X NP= <
E}ﬂé’&k[%, T

. s 0“"—.&5‘"‘
Ny 4 .ggs::ﬁ‘,T;g

hEs R T R

s S e E

1

E

FEeRE 2> EENE2L G
An Integrated Approach to

Network Security Management Library

oy 2 iRR Student : Tzong-Yiing Tsai
pEERR R Advisor : Shyan-Ming Yuan

Computer and Information Science

July 2007

Hsinchu, Taiwan, Republic of China

L PR S

FlE Al oA A = =

RO 2 AR

A B HIE e Dt

B E(- - Sk
BRIl S IR ER RN B AR REERYEL) i
=GR R A E RSO (NSML) « BIAE © 1T A e
P AR (RS 2 ALY I e R s
BEYE » R ORI - el s -

An Integrated Approach to Network Security Management

Student: Tzong-Yiing Tsai Advisor: Dr. Shyan-Ming Yuan
Department of Computer Science

National Chiao Tung University

Abstract

Nowadays, Internet is so popular not only to individuals but also to enterprises.
For enterprises, the management.and-securitysissues are very important. IDC estimates
worldwide security software/services will grow 20% a year (to 43 billion US dollars
in 2008). There are new security problems-discovered every day. Meanwhile, hacker

grows as the defender grows. Therefore;thessecurity-solutions will. never be perfect.

In this paper, we focus on-bandwidth control,application-firewall, and real-time
traffic analysis to build a network ‘security ‘management library, NSML, which can
acts as a stand alone library to saving the time to develop network security software
through its API, and provides architecture to manage and protect the networks in an
enterprise. NSML saves the time to develop a network security software and also
reduces its complexity. By using our architecture, critical resources in enterprise

network are protected and their quality of service are also guaranteed.

Acknowledgement

FANLR MR TGN A Y gAY AT e AW % T
LA ARG AL HEAIDOLY P e BATHE T { AL ot BEFUR
Pty WA I B K h- AT] AR FAFFA S SRS ARL 5
FhApA o R E R e J R E B LT R A e o TR

E#HTRIIM-FEP EOPER o - A2 o plvh o AR

B P s fFE e 13 s D ¥ AL NN e)

'r‘é;ﬂ*’*' Z*FF“*:?L > cIfd 15 p >4 u\r\»%;\'ﬁqiiff’ﬁ

Table of Contents

ACKNOWIEAGEMENT ... ii
Table OF CONTENTSoviiiiiie e v
I TS o) T 10 USSR vi
LISE OF TADIES ... vii
1 Chapter 1 INtrodUCTION........cccoieiicieece e ns 1
L1 PrEfACE ... 1

1.2 MOtIVAtION ..ol i b B i e 1

1.3 ReSearCh ODJECHIVESc..oiviviiiiiieeeieeveas cennssna e e see e see e sneaseeneeeeeas 2

1.4 Research ContribUtioN oot ieeeresidfinieadis oo im e 3

1.5 Thesis:Organization = um o Fiee e e et B vra s da e s8R e eneeeneeneeaneennens 4

2 Chapter 2 BaCKgrOUNGccoieeiieiie s caiien o aiineessaasnsssassseesseastessasteesseesseessesseesseans 5
2.1 Network Security Management. FEATUIESccciiemeriieninineeieiene 5
2.1.1 Firewall and Application Firewall. i i 5

2.1.2 Bandwidth Control..............coooiiiiiiiit i e 5

2.1.3 Real-time Traffic ANalYSIS........c..oomifinmieiie et cieseee e 6

2.2 Microsoft Network Access Protection, NAP ..., 6

2.3 Microsoft Winsock Service Provider Interface, Winsock SPI...................... 8

2.4 Related WOIKS.......coivieeiiieieiee s 9

3 Chapter 3 System ArChIteCtUIE.cooviiiiiiieee s 10
3.1 NSDLL s 10

3.2 NS SOFIWATE ... 11

3i3 NSLID ot 11

3.4 Shared TaADIES. ..o 12

IS I O] (1 1= /1oL TR RR 12

3.6 NSSEIVEN ..o 12
Chapter 4 Implementation Detailsccoooiieiiiiiniii e 13
4.1 Shared TabIES.......ccoiiiieee e 13

4.1.1 Shared Table for RUIEScooeiiiiicieeee s 13

4.1.2 Shared Table fOr LOGS ...ccvcveieeecieseere e 15

4.1.3 Avoid RaCe CONAItIONc.coveviiciiiieiciseese s 16
42 Rules.....eerveneoot B B o e, 17

4.2.1 LegalConnRule and HlegalConnRule .o i vveve e 17

4.2.2 BIndIGRUIE ... il bt e 18

4.2.3 SIHAIUreRU Bt m B ... L . 18
4.3 Alertlog and TrafficLogccoeeiiieiienataiiniese et 20
4.4 Client-Senver Interaction in Server Modecititb e, 21
4.5 The Performance ISSUe . ..ol i e 22
4.6 Implementation of Callbacks between Different Process Spaces 24
4.7 NSServer and Database SChema ...l i, 25
Chapter 5 Programming Interface and Performance Evaluation................. 30
5.1 NSLib Application Programming INterfacec.ccooevovvivrivninienencneniene 30
5.2 Performance Evaluation ... 34
Conclusion and FULUIe WOTKS..........cccoiiiiiiiiieese e 35
6.1 CONCIUSTION ...ttt 35
6.2 FULUIE WOTKS ... 37

List of figures

FIGUIE 2-1 NAP STALES ..ottt et 7
Figure 2-2 NAP Server and Client ArchiteCturecooeeveneinineicine e 8
Figure 2-3 WINSOCK SPI........coooiiiiiiiee e 9
Figure 3-1 System ArChItECIUIEcviuiiiiiiiiiec e 10

Figure 4-1 The memory arrangement of CLogTable, shaded slot stands for

NON-eMPLY SIOLS ..ot et e B i s 15

Vi

List of figures

Table 4-1 BindiNGRUIEcociiiiiiee e e 26
Table 4-2 LegalConnRule and lllegalConnRule...........cccooiiiiiiiiiiiiiiccne 26
Table 4-3 SIgNAtUrERUIE.cocieieieee e 27
TaDIE 4-4 ALBITLOQ ...ttt 28
Table 4-5 TraffiCLOgccvoeieriieeie s 28
Table 4-6 SOftWareoooo sl Bl et s e i s 29

Table 5-1 Throughputa { ML ..o, 34

vii

Chapter 1 Introduction

1.1. Preface

Nowadays, Internet is so popular. We check our emails online, read news from
the websites, shopping on internet, share files using P2P software, etc. Therefore, for
an Enterprise, it is important to manage the Internet well and make it secure. IDC
estimated worldwide security software/services-will grow 20% a year (to 43 billion
US dollars in 2008). There are new security problems discoevered every day. Hacker

grows as the defender grows. The security solutions will never be perfect.

1.2. Motivation

Network security containS many features such as traffic analysis, bandwidth
control, firewall, reverse firewall, spy wares and Trojans detection, etc. There are so
many software developed on €ach features, such-as Spybot Search & Destroy [1],
Bandwidth Controller [2], yet either they are commercial, or they just solve single
problem. Also, those who want to develop their own network security applications
have to build the applications step by step from the beginning. Almost all the security
software monitor and control the network by means of hacking the operating system’s
network stack in certain level. Some of them are in driver level and some in
application layer. The developer has to hook the network himself to get the
information. We need a comprehensive solution. If there is a library which wrap the
hooking details and provide simple APIs to let developers get the information and

1

control, the time is saved. On the other hand, enterprise needs a good network security
solution to manage the usage of network, protect company critical resource, and
monitor network events. Therefore, we have the idea to build a network security

management library, NSML.

1.3. Research Objectives

There are three objectives in,this| paper: reliability, flexibility, easy-to-use, and

performance.

Reliability

Reliabilityis surely an important issue for NSML. If it does not have high
reliability, once it crashes all the networkapplications will be affected. It is
inadmissible for enterprises to Wait until the system is recovered. For enterprise, time
is money. Moreover, because of:the system hackingyif NSML is not stable enough, it
is likely to crash the system in the warst'situation. So only after the stability is

guaranteed, NSML has its value.

Programmable Policy

NSML should not limit the action taken after we found an intrusion. NAML only

decides whether the connection should be blocked or not according to the rules given

by developers. All other detailed action is left to developers with structured

information about the violation. The developers are able to decide the reactions.

Easy-to-use

It is complex and not intuitive to hook the windows network through Winsock
SPI [3]. The better way is wrap the hooking details and open up a series of simple
APIs to let developers control the network through the APIs. The information we get

using the API should be structureds

Performance

The performance of the client can be measured in two aspects: the network
bandwidth and:CPU usage. Though nowadays’ network capability is strong enough to
handle large amount of traffic; NSMLstill-affects-the -network performance because
we go through each connections and payloads. It takessCPU times to check the
connections and payloads; sa the.system performanee will-be affected, too. Therefore,

we should make the check as simple‘as passible'while preserving the functionality.

1.4. Research Contribution

The contributions of this paper are:
1. We give a network security management library to saving the time and
duplicated jobs to develop network security software. We also introduce a

simple programming interface.

2. We craft a library to control the bandwidth, built up the firewall, and analyze
the traffic in real-time.

3. We build a network security management system based on the client-server
architecture.

4. We test NSML to guarantee the its performances.

1.5. Thesis Organization

In Chapter 2, we discuss the background of some intrusion detection/prevention
frameworks such as‘Network Access Protection [4][5].and the core technology used to
build our library..In Chapter 3,-we-showsthe system architecture of NSML. In Chapter
4, we explain the implementation details for each component, and how they cooperate.
In Chapter 5; we introduce the programming interface of NSML and make
performance evaluations. Finally, .in-Chapter 6;-we give the iconclusion and future

works.

Chapter 2 Background

2.1. Network Security management Features

There are many different features in network security area, such as firewall,
bandwidth control, traffic analysis, spy ware detection/removal, etc. In this paper, we
discuss the former 3 issues. The last one, i.e. , spy ware detection/removal is not taken

into consideration.

2.1.1. Firewall and Application Firewall

A firewall'is a hardware or software designed to permit or deny data transmission
to computers or devices with different trust levels. A simple firewall ‘can only specify
whether a connection from certain:host port to anotheris legal or.not. An application
firewall (software) provides more information than a traditional firewall. It not only
gives a way to monitor the payload in an application'view rather than low level packet
view, but also gives the relations of‘all"incoming or outgoing messages with running

applications. Therefore, NSML will build an application firewall.

2.1.2. Bandwidth Control

Though network cost is much lower than before, still large enterprises can afford
the cost of unlimited network traffic. For smaller companies, maybe a 12M/2M ADSL
is enough. However, due to the asymmetric download/upload bandwidth and the

5

popular P2P file sharing software such as eMule, BitTorrent, etc, the upload
bandwidth often totally used by P2P software, which leads to the intolerably network
speed. Therefore, the bandwidth should be controlled. This work is purposed last year

by CH Chiu [6] in our lab (DCSLab of CIS NCTU).

2.1.3. Real-Time Traffic Analysis

Most virus and Trojans intrude the system through operating system’s open
service. For example, the Blaster worm [7] sends RPC request with buffer overflow
and exploit code .to “TCP port 135 on Microsoft ©perating Systems to open the
backdoor. The message we received-orswe sent may contain malicious data. Hence,
the monitor and-filtering of traffic in real-time/is necessary. There are many different
real-time traffic analysis algorithm published like PAYL [8]. However, because the
analysis is performed in real-time, it-must-lower the networkperformance and take
CPU time. Therefore, ‘it has “always been a tradeoff o guarantee the system

performance or to lower the false positive rate and false negative rate.

2.2. Microsoft Network Access Protection, NAP

Microsoft proposes the Network Access Protection [4][5] to provide an
extendible framework for secure network environment. The framework periodically
performs a series of “Health Check” on clients. Network administrator can define the
policy to decide what client is said to be healthy. Once one of the health checks is not

passed and violates the policy setting, the client is isolated from the network until it

goes through remediation process and then passes all the checks again. The check is
made on client System Health Agents, SHAs, and checked on server side System
Health Validators, SHVs. Both the development of component SHA and SHV is open
to 3" party companies. Therefore the network administrator can install the validators

they need. The following is the state transition between different NAP client states.

Access

Recheck periodically
Netannrk
No Pass
Pass Health State Validation Network Access Limitation

A

\ 4

{ Ongoing Compliance H Automatic Remediation }

Figure 2.2.1 NAP States

Also, NAP defines two components: Quarantine Enforcement Client, QEC and
Quarantine Enforcement Server,QES. Each QES in server side is corresponding to a
QEC in client side. Each pair is defined for different type of network access. For
example, there is a QES for DHCP configuration and a QES for VPN connections.
The states of health gathered from SHA will be collect by QEC and transferred to
QES, and then dispatched to corresponding SHV. The result gathered from SHVs will
be applied to the policy setting to see if a client should be isolated or not. If it should

be, QES will send a signal to the client’s QEC, then the client is isolated. The

following is figures from the NAP Architecture showing the relationship between the

server and client. Currently, NAP supports DHCP, IPSec, and VPN connections.

Remadiation Remediation Folicy Policy
server 1 sarver 2 sarver 1 sarver 2
Tl 0 <3
QP § P
: SHV 1 SHY_ 2 SHY_3
SHA,_1 SHA 2 SHA_3 : L. .’
| Q\.
et SHV API .
SHA API H

Quarantine Server

Quarantine Agent

QEC API

i client i IRAWUS '

A <0
QEC_A y EC_C : 1= aesa | |aese | |aesc Q.

i _

QEC B
) 4 PQ : 1 I --..: MAP sarver
/ v A .
*!I g ¥ .J g
QP P g
MAF server A NAP server B MNAF server C

MNAP client
|

Figure 2.212 NfAE-SeHeFaﬁd-GHent Architecture
- n | | 1 - 1 = : - | | .
s |

L] -.5
NAP is a powerful framework to enhance thernetwork security, but it cannot

work alone, it needs the contributions of different validators.

2.3. Microsoft Winsock Service Provider API, Winsock SPI

The Winsock Service Provider Interface, or Winsock SPI, is a specialized
interface of Winsock used to create providers. Traditional Winsock APIs have
corresponding service provider APIs in SPI. On one hand, the network event/message

will be passed to SPI before they are passed to Winsock Applications. On the other

hand, the event/message sent by the applications will also be passed to SPI before

they are transmitted.

+— . < . . .
Network Winsock SPI > Winsock Application
Figure 2.3 Winsock SPI

That is, we can hook Winsock threugh SPEfunctions. Each Winsock function has
its corresponding hooking function in SPI. For example;.a call to send() will be
redirect to WSPSend() in SPI, developers can perform logics in \WSPSend() to decide
whether or not to. let the send()-call complete, or change its behavior. Because SPI is
built on application’ layer, we can view connections in a high level rather than the
packet level. Therefore, we know the application names, process ID, data buffers, etc,

which common firewalls cannot do.

2.4. Related Works

Sygate [9] (acquisitioned by Symantec) is a complete solution about the network
security issues, including personal firewall, real-time traffic analysis, secure remote
desktop, etc. However, it lacks of bandwidth control and programmable policy. Also,
it is commercial and not extendible. The detailed architecture and mechanism is not

published.

Chapter 3 System Architecture

Central _ _ _
Winsock A Winsock A Winsock A H
Server pp pp pp CI Ient
NSDLL NSDLL NSDLL
Rule Tabl
u'e tables B} W NS Software
Shared Connection Information
Tables Logs _
NSLib
NSServer CoreService NS Software
DB NSLib NSLib

NSML runs in two modes: ‘server.mode and standalone mode. In server mode, new
rules are pushed from server sideto client side and applied.iimmediately. The alert and

traffic of each process will be logged. The log will-be transferred to server side. In this

Figure 3.1 System Architecture

mode, client does not take responsibility for storing the rules. In standalone mode,

however, the rules should be stored and loaded locally.

3.1. NSDLL

A Winsock SPI filter appears as a dynamic linking library (DLL). Once the filter
is installed, NSDLL will be injected to all Winsock applications. Every running

Winsock applications have an instance of NSDLL. NSDLL works as a filter between

10

the Winsock application and the operating system. Every Winsock function calls will
be passed to the corresponding hook function in the DLL. The DLL perform logic to
decide whether to let the calls complete or change its behavior. Also, the DLL collects
the traffic information and produce logs. The logic and logs are stored in shared tables.
In the worst case, once the DLL found a malicious operation, it can close the

dangerous connection immediately to protect the system.

3.2. NS Software

Network Security Software, NS Software, is.applications using NSML to manage
the network, for example, -an-—application firewall with graphical user interface.
Though the firewall logic is done by NSML, yet we' leave the actionttaken after we’ve
got a warning:to the NS software be means of registering callback functions. The
graphical firewall above may decide to-popra-message box to alert the user that there
is a rule violation or so: NS software can read structured.network information from
shared tables. In server mode,-the rules are automatically loaded into shared tables
through CoreService. However, in‘standalone”mode, NS software should take the

responsibility to store the rules locally and load them itself.

3.3. NSLib

NSLib provides the programming interface for NS software developers.
Developers are able to read and manipulate the connections and rules. NSLib is also

responsible for the communication between NS Software and CoreService.

11

3.4. Shared Tables

Shared tables are an essential part of NSML. Different kind of rules, current
running connections, and logs are stored in the tables during runtime. NSDLLs look
up the rules runtime to perform the logic. Therefore, the rules will be applied once
they are added into the tables. Logs are generated by NSDLLs and stored here
temporarily, waiting for CoreService to handle. Of course, NS software is able to read

the logs, too.

3.5. CoreService

CoreServiee Is a'windows service which.acts as a “message router” between the
client/server, service/process. In server mode, when the client boots up and the service
is running, it tries to connect to thesserver-Oncerit'succeeds, .the server will push the
latest rules to CoreService to ddd them to shared table. After the rules are applied,
CoreService periodically queries. the shared tables.for logs and sends the logs to the
server side. Also, the service is responsible for'notify the NS software that registered

callbacks when corresponding rules are violated.

3.6. NSServer

NSServer is responsible for storing rules in Database and pushing rules to the

clients in server mode. A tool is provided to manage the server and the clients.

12

Chapter 4 Implementation Details

In this chapter, we discuss the implementation details of NSML. We choose C++
as our programming language. Firstly, we discuss the design of different types of
shared tables. Then, we introduce 4 kinds of rules: LegalConnRule, IllegalConnRule,
BindingRule, and SignatureRule. Next, we give two kinds of logs: AlertLog and
TrafficLog. Then, we talk over the Client-Server interaction in server mode. Moreover,
we face the performance issue caused by the large.amount of traffic logs, and propose
the solution. Next, we discuss the implementation of callbacks between different

process spaces. Finally, we introduce the server side data base schema.

4.1. Shared:Tables

Because NSML hooks the‘applications in user mode, our system needs a method
to share informatiori between processes. Thus, shared mémory-is used to share rule
and logs between In NSDLLS, NSLib, and CoreService. There are two types of shared
table in our system: common shared table (for rules), and special shared table (for
logs). They are alike in most ways, with slightly different policy for arranging

elements.

4.1.1. Shared Tables for Rules

Due to the large size of rules and logs, we choose “Named File-Mapping Object”
in Windows platform. Each shared table is assigned an unique ID. When a process

13

wants to access a table, it follows the following process to bind shared memory:
1. Try to open the file-mapping object with unique ID. If we succeed, go to step
3.
2. Because the object does not exist, we create a new file-mapping object with
unique ID.
3. Map the object to acquire a memory reference.
Because the tables might be accessed by different processes concurrently, a

unique mutex is opened to avoid the race condition for each shared table.

4. Try to openthe mutex object with unique-D..If we fail, go to step 5.

5. Create the mutex object-with uniquesiD.

Currently, the shared tables are implemented by fixed-length arrays. Each entry
of the array is said to be a “‘slot”. The slotsizetis'changeable for different tables. The
shared memory we,get from the system has logically continuous address. Therefore,
we can treat the tables like a real array and the entry type can be any structure we
defined. Each slot has a flag to speeify whether the slot is used or not. To remove a
rule, we just turn the slot flag off. To add a new rule, we need to find a slot with “off”
flag. In this version, the array size is limited and the system needs to traverse the

entire array to find certain element. The worst case to find certain element is O(n).

To implement a new shared table, just define a new class inherit from
CSharedTable class. The class handles the shared memory and mutex issue for the

derived class.

14

4.1.2. Shared Tables for Logs

In order to reduce the load on the server side and improve the performance on the
client side, we define another class CLogTable with the same shared memory
technology as CSharedTable. The difference between CSharedTable and CLogTable is
that entries in CLogTable must be contiguous while CSharedTable has no such
restriction. The reason is due to the efficiency of reading logs. Logs are not like rules,
they are generated constantly and, should be ordered by time. If we apply the same
policy as CSharedTableson CLogTable, the logs will'be disordered and hard to anaysis.
Therefore, we arrange the slots to form a circular \gueue. In order to operate the

circular queue, two indexes are-used:

BeginIndex: point to the start of cantiguous elements in the table.

EndIndex: ‘point to the next available slotiinthetable.

EndIndex Beginlndex
Beginlndex EndIndex Slot 1 (Slot 2|Slot 3 ... Slot N-1|Slot N

Figure 4.1.2 The memory arrangement of CLogTable,

shaded slot stands for non-empty slots

The element are pushed into the slot pointed by Endindex and popped from

15

the slots BeginIndex.

If EndIndex+1=Beginindex the table is full. Also, because the elements are
always pushed into EndIndex and popped from Beginindex, the worst case to push or

pop a log is O(1).

CLogTable supports two protected funtions:
void *pushLog(): return a pointer to next available slot
void *popLogs(int*size): return-a pointer to;a contiguous block of logs and

its size

To create a:new_log class, define a new class extend CLogTable and pass the
table name, table Size, and entry size to constructor of CLogTable."Also, define the
specific function of pop and.push, which-invoke the original pushLog() and popLogs()
internally and cast the pointer to specific type. Because the logs are stored in a
circular queue and for performance concern, the logs should be returned may be
divided into 2 blocks. 1 block ranges from the Beginlndex to the real end of the table,

and 1 block ranges from the head of the table to EndIndex.

4.1.3. Avoid Race Condition

To avoid race condition of shared tables, we create unique mutex for each table.
We lock the table before reading and writing, and unlock the table after the action is

done. To avoid overhead, locking is not recommended if the rare condition never

16

happens according to the usage.

4.2. Rules

We define 4 kind of rules for different purposes. They are LegalConnRule,
IllegalConnRule, BindingRule, and SignatureRule. Because we perform the rule logic
in application layer, we know the Process ID, Process Name, etc, of the related
Winsock Application. This gives usimare;power. to write more specific rule according
to different applications.” For example, the browser IE .should not connect to a

destination port ratherithan 80. If it does, it might be intruded.

4.2.1. LegalConnRule and IllegalConnRule

LegalConnRule specifies what connectionstare-legal andisafe. It may be a rule
for incoming message or outgoing message. On the other hand, IllegalConnRule
specifies what connections are illegal. It also tells if-the illegal connections should be
blocked or not, and if we would like to get a warning or not. LegalConnRule is a

“white list”, while “IllegalConnRule” is a “black list”.

To enhance the safety, we choose not to run the risk of being intruded. Therefore,

the policy for LegalConnRule and IllegalConnRule is as following:

1. Does the connection appear in the “black list”? If it is, the connection is

blocked or warned according to the rule. Both blocking and warning produce

17

AlertLogs. If it is not, go to step 2.
2. does the connection appear in the “white list”? If it is, it is regard as a safe
connection. If it is not, we still let the connection pass the filter, and an

AlertLog is produced to indicate it.

4.2.2. BindingRule

BindingRule is used to indicate what applications should not listen to certain
ports. For example, thetelnet.exe program should not bind.en any port, if it does, we
know it is infected. This is helpful in some cases, especially for IE. IE supports
Browser Helper-Object to let-3" party developers add’mote functions like toolbar, etc.
However, the user cannot usually tell whether.a helper object is safe"or not. They just
install the modules they interested without knowing if there is a backdoor opened! If

we set up a rulefor IE so that it’cannot bind-on-any-ports, the problem is solved.

4.2.3. SignatureRule

SignatureRule specifies the pattern might be malicious. Usually, it takes much
CPU time and lowers the network performance to perform complex analysis on the
traffic in real-time. Therefore, we perform simple analysis on the traffic to guarantee
the performance. Every SignatureRule defines 2 important parameters: pattern and
maxOffset. Once a connection is established, NSDLL scans the SignatureRule Table
for rules matching the source and destination. If the matching rules are found, two

traffic monitors are added into the incoming monitor list and outgoing monitor list,

18

individually. Then, the connection begins to transfer data. Both the data received and
the data sent will be checked for the pattern. Also, there is a offset counter initialized
to zero and increase during the check. Once the counter exceeds the maxOffset of the

rule, the monitors are removed from the incoming and outgoing monitor lists.

]
"
[
_.'. i
Scan SignatureRules #‘
1

I
E
. 1898
" -The connection is safe

Add monitors to incoming

and outgoing lists.

Initialize counter to

zero

ofrs to connections

Figure 4.2.3.

19

Recv Send

v v

Scan the incoming Scan the outgoing

monitor list monitor list

Pattern Matched?

No The connection is malicious

Increase iCounter

Counter > maxOffset?

No Remové the monitors from lists

Wait for next Send/Recv

Figure 4.2.3.2 Filtertraffic according to the monitors

4.3. AlertLogs and TrafficL.ogs

There are two types of pre-defined logs in NSML.: AlertLogs and TrafficLosg.

Both AlertLogs and TrafficLogs are generated by NSDLL of the Winsock Application.

AlertLogs are generated when there are rules violated. For example, if we have a
BindingRule specifies the browser IEXPLORER.EXE cannot bind on any port. Once
IEXPLORER.EXE really binds on certain port, the AlertLog is produced to record

this abnormal behavior.

20

TrafficLogs are produced when the application invokes one of the following
Winsock function: socket(), closesocket(), accept(), connect(), bind(), send(), recv(),
sendto(), recvfrom(). TrafficLogs record the detailed actions of Winsock applications
in time order. If the system is intrueded, we have clues to analysis the system’s

behavior.

4.4. Client-Server Interaction in Server Mode

) EE—— Add, Update Rules —— — Add/Update

|
|
|
Server P ore » Shared Rule Tables
|
i 1 P Shared Log Tables
l - o
| Service L
Connect, Send Logs S Read
|
Database |
- |
|

Figure 4.4 Client-Server Interaction

In server mode, the server is responsible for pushing and updating rule to
each client. When the client computer boot up and the CoreService is running,
CoreService will try to connect to NSServer. Once it succeeds, NSServer sends
the RULE_ADD message and starts pushing rules to the client. The rules
received by CoreService will be added to shared rule tables and applied by
NSDLLs immediately. After the rules are all sent, NSServer sends a RULE_END
message to tell the client it is over. If a existing rule is modified, NSServer sends

RULE_UPDATE message to client. Then the updated rule is sent. After that, a

21

RULE_END message is sent. The NSServer maintains a list of online computers
with NSML installed. Network administrator can use tool to monitor the network

status of the clients.

4.5. The Performance Issue

As mentioned in Section 3.1, Inject DLL is responsible for producing traffic logs
and alert logs to record the behavior of a Winsock Application. Those logs are
necessary because the logs might be helpful if the system_is intruded. The logs give
the clues to find out'what’s wrong with our system: For AlertLogs, that is fine because
AlertLogs are seldom produced.-Only when'the system finds.a malicious connection
the AlertLogs are produced. For TrafficLogs, However, a problem arises. Due to the
high frequency of networking, NSDLL produces a large amount of TrafficLogs. To

transfer all the logs to server side lowers:the-network-performance significantly.

To solve the performancesissue, we decide to shrink the size of TrafficLogs
before they are really sent to the "server side. As mentioned in Section 3.5,
CoreService periodically queries Shared Log Tables for latest logs and sent them to
the server side. After the TrafficLogs are popped from the TrafficLog table, we shrink

the data size in the following steps:

1. TrafficLogs with types rather than SEND/RECV will not be shrinked.
2. Two TrafficLogs are said to be the same if they are both SEND type or both

RECV type, generated by the same application, and the two logs have the

22

same source-destination pair.

3. for same TrafficLogs, the data transferred will be summed up.

For example, we have the following TrafficLogs:

firefox.exe localhost:4884-203.72.66.5:80

firefox.exe

firefox.exe

telnet.exe

telnet.exe

telnet.exe

firefox.exe

telnet.exe

telnet.exe

firefox.exe

telnet.exe

telnet.exe

firefox.exe

localhost:4884-203.72.66.5:80

localhost:4884-140.113.23.101:80

localhost:1477-140.113:23.101:23

localhost:1477-140.113.23.101:23

localhost:1477-140.113.23.101:23

localhost:4884-203.72.66.5:80

140.113.23.101:23-localhost:1477

localhost:1477-140.413.23.101:23

localhost:4884=208:72:66-5:80

140.113.23.101:23-1ocalhost:1477

localhost:1477-140.113.23.101:23

localhost:4884-140.113.23.101:80

After shrinking:

firefox.exe

firefox.exe

telnet.exe

telnet.exe

telnet.exe

telnet.exe

localhost:4884-203.72.66.5:80

localhost:3321-140.113.23.101:80

localhost:1477-140.113.23.101:23

localhost:1477-140.113.23.101:23

140.113.23.101:23-1ocalhost:1477

localhost:1477-140.113.23.101:23

23

RECV 151

RECV

RECV

CONN

SEND

SEND

RECV

RECV

SEND

RECV

RECV

CLOSE

RECV

RECV

RECV

CONN

SEND

RECV

CLOSE

180

180

1010

1030

100

2010

100

150

510

100

581

280

2140

2520

0]

After shrinking, the size of TrafficLogs significantly reduced and the network

performance is therefore improved.

4.6. Implementation of Callbacks between Different Process

Spaces

It is easy to implement callback functions in single process because all the
functions are in the same logic memory spacer-However, each process owns its own
addressing space, so .it 1S hard to register callback functions between different
processes. To solve this problem, we add 1 more-shared table: SoftwareTable. When
CoreService starts running, it-creates asspecial named,event object. Then it creates a
new thread to.wait the object to be signaled."When a NS Software starts running,
NSLib will automatically add an entryito the SoftwareTable. Also, NSLib will record
the callback functions locally and createranamed-eventobject. The event object name
will be stored in thestable, too. Next, NSLib creates a thread which waits for the event
object to be signaled. Once a rule is violated, NSDLL will singal CoreService event
object to inform CoreService to look up the SoftwareTable to find the corresponding
name of event object to signal. After the thread in NSLib is signaled, the thread

invokes the callbacks and then waits for another signal.

24

) NS Software
Winsock App Winsock App Winsock App [~ ? ¢ ~
- < |> T > < NSLib
NSDLL NSDLL NSDLL

N NS Software

Shared Rule Tables e T ¢ ~

Core Service

Event Obj

Shared Log Tables / NSLib
»

C Software Table ——— Event Obj
J

Add entry to

Look up for event

obj snames SoftwareTable

Signal the correct

event|object

Figure 4.6 Implementation of callbacks between different processes

4.7. NSServer and Database-Schema

In server mode, rule data are stored in a centralized database. In this section, we
propose the database schema used in NSML. Currently, we choose MySQL [10] as
our database. In the future, when the system is deployed to a large network
environment, maybe some more powerful database like MSSQL would be a good
choice. To access MySQL through C++, we also take the advantage of mysql++ [11],

which is a powerful library to manipulate MySQL in C++.

There are 7 tables in the database schema, 4 tables for rules, 2 tables for logs, and

1 more table to record the NS Software information.

25

Calurn Name | Datatype | tor | aare | Flags

rindex o INTEGER v v [UNSIGMED [] ZEROFILL
@ hostip o INTEGER v [w] UNSIGMED [] ZEROFILL
& protocol o SMALLINTIE] v [w] UWSIGMED [] ZEROFILL
@ serverport & SMALLINTIS] v [¥] UMSIGMED [] ZEROFILL
& processname & CHaR(20) v [] BIN&RY [] ASCH] UMNIC
@ zd & INTEGER v [w] UMNSIGMED [] ZEROFILL

Table 4.7.1 BindingRule

rindex: rule index, every rule has a unigque rindex number. Rindex is used when
there is an update about certain rule.

hostip: apply_therule only on certain host? Zero stands for all host.

protocol: what protocol-is-used,-currently TCP.only for BindingRule.
serverport: which port the application should not bind. Zero stands for all ports.
processname: which application should apply this rule. Null string stands for all
applications.

sid: which NS software does this rule belong to.

Colurnt M arie Datatype | ter | s | Flags

rindex & INTEGER W [¥] UNSIGNED [] ZEROFILL
@ hostip o INTEGER v [#] UMSIGMED [] ZEROFILL
% protacol 2, SMALLINT[E) o] UMSIGNED [] ZEROFILL
@ scip o INTEGER v] UNSIGNED [] ZEROFILL
@ srcport o SMALLINTIG] v [¥] UMSIGNED [] ZEROFILL
@ destip - INTEGER v [w] UMSIGMED [] ZEROFILL
@ destport s SMALLINTIG] v [¥] UMSIGNED [] ZEROFILL
& action o SMALLINTIS] v [¥] UMSIGMED [] ZEROFILL
& processname & CHaR(20) v [] BINARY [ASCIH] UNIC
@ =d & INTEGER v [¥] UMSIGMED [] ZEROFILL

Table 4.7.2 LegalConnRule and IllegalConnRule

26

protocol: may be TCP or UDP

srcip: the connection source ip

srcport: the connection source port

destip: the destination ip of the connection

destport: the detination port of the connection

action: BLOCK or ALERT. Both BLOCK and ALERT produces AlertLogs, but

ALERT only generate the alert and still let the connection there.

Calurn Mame | Datatype Hor | 81 | Flags |
rindex & INTEGER v o || UNMSIGNED [] ZEROFILL
@ hoztip o INTEGER -y [« UMSIGMED [] ZEROFILL
@ protocal 2, SMALLINTIS]] UNSIGNED [] ZEROFILL
@ port o SMALLINT(S] v [w] UMSIGMED [] ZEROFILL
& =ignaturelength o INTEGER v [«] UMSIGMED [] ZEROFILL
& mawoffzet o INTEGER v [«] UMSIGHMED [] ZEROFILL
@ action o SMALLINT(S] v [«] UMSIGMED [] ZEROFILL
& processname & CHAR[7Z) v [] BIN&RY [ASCI] UNIC
@ signature & BELOE v
@ =d o INTEGER -y [« UMSIGMED [] ZEROFILL

Table 4.7.3 SignatureRule

signaturelength: length of the signature

maxoffset: the max offset where the connection should be monitored

signature: the signature

27

Colurnn Mame | Datatype | tor | aare | Flags

i % INTEGER v « |¥] UNSIGNED [] ZEROFILL
@ lype T TINYINTL3) v [¥] UNSIGNED [] ZEROFILL
@ ruletype T TINYINT(S) v [¥] UNSIGMNED [] ZEROFILL
G rindex Ty SMALLINT(S) v [¥] UNSIGHMED [] ZEROFILL
& processname & CHAR[20] v [] BIN&RY] ASCH] UNIC
@ message < CHAR[10D) v] BINARY [ASCH] UNIG
@ lime “Z TIMESTAMP v
& sid 7, INTEGER v [¥] UNSIGMNED [] ZEROFILL

Table 4.7.4 AlertLog

type: BLOCK or ALERT.

ruletype: the type.of'the violated rule

rindex: the rule index of the violated rule

message: additional message-of-this alert

time: whenthis alert is generated.
Colurmn Mame Datatype | tor | pure | Flags

idx 7, INTEGER v « |¥] UNSIGNED [] ZEROFILL
& hostip 7, INTEGER v] UNSIGNED [] ZEROFILL
% protocol Ty TINYINT(3) v] UNSIGNED [] ZEROFILL
@ rcip ., INTEGER v v URSTENED™ | O
& srocport b SMALLINTIE) v [«] UMSIGMED [] ZEROFILL
& destip 7, INTEGER v] UNSIGNED [] ZEROFILL
& destport Ty SMALLINT(E) v] UNSIGNED [] ZEROFILL
@ length 7, INTEGER v] UNSIGNED [] ZEROFILL
& action T TINYINTZ) v] UNSIGNED [| ZEROFILL
% processname & CHaR(20) v [BIMARY] ASCIT [] UMICK
& lime “J TIMESTAMP v
& sid =, INTEGER v] UNSIGNED [] ZEROFILL

Table 4.7.5 TrafficLog

length: the data length of bytes transferred

action: SOCK_CREATE,SOCK_CLOSE,SEND,RECV,SENDTO, RECVFROM, BIND, etc.

28

Calurnn M arme | Datatype | HATL LR Flags |

© sid %, INTEGER v «] UNSIGNED [] ZERDFILL

@ name %, CHARI20] v] BIN&RY [ASCI [] UNIC
Table 4.7.6 Software

sid: the unique id of this software

name: the software name

29

Chapter 5

Programming Interface and Performance Evaluation

5.1 NSLib Application Programming Interface

NSLi1b
- NSLib(char *softwareName);
- AddSignatureRule(SianatureRule™);
- AddBindingRule(BindingRule¥*);
- AddLegalConnRule(lLegalConnRule™);
- Addll'legalGonnRule(l I'legalConnRule*);
- RemoveSignatureRule(int rindex);
- RemoveBindingRule(int rindex);
- RemovelLegalConnRule(int rindex) ;
- RemowvelllegalConnRule(int rindex);
- UpdateSignatureRule(SianatureRule*,int rindex);
- UpdateBindingRule(BindingRule*, int rindex);
- UpdatelLegalConnRule(LegalConnRule*, int rindex);
- UpdatelllegalConnRule(lllegalConnRule*, int
rindex);
- SetSignatureRuleHandler (SIGNATURE_RULE_HANDLER) ;
- SetBindingRuleHandler (BINDING_RULE_HANDLER) ;
- SetlLegalConnRuleHandler (LEGALCONN_RULE_HANDLER);
- SetlllegalConnRuleHandler (1LLEGALCONN_RULE_HANDL

30

ER);
- SetAlertLogHandler (ALERTLOG_HANDLER);

- SetTrafficLogHandler (TRAFFICLOG_HANDLER);

typedef void (*SIGNATURE RULE HANDLER)(SignatureRule*);
typedef void (*BINDING_RULE_HANDLER)(BindingRule*);
typedef void (*LEGALCONN_RULE_HANDLER)(LegalConnRule*);
typedef void (*ILLEGALCONN RULE.HANBLER)(IllegalConnRule*);
typedef void (*ALERTLOG HANDLER) (AlertlLogEntry*,int size);

typedef void (*TRAFFICLOG_HANDLER) (TrafficLogEntry*,int size);

NSLib ARk are' designed as simple as possible. These functions can be used to
develop network security software either in standalone mode or in server mode. Now

let’s go through‘them:

NSLib(char*):

The constructor is responsible for initializing the environment. For example, it
creates the event object which we mentioned in Section 4.6, and register itself to the
Software Shared Table. Also, it creates another thread to wait for signals to execute

the callback functions. The only one parameter is the name of the software.

SetSignatureRuleHandler (SIGNATURE_RULE_HANDLER):

SetBindingRuleHandler (BINDING_RULE_HANDLER):

31

SetLegalConnRuleHandler (LEGALCONN_RULE_HANDLER) :

SetlllegalConnRuleHandler (ILLEGALCONN_RULE_HANDLER):

The four functions are used to set up the callback functions. Each of them
accepts a callback function pointer as the parameter. When a rule violation is
encountered, according to its type, the corresponding callback function is invoked,

and the rule violated is passed in.

AddSignatureRule(S1anatureRule*):
AddBindingRule(BindingRule*):
AddLegalConnRule(LegalConnRule™):

AddlllegalConnRule(lTlegalConnRule™):

The four functions are used only in standalone mode: In standalone mode, NS
software is responsible for storing the rules physieally onthe disk. Therefore, when
NS software is initialized, it should‘load the rule from the disk and add them into the

shared tables

RemoveSignatureRule(int rindex):
RemoveBindingRule(int rindex):
RemovelLegalConnRule(int rindex):

Removel llegalConnRule(int rindex):

32

These functions remove rules from the shared rule tables with given rindex.
Every slot of rule tables has a flag to indicate if this slot is used or not. The remove

operation simply sets the flag off. Therefore, it’s efficient to remove the rules.

UpdateSignatureRule(SianatureRule*,int rindex):
UpdateBindingRule(BindingRule*,int rindex):
UpdateLegalConnRule(LegalConnRule*,int rindex):

Updatel llegalConnRule(llkegalConnRule™*,int rindex):

These 4 functions are used to update a existing rule in‘rule tables. The developer

needs to specify.the rindex to-indicate whichrule is'.going to be‘overwritten.

SetAlertLogHandler (ALERTLOG HANDLER) :

SetTrafficliogHand l er (TRAFFHCEOG=HANDEER) -

Because the memory space is limited, we cannot store all the logs in shared
memory. We only keeps the latest logs in shared memory. To prevent the tables from
being full, the logs need to be consumed periodically in standalone mode. Therefore,
the developer should set two callbacks which will be invoked periodically. There are
two parameters passed into the callback functions: an array of log entries, and the size

of the array.

33

5.2 Performance Evaluation

Because we need to process the rule logic in real-time, NSML causes some
performance overhead. We test its performance by download a big file (697 MBs)
using FTP. There are 3 condition tested: 1) without NSML, 2) with NSML but without

rules, and 3) with NSML and signature rules.

CPU Usage | Throughput

(1) Without NSML 16.5% 7.61 MB/s
(2) With NSML, without rules 17.1% 7.22 MB/s
(3) With NSML, with sighature rules 24 . 2% 6.58 MB/s

Table 5.2 Throughput and CPU usage with/without NSML

With NSML but without rules, the throughput is lower the original. This is
because NSML produces and “transfers real-time traffic logs. With NSML and
signature rules, the throughput becomes 6.98 Mbps due to real-time traffic analysis
and traffic logs. From the result, we can'see the impact to the network performance

caused by NSML is small and tolerable.

The difference of CPU usage between (1) and (2) is 1.6%, which is small. The

CPU usage in (3) arises to 24.2% because the CPU needs to perform algorithms to

analysis the traffic. Smaller signature leads to smaller CPU usage.

34

Chapter 6 Conclusions and Future Works

6.1 Conclusion

It is hard to propose a comprehensive solution for network security management
problem. We try to find out a possible way to find an integrated solution for it. We
focus the design of NSML in 4 aspects: reliability, programmable policy, easy-to-use,
high performance. In this paper, NSML introduced an open framework to provide
application firewall, bandwidth contral, real-time. traffic analysis, and client-server
architecture to solve the security and manage of network. With the help of NSML,
developers can easily develop the network security software they want. This
significantly reduces the hardness andrtime-to-market of network: security software
development. Also, with the help of the framework, the improper use of network by
users or malicious programs in the office can be detected and managed. The quality of

service of critical network applications can be guaranteed.

6.2 Future Works

Currently, we use a simple algorithm to perform traffic analysis. However, to
make the analysis more powerful, we must change to a more powerful analysis
method while preserving the high performance. We need help of statistic algorithms.
PAYL [8] may be one of our choices. Besides, current version of NSML does not take
spy ware detection / removal into consideration although their strange behavior might
be found by the rules. It is a good idea to add spy ware detection feature into the next
version of NSML.

35

Microsoft and Cisco announced the NAP-NAC[12] Interoperability Architecture
in Sep. 2006, which takes the advantage of NAP’s software framework extensibility
and NAC’s hardware capability. This paper focused on developing a stable, flexible,
easy-to-use, and high performance open network security management library.
However, to enhance the security further, it is necessary to port NSML into NAP
framework. With the help of NAP framework, all intruded computers can be totally

isolated from the network and remedia ally. Thus, the system will be more

Secure.

36

Bibliography

(1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

(9]

Spybot Search & Destroy,

http://www.safer-networking.org/ct/index.html

Bandwidth Controller,

http://bandwidthcontroller.com/

Winsock Service Provider API,

http://msdn2.microsoft.com/en-us/ibrary/ms741418.aspx

http://msdn2.microsoft.com/en-us/library/ms741424.aspx

http://msdn2.microsoft.com/en-us/library/ms741424.aspx

Microsoft Coeperation, Network-Access Rrotection Introduction; April, 2007 Updated

http://download.microsoft.com/download/8/d/9/8d9b3e54-6db7-4955-9e36-58a3f0534933/NAPI

ntro.doc

Microsoft Cooperation, Network Access Protection Architecture, April 2007 Updated

http://download.microsoft.com/download/3/9/f/39ff0ca3-56d1-4d93-af46-98f92134d040/NAPAr

ch.doc

CH Chiu, SM Yuan, Managing the Network Usage of Applications,

M Bailey, E Cooke, D Watson, F Jahanian, J Nazario - IEEE Security & Privacy, 2005

Ke Wang, Salvatore J. Stolfo, Anomalous Payload-Based Network Intrusion Detection, Recent

Advances in Intrusion Detection, 2004

Symantec Sygate Enterprise Protection,

http://www.symantec.com/zh/tw/enterprise/products/overview.jsp?pcid=1001&pvid=1303 1

[10] MySQL, http://www.mysql.com/

[11] MySQL++, http://tangentsoft.net/mysql++/

37

http://www.safer-networking.org/ct/index.html
http://bandwidthcontroller.com/
http://msdn2.microsoft.com/en-us/library/ms741418.aspx
http://msdn2.microsoft.com/en-us/library/ms741424.aspx
http://msdn2.microsoft.com/en-us/library/ms741424.aspx
http://download.microsoft.com/download/8/d/9/8d9b3e54-6db7-4955-9e36-58a3f0534933/NAPIntro.doc
http://download.microsoft.com/download/8/d/9/8d9b3e54-6db7-4955-9e36-58a3f0534933/NAPIntro.doc
http://download.microsoft.com/download/3/9/f/39ff0ca3-56d1-4d93-af46-98f92134d040/NAPArch.doc
http://download.microsoft.com/download/3/9/f/39ff0ca3-56d1-4d93-af46-98f92134d040/NAPArch.doc
http://www.symantec.com/zh/tw/enterprise/products/overview.jsp?pcid=1001&pvid=1303_1
http://www.mysql.com/
http://tangentsoft.net/mysql++/

[12]

[13]

[14]

[15]

Microsoft Cooperation and Cisco System, Inc, Joint Architecture for NAC-NAP Interoperability

http://www.microsoft.com/presspass/press/2006/sep06/09-06SecStandardNACNAPPR.mspx

Microsoft Windows Internals, Fourth Edition: Microsoft Windows Server(TM) 2003, Windows
XP, and Windows 2000 (Pro-Developer) by Mark E. Russinovich and David A. Solomon (Dec 8,
2004)

Winsock 2.0 by Lewis Napper (Nov, 1997)

Network Programming for Microsoft Windows, Second Edition by Jim Ohlund, Anthony Jones,

and James Ohlund (Feb 13, 2002)

38

http://www.microsoft.com/presspass/press/2006/sep06/09-06SecStandardNACNAPPR.mspx

	An Integrated Approach to
	Network Security Management Library
	An Integrated Approach to
	Network Security Management Library

