sl < T Sp] A R
PR S T AR

fp ﬁ%w

-

A ol S S

A Study on Index Calculus Algorithms
for Hyperelliptic Curves

& N Jue A o F oS

e

1

e

R WFR Y R % H 2P
A Study on Index Calculus Algorithms
for Hyperelliptic Curves

e A S Student : Chia-Wei Lin
R o mER #L Advisor : Dr. Rong-Jaye Chen

Bl =2 2 i <~ 7
?;%;fﬂ%?ﬁ’.lﬁﬁﬂz‘“r
L W
A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Computer Science
June 2007

Hsinchu, Taiwan, Republic of China

PEARAY L D

¥4 HkR3k R mERE L

SRR R T L o

F &

1989 & Koblitz] * % & t7 "L a0 Rl 4R F =5 Jacobian v/ 3 > AT AZ R Y &
BATHBEN TR > & D7 AQWFEWRTE FS e g 7 q B R h3 W F Y o SR
(genus) 5 g A HFRI W 41 > H ¢ A% 2 AEACH R AT e 23 4) S 0(qY) 0 A TR AR 42
FHOQ) o @ 2] SR A R o ST PR R RS dy s B 0 TRt A AR AR
Fld A 387 @ % 1 YRl RPHB R B RETPR DT 2R -

B ¢ index calculus se# /2 Bgafe g &g < P> R R BOPE AT IR - AT < B
- dend posT#E G O(qg) » @ — 4k e index calculus % 0(g®) ° Thériault 5 index calculus ;% &
E A MR FR PR L O PERT AT RR R R G O(q2 ﬁ) ; Gaudry A A BT R #0 index
calculus se # ;% %) » RIPFRAFRR L 8- e O(q2_5) A HEH] R AR
SMAECHBR AR > F (T X 22 index calculus se 2 - AP D - BT REEE 2 KSR
52 AR Y RARSCH I HEFAFRAE 5 O(q) °

M4 AZHFRI Y ARG 4 30 ~ R WFR Y ST #h 42 ~ index calculus

e

A Study on Index Calculus Algorithms for Hyperelliptic Curves

Student : Chia-Wei Lin Advisors - Dr. Rong-Jaye Chen

Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University

ABSTRACT

In 1989, Koblitz proposed using the Jacobian of.a hyperelliptic curve defined over a finite field
to implement discrete logarithm cryptographic protecels: ~The discrete logarithm problem of the
Jacobian is called hyperelliptic curve dis¢retelogarithny problem (HCDLP). For a hyperelliptic
curve of genus g over the finite field F, the group-order-of the Jacobian is O(q?) which is larger
than that of the additive group ,which is O(¢);in an elliptic curve over F;. Since there is no
subexponential algorithm to solve HCDLP of small genus, hyperelliptic curve cryptosystem under
applicable setting requires shorter key size than elliptic curve cryptosystem to achieve the same
security level.

When genus g is large enough, the index calculus attack has subexponential time complexity.
For small genus HCDLP, the algorithms based on birthday paradox is of time complexity O(q%) ,
and the basic index calculus attack is O(qi) . Thériault improves it by using the large prime
method, and get a running time of O((q 7m) . Furthermore, Gaudry et al use a doublezlarge prime
variation for small genus hyperelliptic index calculus, and the time complexity is O(qzj) . In this
thesis, we focus on the hyperelliptic curve discrete logarithm problem of small genus, implement and

improve index calculus and its variations. We propose a faster algorithm for solving genus 2

HCDLP which time complexity is O(q).

Keywords: hyperelliptic curve cryptosystem, HCDLP, index calculus

-11-

® #t

BOASER R S R R B X R R T - SRR

WRBPBEAIFR > P POt T g B A L e RA LRI RS =

Moo BBHEMLIHGT AR R N o » BENE R T RE R DR KR PG

¥

BlEgEEAhr FL (o ar@d? B3 hfpr B2k @Ry {2 f e

BRFF A 2 R B LI N A BT auEg o R LNy e

BRI TEL > 2 550 R 5 R SR

{4 nd > BPREE OB nFl - g AN s BE o

(e e e =

B Ae EBHFANOFRA MR A CTREDT & Landi 2 HFF 5 v

P45 72 PEenbf s > 3 IR P e R A A 4 A (SREZ2. BB w L F sk o #H

e R AR E SR

il

Contents

ADSTFACT IN CRINESE......iiiiiiece bbbt i
ADBSTract iN ENGLISNooieeee e e ii
ACKNOWIBAGE. ... bbbt ii
(O00] 01 (<] 0| ST TSP ST RO TR PR iv
LEST OF FIQUIES. ...ttt Vi
LISt OF TADIES.......eee s vii
AN {0] £ A o] TP T PRSP P RO PPR PRI viii
Chapter L INtrodUCTION.........cci i ee 1
Lo HISEOTY ettt ettt ettt et et e et sttt e s ebeeente s 1
1.2 The organization Of the thESISicerveeciiifineereeeieeieeieeieerie e e eseee e 2
Chapter 2 Mathematical BaCKground......cic i oo 4
2.1 ADSLract al@ebrac i e T T iie e et eeereeeeeeereeeeeeseesereenseeseaeenseennas 4
2.2 AlZEbraiC GEOMETIYc..ee e I s ob ettt ettt ettt eatesee et sbeeaesanenaeens 8
2.3 DIVISOT thEOTY uviieiiiiiiiieiieciie ettt ettt e aeebe e e beesteeesbeesaeenseennee e 12
Chapter 3 HyperelliptiC CUNVES.ccviiiiiieie e 16
3.1 Definitions and ProPerties.......c.ccveeveereeririerieeieeneeereenreeereesseesseesseessseennes 17
3.2 RedUced diVISOTSeeuiiiiiieiieiie ettt sttt 19
3.3 REPIESENTALION.ccuvieiiieiiieiieeieeieeete et et eeteeseee e e essaeebeesseeesseensaessseenseensnas 20
3.4 GIOUP JaW..oeiiiiiiiiiiii ettt st 22
3.5 Hyperelliptic curve discrete log problem (HCDLP).......c.ccccvevvveviienieenennen. 23
Chapter 4 Algorithms fOr HCDLPcooiiiiiieeeee e 26
4.1 TNEOAUCTION ..ottt ettt et e e eaee 26
4.2 Index calculus algorithm for small genus HCDLPcccooeniininiiincnenne 28

v

4.2.1 REAUCEA TACLOT DASE .t eeeeeeeeeeeeeeeeeeneee 35

4.2.2 Single large prime variation..........ccoeevuereereenienieneeneneeneenieeeenneene 36

4.2.3 Double large prime variationcccceeeeveereercieeneeesreeneesereeseeesneennns 40

4.3 Computational COMPATISONc..eevveriirierieeiinieenieete ettt 43
4.3.1 Solving large sparse linear SyStemccceceveeeiierieenieenieenieeneeeneenees 43

4.3.2 CUrve SELECHION.eouiiiiieiieeieeee et 44

4.3.3 COMPATISONS ...veeuereenrieireereenireereesseeeeseesseesseesseessseesseessseesseesssesssesssnes 47

Chapter 5 A Fast Algorithm for Genus 2 HCDLPccccooviiiiiiii s 48
5.1 INEOAUCHION ..ottt ettt st e eaeas 48

5.2 The algOrithm......cc.eiiiiiiiiiiiee e 51

5.3 TIME COMPIEKILY ...vvienriieiiieiieeieeitie et esieeeteesieeeereeseteebeesteeesbeenseesnseesnessseensns 54

5.4 Computational COmMPATISOML .. c..eeuveeueersieailineeeereieeieneente ettt 55
Chapter 6 Conclusion and Future. Researchc.cc.c.cccovvvveiecce i 57
6.1 SUMMATY ..eeiiiiiiiiee et B Lrsmmrmmrmssmme e et ettt 57

6.2 FULUIE WOTK ..ot i s esst i o ettt sttt ettt st e e eaeas 58

List of Figures

Figure 2.1 An elliptic curve C and rational function L; over R

Figure 5.1 Possible sub-graphs appear in our algorithm

vi

List of Tables

Table 1.1 NIST Guidelines for Public-Key Sizes with Equivalent

SECUNILY LEVEIS ..ottt 2
Table 4.1 Time complexity of algorithms solving HCDLP..................... 28
Table 4.2 Running time (seconds) of hyperelliptic index calculus......... 47
Table 5.1 Comparison between Pollard’s rho and our algorithm 56

Table 6.1 Suggested key size for hyperelliptic curve cryptography.......58

vii

Notation

The following notation is used throughout this thesis.

K finite field

K algebraic closure of a finite field K

Fq finite field of size q = p™ for some prime p

q size of the finite field F

g genus of a hyperelliptic curve

D° group of divisors on hyperelliptic curve of degree zero

P group of principal divisors

J quotient group J=D°/P

div(a,b) a divisor denoted by Mumford representation with two

polynomials a, b

viii

Chapter 1

Introduction

1.1 History

Since the public-key cryptosystems have been invented in 1970s, there are
several important public-key cryptosystems of which the security is based on the
intractability of discrete logarithm problem (DLP) over a finite abelian group.
Elliptic curve cryptography (ECC) [19] is an approach to public-key cryptography
based on the algebraic structure ofielliptic curves over finite fields. The use of
elliptic curves in cryptographyswas suggested independently by Neal Koblitz and
Victor S. Miller in 1985. There is no sub-exponential time algorithm to solve elliptic
curve DLP (ECDLP), hence the main advantage of ECC is its smaller key size. A
160-bit key in ECC is considered to be as secure as 1024-key in RSA. As we can
see in Table 1.1, ECC key size is much smaller than those of other public-key
cryptosystems. Therefore ECC can be implemented efficiently and securely with
smaller key size, and is ideally suitable for resource-constrained environments such as
smart cards, cell phones, and PDAs.

However, hyperelliptic curve cryptosystems offer even smaller key size. In
1989, Koblitz [20] proposed using the Jacobian of a hyperelliptic curve defined over a
finite field to implement discrete logarithm cryptographic protocols. Hyperelliptic
curves are a special class of algebraic curves and can be viewed as generalizations of
elliptic curves. There are hyperelliptic curves of every genus g = 1. A

hyperelliptic curve of genus g = 1 is an elliptic curve. There is no known

subexponential algorithm for hyperelliptic curves of small genus, and the Jacobian of
a hyperelliptic curve of genus g defined over a finite field F4 has group order O(g®).
Hence, the advantage of hyperelliptic curves over elliptic curves is that a smaller base
field can be used in order to obtain the same level of security. This makes
hyperelliptic curves suitable when only limited memory and computing power is

available. Hyperelliptic curves are also of interest because in 2000, Gaudry, Hess

and Smart [15] proposed an algorithm which reduces ECDLP over F, , for special

values of n, to the hyperelliptic curve DLP (HCDLP) over an sub field of F,, .

Table 1.1 NIST Guidelines for Public-Key Sizes with Equivalent Security Levels

Symmetric Minimum size (bits) of public keys
Security

encryption
(bits) DSA/DH RSA ECC

algorithm
80 Skipjack 1024 1024 160
112 3DES 2048 2048 224
128 AES-128 3072 3072 256
192 AES-192 7680 7680 382
256 AES-256 15360 15360 512

1.2 The organization of the thesis

The rest of this thesis is organized as follows.
In Chapter 2, we first review some important background in algebra, and
introduce algebraic geometry including variety, algebraic curves, and so on. We also

introduce the divisors on a curve which are useful for computing Weil pairing in

elliptic curves [24]. The group on a hyperelliptic curve is also based on the divisors.

In Chapter 3, we define the hyperelliptic curves over a finite field and the additive
group Jacobian associated with a hyperelliptic curve. After defining Jacobian group,
we describe the Mumford representation which is used in Cantor’s algorithm to
compute the group operation.

In Chapter 4, we describe the index calculus algorithm to solve hyperelliptic curve
discrete logarithm problems and several improvements in recent years including the
ideas of reduced factor base and large primes. The double large prime variation of
hyperelliptic curve index calculus is better than others, and even better than Pollard’s
rho method when the genus of the hyperelliptic curve is larger than 2.

In the case of genus 2 curves, Pollard’s rho algorithm is faster than index calculus
algorithm. In Chapter 5, we propose an algorithm for solving genus 2 HCDLP
which has the same time complexity as Pollard’s tho method. Several computational
comparisons are given in section 5.4 to-shows that our algorithm is faster than
Pollard’s rho method in practice.

Finally, we summarize our results and propose future work in Chapter 6.

Chapter 2

Mathematical Background

This chapter introduces some elementary mathematical background used in this

thesis, including definitions and theorems in abstract algebra and algebraic geometry.

If the readers are interested in more of the background, [10] and [11] give good

introductions. In section 2.3, we introduce the divisor theory which is the basis of

hyperelliptic curve group law. For more details on divisor theory, the reader is

referred to [24][25].

2.1 Abstract algebra

Definition 2.1 (Group)

A group (G, *) is a set G with a binary operation * that satisfies the following

four axioms:

>

>

Closure: For all a, b in G, the result of a * b is also in G.

Associativity: Foralla,bandcin G, (a*b) *c=a * (b * c).

Identity element: There exists an element e in G such that for all a in G, e*a=
a*e=a.

Inverse element: For each a in G, there exists an element b in G such that a* b=

b* a = e, where e is an identity element.

Definition 2.2 (Abelian group)

A group G is said to be an abelian group (or commutative) if the operation is

commutative, that is, foralla,bin G a*b=Db * a.

Definition 2.3 (Cyclic group)
A cyclic group is a group whose elements can be generated by successive
composition of the group operation being applied to a single element of that group.

This single element is called the generator or primitive element of the group.

Example 2.1
<Zs, +> is an additive group under the addition modulo 5. The group is cyclic

since it can be generated by a single element “17, i.e. Zs =<1>= {1, 2, 3, 4, 0}.

Theorem 2.1 (Lagrange’s theorem)

For any finite group G, the order (number of elements) of every subgroup H of G
divides the order of G.
Proof:

This can be shown using thé.concept of left'cosets of H in G. The left cosets are
the equivalence classes of a certain equivalence relation on G and therefore form a
partition of G. If we can show that all cosets of H have the same number of elements,
then we are done, since H itself is a coset of H. Now, if aH and bH are two left cosets
of H, we can define a map f: aH — bH by setting f(x) = ba'x. This map is bijective
because its inverse is given by f '(y) = ab’'y.

This proof also shows that the quotient of the orders |G| / |H| is equal to the index
[G:H] (the number of left cosets of H in G). If we write this statement as |G| = [G:H] -

H].

Definition 2.4 (Ring)

A ring is a set R equipped with two binary operations + and - , called addition

and multiplication, such that:
» (R, +)is an abelian group with identity element 0,
» Multiplication is associative,
» Multiplication distributes over addition:
B a(b+c)=(ab)+(ac)

B (a+tb)yc=(ac)+(bc)

Definition 2.5 (Ideal)

An additive subgroup I of a ring R satisfying the properties: rxel, xrel for xel

and reR is an ideal.

Example 2.2

B The set of integers 7Z .is a ring,and the set of even integers 27 1is an ideal
of Z.
B The set R[x] of all polynomials‘in‘ene variable x with coefficients in a ring

R is a ring under polynomial addition and multiplication.

Definition 2.6 (Integral domain)

An integral domain is a commutative ring with 0 # 1 such that ab = 0 implies that
either a = 0 or b = 0 (the zero-product property). That is to say, it is a nontrivial ring

without left or right zero divisors.

Definition 2.7 (Field)
A field (F, +, *) is defined by these properties:

» (F, +) is an abelian group with the additive identity 0.
» (F\{0}, *) is an abelian group with the multiplicative identity 1.

» The operation * is distributive over the operation +. For all a, b, ¢, belonging to

Fa*(b+c)=(a*b)+(a*c).

Definition 2.8 (Subfield, extension field)
A subset K of a field L is a subfield of L if K is itself a field with respect to the

operations of L. L is said to be an extension field of K.

Fact 2.1 (Existence and uniqueness of finite fields)

1. If K is a finite field, then K contains p® elements with p prime and d >= 1.
2. For every prime power order p’, there is a unique (up to isomorphism) finite field
of order p. It is an algebraic extension of degree d of Fp. The notation for a finite

field of order q is Fq with q = p°.

Definition 2.9 (Algebraic closure)
A field K is said to be algebraically closed.if every polynomial fe K[x] has a

zero in K. Such a polynomial splitsiinte linear-factors over K.

Fact 2.2 (Algebraic closure of F)

The algebraic closure Eq of a finite field F is given by: Eq = U Fqk
k=1

Lemma 2.1 (Frobenius Automorphism)
Let Fq be a finite field with q=p". Then we have:

(1) a=a" withaeF,

(i) (a+b)y’=af b’ fora, beF,

(iii) (atb)’ =aP+b’ fora, beF,

Consequently the following mapping is an automorphism:
o: Fq> Fq where o(a) = a” forae F

It is called the Frobenius Automorphism of F,.

Proof:

(1) Since F; is a cyclic group of order p-1, we have a”' = 1 for all ac F: .

Thus a” = a for all a€ F,,.

(i) It’s true since the operation < is commutative.

(i) (a+b)’ =Zp:[ipja‘bp“ =af+b”

i=0

Notice that the binomial coefficients [pj for i = 1,...,p-1 are multiples of the
|

characteristic p and reduce to zero.

Definition 2.10 (Galois Group)
Let F, be a field with q=p". Let o be the Frobenius Automorphism of F, and let

aeF,. Apower of ¢ is defined as:
ci@)=a"
The Galois Group is the group of all“automerphisms acting on the field Fy, which

leave the points of F,, invariant. It1sa cyclie;group of order d given by 1, o, ..., o*!.

That is the Galois Group Gal(Fy/F,) = {1, o, ..., o).

2.2 Algebraic geometry

Let K bean algebraic closed field, we can define the following terms.
Definition 2.11 (Affine n-space)

The affine n-space is the set of n-tuples called points:

A" = AL ={p=(X, X,) 1 X € K}

Definition 2.12 (Affine algebraic set)

For each subset S of R[Xl,...,xn], define the zero-locus of S to be the set of

points in A" on which the functions in S vanish:
Z(S)={peA"|f(p)=0forall f eS}.

A subset V of A" is called an affine algebraic set if V = Z(S) for some S.

Definition 2.13 (Affine variety)

A nonempty affine algebraic set V is called irreducible if it cannot be written as
the union of two proper affine algebraic subsets. An irreducible affine algebraic set is

called an affine variety.

Definition 2.14 (Ideal of an affine variety)
Given a subset V of A", let I(V) be:the ideal of all functions vanishing on V:

|(V)={f e K[X,,....x, 1| f (p)=0-forall pev}.

Similarly, we can define projective variety in projective space.

Definition 2.15 (Projective n-space)

The projective n-space over K, denoted P", or simply P", is the set of
equivalence classes of (n+1)-tuples (XO,..., Xn) of elements of R, not all zero, under

the equivalence relation given by (Xy,...,X,)~(4%y,...,AX,) forall 1eK, 1#0.

An element of P" is called a point. If P is a point, then any (n+1)-tuple

(Xo,--»X,) in the equivalence class P is called a set of homogeneous coordinates for

P.

Definition 2.16 (Homogeneous polynomial)

A polynomial feR[XO,...,Xn] is a homogeneous polynomial if

f (A% AX,) = A4V F (X)X,)

Definition 2.17 (Homogeneous ideal)

An ideal ICR[XO,...,XH] is a homogeneous ideal if it is generated by

homogeneous polynomials.

The homogeneity of the polynomial ensures that this construction is

well-defined.

Definition 2.18 (Projective algebraic set, projective variety)

For each set S of homogeneous polynomials; define the zero-locus of S to be the
set of points in P" on which the functions in S.vanish:

Z(S)={peP"| f(p)=0 for all f =S},

A subset V of P" is called a projective algebraic set if V = Z(S) for some S. An
irreducible projective algebraic set is called a projective variety.

Definition 2.19 (Ideal of a projective variety)
Given a subset V of P", let I(V) be the ideal generated by all homogeneous

polynomials vanishing on V: (V) ={ f ER[XO,..., X,]| f(p)=0forall p eV}

Definition 2.20 (Algebraic curve)

An algebraic curve over a field K is an equation f(x, y) =0, where f(x, y) is a
polynomial in x and y with coefficients in K. A point on an algebraic curve is
simply a solution of the equation of the curve. A K-rational point is a point (X, y) on

the curve, where x and y are in the field K.

10

Definition 2.21 (Points at infinity)

Each affine space can be identified with a unique projective space. The points in
P", which are not defined in the corresponding affine space A" are called points at

infinity.

For example, an affine variety C(I) is called an algebraic curve when I(C)
consists of one polynomial in two variables which by definition of variety is
irreducible. We will use C as the notation of an affine variety for which is an

algebraic curve.

Definition 2.22 (Coordinate ring, polynomial function)

The coordinate ring of C is the quotientming given by: K[C]= K|[()é;/ L
Similarly the coordinate ring of €/K isthe quotient ring given by: K[C]= —KI[(XC’;/] .

An element of K[C] is called & polynomial-function on C.

Definition 2.23 (Function field, rational function)

The function field K(C) is given by the field of fractions of K[C] :
K(C)= {% |G, H eR[C]}. Similarly the function field K(C) is given by the field

of fractions of K[C]. An element of R(C) is called a rational function on C.

Definition 2.24 (Zero, pole)

Let fe R(C) be a non-zero rational function and PeC. Then f is said to be

defined at P if there exists a representation f = g/h, where g, he R[C], with h(P)#0.

If f(P)=0,then f issaidto have a zero at P. If f is not defined at P then f

11

is said to have a pole at P. In this case we write f(P)=oo.

Definition 2.25 (Order)

The order of a polynomial function ¢ € R[C] at a point P e C is the intersection

multiplicity at that point and denoted by order ord,(g). Notice that P is a zero of g

if and only if ord,(g)> 0, and P is a pole of g if and only if ord,(g)<O0.

The order of a rational function f =g/he R(C) at a point Pe C is defined as

ord,(f)=ord,(g)—ord,(h).

Theorem 2.2
Let fe R(C) be a rational function. Then z ord,(f)=0.

PeC

This proof can be found in [24]:

2.3 Divisor theory

Divisors are useful for keeping track of the zeros and poles of a rational function.
In this section we give the basic definitions and properties of divisors. For simplicity,

we are working in an algebraic closure K. Later we will give the definitions over a

finite field K in chapter 3.

Definition 2.26 (Divisor, degree, order, support)

Addivisor D is a formal sum of pointsin C: D = z m,P, m, €Z, where only
PeC

a finite number of mp is non-zero.

12

The degree of D is the integerdeg(D) = z m, .

PeC

The order of D at P is the integerord, (D) =m,.

The support of D is the set supp (D) :{p eClm, # 0} .

Definition 2.27 (Divisor group)

The set of all divisors, denoted by D, forms an additive group under the addition

rule:

> mP+> nP=> (m,+n,)P.

PeC PeC PeC

The set of all divisors of degree 0, denoted D°, is a subgroup of D.

Definition 2.28 (Gcd of divisors)

LetD, = Z m,P, D, = Z nsP be two divisors. The greatest common divisor
PeC PeC

of Dy and D; is defined to be ged(Dy,D,)="> min(m,,n,)P —(Z min(m,, N,)joo :

PeC PeC

(Note that gcd (D, D) € D)

Definition 2.29 (Principal divisor)

Let ReK(C) . The divisor of R is called a principal divisor

div(R) = z ord,(R)P. Theorem 2.2.16 shows that the divisor of a rational function

PeC

is indeed a finite formal sum and has degree 0.

Definition 2.30 (Principal divisor group)
The group of principal divisors is a subgroup of D® and is defined by:

P =P(C)={div(R)|[Re K(C)!. Wehavethat PcD’cD.

Definition 2.31 (Jacobian)

13

The Jacobian of the curve C is defined by the quotient group:
J=J(C)=DP.
If Dy, Dye D° then we write D1~ D, if D;- D; e P; D; and D, are said to be equivalent

divisors.

Example 2.3 (Elliptic curve)

Consider the following algebraic curve in affine space:

I(CR): f(Xy)=y —(X=x+1) in R[X,Y]

Li(X, y)=x-y+1

Figure 2.1 An elliptic curve C and rational function L; over R

The algebraic closure of R is the field of the complex numbers; we still denote it as
K.
The affine variety over K is givenby 1(C)={(X,y)| X,y € K, f (x,y)=0}.

The coordinate ring of C is given by the quotient ring :

KICI=K[x, y1/(y* = (X' =x+1)).

14

The function field of C is given by: R(C) = {% |g,he R[C]} .

The line through the point P, Q is a rational function given by L(x, y).
div(L)=P+Q+R-300=(P-0)+(Q-w)+(R-w).

The vertical line through R and R is a rational function given by L(X, y)=x-x3.
div(L,) = R+ R —20 = (R—0)+(R—o0).

Let D;=P-w, D,=Q-c and D,=R—-co in the Jacobian J = D°/P, we have :

(D, +D,)-D,
=(P-0)+(Q-0)—(R—-x)
=div(L,)—div(L,)

=div£ije P
L2

Hence D;+D,~D3, the Jacobian group law is the same as point addition on an elliptic

curve.

15

Chapter 3

Hyperelliptic Curves

Hyperelliptic curve is a kind of algebraic curve, and elliptic curve is a special
case of hyperelliptic curve. In chapter 2, we defined the function field of an
algebraic curve. The Jacobian is the group of degree zero divisors modulo principal

divisors, i.e. the quotient group J = DY%P over an algebraic closed field K. Since
the implementation of arithmetic on a hyperelliptic curve works with the base field K,
we need to know the definitions over K,

Let C be a hyperelliptic curve definédover a finite field K. Let P=(x,y) €C,

and let o be an automorphism of K over K which means o is an isomorphism from

K to itself and o(x) = x for all x eK." Then P%:=(x?,y?) is also a point on C,

and o0 =o0.

Definition 3.1 (Field of definition of a divisor)
Adivisor D= z m, P is said to be defined over K if D’ := z m,P? is equal to

D for all automorphisms of K overK.

Notice that the set of all automorphisms of K over K is the Galois Group

Gal (R/ K) defined in Definition 2.10 (Galois Group).

If a divisor D is defined over K, it does not mean that each point in the support of
D is a K-rational point. A principal divisor is defined over K if and only if it is a

divisor of a rational function which has coefficients in K. The set Jc(K) of all

16

divisors defined over K in J is a subgroup of J.

Since each element of the Jacobian is a coset, we need a unique representation for
the divisors in the Jacobian. Such divisors exist and are called reduced divisor,
which is introduced in section 3.2. In section 3.3, we introduce the Mumford’s
representation [27]: a reduced divisor can be represented by the gcd of two
polynomials a(x) and y- b(x). The points associated to the corresponding divisor are
the roots of both a(x) and y- b(x). These two polynomials can also be seen as ideals
modulo principal ideals. The equivalence classes are called ideal classes. Adding
divisors in the Jacobian is the same as composing ideals. Cantor’s algorithm [2] can

efficiently compute the group operation of two divisors in the Jacobian.

3.1 Definitions and properties

We use K to denote a field and: K to denote the algebraic closure of K in this

chapter.

Definition 3.2 (Hyperelliptic curve)

A hyperelliptic curve of genus g over K is an equation of the form
C: y*+h(x)y= f(x) in K[x, y], where deg(h(x)) = g, deg(f(x)) = 2g+1, f(x) is a
monic polynomial, and the integer g = 1. A hyperelliptic curve C should be

non-singular, that is, there are no solutions (X, y) € K xK on curve C which satisfy

both partial derivative equations 2y+h(x)=0 and h'(X)y—f'(x)=0.

Definition 3.3 (K-rational points)
The set C(K)= {(X, VX yeK,y>+h(x)y = f(x)} w{oo} is called the set of

17

K-rational points on C. The point oo is called the point at infinity.

Definition 3.4 (Opposite, special and ordinary points)
For P=(x, y) eC the opposite of P is the point P =(x,—y—h(x)). If P=P
then it is called special point, otherwise it is called ordinary. The opposite of the

point at infinity oo is defined as o = o0, hence is a special point.

Lemma 3.1
Let C: y*>+h(x)y=f(x) be a hyperelliptic curve defined over K. If the

characteristic of K is odd, then C can be transformed to the form y* = f,(X) where

f1(X) has no repeated roots in K.
Proof:

Under the change of variables X=2X,y=2(y=h(x)/2), the equation of C is

_h®) h(x)

transformed to (y T)2+h(x)(y—T): f(xX) , which simplifies to

h(x)’

y =1+ = 1,00

Since C is a hyperelliptic curve, there is no point (X, y)eRxR satisfying

y’=f1(x), 2y=0, and f,;"(x) =0. Therefore, f(x) has no repeated roots.

Lemma 3.2

The polynomial F(x,y)=Yy>+h(x)y— f(x) is irreducible over K.
Proof:

Suppose F(x, y) is reducible over K , then F(X,y)=(y—a(X)(y+b(x))
=y> +(b(x)—a(x))y—a(x)b(x) for some a, be R[X] . But deg(a(x)b(x)) = deg(f(x))

= 2g+1 and deg(a(x)+b(x)) = deg(h(x)) =g which is impossible.

18

3.2 Reduced divisors

We defined the Jacobian of curves in chapter 2, and with the definitions in section
3.1, we know that the Jacobian of a hyperelliptic curve C is J = D%P. Note that two
divisors D; and D, in J are said to be equivalent if they are in the same equivalence
class, i.e. D;-D,eP, denoted by D;~D,. In the following we introduce reduced

divisor to uniquely represent the divisors in the same equivalence class of J.

Definition 3.5 (Semi-reduced divisor)

A semi-reduced divisor is _a,,.degree zero divisor of the form

D= > m,P- > myo with the followingproperties:

PeC\oo PeC\wo

(1) mp>0,

(ii) if PP and m,>0 then'm;.=0,

(iii) if P =P and m,>0 then m, =1.

Definition 3.6 (Reduced divisor)
Let D= z m,P — z m,oo be a semi-reduced divisor. If z m, < genus

PeC\wo PeC\wo PeC\w

then D is called a reduced divisor.

Lemma 3.3

For each divisor De D" there exists a semi-reduced divisor D;eD° such that
D~D;.

Proof:

19

Let D= z m,P—moo. Let (Ci, Cy, C3) be the partition of the support of D,

PeC\wo

such that C, ={PeC\oo|P#P,m,2m.}, C,={PeC\oo|P=P,m, >m}

,and C,={PeC\w|P=P}. Then D= m,P+ > m,P+> m,P-mo. Let

PeC, PeC, PeCy
D=D- > mdiv(x-x)- Y, [&J-div(x—xp)
P=(Xp,yp)eC, P=(Xp,Yp)eC; 2
=S (mp-m)P+ Y (m, —2-{&J)P—mloo for some m €Z.
PeC, PeC, 2

Hence D;~D and D; is semi-reduced.
For example, let D=06R +4/I51+3P2 1300 D where P # ﬁl and P, = IB; .
Then C;={P}, C={P, }, and Cs5={P,}.
Let D, = D—4.div(x—xPl)—BJ-div(x—xpz), then D~D.
D, = D—4(P, + P —200) — (2P, <200) = 2P P, =300,

Hence D; is semi-reduced.

Theorem 3.1 [25]

For each divisor D e D° there exists a unique reduced divisor D; such that D~D;.

3.3 Representation

When we implement a hyperelliptic curve cryptosystem, we work over a finite
field K. In the following, we introduce the computational representation of reduced
divisors of the Jacobian defined over K, which is so-called Mumford representation

[27].

20

Fact 3.1 (Mumford representation)
For a hyperelliptic curve C: y>*+h(X)y=f(y) in K[x,y] , and

D= Z miF’i—(Zmi)oo be a semi-reduced divisor, we can use two
R=(%,y;)eC

polynomials a(x), b(x) € K[X] to uniquely represent D. Let a(x)= H(X— x)™ .

Let b(x) be the unique polynomial satisfying:
(1) degu(b) <degi(a),
(i1) b(x;) =yi for all i which m; #0,
(iii) a(x) divides (b(x)* +b(x)h(x)— f(x)).
Then D = ged(div(a(x)), div(b(x)-y)); we usually simplify the notation as
div(a, b).

If D=div(a, b) is a reduced divisor,then sdeg, (a) = > m; < genus.

The zero divisor, the identity of J¢(K), is represented by div(l, 0). The
opposite of a divisor div(a, b) is given by div(a, -h=b), which is also called involution.

This means div(a, b) + div(a, -h-b) ~ div(1, 0) under the Jacobian group law.

Fact 3.2 (Hasse-Weil Bound)
Let C be a hyperelliptic curve of genus g defined over F;. Then the bound of

the order of Jc(Fg) is given by:

(Va-1)" <#3c(Fp<(ya+1)”.

and the number of Fg-rational points is:
q+1-29./q <#C(F,)<q+1+29./q.

As aresult, we know that #J.(F,)~q° and #C(F)~q.

21

3.4 Group law

By using Mumford representation described in the previous section, Cantor’s

algorithm [2] can compute the group operation of Jc(K) efficiently.

Algorithm 3.1 (Cantor’s algorithm)

Input: Reduced divisors D; = div(a;, by) and D,=div(a,, by) € Jc(K).

Output: The reduced divisor D3 = div(as, bs) sucht that D3 ~ D+D..

Phase 1: (Composition)

1. Compute d; = ged(a, ap) = eja; + ea,

2. Compute d = ged(d;, by+by+h) = c¢id; + c2(by+by+h)
3. Let s; = cjeq, Sp = ci€), and s3 =.¢€3, so that

d =s;ja; + spa; + s3(bytbath)

4.Set a= aéaz‘z

s,ab, +s,a,b +s,(bb, +) m
d

and b= a

Phase 2: (Reduction)

_ f—bh-b?
a
and b'=(-h-b) mod a

5.Set a'

6.1f deg(a') >g thenset a<—a', b« b' and go to step 5.

7. Make a' monic, and output (a3, b;) = (a', b").

In Cantor’s algorithm, the composition phase gives a semi-reduced divisor
div(a, b) ~ D;+D», and the reduction phase reduces a semi-reduced divisor to the
unique reduced divisor.

Here is an example that illustrates how Cantor’s algorithm works.

22

Example 3.1
Let C: y*+y = x’+1 be a hyperelliptic curve of genus 2 over finite field F,.

Given D\=div(x+1, 0) and Do=div(x*+1, x) € Jc(F2).

d = gcd(ay, ap, by+by+h) = ged(x+1, x>+, xt1)=x+1 = s1=1, s,=s3=0.

_ aa, =(X+1)(X2+1)=X+1
d (x+1)’

b

_sab,+sab +s,0b+f) a:(X+1)X mod ()1
d X+1 ’

Since deg(a)=1=2, the divisor div(a, b) is already reduced.

Then, we have D+ D, = div(x+1, 0) + div(x*+1, x) = div(x+1, 1).

In recent years, several researchers have derived the explicit formulas for small
genus hyperelliptic curves from Cantor’s algorithm.*. They investigate what can be
the input of Cantor’s algorithm and proceed in considering these different cases.

With careful analysis, some redundant field operations can be omitted in explicit
formulas. For example, Lange [22] presents explieit formulas for the group law of
genus 2 hyperelliptic curves, and the most common case in the addition of two
reduced divisor requires 1 inversion, 12 multiplications, and 2 squarings. The
explicit formulas for genus 3 hyperelliptic curves can be found in [17]. When genus
becomes higher than 4, the explicit formulas is getting too complicated and may not

be possibly derived by hand.

3.5 Hyperelliptic curve discrete log problem (HCDLP)

The security of several cryptosystems is related to the difficulty of computing
discrete logarithms modulo a large prime number p; i.e. given two numbers (g mod p)
and (g" mod p), it seems to be infeasible to compute x when p is large enough.
Instead of using the DLP modulo a large prime p as the basis of cryptographic

protocols, one can consider the DLP in an arbitrary group that admits an efficient

23

element representation and group law.

Definition 3.7 (DLP)

Let G be a finite cyclic group G= <g> of order n, and given an element he G..

The discrete logarithm problem is to find the integer x € [0, n-1], such that g*=h.

Since the Jacobian of a hyperelliptic curve is also a finite abelian group, based on

the difficulty of the DLP, it can be designed for cryptographic use.

Definition 3.8 (HCDLP)

Let C be a hyperelliptic curve over a finite field Fq and Jc(Fq) its Jacobian with
order # Jc(Fg) = n. Given two reduced. divisors D, DreJc(Fq) and Dye<Di>.
The hyperelliptic curve discrete Jogarithm problem.is to find the integer A< [0, n-1],

such that AD=D,.

Example 3.2

Consider the genus 2 hyperelliptic curve: C: y2 —x>+2x*+ 1 in Fi[x,y]. The

partial derivatives are 2x* + 2x’=0 and 2y=0. ~Since there are no points in F x F
which satisfy C and the partial derivatives, the hyperelliptic curve is non-singular.

Although the divisors are defined over F3, the points in the support of a divisor are

n F32.
The finite field F, = F X1/ +1) = {0,1+1i,2i,1+2i,2,2+2i,i,2+i,1} .

The F,, -rational points are P, = (0, 1), P, =(1, 2), P3=(1, 1), P4 = (0, 2),

Ps = (2+1, 2+21), P¢ = (2+21, 2-+1), P; = (i, 2+1), Pg = (21, 2+21),
Py = (1, 1+21), P1o = (21, 1+1), Py = (2+1, 1+1), Pjp = (2421, 1+21), <o,
The order of Jacobian #Jc(F3) = 17.

Let Dy =div(x’, 1). We can use D as the generator of the group, and use

24

Cantor’s algorithm to generate the group elements.

1 D, =div(x, 1) =P, +P-200
2 D) =div(x+2, 2) =P,-

3D, =div(x* +2x+2, 2x+1) =Ps+Pg-200
4D, = div(x*+x+1, x+1) =P, +P,-200
5D = div(x*+1, x+1) =Po+Pjy-200
6 D = div(x*+2x, 2x+2) =P3+P,-200
7D, = div(x*+2x, 1) =P, +P;-200
8 Dy =div(x, 2) =P4y-

9 D; =div(x, 1) =Py- o

10D, = div(x*+2x, 2) =P, +P;-200
11D, = div(x*+2x, x+1) =P, +P,-200
12D, = div(x*+1, x+2) =P;+Pg-200
13D, = div(x*+x+1, 2x+2) =P3;+P;-200
14D, = div(x*+2x+2, x+2) =Pj + P}, -2
15D, = div(x*+2, 1) =P;- o

16D, = div(x?, 2) = Pyt Rjz 200

17D, = div(1, 0)

25

Chapter 4

Algorithms for HCDLP

4.1 Introduction

The best known algorithm for solving the DLP in generic groups is Pollard’s rho
. n
algorithm. Pollard’s algorithm has an exponential expected running time of ,/%

group operations and negligible storage requirements. In order to prevent such
square-root attacks, the group order’n must have a large prime factor. There are
faster algorithms for the DLP than Pollard’s rho method. The most powerful is the
index calculus method which yields subeéxponential-time algorithms for the DLP in
some groups.

The first subexponential-time algorithm to compute discrete logarithms over
hyperelliptic curves of large genus is introduced by Adleman, DeMassais and Huang
[1] in 1994. This algorithm was rather theoretical, and some improvements on it
were done by other researchers. Flassenberg and Paulus [9] implemented a sieve
version of this algorithm, but the consequence for cryptographical applications is not
clear. Enge [6] improved the original algorithm and gave a precise evaluation of the
running time, but did not implement his ideas. Muller, Stein and Thiel [26] extended
the resultsto the real quadratic congruence function fields. Smart and Galbraith [12]
also gave some ideas in the context of the Weil descent, following ideas of Frey; they
dealt with general curves (not hyperelliptic). We will not discuss those in details but

list them as references.

26

When the index calculus algorithm is applied on the small genus HCDLP, even the
fastest variation is not faster than Pollard’s rho method for the genus less than 3.
Hence the use of hyperelliptic curves in public-key cryptography appears as an
alternative to the use of elliptic curves, with the advantage that it can be used in a
smaller base field for the same level of security. In order to analyze the security of
such systems, we need to know how the index calculus method works for solving
small genus HCDLP.

In 2000, Gaudry [13] first presented a variation of index calculus attack for a
hyperelliptic curve of genus g over F, that could solve the HCDLP in time O(Q*).

And Harley [13] improved this algorithm with reduced factor base such that HCDLP

P
can be solved in time O(q g”} . Furthermore, Thériault improved it by using the

almost-smooth divisor which= contains ' exactly one large prime. Theriault’s
P
algorithm [32] works in time O(q 29“].

By considering double large prime, the time complexity of hyperelliptic index

calculus algorithm can be reduced to O(q g}. This idea was proposed

independently by Gaudry et al. [16] and Naogo [28] in 2004. They used different
tricks to handle large primes, but got the same time complexity. We discuss these
variations of index calculus algorithm for small genus HCDLP in section 4.2.
However, the double large prime variation can not be applied on genus 2
hyperelliptic curves. We propose an algorithm that can solve the genus 2 HCDLP
with time complexity O(q) in Chapter 5 which can be comparable to Pollard’s rho
method. Table 4.1 shows the comparison between these algorithms described above.

Our algorithm has the same time complexity as Pollard’s rho method but smaller

27

hiding constant term. We also have detailed analysis in Chapter 5.

Table 4.1 Time complexity of algorithms solving HCDLP

Genus g 2 3 4 5 6
llard’s rh q) ’ ; :
Pollard’s rho 2 2
q d q g
Original index calculus q2 q2 q2 q2 C|2
4 3 8 5 12
with reduced factor base Bl 2 5 3 7
g q g q g
10 14 18 22
with single large prime 5 7 9 11 13
g g g g g
4 3 8 5
with double large prime — qE qE qE q§
Our algorithm g - - - —

4.2 Index calculus algorithm for small genus HCDLP

A reduced divisor in the Jacobian Jc(K) is represented by two polynomials (a, b),
and the factorization of a as polynomial in K[x] is compatible with the Jacobian group
law. This is the key stone for defining a smooth divisor and then the index calculus

algorithm.

Fact 4.1 (Factorization)

Let C be a hyperelliptic curve over a finite field F,. Let D=div(a, b) be a
reduced divisor in Jc(Fg). Factor a(x) as a(X):Hai(X) where aj(x) are

28

irreducible factors of a(x) in Fg[x]. Let bij(x) = b(x) (mod aj(x)).

Then D; = div(aj, b;) is a reduced divisor and D=D = Z D, in Jc(Fg).

Remark 4.1

To factor polynomials over finite fields we can use the Cantor-Zassenhaus
algorithm, which is invented by D. Cantor and Hans Zassenhaus in 1981 [3]. It is

currently implemented in many well-known computer algebra systems.

With this result in Fact 4.1, a reduced divisor can be rewritten as the sum of

reduced divisors of smaller deg(a;), and deg(a) = Zdeg(ai) . If the a-polynomial of

a reduced divisor D is irreducible then it,can not be rewritten as their decomposition.

We call them primes in Jc(Fg).

Definition 4.1 (Prime)

A reduced divisor D=div(a, b)* &+Jc(Fg)is said to be prime if the polynomial a

is irreducible in Fy[x].

Definition 4.2 (B-smooth)

Let B be an integer. A divisor is said to be B-smooth if all the prime divisors in
its factorization of a-polynomial have degree at most B. When B= 1, a 1-smooth

divisor will be a divisor for which the polynomial a splits completely over F,,.

We give a sketch of the index calculus algorithm in the following. Several

improvements described in this section are based on this algorithm.

29

Algorithm 4.1 Hyperelliptic index calculus algorithm

Input: A divisor D; in Jc(Fq) with know order n = ord(D)),
and a divisor D, e <D>.

Output: An integer A sucht that D,=AD);.

1. Fix smoothness bound B and construct the factor base F.
2. While not enough relations have been found do:

Pick a random element R=aD;+pD,.

If R is smooth, record the corresponding relation.
3. Solve the linear algebra system over Z,,.

4. Return A.

The factor base F contains allsthe prime reduced divisors which a-polynomial has

degree at most B: F ={DeJ(F,):D=div(a,b) is prime, deg(a)<B} . For

convenience, we use g; for i=1,2,... #F to-denote the element in F. To find all the
prime divisors in F, it suffices to test all' the monic polynomial a(x) of degree at most
B, checking if it is irreducible and if there exists a polynomial b(x) such that

div(a, b) e Jc(Fq)-

While searching the smooth relations in step 2, a naive way to select a random
element R=aD;+BD, is costly: two integers o and are randomly chosen in [0, n-1]
and then two scalar multiplications have to be done. It costs O(log n) group
operations. We can use a pseudo random walk instead, so that each new random
element R costs just one group operation.

Let R, =¢,D, +,D, be the starting point of the walk where ao and By are

random integers in [0, n-1]. For j from 1 to r, we compute random divisors

Tj =a, D, +bj D,. The walk Rj:+; will then be given by adding one of the T; to R;.

30

The index je[1, 1] is given by a hush function H evaluated at R;. In other words,
Ri+1=Ri+T; where j=H(R;) €[1, r], and ai1=0; +aj, Bix1 = Pi+ bj. Once the
initialization is finished, we can compute a new pseudo-random element R;;; at the
cost of one addition in the Jacobian. Practical experiments suggest that by taking r=
20 the pseudo random walk behaves almost like a purely random walk.

For each R; of the random walk, test its smoothness by factoring the
a-polynomial of R;. If all its irreducible factors have degree at most B (then it is
smooth), express it on the factor base; otherwise, throw it away. Thus we collect a
subsequence of the sequence (R;) where all the divisors are smooth. We denote this
subsequence by (Sk) with kth smooth element Sy=axD,+pxD,>. Hence we can put the
result of this computation in a matrix M, each column representing an element of the
factor base, and each row being a reduced divisor'Si expressed on the basis: for a row

k, we have §, = z m,;0; = oD+ S, D, , where. M-= (my;). We collect #F + 1 rows

I<i<#F

in order to have a (#F +1)x#F. matrix. . “Fhus the kernel of the transpose of M is of
dimension at least 1.
Using linear algebra, we find a non-zero vector (yx) of this kernel, which

corresponds to a relation between the Sk’s. So that

> 78 =0=(, 7@)0 +(3, 7,) D, and then 4= LA e The

Zk 7By

discrete logarithm is now found with high probability, because the denominator is
. 1
zero with probability —.
n
In this algorithm, there are two crucial points: one is to search enough smooth
relations, and another is to solve the large linear system. In the matrix obtained in

the algorithm, each row is a smooth divisor written as sum of at most g elements of

the factor base. Hence the matrix is very sparse, and we have at most g terms in

31

each row. For such a sparse matrix, Lanczos’s [21] or Wiedemann’s [33][5]
algorithm can be used, in order to get a solution in time quadratic in the number of
rows, instead of cubic by Gaussian elimination.

We know that the index calculus algorithm can solve HCDLP in a

subexponential time O (ng (% , V2 D when g >logq [1], where

Ly (a,C)= exp(c(log N)“(loglog N)M) . When the genus is relatively small (say at
most 9), the theoretical optimal smoothness bound B = [logq ng G,ﬁ ﬂ which

tends to 0. In this case, B= 1 is the best choice. The first index calculus algorithm
for hyperelliptic curve of small genus was proposed by Gaudry in 2000. We

summarize in the following algorithm.

Algorithm 4.2 Index calculus.algorithm for-small genus HCDLP

Input: A hyperelliptic curve C-of small.genus-g over F,
a divisor Dy in Jc(Fq) with know ordet n'= ord(D)),
and a divisor D, e <D>.

Output: An integer A sucht that D,=AD).

1. /* Build the factor base F */
For each monic irreducible polynomial a; over F, of degree 1, try to find b; such
that div(a;, b;) is a divisor of the curve. If there is a solution, store g; =div(aj, b;)
inF.

2. /* Initialization of the random walk */
Forj from 1 to 20, select a; and b; at random 1in [0, n-1], and compute

Tj = ale + bjDz.

Select 0y and Py at random in [0, n-1] and compute Ry := agD; +poD>.

32

Setk to 1.

3. /* Main loop */

(a) /* Look for a smooth divisor */
Compute j := H(Ry), Ro := R + Tj, ap := ap + a; mod n, andpy := B + b; mod n.
Repeat this step until Ry is a smooth divisor.

(b) /* Express Ry on the factor base F */

Factor ag(u) over Fg, and determine the positions of the factors in the basis G..

Store the result as a row Ry = z m,;g; of a matrix M = (my;).

Store the coefficients ax = ap and Bx = Po.
If k <#F + 1, then set k :=k + 1, and return to step 3.a.
4. /* Linear algebra */
Find a non-zero vector (yx) of the kerfiel of the transpose of the matrix M.
The computation can be done in Z,.

5. /* Solution */

—%(modn).
k 7 kFk

Return A =

Lemma 4.1

The proportion of smooth divisors in the Jacobian of a curve of genus g over Fq

1
tendsto —.

g!
Proof:
By the Hasse-Weil bound, #F= #C(F,) = O(q) and #Jc(Fq) = O(q®). The
smooth divisors can be written as the sum of at most g points in C(F,), hence we have
q°

about — smooth divisors in Jc(Fq). The proportion is L'
g’

g!

In step 1, we need to perform q times a resolution of an equation of degree 2 over

33

Fq. Step 2 requires a constant number of Jacobian operations. Step 3 is a loop of
O(q) times to find enough smooth relations. In step 4, this linear algebra step
consists in finding a vector of the kernel in a sparse matrix of size O(q), and of weight
O(gq); the coefficient are in Z,. Hence Lanczos's algorithm provides a solution with
cost O(gq®). This last step requires only O(q) multiplications modulo n, and one
inversion. When q is large, we can regard g and logq as small constant. Then the

complexity of this algorithm is O(q?).

Theorem 4.1 [13]
Let C be a hyperelliptic curve of genus g over the finite field F,. If g>g! then

the discrete logarithms in Jc(Fq) can be computed in expected time O (g3q2+‘g) .

Example 4.1
Given a genus 2 hyperelliptic curve C: y2 =x" +2x*+ 1 over F3. This curve is
also used as an example in Example 3.2; "LetD, = div(x’, 1) with ord(D;) = 17, and
D, = div(x*+1, x+2) €<D;>. We ¢an use theindex calculus algorithm described in
Algorithm 4.2 to find an integer A such that D,=AD;.
1. Construct factor base
F = {g;=div(x, 1), go=div(x+2, 2), g3=div(x+2, 1), gs=div(x, 2)}.
2. Initialize the pseudo-random walk:
T, = 2D+ 10D, = div(x*+2x+2, 2x+1)
T, = 13D, + 5D, = div(x*+1, x+1)
T3 =3D; + 7D, = div(x+2, 2)

3. Search enough smooth relations by using a pseudo random walk:

Ro = 1D +1D; = div(x*+x+1, 2x+2) =2g;.
R, = Ro+T, =14D+6D, = div(x%, 1) =2g,.
R, =R+T, =16D+16D, = div(x*+x+1,x+1) =2g,.
R; = Ry+T) = 1D;+9D, = div(x*+2x, 1) = gi+gs.
Ry = R3+T3 = 4D, +16D, = div(x,1) =g..

If R; is smooth we can store it in a matrix M, otherwise discard it.

34

These smooth relations are stored in a matrix M:

ai 1 14 16 1 4
Bi 1 6 16 9 16

01 0 0 1 1

02 0O o 2 0 0

g3 2 0 0 1 0 Matrix M
04 0O o 0 0 0

4. When there is enough(#F+1 = 5) smooth relations, we can find a non-trivial
kernel r of M, such that rtM=0. We have r=(0, 1, 0, 0, -2)T.

2 1 0

0 0f |0
r-Mm=0+| [+0+0-2-| |=

0 0f |0

0 0] |0

T

Hence, 6D;-26D, =0,
= D, =[6/26 (mod 17)] D;=12D,.

4.2.1 Reduced factor base

Because the running time for Gaudry’s algorithm is dominated by the cost of
solving the linear algebra, a natural approach to improve the algorithm is to reduce the
cost of linear algebra part. Hence we need to reduce the size of the linear system,
which means reducing the size of factor base. This was first introduced by Robert
Harley. We can choose the factor base F with |F|=q" where r is a real number in the
interval (0, 1). This increases the cost of searching relation, because it also reduces

the proportion of the smooth divisors in the Jacobian. To balance the cost of the

9

is the best choice. Then, the time
g+1

relation search and linear algebra r =

35

P
complexity of the index calculus algorithm with reduced factor base is O (q ot] .

Theorem 4.2 [13]
Let C be a hyperelliptic curve of genus g over the finite field F,. If g>g! then

+&
g+l

2
the discrete logarithms in Jc(Fq) can be computed in expected time O {gs q] .

4.2.2 Single large prime variation

As the index calculus algorithm for the multiplicative group of a finite field, the

hyperelliptic index calculus algorithm can be improved by using large primes.

Definition 4.3 (Large prime)

Let r be a real number such that 0<r<1. _A-subset S of Fq of size q" is fixed
arbitrarily. The factor base F is the set F={P=(x,y)eC(F,)cJ.(F,);xeS}.
The set of large primes L is the set L ={P e C(F,) < Jac.(F)}\F.

We have #F ~q" and #L=~q. The union of factor base and large primes is
the set of Fy-rational points (x;, y;) €C(Fq) which can represent the prime divisors

with div(aj, b;) = div(x-x;, yi).

Definition 4.4 (1-almost smooth divisor)

A reduced divisor D :Z:miF’i —moo is said to be 1-almost smooth if all but

exactly one of the P;’s are in F and the remaining P; is a large prime.

36

Definition 4.5 (2-almost smooth divisor)

A reduced divisor D :Z:miF’i —moo is said to be 2-almost smooth if all but

exactly two of the P;’s are in F and the remaining P;’s are two large primes.

Simple combinatorial arguments give good estimates for the probabilities of

obtaining almost smooth divisors in the relation search.

Lemma 4.2
g(r-1)

The probability for a random divisor to be smooth is approximately

The probability for a random divisor to be 1-almost smooth is approximately

(9-1)(r-1)
—q(Dl The probability for a random divisor to be 2-almost smooth is
g-D!
(9-2)(r-1)
approximately

2(g-2)!

We now consider the single large prime variation of the index calculus algorithm.
In order to take advantage of the high number of 1-almost smooth divisors, we must

find pairs of these divisors with the same large prime. For example, given two

1-almost smooth divisors D, = z mP +nQ—-*o, D, = Z m;P. +n,Q —*wo where
ReF ReF

Q is a large prime, then we can obtain a smooth divisor by computing n,D, —n,D,.
The following algorithm shows how this method can be applied in the relation

search of the original index calculus algorithm.

Algorithm 4.4.5: Searching relation with single large prime

Input: A hyperelliptic curve C of small genus g over F,

a divisor Dy in Jc(Fq) with know order n = ord(D)),

37

a divisor D, e<D>,
a factor base F, and the set of large primes L.

Output: A system of k smooth divisors of the form R, =¢,D, + 8D, .

1. /* Initialization of the random walk */
For j from 1 to 20, select a; and b; at random in [0, n-1], and compute
T; := a;D; + b;D».
Select a and B at random in [0, n-1] and compute R:= aD; +D,.
P& {}
i<1
2. /* Main loop */
While i=k do{
R&R+T; for some randomly chosen j, update o and .
Decompose R into prime divisors
If R is smooth then
Ri<R
i€<itl
If R is 1-almost smooth with a large prime Q then
If Q is already in P then
Obtain a smooth divisor R by cancelling the large prime Q
Ri€R
1€<itl
else (Q is not in P)
Add Q to the set P with the associated relation R

}

Return {Rj, Ry, ..., R}

38

According to Theriault’s analysis, by choosing the factor base F such that

! / +l +&
|F |= O(gzq(g 2) (g 2) J, we get the following result:

Theorem 4.3 [32]
Let C be a hyperelliptic curve of genus g over the finite field F,. If g>g! then

2—i+g
the discrete logarithms in Jc(Fq) can be computed in expected time O (gs q " J .

Example 4.2
Given the same HCDLP as in Example 4.1.
Let C: y2 =x>+2x*+ 1 over Fs.
D, = div(x%, 1) with ord(D;) = 17, and D, = div(x*+1, x+2) €<D;>. We want
to find an integer A such that D,=ADj.
1. Construct factor base F ={g =div(x, 1), g=div(x+2, 2), gs=div(x+2, 1)}, and
the set of large primes is {gs=div(x, 2)}.
2. Initialize the pseudo-random walk:
T, = 2D+ 10D, = div(x*#2x+2, 2x+1)
T, = 13D, + 5D, = div(x™ 1, x+1)
T3 =3D; + 7D, = div(x+2, 2)

3. Search enough smooth relations by using a pseudo random walk:

Ry = 16D;+8D,= div(x*+2x, 2) = grtg.
Ri = Ro+T; = 1D, +1D; = div(x*+x+1, 2x+2) =2g;.
R, = R+T, = 14D;+6D; = div(x’,1) =2g,.
R; = Ry+T, = 10D +11D, = div(x*+2x, 2x+2) = g3tga.
R, = R3+T, = 6D, +16D, = div(x*+2x, x+1) =gt

Ry and Rj are 1-almost smooth relations with the same large prime g4. We
can calculate a smooth relation R’= Ry-R3=6D;-3D,=g,-g3.

These smooth relations are stored in a matrix M:

39

i 1 14 6 6

Bi 1 6 -3 16

01 0O 2 o0 1

92 O o 1 1

O3 2 0 1 0 Matrix M

4. When there is enough(#F+1 = 4) smooth relations, we can find a non-trivial
kernel r of M, such that rtM=0. We haver=(1, 1, 2, -Z)T.

0 2 0 1 0
r-Mm=/0|+{0|+2-|1 |-2:/1|=|0
2 0 -1 0 0

o, 1 14 6 6 15
=1r- = + +2. -2. —
FiRHE A AT
Hence, 15D;-31D, =0,
= D, =[15/31 (mod 17)] D,=12D, .

4.2.3 Double large prime variation

Since 1-almost smooth divisors can be used to produce relations so much faster, it
is natural to also consider 2-almost smooth divisors. By the definition of 2-almost
smooth divisor, the smallest genus g of a hyperelliptic curve is 3 such that a reduced
divisor which is 2-almost smooth is of the form D=P+Q;+Q,-300 where P is in factor

base and Q; are large primes. Here is an example to cancel the large primes.

Example 4.3
Let C be a hyperelliptic curve of genus g=3. D;=P+Q;+Q;-30,

Dy,=P,+Q,+Q3-3, and D3;=P3+Q3+Q;-300 where P; are in the factor base and Q; are

large primes. We can cancel the large primes by multiplying the divisors by a

40

relative constant and adding them together. In this example, the constants are 1 or -1.

Hence D,-D,+D, =P, —-P,+P,+2Q, -3 is a 1-almost smooth divisor. If we

have another 1-almost smooth divisor D4=P4+Q;-2c0 then we can get a smooth divisor

by D, -D,+D,-2D, =P P, +P-2P, + .

To manipulate the chain of almost smooth divisors, Gaudry and Thome introduce
the graph of large prime relations (LP-graph, in short). LP-graph is an undirected
acyclic graph with 1+#L vertices, corresponding to the elements of the set of large
primes L and the special vertex 1. All edges of the LP-graph are labeled with a
relation. An edge between vertex 1 and vertex Q; represents a l-almost smooth
divisor with the large prime Q;, and an edge between vertex Q; and Q; represents a

2-almost smooth divisor with these'two large primes.

Algorithm 4.3 Searching relation-with-double large primes

Input: A hyperelliptic curve C of small genus g=3 over F,
a divisor Dy in Jc(Fg) with know order n = ord(D,),
a divisor D,e<D;>,
a factor base F, and the set of large primes L.

Output: a system of k smooth divisors of the form R, =¢,D, + ZD,.

1. /* Initialization of the random walk */
For j from 1 to 20, select a; and b; at random in [0, n-1], and compute
T; == a,D; + bD».
Select a and B at random in [0, n-1] and compute R:= aD; +fD,.
G<empty graph
<1
2. /* Main loop */
While 1=k do{
R&R+T; for some randomly chosen j, update o and .

Decompose R into prime divisors

41

If R is smooth then
Ri<R
i€<itl
If R is 1-almost smooth with a large prime Q then
If there is a path from vertex 1 to Q then
Obtain a smooth divisor R by cancelling the large primes in the path
Ri<R
1€<it+l
Leave G unchanged
else (edge(1, Q) would not create a cycle in G)
Add edge(1, Q) to G with the associated relation R
If R is 2-almost smooth with large prime Q;, Q; then
If edge(Q;, Q2) would create a cycle containing vertex 1 in G then
Use the relations in the cycle to cancel the large primes and
then obtain a new smooth divisor R.
Ri€R
1€<itl
Leave G unchanged
If edge(Q;, Q) would-create a cycle not'containing vertex 1 in G then
Use the relations in the'¢yele to cancel the large primes other than Q,
If Q, is also canceled then a new smooth divisor R is obtained
Ri€¢R
i<itl
Leave G unchanged
Else (the new divisor R is 1-almost smooth divisor with Q)
Add edge(1, Q;) to G with the associated relation R
Else ((Qi, Q2) is not connected in G)
Add edge(Q;, Q) to G with the associated relation R

}
Return {Ry, Ry, ..., Ry}

To test if adding an edge would create a cycle, we can use the union-and-find

algorithm to find if these two vertices of the edge are in the same set (connected

42

component).

Theorem 4.4 [16]
Let C be a hyperelliptic curve of genus g=3 over the finite field F. If g>g!

then the discrete logarithms in Jc(Fq) can be computed in expected time

5 2—§+£
0| g7q .

4.3 Computational comparison

4.3.1 Solving large sparse linear system

The last step in the index=calculus algorithm' 1s to solve a large sparse linear
system over finite field. We d4mplemented.Lanczos’s algorithm to do this work.
Here is the Lanczos’s algorithm to solve.the system Ax=w for a column n-vector X,

where A is a nxn matrix and w is a column n-vector.

Algorithm 4.4 Lanczos’s algorithm

Input: A nxn matrix A and a column n-vector w

Output: A column n-vector X for the system Ax = w.

1. wo=w,
Vl:AWOa
V.,V
m:w—ililo.
(W, V)
2. 1=1

While (wi, Aw;) # 0 do

43

Vig = AWi >
V. V. V. V.

\Ni+1 :Vi+1 _(i+1° |+1)\Ni _ (i+1° |) \Nifla
(W, Vi) (Wip» V)

1=1+1.

3. If w;=0, then
= (WVW) . .
X=) ———W,; isa solution.
j=0 (Wj ’VJ+1

In Algorithm 4.4, the notation (,) denote the inner product of two vectors.

In general, the systems we need to solve are not symmetric, and are of the form
Bx = u, where B is mxn matrix, m=n, x is an unknown column n-vector, and u is a
given column m-vector. Suppose we need to solve the system Bx = u over field K.
Let D be a mxm diagonal matrix with the,diagonal elements randomly selected from
K\{0}, and let

A=B'D’B,

w=B"Du.
We can expect that with high probability "a solution to the system Ax=w is a

solution to the system Bx=uU.

4.3.2 Curve selection

To select a suitable hyperelliptic curve, we need to check if the order of Jacobian
has a large prime factor in order to avoid the square root attacks. Koblitz first
described a method of calculating the number of points on the Jacobian of a
hyperelliptic curve of genus 2 and of small characteristic, by using zeta functions.
Sakai and Sakurai [30] improved the method by proposing a point counting method

for curves of small characteristic but of arbitrary genus.

44

Algorithm 4.5 Sakai and Sakurai method

Input: A hyperelliptic curve C of genus 2 over the field Fqn .

Output: #J. (F)

qu

1. Determine N;, the number of points on the curve over Fqr for r=1,...,g.

29
2. Determine the coefficients of LFq)= Zait' in the following way:
i=0

(a) ap=1

(b) for 1<i<g: ai:[

(Nk—(qk+1))ai_k]/i.

(c) for g+1<i<2g: a =0, ;.

k=1

3. Compute L (1)= H L- (cj y) , whete, . ~runs. over the n-th root of unity.
d k=l

Return #J.(F)=L. (1).

Note that it should be easy to count Ny, ..., Ny if Fq is small, so this algorithm is
only suitable for fields of small characteristic.

We have implemented the Sakai and Sakurai method to select the suitable
Jacobian of a hyperelliptic curve having an order which containing a large prime
factor.

Example 4.4 lists the test data we use to test the index calculus algorithms for

solving HCDLP in section 4.3.3 and section 5.4.

Example 4.4

Genus 2 hyperelliptic curves:

(@) C:y’+y=x"+x*+x> over Fo, #Jc(F,) =4196353=T7x599479.

45

(b) C:y* +(x*+x+1)y =X +x* over F,

#Jc(F,s) = 66695006 = 2x 7x 4763929 .
(©) C:y’+y=x"+x" over F,, #J.(F,)=17247109633 =13x1326700741.
(d) C:y* +(x*+x+1)y =X +x* over F,,

#Jc(F o) = 274720225346 = 2x 7x19622873239.

Genus 3 hyperelliptic curves:

(e) C:y* +(x*+x*+1)y =x"+1 over F,,

#Jc(F,) =8589762730 =2x5x858976273.
() Cry? +(x +x*+1)y =x"+1 oveniFy;s,

#Jc(F,) =549756909530 =2x5x131x419661763 .
(2) Cry? +(x+x?+1)y = x4 x4 jover: F i

#Jc(F,,) =2255872542702704" = 2%x140992033918919.
(h) C:y? +(x3 +x° +l)y: x"+1 over F,,

#Jc(F,)=144115188252574570 = 2x5x14411518825257457 .

Genus 4 hyperelliptic curves:

. a2 3¢, W9
(i) C:y +xy=x+x over F,,

#Jc(F,) =18566518893488 = 2% x1160407430843.
. a2 3¢, W9
g) Cy +xy=x+x over F,,

#Jc(F,:) =4546690000751824 = 2% x284168125046989 .

46

4.3.3 Comparisons

We have implemented the index calculus algorithms and several variations
described in section 4.2 including original index calculus, index calculus with reduced
factor base, index calculus with single large prime, index calculus with double large
primes. In order to implement these algorithms we use the C++ library NTL [31] to
manipulate the operations over finite field. NTL (Number Theory Library) is a
high-performance, portable C++ library providing data structures and algorithms for
manipulating signed, arbitrary length integers, and for vectors, matrices, and
polynomials over the integers and over finite fields.

We ran our programs on the computer with 1800 MHz CPU and 1G ram to

generate the results in Table 4.2.

Table 4.2 Running time (seconds) of hyperelliptic index calculus

Genus g 2 3 4

Field size q = |F,| 2! 28 2" 2! 28 21 2! 28
Original index calculus 68 3760 | >3days 110 5261 | >3days | 1136 10321
with reduced factor base 6 34 403 93 891 10595 830 6374
with 1 large prime 2 9 18 22 533 665 248 2677
with 2 large primes — — 17 301 458 191 1813

From Table 4.2 we can realize the following facts.

When the original index calculus is applied to small genus HCDLP, using a
relative large factor base reduce the time to obtain a smooth relation but result in a
large linear system which becomes dominating the running time. By using a reduced
factor base to balance the search time and the time of solving linear system, the index
calculus algorithm with reduced factor base solves HCDLP in a much shorter time.

And the large prime variations can further improve the index calculus algorithm.

47

Chapter 5

A Fast Algorithm for Genus 2 HCDLP

5.1 Introduction

For genus 2 hyperelliptic curves, the index calculus algorithm is asymptotically
slower than Pollard’s rho method. In this chapter, we present a faster algorithm for
solving genus 2 HCDLP. A comparison of the time complexity can be found in
Table 4.1. The bottleneck of thesindex caleulus algorithms is due to its linear

algebra part. Hence the idea of our algorithm is to use a graph method to find the

relation of D; and D, such that (zk VO) D, +(Zk 7By) D, =0 without the linear

algebra part.

We choose the factor base as all the prime divisors with degree of a-polynomial
being 1, which can be constructed by finding all the rational points on C in the base
field. For a genus g=2 hyperelliptic curve C over F, if a reduced divisor is smooth

then it can be represented by the sum of at most 2 points in C(Fy). By Lemma 4.1,

the probability to get a smooth divisor is L. l

g! 2

Example 5.1 gives examples of all the cases that would appear in our algorithm.

Example 5.1
Let C be a hyperelliptic curve of genus 2 over Fq. Let P; be the points of C(F,)

and Ri=o;D1+BiD, € Jc(Fq).

48

(a) Let Rj= P;+P;-200, Ry= Py+P3-200, R3= P3+P4-20.
Then we can get a relation of P, and P4 by R;-R,+R3= P+ P4-20.
(b) Let Rj= P1+P,-200, Ry= Py+P3-200, R3= P3+P4-200, R4= P4+P;-200.
Then R;-Ry+R3-Rys =0
(c) Let Rj= P;+P;-200, Ry= Py+P3-200, R3= P3+P;-20.
Then R;-Ry+R3=2P;-200,
R+R,-R3=2P;-2,
-R;+Ry+R3=2P3-200,

In this case, we can not get a relation z 7R =0, but we can get relations of any

one of the points.
(d) Let Ry= P;+P,-200, Ry= Py+P3-200, R3=,P3+P-200, R4= Py+P4-200, Rs= P4+Ps-200,
Rg= Ps+P5-200.
Then (Ry-R3+R1)- (R4-Rs5+Rg)=(2P3-200)- (2P5-20)=0.
(e) Let Rj= P;+P;,-200, Ry= Py +P3-200, R3="P5+P;-200, R4= P3 -c0.
Then -R;+R,+R3-2R4 =0

The following figure shows that we can use the graph for finding cycles to get a

relation Z 7R =0.

49

(a) A path
R Ra -
P, P,
(b) A cycle of even length (c) A cycle of odd length
P, R; P, |
R;
R
R4 R, 3
P
P4 R3 P3 P2 Rz :
(d) A component containing 2 cycles (e) A component containing 2 cycles
P, Py 1
R; Rs Ry R;
P P P
3 5 2 R Ps R,

Figure 5.1 Possible sub-graphs appear in our algorithm

From the example above, we can realize some facts:
1. Case (a): If there is a path from vertex P; to P; then we can compute a relation for
P; and P;.
2. Case (b): If there is a cycle of even length then we can compute a relation R such

that R = Z 7;R, =0 for some v;.

3. Case (c): If there is a cycle of odd length then we can compute a relation of any
one of the points.

4. Case (d), (e): If there is a connected component containing 2 odd length cycles

then we can compute a relation R such that R = z 7R, =0 for some ;.

50

By regarding these edges in the graph as a smooth relation found in the relation
search, it isn’t hard to imagine that a new algorithm for solving genus 2 HCDLP can

be designed with the graph.

5.2 The algorithm

Our algorithm first uses a pseudo random walk to create random reduced divisors
of the form Ri=o;D,+B;D,. Then, create a graph G with |F| vertices corresponding to
the elements in the factor base F, each edge specifying a relation written as the sum of
the points. Initially the graph G contains no edges. If R; is smooth then write R; as
the sum of at most 2 points in C(Eg), and then add the corresponding edge between
these two points in the edge. Notice that if R; 1s written as Ri=cPj-coo where c=1 or 2
and some P;e C(F,) then it is an-edgeof self-loop of the point P;.

The data structure of the graph‘can.be implemented as an array to represent trees
with a union-find algorithm. In other words, we only need to record the parent node
of each element in the array. To test if adding an edge (P;, P;) would create a cycle,
we can traverse the trees from vertices P; and P; to see if they have the same root. If

adding an edge would create an even length cycle then we get a relation

R= 274 R = (Z 7.Q,) D, + (Z 7.5) D,=0 for some vy; such that the discrete

logarithm of D,=AD; can be computed as A =—-&——. If adding an edge would

create an odd length cycle then we can compute a relation R=cP;-cco where P; is the
root of the tree as the case (¢) in Example 5.1. Hence we can store such information

of odd length cycles (including self-loop) in the roots of the trees without creating

51

cycles in the graph G. If later we have another odd length cycle within the same tree
then we can compute a relation S=dP;-doo. With the information of the root P, the
relations R and S, we can compute dR-cS=0 which implies the discrete logarithm.

Here is our algorithm in detail.

Algorithm 5.1 A faster algorithm for genus 2 HCDLP

Input: A hyperelliptic curve C of small genus g=2 over F,
a divisor Dy in Jc(Fg) with know order n = ord(D,),
and a divisor D, e <D>.

Output: An integer A sucht that D,=AD);.

1. /* Build the factor base F */

For each x;e F,, solve v+h(xi)v=F(x;), to. find ¥; € F, such that (x;, yi) in C(Fy),

and store Pi= (xj, y;) in F.
2. /* Initialization of the random walk */
For j from 1 to 20, select a; and b; at random in [0, n-1], and compute
T; := a;D; + b;D».
Select a and P at random in [0, n-1] and compute R := aD; +$D..
G<empty graph
3. /* Main loop */
While G contains no even length cycles
or no component with 2 odd length cycles do
3.1 R &R+Tj for some randomly chosen j, update o and B.
3.2 If R is smooth and R=cP;-coo for some P; in F, ¢c=1 or 2
Use the relations in the path from P; to the root of the tree containing P;

to get a relation of the root.

52

If there already exists a relation of the root then go to step 4.
3.3 If R is smooth and R=P;+P;-2c for some P; and P; in F
Traverse the trees from P; and P; to find the roots P;; and Pj; respectively.
3.3.1 If Pi#P,; then combine these two trees
Use the relations in the path P;=>P;=>P;>P,; to get a relation R’ of Py
and P;. Combine these 2 trees by adding an edge (Ps, Py) and
making P, as the parent node of P;. If there is a relation of Py
(self-loop of P;;), we also update it as a relation of Py.
If there already exists a relation of P then go to step 4.
3.3.2 If P;=P,; then a cycle is found
If the cycle is of even length then go to step 4.
Else (the cycle is of'odd length, stote as self-loop of the root)
Use the relations.in the cycle Py—2P;>P;>P,; to obtain a relation
of P,;.

If there already exists a relation of P,; then go to step 4.
4. Obtain a relation of (Z 7.,) D, + (Z 7.5) D, =0 by using the relations in an

even length cycle or 2 self-loops of the same point.

z%ai
Return 1 =—="—— modn.

zyiﬂi

To implement this algorithm we can use an array of #F=0(q) elements. Each
element in the array contains a point P; in C(F,) and a link to the parent node P; with
associated relation of the form R=aD+BD,(=P;+ Pj-200). The link is nil before such
a relation appears in the pseudo random walk. Hence this algorithm requires O(q)

storage space.

53

5.3 Time complexity

In order to analyze the time complexity of this algorithm, we refer to Flajolet,
Knuth and Pittel’s work [8], which provides comprehensive knowledge of the cycle

appearance in random graphs. We quote some of their results in [8].

Definition 5.1 (Uniform model)

The uniform model is a procedure to enrich an initially empty graph on the
vertices {1,2,...,n}. At each step we generate an ordered pair <x, y>, where x and y
are uniformly distributed between 1-and'n, ‘aiid all n* pairs are equally likely. The
(undirected edge) x —y is then added :to the graph. In this way we obtain a

multi-graph, which may have duplicate edges or self-loops x —x.

A bicyclic component in a graph is a component with more than one cycle.

Corollary 5.1 (Expected time) [8]

. . n
In the uniform model, the first cycle appears at the expected time m= 3 steps.

1
And at this time, the expected cycle length is of order n®, and the size of the

1
component containing the first cycle will be t?(n2) The waiting time for the first

. . . . n
bicyclic component is approximately 5

The graph constructed in our algorithm can be viewed as the uniform model with

54

|[F|I=0(q) vertices. At each step of pseudo random walk, the relation R=aD;+pD; is

smooth with probability % . In other words, it is half chance to add an edge into the

graph at each step. By Corollary 5.1, the first bicyclic component will appear in the

graph after about % edges have been added. This requires about q steps of the

pseudo random walk. Hence, we conclude our algorithm solving the genus 2
HCDLP in expected time of O(q) Jacobian operations.
A practical comparison between Pollard’s method and our algorithm is given in

section 5.4.

5.4 Computational comparison

In this section, we implement.our algorithm for solving genus 2 HCDLP, and use
the implementation of Pollard’s rho“algerithm by Niels Lubbes [23] to be the
comparison. We execute both programs. on the same computer to generate the
following results. The comparison between our algorithm and Pollard’s rho
algorithm are showed in Table 5.1, and the results are averages from 10 times running

the tests.

55

Table 5.1 Comparison between Pollard’s rho and our algorithm

genus 2
Field size q = [F,| 2! 2" 217 2"
Pollard’s | Average time 1.238 5.502 113.391 827.459
rho (sec)
Average iterations | 923.4 2642.8 50239.5 236119.6
Average number of | 1.7 0.7 1.3 2.2
useless collisions
Our Average time 0.236 1.018 17.394 80.809
algorithm | (sec)
Average iterations | 699.4 2350.4 40222 137832
Average number of | 351.4 1169.2 20222.3 74338.8
smooth divisors
Graph size 1024 4071 65792 261993
Average number | 2.1 2.2 2.9 2.9
of cycles

As we can see in Table 51, the average number of iterations in our algorithm
needed for solving genus 2 HCDLP,is-less than the average number of iterations in
Pollard’s rho algorithm, and the running time-of*our algorithm is also less than the
running time of Pollard’s algorithm. For example, in the case of base field GF(2'?),
Pollard’s rho algorithm takes 827.459 seconds to run 236119.6 iterations in average
for solving the given HCDLP, and it meets 2.2 useless collisions before the solution is
found. While running our algorithm in the same case, it takes only 80.809 seconds
to solve the given HCDLP. After 137832 iterations in average there are 74338.8

smooth divisors which can be added in the graph, and then average 2.9 cycles are

found. The rate of 74338.8
137832

~ 0.539 1is about a half chance to get a smooth divisor

as in Lemma 4.1. And the graph size dividing the number of edges

74338.8
261993

~(0.284 is less than the expected time estimated in Corollary 5.1.

56

Chapter 6

Conclusion and Future Research

6.1 Summary

We introduced the additive group Jacobian on a hyperelliptic curve and Cantor’s
algorithm for computing group law in Chapter 3. For a hyperelliptic curve of genus
g over finite field Fg, the group order of Jacobian is O(q?). And the group order of
a elliptic curve over finite field Fy is. O(q). Therefore, the advantage of
hyperelliptic curves over ellipticicurvestis that a smaller base field can be used in
order to obtain the same level of security. But the disadvantage is that there exists an
algorithm, the hyperelliptic “index . caleulus. /algorithm, solving HCDLP in
subexponential time complexity when the genus becomes large enough. Hence, the
small genus hyperelliptic curves are preferred for constructing a hyperelliptic curve
cryptosystem. According to Table 4.1, we can extend Table 1.1 to the following
Table 6.1.

In Chapter 4, we described several variations of hyperelliptic index calculus
algorithm. The settings of test data are given in section 4.3. And a computational
comparison between these variations is shown in Table 4.2.

We also proposed a better algorithm for solving genus 2 HCDLP in Chapter 5.
The implementation results can be found in section 5.4. In Table 5.1, detailed
comparisons between our algorithm and Pollard’s rho algorithm are given. It is

shown that our algorithm is faster than Pollard’s rho algorithm in practice.

57

Table 6.1 Suggested key size for hyperelliptic curve cryptography.

Minimum size (bits) of public keys
Security HECC
(bits) ECC
Genus 2 Genus 3 Genus 4 Genus 5

80 160 &0 60 54 50
112 224 112 &4 75 70
128 256 128 96 86 80
192 382 192 144 128 120
256 512 256 192 171 160

6.2 Future work

There are several interesting topics for further research.

1.

Solving large sparsedinear system over finite field:

This is one of the crucial parts in the index calculus algorithm. An
improvement of the algorithm for solving large sparse linear system over
finite field implies an improvement of the index calculus algorithm.

Reduce the space requirement

The disadvantage of our algorithm compared with Pollard’s rho method

is the space requirement. It takes O(q) memory space in our algorithm.

Perhaps, there are other methods which can save the space requirement.

Algorithm design:

Design a systematic index calculus algorithm which can extensively use
more large primes without much overhead. And analyze how many large

primes is the optimal value for collecting enough smooth relations.

58

Bibliography

[1] L. Adleman, J. DeMarrais and M. Huang, “A Subexponential Algorithm for
Discrete Logarithms over the Rational Subgroup of the Jacobians of Large Genus
Hyperelliptic Curves over Finite Fields,” Algorithmic Number Theory, LNCS 877
(1994), 28-40.

[2] D. Cantor, “Computing in the Jacobian of a Hyperelliptic Curve,” Mathematics of
Computation, 48 (1987), 95-101.

[3] David G. Cantor and Hans Zassenhaus, “A New Algorithm for Factoring
Polynomials Over Finite Fields,” Mathematics of Computation, 36:587-592, 1981.

[4] H. Cohen and G. Frey, Handbook of Elliptic and Hyperelliptic Curve
Cryptography, Chapman & Hall/CRC,,2006.

[5] D. Coppersmith, “Solving Linear Equations over GF(2) via Block Wiedemann
Algorithm,” Math. Comp., 62(205):333-350, 1994.

[6] A. Enge, “Computing Discréte Logarithms-in High-genus Hyperelliptic Jacobians
in Provably Subexponential Time,”"Math.: Comp., 71, no. 238, pp. 729-742, 2002.

[7] A. Enge and P. Gaudry, “A General Framework for Subexponential Discrete
Logarithm Algorithms”, Acta Arithmetica, 102 (2002), 83-103.

[8] P. Flajolet, D. Knuth and B. Pittel, “The First Cycles in an Evolving Graph,”
Discrete Math., 75:167-215, 1989.

[9] R. Flassenberg and S. Paulu, “Sieving in function fields,” Experimental
Mathematics, 8, No. 4, 339-349, 1999.

[10] John B. Fraleigh, A First Course in Abstract Algebra, seventh edition,
Addison-Wesley, 2003.

[11] W. Fulton, Algebraic Curves, Benjamin, New York, 1969.

[12] S.D. Galbraith and N.P. Smart, “A Cryptographic Application of Weil Descent,”

59

Cryptography and Coding, 7th IMA Conference. LNCS 1746, pp. 191-200.
Springer-Verlag, Berlin, 1999.

[13] P. Gaudry, “An Algorithm for Solving the Discrete Log Problem on Hyperelliptic
Curves,” Advances in Cryptology —EUROCRYPT 2000, LNCS 1807 (2000),
19-34.

[14] P. Gaudry and R. Harley, “Counting Points on Hyperelliptic Curves over Finite
Fields,” Algorithmic Number Theory —ANSI-IV, LNCS 1838 (2000), 313-332.
[15] P. Gaudry, F. Hess, and N. Smart, “Constructive and Destructive Facets of Weil

Descent on Elliptic Curves,” Journal of Cryptology, 15:19-46, 2002.

[16] P. Gaudry and E. Thomé, “A Double Large Prime Variation for Small Genus
Hyperelliptic Index Calculus,” Crypto ePrint Archive, Report 2004/153.

[17] C. Guyot, K. Kaveh, V.M. Patankar, “Explicit Algorithm for The Arithmetic on
The Hyperelliptic Jacobians of.Genus 3,” Journal of Ramanujan Mathematical
Society, 19 (2004), No.2, 119-159.

[18] M. Jacobson and A. van der Poorten, “Computational Aspects of NUCOMP,”
Algorithmic Number Theory —ANTS-1V, LNCS 2369 (2002), 120-133.

[19] N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of Computation, 48
(1987), 203-209.

[20] N. Koblitz, “Hyperelliptic Cryptosystems,” Journal of Cryptology, 1 (1989),
139-150.

[21] B. A. LaMacchia and A. M. Odlyzko, “Solving Large Sparse Linear Systems
over Finite Fields,” In A. J. Menezes and S. A. Vanstone, editors, Advances in
Cryptology, volume 537 of Lecture Notes in Comput. Sci., pages 109-133.
Springer—Verlag, 1990. Proc. Crypto *90, Santa Barbara, August 11-15, 1988.

[22] T. Lange, “Efficient Arithmetic on Genus 2 Hyperelliptic Curves over Finite

Fields via Explicit Formulae,” Cryptology ePrint Archive: Reprot 2002/121, 2002.

60

[23] Niels Lubbes, “The Hyperelliptic Curve Discrete Logarithm Problem,” Master’s
thesis, Universiteit van Amsterdam, 2004.

[24] A. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic
Publishers, 1993.

[25] A. Menezes, Y. Wu and R. Zuccherato, “An Elementary Introduction to
Hyperelliptic Curves” appendix in Algebraic Aspects of Cryptography by N.
Koblitz, Springer-Verlag, 1998, 155-178.

[26] V. Muller, A. Stein, and C. Thiel, “Computing Discrete Logarithms in Real
Quadratic Congruence Function Fields of large genus,” Math. Comp.,
68(226):807-822, 1999.

[27] D. Mumford, Tata Lectures on Theta II, Birkhauser, Boston, 1984.

[28] K. Nagao, “Improvement of Thériault Algorithm of Index Calculus for Jacobian
of Hyperelliptic Curves of- Small Genus,” Cryptology ePrint Achieve, Report
2004/161.

[29] J. Pelzl, T. Wollinger, and C.-Paar, “Low. cost security: Explicit formulae for
genus-4 hyperelliptic curves,” In M. Matsui and R. Zuccherato, editors, Selected
Areas in Cryptography -- SAC 2003, volume 3006 of LNCS, pages 1--16.
Springer-Verlag, 2004.

[30] Sakai, Y., and K. Sakurai, “On the Practical Performance of Hyperelliptic Curve
Cryptosystems in Software Implementation,” IECE Trans. Fundamentals, vol.
E83-A, No. 4, April 2000.

[31] Victor Shoup, NTL: A Library for doing Number Theory, available on web

http://shoup.net/ntl/.

[32] N. Thériault, “Index Calculus Attack for Hyperelliptic Curves of Small Genus,”

Advances in Cryptology —ASIACRYPT 2003, LNCS 2894 (2003), 75-92.

[33] D. H. Wiedemann, “Solving Sparse Linear Equations over Finite Fields,” IEEE

61

http://shoup.net/ntl/

Trans. Inform. Theory, 1T-32(1):54-62, 1986.

62

	封面.pdf
	論文內頁.pdf
	碩士論文.pdf
	Chapter 1 Introduction
	1.1 History
	1.2 The organization of the thesis

	Chapter 2 Mathematical Background
	2.1 Abstract algebra
	2.2 Algebraic geometry
	2.3 Divisor theory

	Chapter 3 Hyperelliptic Curves
	3.1 Definitions and properties
	3.2 Reduced divisors
	3.3 Representation
	3.4 Group law
	3.5 Hyperelliptic curve discrete log problem (HCDLP)

	Chapter 4 Algorithms for HCDLP
	4.1 Introduction
	4.2 Index calculus algorithm for small genus HCDLP
	4.2.1 Reduced factor base
	4.2.2 Single large prime variation
	4.2.3 Double large prime variation

	4.3 Computational comparison
	4.3.1 Solving large sparse linear system
	4.3.2 Curve selection
	4.3.3 Comparisons

	Chapter 5 A Fast Algorithm for Genus 2 HCDLP
	5.1 Introduction
	5.2 The algorithm
	5.3 Time complexity
	5.4 Computational comparison

	Chapter 6 Conclusion and Future Research
	6.1 Summary
	6.2 Future work

