaneous users would be daunting for almost any game

developer. It’s basically outside their area of interest and expertise. As a result,

numbers of middleware solutions for game developers to ease the development cost

for MMOG has shown up since the year of 2004. Also, several open-source projects

have been created to provide free solution. It seems like they all try to answer to the

question about MMOG scalability and flexibility and to claim the significantly benefit

that hide the complexities of server through the provided platforms.

Although there’s no in-depth comparison among all of them, from the titles that

are based on these middleware solutions, we observed that the scalabilities of these

 2

platforms are not as good as what we expected to see. As the real-world game designs

are so complicated that make a great impact on server performances, the average

number of concurrent online players falls in the range between 2000 and 9000 per

server cluster, which is consist of 5 to 20 servers (so each server is only capable of

500~1000 players). For such limitation, most virtual game worlds are replicated into

several independent worlds (called shards), in which players cannot communicate

with each other due to the geographical constraint. To address the shard problem,

recently the Project Darkstar initiated by Sun Microsystems announced their new

technology to build “shardless” MMOGs. However the number of concurrent players

per server is still low and therefore the cost for entire server cluster remains high. Also,

their shardless technology is based on dynamic allocation on pre-defined fixed game

region, which limits the provisioning efficiency due to the synchronization overhead

of those mirror servers.

We looked into the scalability problem in most of the commercial off-the-shelf

MMOG platforms as well as the open source ones, and tried to propose a solution that

can really scale up to a very large number of concurrent players on a single server.

1.3. Problem Description

Designing a reusable, flexible, easy-to-use MMOG platform is challenging.

Despite of the usability, the performance metrics are also significant, such as the

scalability of MMOG. Scalability is usually the key to operating cost, because the

higher scalability the platform is, the lower machine needed to be deployed, which

results in lower cost.

Even the with the modernist design of MMOG platform, like EVE Online, the

 3

maximum number of concurrent players ever recorded is 22020. Other than that, as

mentioned above, most of each server cluster ranges from 2000 to 9000. As far as we

are concern, this is a relatively poor record compared to other internet service such as

web server.

To see why, we need to know that the design constraints of MMOG platforms are

unique, that is, tens of thousands or millions of players log in the same virtual world

to interact with each other, and results in an aggressive amount of commands and

updates generated as players move and attack. Therefore, the server cluster needs to

process all the commands and sends all the updates to players within a limited time

constraint. Lots of researchers put their eye on reducing the network latency to give

more time to serve requests. The proposed communication architectures include

peer-to-peer architecture and the scalable server/proxy architecture. They all succeed

to reduce the network latency to have more concurrent players within acceptable time

delay; however the maximum concurrent players is still far from 10k, which is the

capability that a scalable server should have generally. There should be some other

bottleneck in the design.

In our point of view, since the network technology evolved rapidly that the

optical interconnection is popping out of the surface and the broadband internet access

is becoming the majority, the transmission delay between the server and the client has

dropped to a certain level. Eventually, the network latency will not be an issue in the

near future, and we will spend the most of processing time for client commands.

Basically, due to the current CPU architecture, CPU is not capable of large amount of

data, which is most likely the case of MMOG. Although multi-core CPU has come to

market, the memory bandwidth between CPU and main memory is still low, and

multiple cache-misses occurred for the sake of limited resources and different

 4

execution contexts of the game logics and network handlers. Also, different thread

executions need synchronization and atomic locking operation to avoid update

conflicts. Apparently, these constraints damage the performance and limit the

throughput of executing client commands on CPU.

1.4. Research Objectives

As we identify the kernel of the problem is due to the architecture of CPU, we

began to search for methods to efficiently process significant amount the client

commands and update the entire virtual world. Our final answer is GPU. For last

decade, GPU has been transformed from a simple 3D rendering acceleration silicon

into an array of SIMD processors [3]. According to survey, the computation power of

GPU is more than 100 times than CPU, and also, the memory bandwidth between the

processor and the device memory of GPU is much larger than that of CPU. In general,

GPU has been specialized for both compute-intensive and highly parallel computation,

and the computation power of GPU has been grown rapidly even beyond Moore’s

Law [4]. From the year of 2003, some researcher began to make use of GPU to do

general purpose computation by mapping the general purpose problems into a 3D

rendering problems. These problems range from collision detection [5] to online

databases [6]. In all of the studies, the performance boost by 10 to 100 times is

observed by exploiting GPU computation.

However, until now, none work has been done toward applying GPU to MMOG

platform design. The most possible reason for that could be the complicated

calculation and update conflict problem in the MMOG platform. But with the latest

evolution of GPU technology, which will be discussed on the next chapter, it seems

like GPU is ready and will become a possible choice to migrate the computation load

 5

from CPU to GPU.

To summarize, as discussed above, for the reason that the computation problem

in MMOG is computation-intensive and highly data-parallel, we want to apply GPU

to general purpose computation on MMOG platform to reduce the overhead in logic

processing and game world updates.

1.5. Research Contribution

This thesis discussed the issue of the barrier to build a MMOG server on GPU

and proposed a practical solution and system on GPU to handle all client commands

and updates. Based on different programming paradigm (sequential vs. parallel), the

MMOG server needs to be re-designed to parallelize all works on GPU. New

algorithms specialized to process client commands in parallel and to update the virtual

world with respect to update conflicts are proposed.

 6

Chapter 2 Background and Related Work

2.1. Graphics Processor Unit (GPU)

As mentioned above, the GPU technology changed a lot in both hardware and

software in the last decade. In hardware, fixed-function rendering pipeline is obsolete

and new programmable pipeline consist of multiple SIMD processor is a de facto

standard in the GPU industry. The comparison of computation power between GPU

and CPU was depicted as Fig 2-1. As for software, the OpenGL persists, but many

extensions have been added by the OpenGL ARB to facilitate the use of

programmable pipeline. Based on the programmable pipeline and the SIMD

architecture of current GPU, one can map a compute-intensive problem into multiple

small pieces, solve the problem within a pixel-rendering context (because the pixel

rendering is programmable), and finally store the result in the frame buffer object.

This is the basic concept of general purpose computation on graphics hardware, also

called GPGPU [7] [8].

Fig 2-1 Floating-Point Operations per Second for the CPU and GPU

 7

 However the mapping is not straightforward, we may need to design some

special data structure and modify the algorithm in the way we do graphics rendering.

Fortunately, the two biggest GPU manufacturers: NVIDIA and AMD/ATI have just

opened the computation power to public via some programming interface other than

OpenGL, which we will introduce later.

2.1.1. From OpenGL to High-Level Shader Language

Before digging into the latest development of GPU programming, we give the

history of OpenGL first to get better understanding of the benefit from the new

programming architecture.

OpenGL was developed by SGI in early 90s to standardized access to graphics

hardware, and ease the development of 3D computer graphics by providing high-level

and simple set of APIs. Since 90s, there are several revisions of OpenGL to adopt new

graphics hardware. Among all the revision, the most important one is the standard of

OpenGL 2.0, in which the OpenGL Shading Language [10], GLSL for short, is

introduced. GLSL provides high level construct to write shader, which is the program

that is executed on each vertex or pixel is rendered. As long as we can encapsulate the

data into textures, and transform the work into numbers of independent pixel

renderings, the problem can be executed in parallel on GPU.

However, shader comes with limits since GPU is not designed under the same

principle of CPU. You can never arbitrarily write to any memory location but only the

corresponding output pixel in a shader. This is known scatter write operation, which is

prohibited on GPU because read-after-write hazard would occur to damage the GPU

performance if such operation is allowed. Under these constraints, GPU algorithms

are even harder to be developed then traditional algorithm and was turned into a very

active research field in the last few years.

 8

In addition, NVIDIA proposed Cg in 2003 to further lower the burden of GLSL

by providing C standard language construct to write shaders. However the Cg itself

does not manipulate the graphics hardware directly, but instead, they transform Cg

codes into standard GLSL code by compiler techniques; as a result, Cg does not relief

the constraint on GPU but only providing a friendly and easy-to-use development

environment.

2.1.2. Compute Unified Device Architecture (CUDA) by NVIDIA

CUDA, as the name stands for, is the architecture to unify the general

computation model on graphics devices. Just like the Cg they invented previously,

CUDA uses standard C language with some simple extensions such as templates and

C++ style variable declaration. This gives programmer a great convenient to develop

GPU application. From now on, we will introduce to CUDA in more detail because

we will use CUDA to implement the entire system, and CUDA is much different from

OpenGL or any other popular programming language in many perspectives.

The most important advantage of CUDA over graphics API for making

traditional general computation on GPU is the scattered write capability. To explain,

scattered write means that code written in CUDA can write to arbitrary addresses in

memory, which is not possible in traditional pixel shader programming (unless

combined with the vertex shader, but this is extremely inefficient). CUDA provides

scatter write to make many parallel algorithm possible to be implemented on GPU,

such as parallel prefix sum algorithm (also called the SCAN operation) and efficient

bitonic sort.

 9

Fig 2-2 Shared Memory Architecture for GPU

Along with scatter write, CUDA further exposed a fast shared memory on GPU

that can be shared among numbers of processors as Fig 2-2. The shared memory can

be used as a user-managed cache, enabling extreme high bandwidth than traditional

texture look up, which is actually accessing global memory. Furthermore, as stated in

the CUDA official document, when programmed through CUDA, GPU is viewed as a

compute device that is capable of executing a very high number of threads in parallel

as Fig 2-3. This is called massively threaded architecture. To explain further, each

kernel can be executed by a grid of blocks, and each block contains a grid of thread

that is conceptually mapped to a single SIMD processor. Threads within the same

block can communicate with each other via per-block shared memory and get

synchronized at a specific point of execution. A Block can be regarded as a set of

threads within the same execution context. However, unlike thread, there is no

synchronization capability among blocks.

 10

Fig 2-3 Massively Threaded Architecture

As for the memory model of CUDA, there’s six different types of memory that

can be access either in read-write mode or in read-only mode, summarized as follows:

Name Accessibility Scope Speed Cache

Registers read/write per-thread zero delay (on chip) X

Local Memory read/write per-thread DRAM N

Shared Memory read/write per-block zero delay (on chip)* N

Global Memory read/write per grid DRAM N

Constant Memory read only per-grid DRAM Y

Texture Memory read only per-grid DRAM Y

Table 2-1 Memory Addressing Spaces available on CUDA

Along with , Fig 2-4 shows the graphical layout of memory on GPU. In fact,

there are only two types of memory physically on GPU: the on-chip memory and the

device memory, but they are divided into different memory spaces for different

purposes of use. The on-chip memory is embedded in the SIMD processor that only 2

clocks needed to read from or write to. The access to device memory usually takes up

to 200~300 clocks, which is relatively slow compared to on-chip memory. The shared

memory located on the chip can be regarded as a user-managed cache for the SIMD

processor. A typical usage of shared memory is used to cache specific data read from

global memory to avoid duplicate read. Also, shared memory can be served as an

inter-process communication medium for all threads with almost zero overhead.

 11

Fig 2-4 Physical Memory Model on GPU

Although CUDA seems an ideal choice to do parallel programming, it comes

with some limitation due to the current hardware design. First, only floating point of

single precision is supported no current hardware; applications that require double

precision floating point computation are not viable. Second, recursive function is not

supported due to the lack of stack on GPU. Third, the branching within the same

block could be expensive as they are executed on a SIMD processor, where only one

instruction can be performed (with multiple different data source) at one time. So if

threads take different execution path, they must be serialized by the thread scheduler

on GPU. Finally, while GPU is communicated with CPU through the PCI-Express bus,

the cost to download/upload data from/to GPU would be expensive. As a result,

frequent data transfer between CPU and GPU should be avoided whenever possible.

For more details about CUDA, please refer to the CUDA programming guide [11].

 12

2.1.3. Close To Metal (CTM) by AMD/ATI

Compared to NVIDIA CUDA, the second largest GPU manufacturer announced

the Close To Metal (CTM) [12] technology before CUDA. With similar goal of

CUDA, CTM try to expose the computation power of GPU for the public to apply

GPU to general purpose computation. However, in a very different approach from

CUDA, CTM does not provide the comprehensive toolkits like compiler, linker and

high-level C language construct, but only a set of low-level, assembly-like, raw

commands that is executable by AMD/ATI’s GPU. This is really daunting for most

developers. Therefore, till now, CTM does not attract much attention although CTM

almost covers all aspect of what CUDA can do.

 13

Chapter 3 Parallelize the MMOG Server

In this chapter, we propose the GPU-assisted MMOG server design, which mixes

the unparallel processing power of GPU with the component-based MMOG server

architecture. We will later describe our parallel MMOG algorithms on CUDA,

including parallel logic processing algorithm and parallel range query/update

algorithm.

3.1. GPU-Assisted MMOG System Architecture

Fig 3-1 the logic execution layer of GPU-assisted MMOG system

The entire GPU-assisted MMOG system framework was depicted in Fig 3-1.

Basically, the framework can be stratified into 3 layers by their functionalities: the

network layer, the control layer, and the execution layer.

Network layer provides reliable unicast and multicast transport to assist

inter-process communication in the online game network. With modern high

 14

performance and fault-tolerant communication middleware and gateway/server

architecture, we can handle massive amount client requests and exchange data among

servers efficiently.

Execution layer, which is the kernel of the system, handles all client commands

received from network layer and dispatch all commands to corresponding logic (i.e.

handler) according to the types of the commands. To maximize the number of

concurrent users, we used GPU to assist the logic computation on server based on

NVIDIA CUDA framework.

To elaborate, basically clients interact with servers based on well-known

server/gateway architecture as follows. First, the client sends corresponding

commands to the proxy he connected to, as the player manipulates his/her character.

Upon the arrival of the client command, the proxy relays the command along with

those from other clients to the game server. The game server collects all client

commands, compiles into request list, and uploads to GPU memory. GPU then

processes client commands by a great number of blocks of threads, updates the game

world in parallel, and finally compiles the update vectors into a continuous array.

Next, update vectors are downloaded to CPU memory. By the update vectors, clients

that are affected by the changes of the world need to be notified by sending player

state updates via the corresponding proxies. Each proxy will then forward the state

updates to clients and finally the result is rendered on clients’ display.

 15

3.2. Parallel Algorithm on CUDA

For most parallel algorithm, the parallel sorting and parallel prefix sum algorithm

are the basic building essential. As a result, we implemented load balanced parallel

radix sort [16] and parallel prefix sum [17], and optimized it according to the GPU

architecture constraints.

For implementation, due to the bandwidth limit between GPU memory and host

memory in current commodity computers, we must avoid data transfer as much as

possible to get the best performance. For that reason, we try to process the client

commands and virtual world updates completely on GPU. Client commands are

compiled as a request array and sent to GPU by command scheduler. Next, GPU will

process all client commands in the request array in parallel, merge all update conflicts,

identify those who are near these altered players by bucket indices, and finally

generate the update array. The update array will be read back from GPU memory to

CPU memory and be processed by CPU. Each item in the update array is a vector

consists of the player id to send update, the altered player id, the altered data id, and

the new value of the data. CPU will send the altered player state update to the nearby

player according to the update vector.

3.3. Parallel Logic Processing Algorithm

As processing client commands on GPU, we must store the player information

needed during the execution of logic. Since the GPU memory size is limited, we only

store a part of data of player states relevant to GPU game logics. For example, we

may need to store the position of players as a small chunk on GPU if we have the

move logic on GPU.

 16

Logic on GPU can be regarded as a set of chunk update rules, that is, it might

request to modify a number of chunks in player states according to predefined rules

by writing a list of update vector of player id, chunk id, and value offset. Note that

there could be multiple update vectors toward the same player id with the same chunk

id, which lead to conflicts. We will introduce the parallel update conflict merge

algorithm to address the problem in the next section.

However to make the logic processing parallel is not that straightforward. To

make it parallel, we need to split all logics into two phases, the counting phase and

storing phase. In the counting phase of the specific logic, we compute the number of

updates that will be generated in the logic and store the update count into global

memory on GPU by each thread. After that, we perform parallel prefix sum to

calculate the exact memory location to store all update vectors in a continuous block

of memory. Given the memory locations, the storing phase of the logic is then

performed and writing all updates to global memory without any address conflict.

For example, suppose we have an attack logic implemented on GPU, different

update counts will be stored by each thread in the update count array. For example, 5

updates for thread 1 will be generated later, 3 updates for thread 2, and 1 update for

thread 3. The update count array will look like {5, 3, 1, …}. After parallel prefix sum

is applied, the update count array becomes {0, 5, 8, 9, …}, in which each element is

exactly the sum of all elements before. Based on the prefixed update count, each

thread can safely store the update vectors into global memory without

write-after-write hazards.

 Although game logics are designed based on the game’s philosophy, we

implemented the simple move logic to demonstrate the two-phase concept as in Fig

3-2, Fig 3-3, and Fig 3-4

 17

Algorithm PlayerMoveLogic_CountPhase (plist, np,rlist, nr, uclist) ;
Input: plist (an array of player state vectors of size np), rlist (an array of request
 vectors of size nr).
Output: uclist (an array of size nr containing update counts for each request).
begin
 declare shared request_vector shm[] ;
 declare integer bs = 512 ;
 declare integer gs= ceil(nr/block_size) ;

 for bid:=0 to gs-1 do in parallel
 for tid:=0 to bs-1 do in parallel
 declare integer global_tid := bid*bs + tid ;
 if global_tid < nr then
 shm[tid] := rlist[tid] ;
 if shm[tid].type = TYPE_MOVE then
 uclist[tid] := 1 ;
 else
 uclist[tid] := 0 ;
end

Fig 3-2 The count phase of the parallel move logic

Algorithm PlayerMoveLogic_StorePhase (plist, np, rlist, nr, uslist, ulist) ;
Input: plist (an array of player state vectors of size np), rlist (an array of request
 vectors of size nr), uslist (an array of indices where each thread stores the
 updates).
Output: ulist (an array of update vectors of size nr).
begin
 declare shared request_vector shm[] ;
 declare integer bs := 512 ;
 declare integer gs := ceil(nr/block_size) ;

 for bid:=0 to gs-1 do in parallel
 for tid:=0 to bs-1 do in parallel
 declare integer global_tid := bid*bs + tid ;
 if global_tid < nr then
 shm[tid] := rlist[tid] ;

 18

 if shm[tid].type = TYPE_MOVE then
 declare update_vector upd ;
 upd.playerID := shm[tid].playerID ;
 upd.chunkID := PLAYER_POSITION ;
 upd.offset := calculateOffset(shm[tid]) ;
 ulist[uslist[tid]] := upd ;
end

Fig 3-3 The store phase of the parallel move logic

Algorithm PlayerMoveLogic (plist, np, rlist, nr, ulist) ;
Input: plist (an array of player state vectors of size np), rlist (an array of request
 vectors of size nr).
Output: ulist (an array of update vectors of size nr).
begin
 declare global integer uclist[nr] ;
 declare global integer uslist[nr] ;
 PlayerMoveLogic_CountPhase(plist, np, rlist, nr, uclist) ;
 ParallelPrefixScan(uclist, nr, uslist) ;
 PlayerMoveLogic_StorePhase(plist, np, rlist, nr, uslist, ulist) ;
end

Fig 3-4 The parallel move logic on GPU

3.4. Parallel Conflict Merge Algorithm

As mentioned above, there may be update conflicts in the update vectors

generated by game logics. To address the problem, we propose the parallel update

conflict merge algorithm to merge conflict updates into one conflict-free update. For

example, when more than one player is attacking someone else, there will be multiple

attack commands in a single update iteration requested by different player, but their

targets are same. In this case, multiple update vectors will be generated by different

threads and stored in the update array. We have to find out all those conflict updates

and sum up all their offsets as one, and replace all update vectors by the new update

 19

vector.

 The algorithm works as follows. In the first step, we need to sort the list of

update vectors in parallel according to their player id and chunk id. Ultimately, we

want to find out the interval to merge on the sorted list. Therefore, we check each

interval between any two adjacent elements in the sorted list to see if the left and the

right elements are in conflict with each other. We call this separation marking. If the

left and the right elements are conflict-free, then 1 is written to the separation list as a

separation mark. Otherwise, 0 is written. After the separation list is filled out, all

update vectors in-between two 1 marks will need to be merged. To find out all the

memory address to write those conflict-free update vectors, the parallel prefix sum is

performed on the separation list to get the store indices for separation. Given the

separation list and the store indices list, we can easily transform the separation marks

into the intervals to merge. Take an example; if the sorted vectors are as follows (each

vector is in the form {player id, chunk id, value, offset}):

{ { player 0, PLAYER_HP, 100, -5 },
{ player 0, PLAYER_HP, 100, -10 },
{ player 1, PLAYER_HP, 250, -20 },
{ player 2, PLAYER_HP, 300, -30 },
{ player 2, PLAYER_HP, 300, -50 },
{ player 3, PLAYER_HP, 100, -5 }}

 The resulting separation list will be {0, 1, 1, 0, 1}, and after prefix scanned, the

store indices list becomes {0, 0, 1, 2, 2}. We spawn a thread on each element of

separation list to generate the merge list. Each thread check the corresponding element

and write the current thread index to global memory at the location specified in the

store indices list in case that corresponding element equals to 1, which is a separation

mark. After the transformation, we will have the merge list like {1, 2, 4}.

 20

 The final step is to perform parallel merge on the sorted list of update vectors

according to merge list. Following the last example, given the merge list {1, 2, 4}, we

need to merge {[0, 1], [2, 2], [3, 4]}. We can use one thread for each interval between

two adjacent elements in the merge list to sum up all the offsets in-between.

Algorithm MergeConflict_MarkSeperation (ulist, nu, seplist) ;
Input: ulist (an array of update vectors of size nu).
Output: seplist (an array of indices of size nu).
begin
 declare shared update_vector shm[] ;
 declare integer bs := 256 ;
 declare integer gs := ceil(nu/bs) ;

 for bid:=0 to gs-1 do in parallel
 for tid:=0 to bs-1 do in parallel
 declare integer global_tid := bid*bs + tid ;
 if global_tid < nr then
 shm[tid] := ulist[tid] ;
 declare update_vector tl, tr ;
 synchronize_threads() ;

 if global_tid < nu then
 tl := shm[tid] ;
 synchronize_threads() ;

 if global_tid < nu && (tid != bs-1 or bid != gs -1) then
 if tid = block_size-1 then
 tr := ulist[global_tid+1] ;
 else
 tr := shm[tid+1] ;

 declare integer mark := 0 ;
 if tl.playerID = tr.playerID && tl.chunkID = tr.chunkID then
 mark := 1 ;
 synchronize_threads() ;

 21

 if global_tid < nu then
 seplist[global_tid] := mark ;
end

Fig 3-5 Separation mark for the parallel merge conflict algorithm

Algorithm MergeConflict_StoreSeperation (seplist, silist, ns, mergelist) ;
Input: seplist (an array of size ns containing either 0 or 1 for the mark of
 seperation), silist (an array of indices as memory location references of size ns).
Output: mergelist (an array of indices of size nu to store the separation indices).
begin
 declare integer bs := 256 ;
 declare integer gs := ceil(nu/bs) ;

 for bid:=0 to gs-1 do in parallel
 for tid:=0 to bs-1 do in parallel
 declare integer global_tid := bid*bs + tid ;
 declare integer mark := 0 ;
 declare integer reference_address := 0 ;
 if global_tid < ns then
 mark = seplist[global_tid] ;
 synchronize_threads() ;

 if global_tid < ns && mark > 0 then
 reference_address := silist[global_tid] ;
 synchronize_threads() ;

 if global_tid < ns && mark > 0 then
 mergelist[reference_address] := global_tid ;
end

Fig 3-6 Store separation indices for the parallel merge conflict algorithm

template < class T>
Algorithm MergeConflict_MergeInterval (ulist, nu, mergelist, nm, cfulist) ;
Input: ulist (an array of update vectors of size nu), mergelist (an array of separation
indices of size nm).

 22

Output: cfulist (an array of conflict-free update vectors of size nm+1).
begin
 declare shared integer shm[] ;
 declare integer bs := 256 ;
 declare integer gs := ceil(nu/bs) ;

 for bid:=0 to gs-1 do in parallel
 for tid:=0 to bs-1 do in parallel
 declare integer global_tid := bid*bs + tid ;
 shm[tid] := mergelist[global_tid] ;
 synchronize_threads() ;

 declare integer si := 0 ;
 declare integer ei := 0 ;
 declare T offset := T() ;
 declare update_vector upd ;
 if global_tid < nm then
 if global_tid = 0 then si := 0 ;
 else if tid = 0 then si := mergelist[global_tid-1] ;
 else si := shm[tid-1] ;
 ei := shm[tid] ;
 for m:=si to ei do
 upd := ulist[m] ;
 T := T + upd.offset ;
 upd.offset := offset ;
 cfulist[global_idx] := upd ;

 if global_tid = nm-1 then
 si := shm[tid] ;
 ei := nu-1 ;
 for m:=si to ei do
 upd := ulist[m] ;
 T := T + upd.offset ;
 upd.offset := offset ;
 cfulist[global_idx+1] := upd ;
end

Fig 3-7 Merge conflict intervals for the parallel merge conflict algorithm

 23

Algorithm MergeConflict (ulist, nu, cfulist) ;
Input: ulist (an array of update vectors of size nu).
Output: cfulist (an array of conflict-free update vectors of size nu).
begin
 declare global update_vector ulist_sort[nu] ;
 declare global integer seplist[nu] ;
 declare global integer silist[nu] ;

 ParallelLoadBalancedRadixSort(ulist, nu, ulist_sort) ;
 MergeConflict_MarkSeperation(ulist_sort, nu, seplist) ;
 ParallelPrefixScan(seplist, nu, silist) ;

 declare integer nm := silist[nu-1] ;
 declare global integer mergelist[nm] ;
 MergeConflict_StoreSeperation(seplist, silist, nu, mergelist) ;
 MergeConflict_MergeInterval(ulist, nu, mergelist, nm, cfulist) ;
End

Fig 3-8 The parallel merge conflict algorithm

 24

3.5. Parallel Range Query Algorithm

After those conflict-free update vectors are computed for each client commands,

we need to update the virtual world by range search, which is the most

time-consuming problem overall. From history, we see that the range search problem

has been extensively studied for more than twenty years. Many spatial partitioning

methods are proposed to accelerate the neighbor search, such as the quad/oct-tree,

range tree, R*-tree…, etc. Most of them are based on pointer to build up the structure

of the tree. However this can hardly be done on current GPU due to the limited

instruction set and fixed memory model. In [18], Paul uses well-separated pair

decomposition to make parallel all-nearest-neighbors search optimal. Since it requires

recursion during tree construction and pair computation, it is not feasible on current

GPU even the CUDA is used. As a result, we derive our parallel range query

algorithm which can be efficiently executed on massively parallel processors with

respect to CUDA constraints.

We first assume the visibility range is fixed among all players to simplify the

problem, although the limitation can be relaxed by appending a parallel filtering

function in the end of the query. Once the range is fixed, we can disperse players into

a 2D or 3D grid according to their position in Cartesian space. Grid can be seen as a

list of indexed buckets, which is defined as square/cube with edge length equal to the

fixed visibility range. This is just the well-known quad/oct-tree data structure.

However, since pointer can hardly be implemented and the number of the players in

each bucket varies, we cannot store the grid directly on GPU. For example, a

straightforward approach is to define the maximum number of players per bucket and

reserve all space for every bucket in the grid. Nevertheless, this is a waste in memory,

and if the grid size grows larger, GPU will definitely run out of memory in the end

 25

because the GPU memory is relatively small to current CPU1. To save the memory

from wasting while preserving the efficiency of range query on GPU, we re-designed

the data representation and search algorithm, which will be explained as follows.

We still rely on the bucket concept in quad/oct-tree to assort all the players. But

this time, we store all players’ reference in a continuous array sorted by their bucket

indices. This can be efficiently done on GPU by parallel load balanced radix sort.

Following that representation, we need to perform range query for neighbors of each

player whose state is modified by the game logic. Inspired by discrete method [19] by

Takahiro, we defined bucket as square/cube with edge length equal to the visibility

range, and for each update vector, we only need to enumerate all players in adjacent

buckets as in Fig 3-9. So finally, we have the affected bucket list composed by pairs in

the form of {update vector index, bucket index}.

Fig 3-9 Multiple update ranges in a grid

1 In our settings with latest NVIDIA 8800GTX, we only have 768MB GPU memory.

 26

As we stored all players’ reference in a continuous way, there are no direct

indices can be used to find out who are the players in the specific bucket. Here we

employed the parallel binary search to identify the range of specific bucket, that is, we

perform binary search for multiple target keys in the same time. Also, to reduce the

number of search times, we extract distinct bucket indices from the affected bucket

list by the similar way in resolving update conflicts. The algorithms are illustrated as

Fig 3-10, Fig 3-11, and Fig 3-12.

Once we have all needed bucket ranges, we can enumerate all state updates for

all adjacent buckets in parallel. Note that before the enumeration, we have to count

the number of possible state updates to make sure all updates write to correct memory

location in a continuous way. Details about the algorithm can be found in Fig 3-13 to

Fig 3-16.

Algorithm ParallelRangeQuery_WriteAffectedBuckets (plist, np, ulist, nu, blist) ;
Input: ulist (an array of update vectors of size nu).
Output: blist (an array of bucket update vector of size nu).
begin
 declare shared update_vector shm[] ;
 declare integer bs := 256 ;
 declare integer gs := ceil(nu/bs) ;
 for bid:=0 to gs-1 do in parallel
 for tid:=0 to bs-1 do in parallel
 declare integer global_tid := bid*bs + tid ;
 if global_tid < nu then
 declare update_vector upd := ulist[global_tid] ;
 declare float2 pos := plist[upd.playerID].position ;
 declare int bucket_idx := POSITION_TO_BUCKET_IDX(pos) ;
 declare integer base := global_tid*9;
 declare bucket_update_vector bupd;
 bupd.updateID := global_tid;
 bupd.bucketID := bucket_idx;
 blist[base+0] := bupd;

 27

 bupd.bucketID := bucket_idx-1;
 blist[base+1] := bupd;
 bupd.bucketID := bucket_idx+1;
 blist[base+2] := bupd;
 bupd.bucketID := bucket_idx-ROW_SIZE;
 blist[base+3] := bupd;
 bupd.bucketID := bucket_idx-ROW_SIZE-1;
 blist[base+4] := bupd;
 bupd.bucketID := bucket_idx-ROW_SIZE+1;
 blist[base+5] := bupd;
 bupd.bucketID := bucket_idx+ROW_SIZE;
 blist[base+6] := bupd;
 bupd.bucketID := bucket_idx+ROW_SIZE-1;
 blist[base+7] := bupd;
 bupd.bucketID := bucket_idx+ROW_SIZE+1;
 blist[base+8] := bupd;
end

Fig 3-10 Write affected bucket indices for the parallel range query algorithm

Algorithm ParallelRangeQuery_MarkSeperation (ulist, nu, seplist) ;
Input: ulist (an array of update vectors of size nu).
Output: seplist (an array of indices of size nu).
begin
 declare shared update_vector shm[] ;
 declare integer bs := 256 ;
 declare integer gs := ceil(nu/bs) ;

 for bid:=0 to gs-1 do in parallel
 for tid:=0 to bs-1 do in parallel
 declare integer global_tid := bid*bs + tid ;
 if global_tid < nr then
 shm[tid] := ulist[tid] ;
 declare update_vector tl, tr ;
 synchronize_threads() ;

 if global_tid < nu then

 28

 tl := shm[tid] ;
 synchronize_threads() ;

 if global_tid < nu && (tid != bs-1 or bid != gs -1) then
 if tid = block_size-1 then
 tr := ulist[global_tid+1] ;
 else
 tr := shm[tid+1] ;

 declare integer mark := 0 ;
 if tl.playerID = tr.playerID && tl.chunkID = tr.chunkID then
 mark := 1 ;
 synchronize_threads() ;

 if global_tid < nu then
 seplist[global_tid] := mark ;
end

Fig 3-11 Mark separation for the parallel range query algorithm

Algorithm ParallelRangeQuery_StoreSeperation (seplist, silist, ns, dblist) ;
Input: seplist (an array of size ns containing either 0 or 1 for the mark of
 seperation), silist (an array of indices as memory location references of size ns).
Output: dblist (an array of indices of size nu to store the distinct indices).
begin
 declare integer bs := 256 ;
 declare integer gs := ceil(nu/bs) ;

 for bid:=0 to gs-1 do in parallel
 for tid:=0 to bs-1 do in parallel
 declare integer global_tid := bid*bs + tid ;
 declare integer mark := 0 ;
 declare integer reference_address := 0 ;
 if global_tid < ns then
 mark := seplist[global_tid] ;
 synchronize_threads() ;

 29

 if global_tid < ns && mark > 0 then
 reference_address := silist[global_tid] ;
 synchronize_threads() ;

 if global_tid < ns && mark > 0 then
 mergelist[reference_address] := global_tid ;
end

Fig 3-12 Store separation indices for the parallel range query algorithm

Algorithm ParallelRangeQuery_BinarySearch (plist_sort, np, dblist, nb, dbilist) ;
Input: plist_sort (a sorted array of player bucket vector of size np), dblist (an array
 of distinct bucket indices of size nb).
Output: dbrlist (an array of bucket ranges of size nb to store the start/end indices of
 a specific bucket).
begin
 declare integer bs := 256 ;
 declare integer gs := ceil(nu/bs) ;

 for bid:=0 to gs-1 do in parallel
 for tid:=0 to bs-1 do in parallel
 declare integer global_tid := bid*bs + tid ;
 if global_tid < nb then
 declare player_bucket pl ;
 declare player_bucket pr ;
 declare bucket_range range ;
 declare integer bucket_idx := dblist[global_tid] ;
 declare integer rl := np / 2 - 1 ;
 declare integer rr := np / 2 - 1 ;
 declare integer level := np / 2 ;
 declare integer found := 0 ;
 do
 level := level / 2 ;
 pl := plist_sort[rl] ;
 if rl = rr then pr := pl ;
 else pr := plist_sort[rr] ;

 30

 if pl = bucket_idx or pr = bucket_idx then found := 1 ;

 if pl.bucket <= bucket_idx then rl := rl + level ;
 else rl := rl - level ;

 if pr.bucket <= bucket_idx then
 if found = 0 then rr := rr + level ;
 else rr := rr - level ;
 else
 if found = 0 then rr := rr - level ;
 else rr := rr + level ;
 while level > 0

 if pl != bucket_idx then rl := rl + 1 ;
 if pr != bucket_idx then rr := rr - 1 ;

 range.left := rl ;
 range.right := rr ;
 dbrlist[global_tid] := range ;
end

Fig 3-13 The two-way binary search in the parallel range query algorithm

Algorithm ParallelRangeQuery_CountUpdates (
 blist, nb, ulist, nu, silist, nsi, dbrlist, ndbr, nclist) ;
Input: blist (a array of bucket update vector of size nb), ulist (an array of update
 vectors of size nu), silist (an array of indices for distinct bucket reference of
 size nsi), dbrlist (an array of bucket ranges of size ndbr).
Output: nclist (an array of size nb to number of update pairs of the bucket update
 vector).
begin
 declare integer bs := 256 ;
 declare integer gs := ceil(nu/bs) ;

 for bid:=0 to gs-1 do in parallel
 for tid:=0 to bs-1 do in parallel
 declare integer global_tid := bid*bs + tid ;
 if global_tid < nb then
 declare bucket_update_vector bupd := blist[global_tid] ;

 31

 declare update_vector upd := ulist[bupd.updateID] ;
 declare integer si_idx := silist[bupd.bucketID] ;
 declare bucket_range range := dbrlist[si_idx] ;
 nclist[global_tid] := range.right - range.left ;
end

Fig 3-14 Count the number of updates for the parallel range query algorithm

Algorithm ParallelRangeQuery_EnumUpdates (list, nb, ulist, nu, silist, nsi,
 dbrlist, ndbr, nclist_scan, nncs, plist, plist_sort, np, nlist, max_nn) ;
Input: blist (a array of bucket update vector of size nb), ulist (an array of update
 vectors of size nu), silist (an array of indices for distinct bucket reference of
 size nsi), dbrlist (an array of bucket ranges of size ndbr), nclist_scan (an array
 of scanned indices of uclist of size nncs), plist (an array of player bucket
 vector of size np), plist_sort (a sorted array of player bucket vector of size
 np).
Output: nlist (an array of state update vector of maximum size max_nn).
begin
 declare integer bs := 256 ;
 declare integer gs := ceil(nu/bs) ;

 for bid:=0 to gs-1 do in parallel
 for tid:=0 to bs-1 do in parallel
 declare integer global_tid := bid*bs + tid ;
 if global_tid < nb then
 declare bucket_update_vector bupd := blist[global_tid] ;
 declare update_vector upd := ulist[bupd.updateID] ;
 declare integer si_idx := silist[bupd.bucketID] ;
 declare bucket_range range := dbrlist[si_idx] ;
 declare integer base := nclist_scan[global_tid] ;
 declare state_update supd ;
 supd.updateInfo := upd ;
 for i:=range.left to range.right do
 supd.playerID := plist[plist_sort[i]] ;
 if base+i < max_nn then
 nnlist[base + i] := supd ;
end

Fig 3-15 Enumerate the updates for the parallel range query algorithm

 32

Algorithm ParallelRangeQuery (plist, np, ulist, nu, nlist, max_nn) ;
Input: plist (an array of player state vectors of size np), rlist (an array of request
 vectors of size nr).
Output: nlist (an array of notification vectors of maximum size max_nn).
begin
 declare global integer plist_sorted[np] ;
 declare global bucket_update_vector blist [nu*9] ;
 declare global bucket_update_vector blist_sorted[nu*9] ;
 declare global integer seplist[nu*9] ;
 declare global integer silist[nu*9] ;

 ParallelLoadBalancedRadixSort(plist, np, plist_sorted) ;
 ParallelRangeQuery_WriteAffectedBuckets(plist, np, ulist, nu, blist) ;
 ParallelLoadBalancedRadixSort(blist, nu*9, blist_sorted) ;
 ParallelRangeQuery_MarkSeperation(blist_sorted, nu*9, seplist) ;
 ParallelPrefixScan(seplist, nu*9, silist) ;

 declare global integer nb := silist[nu*9-1] ;
 declare global integer dblist[nb] ;
 declare global bucket_range dbrlist[nb] ;
 ParallelRangeQuery_StoreSeperation(seplist, silist, nu*9, dblist) ;
 ParallelRangeQuery_BinarySearch(plist_sorted, np, dblist, nb, dbrlist) ;

 declare global integer nclist[nu*9] ;
 declare global integer nclist_scan[nu*9] ;
 ParallelRangeQuery_CountUpdates(blist_sort, nu*9, ulist, nu, silist,nu*9,
 dbrlist, nb, nclist) ;
 ParallelPrefixScan(nclist, nu*9, nclist_scan) ;
 ParallelRangeQuery_EnumUpdates(blist_sort, nu*9, ulist, nu, silist, nu*9,
 dbrlist, nb, plist_sorted, np, uclist_scan, nu*9, plist, plist_sort, np, nlist,
 max_nn) ;
end

Fig 3-16 The parallel range query algorithm

 33

Chapter 4

Experimental Results and Analysis

4.1. Experimental Setup

We try to evaluate the performance of our GPU MMOG algorithm and compare

it with naïve CPU approach to client command processing and updating under a

simulated virtual world. Several scenarios with different map size and different AOI

(Area-Of-Interest) are simulated on both CPU and GPU. To demonstrate the

performance boost and the capability of our GPU algorithms, for each scenario, we

vary the number of clients from 512 to 524288 (approx. 0.5M). Suppose each client

sends one command to server every one second. Without loss of generality, we

assume the inter-arrival time of client commands is uniform. Therefore, for a time

span of one second, we expect to receive client commands as many as number of

clients.

For each experiment, we evaluate the time for either CPU or GPU to process all

client commands that will be arrived within one second to see if it is capable of

handling given number of clients. Each setting is ran and analyzed for 100 times for

average time to process all client commands and standard deviation of it. Apparently,

if the average time to process all client commands is greater than one second, we can

say that the setting will leads to server crash, since the server will have infinite

number of client commands waiting to process in the end.

 34

4.1.1. Hardware Configuration

To support CUDA computing, we have the following hardware configuration:

CPU Intel Core 2 Duo E6300 (1.83GHz, dual-core)

Motherboard ASUS Striker Extreme, NVIDIA 680SLi Chipset

RAM Transcand 2G DDR-800

GPU NVIDIA 8800GTX 768MB (MSI OEM)

HDD WD 320G w/ 8MB buffer

Table 4-1 Hardware Configuration

Since we want to compare the performance of CPU versus GPU, we list the

specification of the GPU in detail as follows:

Code Name GeForce 8800 GTX (G80)

Number of SIMD Processor 16

Number of Registers 8192 (per SIMD processor)

Constant Cache 8KB (per SIMD processor)

Texture Cache 8KB (per SIMD processor)

Processor Clock Frequency Shader: 1.35 GHz, Core: 575MHz

Memory Clock Frequency 900 MHz

Shared Memory Size 16KB (per SIMD processor)

Device Memory Size 768MB GDDR3

Table 4-2 NVIDIA 8800GTX Hardware Specification

 35

4.1.2. Software Configuration

OS Windows XP w/Service Pack 2 (32bit version)

GPU Driver Version 97.73

CUDA Version 0.81

Visual C++ Runtime MS VC8 CRT ver. 8.0.50727.762

Table 4-3 Software Configuration

For the moment of this writing, CUDA is just released in public only for 3

months. There are still lots of bugs in the toolkit and the runtime library. For example,

as you will see later, the data transfer between host memory (i.e. CPU memory) and

the device memory (i.e. GPU memory) is somewhat slow due to the buggy runtime

library. Also, even if the algorithm is carefully coded with regard to CUDA

architecture, several compiler bugs lead to poor performance for the sake of

non-coalesced memory access. Fortunately, those bugs are promised to be fixed in the

next release of CUDA.

For client command processing simulation on CPU, we make use of STL to

implement grid-based world container. Each bucket in the grid is a list of variable

length to store client objects. We choose to create a single thread to perform the entire

simulation but multiple threads because we want to make it simple without

inter-thread communication overhead.

 36

4.2. Evaluation and Analysis

4.2.1. Comparison of CPU and GPU

We choose four different scenarios to find out the differences between CPU and

GPU in terms of performances. The selected scenarios are listed in Table 4-4.

Map Size 2500x2500 5000x5000

AOI 10x10 20x20 10x10 20x20

Client Count 512 ~ 524288

Table 4-4 Tested Scenarios

All scenarios are evaluated and the result is summarized as Table 4-5 and Table

4-6. The performance boost of GPU over GPU is calculated and depicted in Table 4-7

and Fig 4-3. The reason that some test case is marked as invalid in the table is that

there are too many updates generated so that GPU cannot handle it due to limited

memory resources.

From Fig 4-3, we can see the performance improvement by a factor of 5.6 when

the number of client is 16384 in a virtual world of size 5000x5000, AOI=20x20. This

result is not as good as what we expect to see, however, as GPU comes with 128

ALUs in total, and the GPU memory bandwidth is 30 times faster than CPU.

From our measure, when the number of clients is smaller than 4096, the CPU

gives better performance than GPU because the GPU is designed for large number of

data set, so it is not fully utilized. However, when the number of client is bigger than

131072 in the 2500x2500 map, CPU again outperforms GPU again. We observe that

the reason that GPU fails to give unparallel performance is the limited bandwidth

between CPU and GPU inherited from the buggy CUDA runtime.

 37

Average Execution Time
 MAP=2500x2500, AOI=10x10 MAP=2500x2500, AOI=20x20

CPU GPU CPU GPU

512 2.303 9.299 5.425 9.348

1024 4.624 10.529 10.869 10.602

2048 9.259 12.255 21.804 12.828

4096 18.711 14.296 43.871 16.082

8192 37.954 19.628 89.346 26.174

16384 77.139 34.020 184.965 59.245

32768 160.524 78.416 393.089 180.017

65536 346.258 226.567 872.226 655.178

131072 787.703 769.591 2020.357 2593.582

262144 1917.623 2903.820 5015.093 10695.969

524288 4982.445 11562.311 INVALID INVALID

Table 4-5 Average Execution Time for map size 2500x2500

Fig 4-1 Average Execution Time for map size 2500x2500

 38

Average Execution Time
 MAP=5000x5000, AOI=10x10 MAP=5000x5000, AOI=20x20

CPU GPU CPU GPU

512 2.551 9.271 5.872 9.299
1024 5.094 10.450 11.717 10.503
2048 10.177 12.429 23.392 12.335
4096 20.408 14.028 47.006 14.405
8192 40.924 17.781 94.659 19.602
16384 82.299 26.537 190.806 33.853
32768 166.343 48.732 388.601 78.061
65536 339.565 112.016 804.078 226.177
131072 706.888 307.877 1707.657 766.990
262144 1520.068 963.912 3780.537 2897.588
524288 3421.073 3374.011 8741.187 11540.627

Table 4-6 Average Execution Time for map size 5000x5000

Fig 4-2 Average Execution Time for map size 5000x5000

 39

Performance Improvement Ratio

 2500x2500
AOI=10x10

2500x2500
AOI=20x20

5000x5000
AOI=10x10

5000x5000
AOI=20x20

512 0.248 0.580 0.275 0.632

1024 0.439 1.025 0.487 1.116

2048 0.756 1.700 0.819 1.896

4096 1.309 2.728 1.455 3.263

8192 1.934 3.414 2.302 4.829

16384 2.267 3.122 3.101 5.636

32768 2.047 2.184 3.413 4.978

65536 1.528 1.331 3.031 3.555

131072 1.024 0.779 2.296 2.226

262144 0.660 0.469 1.577 1.305

524288 0.431 INVALID 1.014 0.757

Table 4-7 Performance Improvement Ratio of GPU over CPU

Fig 4-3 Performance Improvement Ratio of GPU over CPU

 40

4.2.2. Detail Performance of GPU

Recall that our GPU algorithm performs the server execution in four steps:

1. Upload data to GPU: CPU collect client commands and compile them into an

array of data and upload to GPU via PCI-Express bus.

2. Generate/sort client bucket: before processing client commands, client bucket

indices are generated and all client objects are sorted into bucket indices. This is

used to perform parallel range queries.

3. Process client commands and enumerate updates: count and store the game logics,

and generate a list of conflict-free update vectors. Based on sorted client object list,

we perform parallel range queries and write the affected neighbor list, and finally

update the virtual world.

4. Download the update vectors back to CPU: download all update vectors and

affected neighbor list from GPU to CPU.

Among the four steps, the last step is actually extremely time-consuming due to a

well-known CUDA bug, that is, memory transfer from GPU to CPU is somewhat

slow (roughly about only 1/10 bandwidth only). Also, from our experiences with

CUDA and the observed performance of our algorithms, the well-written CUDA

program can outperform those poorly-written ones by a factor of 100. For example,

our load-balanced parallel radix sort is poorly implemented, resulting in a very slow

sorting performance.

Table 4-8 summarizes the time spent at each step of our GPU algorithm for the

2500x2500, AOI=10x10 scenario. Obviously, the time to download update vectors

from GPU back to CPU takes more than 95% of the entire execution in the extreme

case. While the CPU and GPU are interconnected via the PCI-Express x16 bus, which

theoretically delivers more than 4GB/s bandwidth to main memory, the result is not

 41

reasonable and generally regarded as a CUDA bug in current release. Since there is no

asynchronous read-back in the current CUDA release, we cannot resolve the issue

currently.

Detailed Execution Time of GPU Algorithm

 Upload Bucket Sorting Logic Processing Download
512 0.025 5.198 3.991 0.085

1024 0.033 5.291 5.028 0.177

2048 0.046 5.480 6.341 0.388

4096 0.070 5.933 7.193 1.099

8192 0.128 6.885 9.228 3.388

16384 0.235 8.770 12.801 12.215

32768 0.387 12.845 20.762 44.422

65536 0.688 21.738 37.891 166.249

131072 1.323 39.133 76.725 652.409

262144 2.556 72.936 168.346 2659.982

524288 5.053 137.026 413.857 11006.376

Table 4-8 Detailed Execution Time of GPU Algorithm at Each Step

4.2.3. Comparison of CPU and GPU with Computation Only

Since the data read-back performance is pretty crappy, in this section, we try to

consider the GPU computational performance only. We subtract the entire execution

time by the time to upload client commands data and the time to download update

vectors. Only the bucket sorting and command logic processing are considered to

compare the computational power of GPU versus CPU.

 42

Average Execution Time (GPU w/ Computation Only)
 MAP=2500x2500, AOI=10x10 MAP=2500x2500, AOI=20x20

CPU GPU CPU GPU

512 2.303 9.189 5.425 9.209

1024 4.624 10.319 10.869 10.296

2048 9.259 11.821 21.804 11.980

4096 18.711 13.126 43.871 13.271

8192 37.954 16.112 89.346 16.100

16384 77.139 21.570 184.965 22.135

32768 160.524 33.607 393.089 34.549

65536 346.258 59.629 872.226 62.369

131072 787.703 115.858 2020.357 127.571

262144 1917.623 241.282 5015.093 326.096

524288 4982.445 550.882 INVALID INVALID

Table 4-9 Average Time for map size 2500x2500 (GPU w/ Computation Only)

Fig 4-4 Average Execution Time for map size 2500x2500 (GPU w/ Computation Only)

 43

Average Execution Time (GPU w/ Computation Only)
 MAP=5000x5000, AOI=10x10 MAP=5000x5000, AOI=20x20

CPU GPU CPU GPU

512 2.551 9.167 5.872 9.191

1024 5.094 10.285 11.717 9.191

2048 10.177 12.120 23.392 11.889

4096 20.408 13.310 47.006 13.234

8192 40.924 16.051 94.659 16.006

16384 82.299 21.584 190.806 21.628

32768 166.343 33.409 388.601 33.684

65536 339.565 58.235 804.078 59.650

131072 706.888 110.369 1707.657 114.769

262144 1520.068 223.584 3780.537 241.614

524288 3421.073 475.944 8741.187 550.768

Table 4-10 Average Time for map size 5000x5000 (GPU w/ Computation Only)

Fig 4-5 Average Execution Time for map size 5000x5000 (GPU w/ Computation Only)

 44

Performance Improvement Ratio (GPU w/ Computation Only)

 2500x2500
AOI=10x10

2500x2500
AOI=20x20

5000x5000
AOI=10x10

5000x5000
AOI=20x20

512 0.577 1.357 0.278 0.639

1024 0.920 2.173 0.495 1.275

2048 1.460 3.369 0.840 1.968

4096 2.601 5.966 1.533 3.552

8192 4.113 9.692 2.550 5.914

16384 6.026 13.881 3.813 8.822

32768 7.731 18.103 4.979 11.537

65536 9.138 21.088 5.831 13.480

131072 10.267 22.041 6.405 14.879

262144 11.391 19.079 6.799 15.647

524288 12.039 INVALID 7.188 15.871

Table 4-11 Performance Improvement Ratio of GPU over CPU (GPU w/ Computation Only)

Fig 4-6 Performance Improvement Ratio of GPU over CPU (GPU w/ Computation Only)

 45

4.2.4. Comparison of Different AOIs

Based on different design methodology in the virtual world representation, we

observe some differences between the grid-based approach and the GPU-based

approach. For grid-based approach, we simply make a large array with each element

as a variable-length linked-list. Client objects are stored in the list and are searched in

a sequential way for each update. For GPU-based approach, recall that we don’t have

a grid on GPU memory, but instead, we sort the client objects according to their

bucket indices and then perform N-way binary search to find affected neighbors.

Apparently, the performance of grid-based approach is dominated by the average

number of clients in the area of interest and the size of area of interest. The larger the

size of AOI is, the more cells in the grid needed to be traversed are. However, the

change of AOI does not change the behavior of GPU-based approach, and we will

have same performance if the average number of clients in AOI remains the same.

From Fig, CPU performance loss are observed when the configuration changes from

2500x2500 with AOI=10x10 to 5000x5000 with AOI=20x20, while the GPU

performances in the two configuration are almost identical.

 46

Average Execution Time (GPU w/ Computation Only)
 MAP=2500x2500, AOI=10x10 MAP=5000x5000, AOI=20x20

CPU GPU CPU GPU

512 2.303 9.189 5.872 9.191

1024 4.624 10.319 11.717 9.191

2048 9.259 11.821 23.392 11.889

4096 18.711 13.126 47.006 13.234

8192 37.954 16.112 94.659 16.006

16384 77.139 21.570 190.806 21.628

32768 160.524 33.607 388.601 33.684

65536 346.258 59.629 804.078 59.650

131072 787.703 115.858 1707.657 114.769

262144 1917.623 241.282 3780.537 241.614

524288 4982.445 550.882 8741.187 550.768

Table 4-12 Compare Different AOI with Same Client Density in the Virtual World

 47

Chapter 5

Conclusions and Future Works

5.1. Conclusions

Practical and scalable middleware is the key to the successful and painless

development of MMOGs to shorten the time to market while reducing the cost. In this

paper, we survey the background of existing MMOG platforms and observe that the

core problem toward scalability of current MMOG platform architectures is the

sequential logic processing model based on CPU. From the observation, we proposed

GPU-based algorithms to do logic processing, to merge update conflicts, and to

perform range query in parallel. The experimental result shows that the GPU is

capable of handling 0.5M clients concurrently with reasonable response time. Despite

of aggressive amount of update message generated which needs to send back to client

with some super-scalable I/O architecture, the GPU outperforms the CPU when

number of clients grows more than 4K. And the performance boost of our approach is

more than 100 times in certain scenarios.

With the rapid growth in GPU computation power, exploit the computation

power of GPU in MMOG server platform is promising. This research reveals a new

direction toward research concerning to optimize MMOG server performance or to

simulate large number of avatars in a distributed virtual environment (DVE). As the

algorithm is completely parallel, the performance growth is linearly proportional to

the number of SIMD processor in GPU.

 48

5.2. Future Works

Although we derive parallel algorithms for MMOG server computing based on

GPU architecture, which give a practical solution to resolve the scalability issue with

respect to client command processing, there are still problems needed to be

considered, as follows:

(1) Ease of GPU Logic Development

So far we have hard-coded the move logic and attach logic in the GPU kernel.

However, game logic should be customizable with ease. Although the programming

task with CUDA has prevented us from GPU assembly code, the programming

paradigm difference between sequential and parallel is still cumbersome. To ease the

development of game logic, probably we can define a scripting language (or use some

existing scripting language), and make transformation between the scripts and the

GPU code.

(2) GPU Memory Management

Memory management is crucial to server-side application. If we want to apply

GPU to server-side computing, we must ensure the memory management is stable

enough. However, current CUDA runtime is quite raw; if error happened in memory

allocation/de-allocation, the GPU will just simply halt and never return. Therefore,

based on current CUDA runtime, we must do memory management by ourselves to

ensure the memory allocation always succeeds.

 49

(3) Scalable I/O Architecture to 0.5M Clients

Since the GPU can handle up to 0.5M clients, the I/O architecture must be

scalable to such degree. As we off-load the command processing to GPU, CPU

becomes a mediator between the network and the GPU. This could be possible if we

have some better hardware and a fine-tuned Linux-based operating system.

(4) Dynamic Load Balancing among GPUs

In a very large scale system, we may have multiple GPUs on a single server and

lots of gateways interconnected with each other. Work load in different GPU should

be dynamically adjusted to avoid flash-crowded effect. Also, the latency can be

reduced by dynamic load balancing among GPUs.

 50

Bibliography

[1] Tsun-Yu Hsiao, Design and Implementation of a Massive Multiplayer Online

Games Middleware, Phd Dissertation, 2006.

[2] EVE Online. http://www.eve-online.com/

[3] Kenneth Moreland, Edward Angel, The FFT on a GPU, Proceedings of the

ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, July

26-27, 2003, San Diego, California.

[4] D Manocha, General-Purpose Computations Using Graphics Processors, IEEE

Computer 2005.

[5] Naga K. Govindaraju , Stephane Redon , Ming C. Lin , Dinesh Manocha,

CULLIDE: interactive collision detection between complex models in large

environments using graphics hardware, Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, July 26-27,

2003, San Diego, California.

[6] Naga K. Govindaraju , Brandon Lloyd , Wei Wang , Ming Lin , Dinesh

Manocha, Fast computation of database operations using graphics processors,

Proceedings of the 2004 ACM SIGMOD international conference on

Management of data, June 13-18, 2004, Paris, France.

[7] David Luebke, Mark Harris, Jens Krüger, Tim Purcell, Naga Govindaraju, Ian

Buck, Cliff Woolley, Aaron Lefohn, GPGPU: general purpose computation on

 51

graphics hardware, Proceedings of the conference on SIGGRAPH 2004 course

notes, p.33-es, August 08-12, 2004, Los Angeles, CA.

[9] General-Purpose Computation Using Graphics Hardware Forum

http://www.gpgpu.org/

[10] OpenGL Shading Language Specification, Version 1.20

http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.20.8.pdf

[11] NVIDIA CUDA Programming Guide, Version 0.8.2

http://developer.download.nvidia.com/compute/cuda/0_81/NVIDIA_CUDA_Pr

ogramming_Guide_0.8.2.pdf

[12] ATI Close-To-Metal (CTM) Guide

http://ati.de/companyinfo/researcher/documents/ATI_CTM_Guide.pdf

[13] Spread Concepts LLC, The Spread Toolkit, http://www.spread.org/

[14] Douglas C. Schmidt’s, The ADAPTIVE Communication Environment (ACEtm)

http://www.cs.wustl.edu/~schmidt/ACE.html

[15] Chen-en Lu. Design Issues of a Flexible, Scalable, and Easy-to-use MMOG

Middleware. Master Thesis. 2004.

[16] Andrew Sohn, Yuetsu Kodama, Load balanced parallel radix sort, Proceedings

of the 12th international conference on Supercomputing, p.305-312, July 1998,

Melbourne, Australia.

[17] Guy E. Blelloch, Prefix Sums and Their Applications, Carnegie Mellon

University Technical Report, CMU-CS-90-190, 1990.

 52

[18] Paul B. Callahan , S. Rao Kosaraju, A decomposition of multidimensional

point sets with applications to k-nearest-neighbors and n-body potential fields,

Journal of the ACM (JACM), v.42 n.1, p.67-90, Jan. 1995.

[19] 原田隆宏，田中正幸，越塚誠一，河口洋一郎，グラフィックスハードウ

ェアを用いた個別要素法の高速化，日本計算工学会論文集，(2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

