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超 橢 圓 曲 線 密 碼 攻 擊 之 研 究

學生：林家瑋 

 

指導教授：陳榮傑博士 
 

國立交通大學資訊科學與工程學研究所碩士班 

摘   要 

1989 年 Koblitz 利用定義在有限域的超橢圓曲線上的 Jacobian 加法群，基於超橢圓曲線

離散對數問題的困難度，提出了超橢圓曲線密碼系統。在含有 q 個元素的有限域 Fq 中，虧格

(genus)為 g 的超橢圓曲線，其中形成離散對數問題的加法群大小為 ( )gO q ，大於橢圓曲線加法

群 ( )O q 。而且小虧格的超橢圓曲線亦無時間複雜度為次指數的攻擊法，因此適當的設定超橢

圓曲線密碼系統將可使用比橢圓曲線密碼系統更短的密鑰，來達到相同的安全度。 

目前 index calculus 攻擊法在虧格 g 足夠大時，呈現次指數的時間複雜度。當虧格不大時，

一般的生日攻擊法為 2( )
g

O q ，而一般的 index calculus 為 2( )O q 。Thériault 的 index calculus 演算

法加入”大質數”的概念，時間複雜度降為
42

2 1( )gO q
−

− ；而 Gaudry 等人利用兩個”大質數”的 index 

calculus 攻擊法變形，則時間複雜度更進一步改進為
22

( )gO q
−

。本文將針對小虧格的超橢圓曲

線離散對數問題，實作並改進 index calculus 攻擊法。我們亦提出一個更快的演算法來解虧格

為 2 的超橢圓曲線離散對數問題，其時間複雜度為 O(q)。 
 
 
關鍵字: 超橢圓曲線密碼系統、超橢圓曲線離散對數問題、index calculus 
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ABSTRACT 

In 1989, Koblitz proposed using the Jacobian of a hyperelliptic curve defined over a finite field 

to implement discrete logarithm cryptographic protocols.  The discrete logarithm problem of the 

Jacobian is called hyperelliptic curve discrete logarithm problem (HCDLP).  For a hyperelliptic 

curve of genus g over the finite field Fq, the group order of the Jacobian is ( )gO q  which is larger 

than that of the additive group ,which is ( )O q , in an elliptic curve over Fq.  Since there is no 

subexponential algorithm to solve HCDLP of small genus, hyperelliptic curve cryptosystem under 

applicable setting requires shorter key size than elliptic curve cryptosystem to achieve the same 

security level. 

When genus g is large enough, the index calculus attack has subexponential time complexity.  

For small genus HCDLP, the algorithms based on birthday paradox is of time complexity 2( )
g

O q , 

and the basic index calculus attack is 2( )O q .  Thériault improves it by using the large prime 

method, and get a running time of 
42

2 1( )gO q
−

− .  Furthermore, Gaudry et al use a double large prime 

variation for small genus hyperelliptic index calculus, and the time complexity is 
22

( )gO q
−

.  In this 

thesis, we focus on the hyperelliptic curve discrete logarithm problem of small genus, implement and 

improve index calculus and its variations.  We propose a faster algorithm for solving genus 2 

HCDLP which time complexity is O(q). 
 

Keywords: hyperelliptic curve cryptosystem, HCDLP, index calculus 
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Notation 
The following notation is used throughout this thesis. 
 
K finite field 
K  algebraic closure of a finite field K 
Fq finite field of size q = pm for some prime p 
q size of the finite field Fq 
g genus of a hyperelliptic curve 
D0 group of divisors on hyperelliptic curve of degree zero 
P group of principal divisors 
J quotient group J=D0/P 
div(a,b) a divisor denoted by Mumford representation with two 

polynomials a, b 
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Chapter 1  

Introduction 

1.1 History 

Since the public-key cryptosystems have been invented in 1970s, there are 

several important public-key cryptosystems of which the security is based on the 

intractability of discrete logarithm problem (DLP) over a finite abelian group.  

Elliptic curve cryptography (ECC) [19] is an approach to public-key cryptography 

based on the algebraic structure of elliptic curves over finite fields.  The use of 

elliptic curves in cryptography was suggested independently by Neal Koblitz and 

Victor S. Miller in 1985.  There is no sub-exponential time algorithm to solve elliptic 

curve DLP (ECDLP), hence the main advantage of ECC is its smaller key size.  A 

160-bit key in ECC is considered to be as secure as 1024-key in RSA.  As we can 

see in Table 1.1, ECC key size is much smaller than those of other public-key 

cryptosystems.  Therefore ECC can be implemented efficiently and securely with 

smaller key size, and is ideally suitable for resource-constrained environments such as 

smart cards, cell phones, and PDAs. 

However, hyperelliptic curve cryptosystems offer even smaller key size.  In 

1989, Koblitz [20] proposed using the Jacobian of a hyperelliptic curve defined over a 

finite field to implement discrete logarithm cryptographic protocols.  Hyperelliptic 

curves are a special class of algebraic curves and can be viewed as generalizations of 

elliptic curves.  There are hyperelliptic curves of every genus g ≧ 1.  A 

hyperelliptic curve of genus g = 1 is an elliptic curve.  There is no known 
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subexponential algorithm for hyperelliptic curves of small genus, and the Jacobian of 

a hyperelliptic curve of genus g defined over a finite field Fq has group order O(qg).  

Hence, the advantage of hyperelliptic curves over elliptic curves is that a smaller base 

field can be used in order to obtain the same level of security.  This makes 

hyperelliptic curves suitable when only limited memory and computing power is 

available.  Hyperelliptic curves are also of interest because in 2000, Gaudry, Hess 

and Smart [15] proposed an algorithm which reduces ECDLP over 
2mF , for special 

values of n, to the hyperelliptic curve DLP (HCDLP) over an sub field of 
2mF . 

 

Table 1.1 NIST Guidelines for Public-Key Sizes with Equivalent Security Levels 

Minimum size (bits) of public keys 
Security 

(bits) 

Symmetric 

encryption 

algorithm 
DSA/DH RSA ECC 

80 Skipjack 1024 1024 160 

112 3DES 2048 2048 224 

128 AES-128 3072 3072 256 

192 AES-192 7680 7680 382 

256 AES-256 15360 15360 512 

   

 

1.2 The organization of the thesis 

The rest of this thesis is organized as follows.  

In Chapter 2, we first review some important background in algebra, and 

introduce algebraic geometry including variety, algebraic curves, and so on.  We also 

introduce the divisors on a curve which are useful for computing Weil pairing in 
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elliptic curves [24].  The group on a hyperelliptic curve is also based on the divisors. 

In Chapter 3, we define the hyperelliptic curves over a finite field and the additive 

group Jacobian associated with a hyperelliptic curve.  After defining Jacobian group, 

we describe the Mumford representation which is used in Cantor’s algorithm to 

compute the group operation. 

In Chapter 4, we describe the index calculus algorithm to solve hyperelliptic curve 

discrete logarithm problems and several improvements in recent years including the 

ideas of reduced factor base and large primes.  The double large prime variation of 

hyperelliptic curve index calculus is better than others, and even better than Pollard’s 

rho method when the genus of the hyperelliptic curve is larger than 2.   

In the case of genus 2 curves, Pollard’s rho algorithm is faster than index calculus 

algorithm.  In Chapter 5, we propose an algorithm for solving genus 2 HCDLP 

which has the same time complexity as Pollard’s rho method.  Several computational 

comparisons are given in section 5.4 to shows that our algorithm is faster than 

Pollard’s rho method in practice. 

Finally, we summarize our results and propose future work in Chapter 6. 
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Chapter 2  

Mathematical Background 

 This chapter introduces some elementary mathematical background used in this 

thesis, including definitions and theorems in abstract algebra and algebraic geometry.  

If the readers are interested in more of the background, [10] and [11] give good 

introductions.  In section 2.3, we introduce the divisor theory which is the basis of 

hyperelliptic curve group law.  For more details on divisor theory, the reader is 

referred to [24][25]. 

 
 

2.1 Abstract algebra 

Definition 2.1 (Group) 
 A group (G, *) is a set G with a binary operation * that satisfies the following 

four axioms: 

 Closure: For all a, b in G, the result of a * b is also in G.  

 Associativity: For all a, b and c in G, (a * b) * c = a * (b * c).  

 Identity element: There exists an element e in G such that for all a in G, e*a= 

a*e= a.  

 Inverse element: For each a in G, there exists an element b in G such that a* b= 

b* a = e, where e is an identity element. 
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Definition 2.2 (Abelian group) 
 A group G is said to be an abelian group (or commutative) if the operation is 

commutative, that is, for all a, b in G, a * b = b * a. 

 

Definition 2.3 (Cyclic group) 
 A cyclic group is a group whose elements can be generated by successive 
composition of the group operation being applied to a single element of that group. 
This single element is called the generator or primitive element of the group. 

 

Example 2.1 
 <Z5, +> is an additive group under the addition modulo 5.  The group is cyclic 
since it can be generated by a single element “1”, i.e. Z5 = <1> = {1, 2, 3, 4, 0}. 
 
Theorem 2.1 (Lagrange’s theorem) 
 For any finite group G, the order (number of elements) of every subgroup H of G 

divides the order of G. 

Proof: 

 This can be shown using the concept of left cosets of H in G. The left cosets are 

the equivalence classes of a certain equivalence relation on G and therefore form a 

partition of G. If we can show that all cosets of H have the same number of elements, 

then we are done, since H itself is a coset of H. Now, if aH and bH are two left cosets 

of H, we can define a map f : aH → bH by setting f(x) = ba-1x. This map is bijective 

because its inverse is given by f -1(y) = ab-1y. 

This proof also shows that the quotient of the orders |G| / |H| is equal to the index 

[G:H] (the number of left cosets of H in G). If we write this statement as |G| = [G:H] · 

|H|. 

 

Definition 2.4 (Ring) 
 A ring is a set R equipped with two binary operations + and · , called addition 
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and multiplication, such that: 

 (R, +) is an abelian group with identity element 0,  

 Multiplication is associative,  

 Multiplication distributes over addition:  

 a·(b + c) = (a·b) + (a·c)  

 (a + b)·c = (a·c) + (b·c) 

 

Definition 2.5 (Ideal) 
 An additive subgroup I of a ring R satisfying the properties: rx∈I, xr∈I for x∈I 

and r∈R is an ideal. 

 

Example 2.2 
 The set of integers  is a ring, and the set of even integers 2  is an ideal 

of . 

 The set R[x] of all polynomials in one variable x with coefficients in a ring 

R is a ring under polynomial addition and multiplication. 

 

Definition 2.6 (Integral domain) 
 An integral domain is a commutative ring with 0 ≠ 1 such that ab = 0 implies that 

either a = 0 or b = 0 (the zero-product property).  That is to say, it is a nontrivial ring 

without left or right zero divisors. 

 

Definition 2.7 (Field) 
 A field (F, +, *) is defined by these properties: 

 (F, +) is an abelian group with the additive identity 0. 

 (F\{0}, *) is an abelian group with the multiplicative identity 1. 

 The operation * is distributive over the operation +.  For all a, b, c, belonging to 
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F, a * (b + c) = (a * b) + (a * c). 

 

Definition 2.8 (Subfield, extension field) 
 A subset K of a field L is a subfield of L if K is itself a field with respect to the 

operations of L.  L is said to be an extension field of K. 

 

Fact 2.1 (Existence and uniqueness of finite fields) 
1. If K is a finite field, then K contains pd elements with p prime and d >= 1. 

2. For every prime power order pd, there is a unique (up to isomorphism) finite field 

of order pd.  It is an algebraic extension of degree d of Fp.  The notation for a finite 

field of order q is Fq with q = pd.  

 

Definition 2.9 (Algebraic closure) 
 A field K is said to be algebraically closed if every polynomial f∈K[x] has a 

zero in K.  Such a polynomial splits into linear factors over K. 

 

Fact 2.2 (Algebraic closure of Fp) 

 The algebraic closure qF  of a finite field Fq is given by: 
1

kq q
k

F F
∞

=

=∪  

 

Lemma 2.1 (Frobenius Automorphism) 
 Let Fq be a finite field with q=pd.  Then we have: 

(i) a = ap with a∈Fp 

(ii) (a‧b)p = ap‧bp for a, b∈Fq 

(iii) (a+b)p = ap+bp for a, b∈Fq 

Consequently the following mapping is an automorphism: 

 σ: Fq  Fq where σ(a) = ap for a∈Fq 

It is called the Frobenius Automorphism of Fq. 
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Proof:  

(i) Since *
pF  is a cyclic group of order p-1, we have ap-1 = 1 for all a *

pF∈ .  

Thus ap = a for all a∈Fp. 

(ii) It’s true since the operation ‧ is commutative. 

(iii) 
0

( )
p

p i p i p p

i

p
a b a b a b

i
−

=

⎛ ⎞
+ = = +⎜ ⎟

⎝ ⎠
∑  

Notice that the binomial coefficients 
p
i
⎛ ⎞
⎜ ⎟
⎝ ⎠

 for i = 1,…,p-1 are multiples of the 

characteristic p and reduce to zero. 

 

Definition 2.10 (Galois Group) 
 Let Fq be a field with q=pd.  Let σ be the Frobenius Automorphism of Fq and let 

a∈Fq.  A power of σ is defined as: 

 ( )
jj pa aσ =  

The Galois Group is the group of all automorphisms acting on the field Fq, which 

leave the points of Fp invariant.  It is a cyclic group of order d given by 1, σ, …, σd-1.  

That is the Galois Group Gal(Fq/Fp) = {1, σ, …, σd-1}. 

 
 

2.2 Algebraic geometry 

Let K  be an algebraic closed field, we can define the following terms. 

Definition 2.11 (Affine n-space) 
 The affine n-space is the set of n-tuples called points: 

 1{ ( ,..., ) : }n n
n iKA A p x x x K= = = ∈ . 

 

Definition 2.12 (Affine algebraic set) 
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 For each subset S of 1[ ,..., ]nK x x , define the zero-locus of S to be the set of 

points in An on which the functions in S vanish:  

 ( ) { | ( ) 0   }nZ S p A f p for all f S= ∈ = ∈ . 

A subset V of An is called an affine algebraic set if V = Z(S) for some S.  

 
Definition 2.13 (Affine variety) 
 A nonempty affine algebraic set V is called irreducible if it cannot be written as 

the union of two proper affine algebraic subsets. An irreducible affine algebraic set is 

called an affine variety. 

 

Definition 2.14 (Ideal of an affine variety) 
 Given a subset V of An, let I(V) be the ideal of all functions vanishing on V: 

 { }1( ) [ ,..., ] | ( ) 0   nI V f K x x f p for all p V= ∈ = ∈ . 

 

 Similarly, we can define projective variety in projective space. 

Definition 2.15 (Projective n-space) 

 The projective n-space over K , denoted n
kP , or simply nP , is the set of 

equivalence classes of (n+1)-tuples ( )0 ,..., nx x  of elements of K , not all zero, under 

the equivalence relation given by ( )0 ,..., nx x ~ ( )0 ,..., nx xλ λ  for all Kλ∈ , 0λ ≠ . 

 An element of Pn is called a point. If P is a point, then any (n+1)-tuple 

( )0 ,..., nx x  in the equivalence class P is called a set of homogeneous coordinates for 

P. 

 

Definition 2.16 (Homogeneous polynomial) 

 A polynomial 0[ ,..., ]nf K x x∈  is a homogeneous polynomial if 
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( ) ( )deg( )
0 0,... ,...f

n nf x x f x xλ λ λ= . 

 

 

Definition 2.17 (Homogeneous ideal) 

 An ideal I 0[ ,..., ]nK x x⊂  is a homogeneous ideal if it is generated by 

homogeneous polynomials. 

 

 The homogeneity of the polynomial ensures that this construction is 

well-defined. 

 

Definition 2.18 (Projective algebraic set, projective variety) 
 For each set S of homogeneous polynomials, define the zero-locus of S to be the 

set of points in Pn on which the functions in S vanish: 

 ( ) { | ( ) 0   }nZ S p P f p for all f S= ∈ = ∈ . 

A subset V of Pn is called a projective algebraic set if V = Z(S) for some S. An 
irreducible projective algebraic set is called a projective variety. 

 

Definition 2.19 (Ideal of a projective variety) 
 Given a subset V of Pn, let I(V) be the ideal generated by all homogeneous 

polynomials vanishing on V: { }0( ) [ ,..., ] | ( ) 0   nI V f K x x f p for all p V= ∈ = ∈  

 

Definition 2.20 (Algebraic curve) 
 An algebraic curve over a field K is an equation f(x, y) =0, where f(x, y) is a 

polynomial in x and y with coefficients in K.  A point on an algebraic curve is 

simply a solution of the equation of the curve.  A K-rational point is a point (x, y) on 

the curve, where x and y are in the field K. 
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Definition 2.21 (Points at infinity) 
 Each affine space can be identified with a unique projective space. The points in 

Pn, which are not defined in the corresponding affine space An are called points at 

infinity. 

 

 For example, an affine variety C(I) is called an algebraic curve when I(C) 

consists of one polynomial in two variables which by definition of variety is 

irreducible.  We will use C as the notation of an affine variety for which is an 

algebraic curve. 

 

Definition 2.22 (Coordinate ring, polynomial function) 

The coordinate ring of C is the quotient ring given by:  [ , ][ ]
( )

K x yK C
I C

= . 

Similarly the coordinate ring of C/K is the quotient ring given by: [ , ][ ]
( )

K x yK C
I C

= . 

An element of [ ]K C  is called a polynomial function on C. 

 

Definition 2.23 (Function field, rational function) 

 The function field ( )K C  is given by the field of fractions of [ ]K C : 

( ) | , [ ]GK C G H K C
H

⎧ ⎫= ∈⎨ ⎬
⎩ ⎭

.  Similarly the function field K(C) is given by the field 

of fractions of K[C].  An element of ( )K C  is called a rational function on C. 

 

Definition 2.24 (Zero, pole) 

 Let ( )f K C∈  be a non-zero rational function and P∈C.  Then f is said to be 

defined at P if there exists a representation f = g/h, where g, h [ ]K C∈ , with h(P)≠0.  

If ( )f P = 0, then f  is said to have a zero at P.  If f  is not defined at P then f  
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is said to have a pole at P.  In this case we write ( )f P = ∞. 

 

 
Definition 2.25 (Order) 

 The order of a polynomial function [ ]g K C∈  at a point P∈C is the intersection 

multiplicity at that point and denoted by order ( )Pord g .  Notice that P is a zero of g 

if and only if ( )Pord g > 0, and P is a pole of g if and only if ( )Pord g < 0. 

 The order of a rational function / ( )f g h K C= ∈  at a point P∈C is defined as 

( ) ( ) ( )P P Pord f ord g ord h= − . 

 

Theorem 2.2 
 Let ( )f K C∈  be a rational function.  Then ( ) 0P

P C
ord f

∈

=∑ . 

This proof can be found in [24]. 

 

 

2.3 Divisor theory 

Divisors are useful for keeping track of the zeros and poles of a rational function.  

In this section we give the basic definitions and properties of divisors.  For simplicity, 

we are working in an algebraic closure K .  Later we will give the definitions over a 

finite field K in chapter 3. 

 
Definition 2.26 (Divisor, degree, order, support) 
 A divisor D is a formal sum of points in C: P

P C
D m P

∈

= ∑ , Pm ∈ , where only 

a finite number of mP is non-zero. 
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The degree of D is the integer deg( ) P
P C

D m
∈

= ∑ . 

The order of D at P is the integer ( )P Pord D m= . 

The support of D is the set supp (D) ={ }| 0PP C m∈ ≠ . 

 
Definition 2.27 (Divisor group) 
 The set of all divisors, denoted by D, forms an additive group under the addition 

rule: 

 ( )P P P P
P C P C P C

m P n P m n P
∈ ∈ ∈

+ = +∑ ∑ ∑ . 

The set of all divisors of degree 0, denoted D0, is a subgroup of D. 

 

Definition 2.28 (Gcd of divisors) 
 Let 1 P

P C
D m P

∈

= ∑ , 2 P
P C

D n P
∈

= ∑  be two divisors.  The greatest common divisor 

of D1 and D2 is defined to be 1 2gcd( , ) min( , ) min( , )P P P P
P C P C

D D m n P m n
∈ ∈

⎛ ⎞= − ∞⎜ ⎟
⎝ ⎠

∑ ∑ . 

(Note that gcd (D1, D2) ∈D0.) 

 

Definition 2.29 (Principal divisor) 

 Let ( )R K C∈ .  The divisor of R is called a principal divisor 

( ) ( )P
P C

div R ord R P
∈

= ∑ .  Theorem 2.2.16 shows that the divisor of a rational function 

is indeed a finite formal sum and has degree 0. 

 

Definition 2.30 (Principal divisor group) 
 The group of principal divisors is a subgroup of D0 and is defined by: 

( ) { ( ) | ( )}P P C div R R K C= = ∈ .  We have that 0P D D⊂ ⊂ . 

 

Definition 2.31 (Jacobian) 
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 The Jacobian of the curve C is defined by the quotient group: 

  J = J(C) = D0/P. 

If D1, D2∈  D0 then we write D1~ D2 if D1- D2∈P; D1 and D2 are said to be equivalent 

divisors. 

 

 

Example 2.3 (Elliptic curve) 
 Consider the following algebraic curve in affine space: 

  I(CR) : 2 3( , ) ( 1)f x y y x x= − − +  in [ , ]x y  

 
Figure 2.1 An elliptic curve C and rational function L1 over  

 

The algebraic closure of  is the field of the complex numbers; we still denote it as 

K . 

The affine variety over K  is given by ( ) {( , ) | , , ( , ) 0}I C x y x y K f x y= ∈ = . 

The coordinate ring of C is given by the quotient ring : 

( )2 3[ ] [ , ] / ( 1)K C K x y y x x= − − + . 

P 

Q 

R

R

x3 

L1(x, y)=x-y+1 

C:  
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The function field of C is given by: ( ) | , [ ]gK C g h K C
h

⎧ ⎫= ∈⎨ ⎬
⎩ ⎭

. 

The line through the point P, Q is a rational function given by L1(x, y). 

1( ) 3 ( ) ( ) ( )div L P Q R P Q R= + + − ∞ = −∞ + −∞ + −∞ . 

The vertical line through R and R  is a rational function given by L2(x, y)=x-x3. 

  2( ) 2 ( ) ( )div L R R R R= + − ∞ = −∞ + −∞ . 

Let 1D P= −∞ , 2D Q= −∞  and 3D R= −∞  in the Jacobian J = D0/P, we have : 

( )1 2 3

1 2

1

2

( ) ( ) ( )
( ) ( )

D D D
P Q R

div L div L

Ldiv P
L

+ −

= −∞ + −∞ − −∞
= −

⎛ ⎞
= ∈⎜ ⎟

⎝ ⎠

 

Hence D1+D2~D3, the Jacobian group law is the same as point addition on an elliptic 

curve. 
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Chapter 3  

Hyperelliptic Curves 

 Hyperelliptic curve is a kind of algebraic curve, and elliptic curve is a special 

case of hyperelliptic curve.  In chapter 2, we defined the function field of an 

algebraic curve.  The Jacobian is the group of degree zero divisors modulo principal 

divisors, i.e. the quotient group J = D0/P over an algebraic closed field K .  Since 

the implementation of arithmetic on a hyperelliptic curve works with the base field K, 

we need to know the definitions over K. 

Let C be a hyperelliptic curve defined over a finite field K.  Let P = (x, y) ∈C, 

and let σ be an automorphism of K  over K which means σ is an isomorphism from 

K  to itself and σ(x) = x for all x ∈K.  Then : ( , )P x yσ σ σ=  is also a point on C, 

and σ∞ = ∞ . 

 

Definition 3.1 (Field of definition of a divisor) 

 A divisor PD m P=∑ is said to be defined over K if : PD m Pσ σ=∑  is equal to 

D for all automorphisms of K  over K. 

 

Notice that the set of all automorphisms of K  over K is the Galois Group 

( )/Gal K K  defined in Definition 2.10 (Galois Group). 

If a divisor D is defined over K, it does not mean that each point in the support of 

D is a K-rational point.  A principal divisor is defined over K if and only if it is a 

divisor of a rational function which has coefficients in K.  The set JC(K) of all 
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divisors defined over K in J is a subgroup of J. 

 

Since each element of the Jacobian is a coset, we need a unique representation for 

the divisors in the Jacobian.  Such divisors exist and are called reduced divisor, 

which is introduced in section 3.2.  In section 3.3, we introduce the Mumford’s 

representation [27]: a reduced divisor can be represented by the gcd of two 

polynomials a(x) and y- b(x).  The points associated to the corresponding divisor are 

the roots of both a(x) and y- b(x).  These two polynomials can also be seen as ideals 

modulo principal ideals.  The equivalence classes are called ideal classes.  Adding 

divisors in the Jacobian is the same as composing ideals.  Cantor’s algorithm [2] can 

efficiently compute the group operation of two divisors in the Jacobian. 

 

3.1 Definitions and properties 

We use K to denote a field and K  to denote the algebraic closure of K in this 

chapter. 

 

Definition 3.2 (Hyperelliptic curve) 
 A hyperelliptic curve of genus g over K is an equation of the form  

C: 2 ( ) ( )y h x y f x+ =  in K[x, y], where deg(h(x)) ≦ g, deg(f(x)) = 2g+1, f(x) is a 

monic polynomial, and the integer g ≧ 1.  A hyperelliptic curve C should be 

non-singular, that is, there are no solutions (x, y) K K∈ ×  on curve C which satisfy 

both partial derivative equations 2 ( ) 0y h x+ =  and '( ) '( ) 0h x y f x− = . 

 

Definition 3.3 (K-rational points) 

 The set { }2( ) ( , ) | , , ( ) ( ) { }C K x y x y K y h x y f x= ∈ + = ∪ ∞  is called the set of 
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K-rational points on C.  The point ∞  is called the point at infinity. 

 

Definition 3.4 (Opposite, special and ordinary points) 

 For P=(x, y) ∈C the opposite of P is the point ( , ( ))P x y h x= − − .  If P= P  

then it is called special point, otherwise it is called ordinary.  The opposite of the 

point at infinity ∞ is defined as ∞ = ∞ , hence is a special point. 

 

Lemma 3.1 
 Let C: 2 ( ) ( )y h x y f x+ =  be a hyperelliptic curve defined over K.  If the 

characteristic of K is odd, then C can be transformed to the form 2
1( )y f x=  where 

f1(x) has no repeated roots in K . 

Proof: 

 Under the change of variables x x, y (y-h(x)/2), the equation of C is 

transformed to 2( ) ( )( ) ( )( ) ( )
2 2

h x h xy h x y f x− + − = , which simplifies to 

2
2

1
( )( ) ( )
4

h xy f x f x= + = . 

 Since C is a hyperelliptic curve, there is no point (x, y) K K∈ ×  satisfying 

y2=f1(x), 2y=0, and f1’(x) =0.  Therefore, f1(x) has no repeated roots. 

 

Lemma 3.2 

 The polynomial 2( , ) ( ) ( )F x y y h x y f x= + −  is irreducible over K . 

Proof: 

 Suppose F(x, y) is reducible over K , then ( , ) ( ( ))( ( ))F x y y a x y b x= − +  

2 ( ( ) ( )) ( ) ( )y b x a x y a x b x= + − −  for some a, b [ ]K x∈ .  But deg(a(x)b(x)) = deg(f(x)) 

= 2g+1 and deg(a(x)+b(x)) = deg(h(x)) ≦g which is impossible. 
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3.2 Reduced divisors 

We defined the Jacobian of curves in chapter 2, and with the definitions in section 

3.1, we know that the Jacobian of a hyperelliptic curve C is J = D0/P.  Note that two 

divisors D1 and D2 in J are said to be equivalent if they are in the same equivalence 

class, i.e. D1-D2∈P, denoted by D1~D2.  In the following we introduce reduced 

divisor to uniquely represent the divisors in the same equivalence class of J. 

 

Definition 3.5 (Semi-reduced divisor) 
 A semi-reduced divisor is a degree zero divisor of the form 

\ \
P P

P C P C
D m P m

∈ ∞ ∈ ∞

= − ∞∑ ∑  with the following properties: 

 (i)   mP>0,  

 (ii)  P Pif P P and m >0 then m  =0≠ , 

 (iii)  P Pif P P and m >0 then m  =1= . 

 

Definition 3.6 (Reduced divisor) 
 Let 

\ \
P P

P C P C
D m P m

∈ ∞ ∈ ∞

= − ∞∑ ∑  be a semi-reduced divisor.  If
\

P
P C

m genus
∈ ∞

≤∑  

then D is called a reduced divisor. 

 

Lemma 3.3 
 For each divisor D∈D0 there exists a semi-reduced divisor D1∈D0 such that 

D~D1. 

Proof: 
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 Let 
\

P
P C

D m P m
∈ ∞

= − ∞∑ .  Let (C1, C2, C3) be the partition of the support of D, 

such that 1 { \ | , }P PC P C P P m m= ∈ ∞ ≠ ≥ , 2 { \ | , }P PC P C P P m m= ∈ ∞ ≠ ≥  

, and 1 { \ | }C P C P P= ∈ ∞ = .  Then 
1 2 3

P P P
P C P C P C

D m P m P m P m
∈ ∈ ∈

= + + − ∞∑ ∑ ∑ .  Let 

2 3

1
( , ) ( , )

( ) ( )
2

P P P P

P
P P P

P x y C P x y C

mD D m div x x div x x
= ∈ = ∈

⎢ ⎥= − ⋅ − − ⋅ −⎢ ⎥⎣ ⎦
∑ ∑  

1 3

1( ) ( 2 )
2

P
P PP

P C P C

mm m P m P m
∈ ∈

⎢ ⎥= − + − ⋅ − ∞⎢ ⎥⎣ ⎦
∑ ∑  for some 1m Z∈ .   

Hence D1~D and D1 is semi-reduced. 

For example, let 0
1 1 26 4 3 13D P P P D= + + − ∞∈  where 1 1P P≠  and 2 2P P= .  

Then C1={P1}, C2={ 1P }, and C3={P2}.   

Let 
1 21

34 ( ) ( )
2P PD D div x x div x x⎢ ⎥= − ⋅ − − ⋅ −⎢ ⎥⎣ ⎦

, then D1~D. 

1 1 1 2 1 24( 2 ) (2 2 ) 2 3D D P P P P P= − + − ∞ − − ∞ = + − ∞ . 

Hence D1 is semi-reduced. 

 

Theorem 3.1 [25] 
 For each divisor D∈D0 there exists a unique reduced divisor D1 such that D~D1. 

 
 

3.3 Representation 

When we implement a hyperelliptic curve cryptosystem, we work over a finite 

field K.  In the following, we introduce the computational representation of reduced 

divisors of the Jacobian defined over K, which is so-called Mumford representation 

[27]. 
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Fact 3.1 (Mumford representation) 
For a hyperelliptic curve C: 2 ( ) ( )y h x y f y+ =  in [ , ]K x y , and 

( , )
( )

i i i

i i i
P x y C

D m P m
= ∈

= − ∞∑ ∑  be a semi-reduced divisor, we can use two 

polynomials a(x), b(x) [ ]K x∈  to uniquely represent D.  Let ( ) ( ) im
ia x x x= −∏ .  

Let b(x) be the unique polynomial satisfying: 

(i) degx(b) < degx(a), 

(ii) b(xi) = yi for all i which mi ≠0, 

(iii) a(x) divides ( 2( ) ( ) ( ) ( )b x b x h x f x+ − ). 

Then D = gcd(div(a(x)), div(b(x)-y)); we usually simplify the notation as  

div(a, b). 

If D=div(a, b) is a reduced divisor, then deg ( )x ia m genus= ≤∑ . 

 

The zero divisor, the identity of JC(K), is represented by div(1, 0).  The 

opposite of a divisor div(a, b) is given by div(a, -h-b), which is also called involution.  

This means div(a, b) + div(a, -h-b) ~ div(1, 0) under the Jacobian group law. 

 

Fact 3.2 (Hasse-Weil Bound) 
 Let C be a hyperelliptic curve of genus g defined over Fq.  Then the bound of 

the order of JC(Fq) is given by: 

  ( ) ( )2 2
1 # ( ) 1

g g

C qq J F q− ≤ ≤ + , 

and the number of Fq-rational points is: 

  1 2 # ( ) 1 2qq g q C F q g q+ − ≤ ≤ + + . 

 As a result, we know that # ( ) g
C qJ F q≈  and # ( )qC F q≈ . 
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3.4 Group law 

By using Mumford representation described in the previous section, Cantor’s 

algorithm [2] can compute the group operation of JC(K) efficiently. 

 

Algorithm 3.1 (Cantor’s algorithm) 

Input:  Reduced divisors D1 = div(a1, b1) and D2=div(a2, b2) ∈JC(K). 

Output: The reduced divisor D3 = div(a3, b3) sucht that D3 ~ D1+D2. 

Phase 1: (Composition) 

1. Compute d1 = gcd(a1, a2) = e1a1 + e2a2 

2. Compute d = gcd(d1, b1+b2+h) = c1d1 + c2( b1+b2+h) 

3. Let s1 = c1e1, s2 = c1e2, and s3 = c2, so that 

       d = s1a1 + s2a2 + s3( b1+b2+h) 

4. Set 1 2
2

a aa
d

=  

  and 1 1 2 2 2 1 3 1 2( ) mod  s a b s a b s b b fb a
d

+ + +
=  

Phase 2: (Reduction) 

5. Set 
2

' f bh ba
a

− −
=  

  and ' ( ) mod  b h b a= − −  

6. If deg( ')a g>  then set 'a a← , 'b b←  and go to step 5. 

7. Make 'a  monic, and output (a3, b3) = ( ',  ')a b . 

 

In Cantor’s algorithm, the composition phase gives a semi-reduced divisor  

div(a, b) ~ D1+D2, and the reduction phase reduces a semi-reduced divisor to the 

unique reduced divisor. 

Here is an example that illustrates how Cantor’s algorithm works. 
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Example 3.1 
 Let C: y2+y = x5+1 be a hyperelliptic curve of genus 2 over finite field F2.  

Given D1=div(x+1, 0) and D2=div(x2+1, x)∈JC(F2). 

d = gcd(a1, a2, b1+b2+h) = gcd(x+1, x2+1, x+1) = x+1 ⇒  s1=1, s2=s3=0. 

( )( )
( )

2
1 2

22

1 1
1

1

x xa aa x
d x

+ +
= = = +

+
. 

( )1 1 2 2 2 1 3 1 2 1( ) mod   mod  (x+1)=1
1

x xs a b s a b s b b fb a
d x

++ + +
= =

+
. 

Since deg(a)=1≦2, the divisor div(a, b) is already reduced. 

Then, we have D1+ D2 = div(x+1, 0) + div(x2+1, x) = div(x+1, 1). 

 

 In recent years, several researchers have derived the explicit formulas for small 
genus hyperelliptic curves from Cantor’s algorithm.  They investigate what can be 
the input of Cantor’s algorithm and proceed in considering these different cases.  
With careful analysis, some redundant field operations can be omitted in explicit 
formulas.  For example, Lange [22] presents explicit formulas for the group law of 
genus 2 hyperelliptic curves, and the most common case in the addition of two 
reduced divisor requires 1 inversion, 12 multiplications, and 2 squarings.  The 
explicit formulas for genus 3 hyperelliptic curves can be found in [17].  When genus 
becomes higher than 4, the explicit formulas is getting too complicated and may not 
be possibly derived by hand.   
 
 

3.5 Hyperelliptic curve discrete log problem (HCDLP) 

The security of several cryptosystems is related to the difficulty of computing 

discrete logarithms modulo a large prime number p; i.e. given two numbers (g mod p) 

and (gx mod p), it seems to be infeasible to compute x when p is large enough.  

Instead of using the DLP modulo a large prime p as the basis of cryptographic 

protocols, one can consider the DLP in an arbitrary group that admits an efficient 
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element representation and group law. 

 

Definition 3.7 (DLP) 
Let G be a finite cyclic group G= <g> of order n, and given an element h∈G..  

The discrete logarithm problem is to find the integer x∈[0, n-1], such that gx=h. 

 

Since the Jacobian of a hyperelliptic curve is also a finite abelian group, based on 

the difficulty of the DLP, it can be designed for cryptographic use. 

 

Definition 3.8 (HCDLP) 
Let C be a hyperelliptic curve over a finite field Fq and JC(Fq) its Jacobian with 

order # JC(Fq) = n.  Given two reduced divisors D1, D2∈JC(Fq) and D2∈<D1>.  

The hyperelliptic curve discrete logarithm problem is to find the integer λ∈[0, n-1], 

such that λD1=D2.  

 
 
Example 3.2 

Consider the genus 2 hyperelliptic curve: C: y2 = x5 + 2x4 + 1 in F3[x, y].  The 

partial derivatives are 2x4 + 2x3=0 and 2y=0.  Since there are no points in F F×  
which satisfy C and the partial derivatives, the hyperelliptic curve is non-singular. 

Although the divisors are defined over F3, the points in the support of a divisor are 

in 23
F . 

The finite field 2
2

33
[ ] /( 1) {0,1 , 2 ,1 2 , 2, 2 2 , , 2 ,1}F F x x i i i i i i≅ + = + + + + . 

The 23
F -rational points are P1 = (0, 1), P2 = (1, 2), P3 = (1, 1), P4 = (0, 2),  

P5 = (2+i, 2+2i), P6 = (2+2i, 2+i), P7 = (i, 2+i), P8 = (2i, 2+2i),  
P9 = (i, 1+2i), P10 = (2i, 1+i), P11 = (2+i, 1+i), P12 = (2+2i, 1+2i), ∞. 

The order of Jacobian #JC(F3) = 17. 
Let D1 = div(x2, 1).  We can use D1 as the generator of the group, and use 
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Cantor’s algorithm to generate the group elements. 
1 D1 = div(x2, 1)           = P1 + P1 - 2∞ 
2 D1 = div(x+2, 2)          = P2 - ∞ 
3 D1 = div(x2+2x+2, 2x+1)  = P5 + P6 - 2∞ 
4 D1 = div(x2+x+1, x+1)     = P2 + P2 - 2∞ 
5 D1 = div(x2+1, x+1)       = P9 + P10 - 2∞ 
6 D1 = div(x2+2x, 2x+2)     = P3 + P4 - 2∞ 
7 D1 = div(x2+2x, 1)        = P1 + P3 - 2∞ 
8 D1 = div(x, 2)            = P4 - ∞ 
9 D1 = div(x, 1)            = P1 - ∞ 
10D1 = div(x2+2x, 2)        = P2 + P4 - 2∞ 
11D1 = div(x2+2x, x+1)      = P1 + P2 - 2∞ 
12D1 = div(x2+1, x+2)       = P7 + P8 - 2∞ 
13D1 = div(x2+x+1, 2x+2)   = P3 + P3 - 2∞ 
14D1 = div(x2+2x+2, x+2)    = P11 + P12 - 2∞ 
15D1 = div(x2+2, 1)         = P3 - ∞ 
16D1 = div(x2, 2)      = P4 + P4 - 2∞ 
17D1 = div(1, 0) 
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Chapter 4  

Algorithms for HCDLP 

4.1 Introduction 

The best known algorithm for solving the DLP in generic groups is Pollard’s rho 

algorithm.  Pollard’s algorithm has an exponential expected running time of 
2
nπ  

group operations and negligible storage requirements.  In order to prevent such 

square-root attacks, the group order n must have a large prime factor.  There are 

faster algorithms for the DLP than Pollard’s rho method.  The most powerful is the 

index calculus method which yields subexponential-time algorithms for the DLP in 

some groups. 

The first subexponential-time algorithm to compute discrete logarithms over 

hyperelliptic curves of large genus is introduced by Adleman, DeMassais and Huang 

[1] in 1994.  This algorithm was rather theoretical, and some improvements on it 

were done by other researchers.  Flassenberg and Paulus [9] implemented a sieve 

version of this algorithm, but the consequence for cryptographical applications is not 

clear.  Enge [6] improved the original algorithm and gave a precise evaluation of the 

running time, but did not implement his ideas.  Muller, Stein and Thiel [26] extended 

the resultsto the real quadratic congruence function fields.  Smart and Galbraith [12] 

also gave some ideas in the context of the Weil descent, following ideas of Frey; they 

dealt with general curves (not hyperelliptic).  We will not discuss those in details but 

list them as references. 
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When the index calculus algorithm is applied on the small genus HCDLP, even the 

fastest variation is not faster than Pollard’s rho method for the genus less than 3.  

Hence the use of hyperelliptic curves in public-key cryptography appears as an 

alternative to the use of elliptic curves, with the advantage that it can be used in a 

smaller base field for the same level of security.  In order to analyze the security of 

such systems, we need to know how the index calculus method works for solving 

small genus HCDLP. 

In 2000, Gaudry [13] first presented a variation of index calculus attack for a 

hyperelliptic curve of genus g over Fq that could solve the HCDLP in time 2( )O q .   

And Harley [13] improved this algorithm with reduced factor base such that HCDLP 

can be solved in time 
22

1gO q
−

+
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

.  Furthermore, Thériault improved it by using the 

almost-smooth divisor which contains exactly one large prime.  Theriault’s 

algorithm [32] works in time 
42

2 1gO q
−

+
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

. 

By considering double large prime, the time complexity of hyperelliptic index 

calculus algorithm can be reduced to 
22
gO q

−⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

.  This idea was proposed 

independently by Gaudry et al. [16] and Naogo [28] in 2004.  They used different 

tricks to handle large primes, but got the same time complexity.  We discuss these 

variations of index calculus algorithm for small genus HCDLP in section 4.2. 

However, the double large prime variation can not be applied on genus 2 

hyperelliptic curves.  We propose an algorithm that can solve the genus 2 HCDLP 

with time complexity O(q) in Chapter 5 which can be comparable to Pollard’s rho 

method.  Table 4.1 shows the comparison between these algorithms described above.  

Our algorithm has the same time complexity as Pollard’s rho method but smaller 
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hiding constant term.  We also have detailed analysis in Chapter 5. 

 

Table 4.1 Time complexity of algorithms solving HCDLP 

Genus g 2 3 4 5 6 

Pollard’s rho q 
3
2q  

2q  
5
2q  

3q  

Original index calculus 2q  
2q  

2q  
2q  

2q  

with reduced factor base 
4
3q  

3
2q  

8
5q  

5
3q  

12
7q  

with single large prime 
6
5q  

10
7q  

14
9q  

18
11q  

22
13q  

with double large prime － 
4
3q  

3
2q  

8
5q  

5
3q  

Our algorithm q  － － － － 

 
 

4.2 Index calculus algorithm for small genus HCDLP 

A reduced divisor in the Jacobian JC(K) is represented by two polynomials (a, b), 

and the factorization of a as polynomial in K[x] is compatible with the Jacobian group 

law.  This is the key stone for defining a smooth divisor and then the index calculus 

algorithm. 

 

Fact 4.1 (Factorization) 
 Let C be a hyperelliptic curve over a finite field Fq.  Let D=div(a, b) be a 

reduced divisor in JC(Fq).  Factor a(x) as ( ) ( )ia x a x=∏  where ai(x) are 
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irreducible factors of a(x) in Fq[x].  Let bi(x) = b(x) (mod ai(x)).  

Then Di = div(ai, bi) is a reduced divisor and D= iD D=∑  in JC(Fq). 

 

Remark 4.1 
To factor polynomials over finite fields we can use the Cantor-Zassenhaus 

algorithm, which is invented by D. Cantor and Hans Zassenhaus in 1981 [3].  It is 

currently implemented in many well-known computer algebra systems. 

 

With this result in Fact 4.1, a reduced divisor can be rewritten as the sum of 

reduced divisors of smaller deg(ai), and deg( ) deg( )ia a=∑ .  If the a-polynomial of 

a reduced divisor D is irreducible then it can not be rewritten as their decomposition.  

We call them primes in JC(Fq). 

 

Definition 4.1 (Prime) 
A reduced divisor D=div(a, b) ∈  JC(Fq) is said to be prime if the polynomial a 

is irreducible in Fq[x]. 

 

Definition 4.2 (B-smooth) 
Let B be an integer.  A divisor is said to be B-smooth if all the prime divisors in 

its factorization of a-polynomial have degree at most B.  When B= 1, a 1-smooth 

divisor will be a divisor for which the polynomial a splits completely over Fq. 

 

We give a sketch of the index calculus algorithm in the following.  Several 

improvements described in this section are based on this algorithm.  
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Algorithm 4.1 Hyperelliptic index calculus algorithm 

Input:  A divisor D1 in JC(Fq) with know order n = ord(D1),  

and a divisor D2∈<D1>. 

Output: An integer λ sucht that D2=λD1. 

1. Fix smoothness bound B and construct the factor base F. 

2. While not enough relations have been found do: 

 Pick a random element R=αD1+βD2. 

 If R is smooth, record the corresponding relation. 

3. Solve the linear algebra system over Zn. 

4. Return λ. 

 

The factor base F contains all the prime reduced divisors which a-polynomial has 

degree at most B: { ( ) : ( , )  ,  deg( ) }C qF D J F D div a b is prime a B= ∈ = ≤ .  For 

convenience, we use gi for i=1,2,…,#F to denote the element in F.  To find all the 

prime divisors in F, it suffices to test all the monic polynomial a(x) of degree at most 

B, checking if it is irreducible and if there exists a polynomial b(x) such that  

div(a, b)∈JC(Fq).  

While searching the smooth relations in step 2, a naive way to select a random 

element R=αD1+βD2 is costly: two integers α and β are randomly chosen in [0, n-1] 

and then two scalar multiplications have to be done.  It costs O(log n) group 

operations.  We can use a pseudo random walk instead, so that each new random 

element R costs just one group operation. 

Let 0 0 1 0 2R D Dα β= +  be the starting point of the walk where α0 and β0 are 

random integers in [0, n-1].  For j from 1 to r, we compute random divisors 

1 2j j jT a D b D= + .  The walk Ri+1 will then be given by adding one of the Tj to Ri.  
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The index j∈[1, r] is given by a hush function H evaluated at Ri.  In other words, 

Ri+1=Ri+Tj where j=H(Ri)∈ [1, r], and αi+1=αi +aj, βi+1 = βi+ bj.  Once the 

initialization is finished, we can compute a new pseudo-random element Ri+1 at the 

cost of one addition in the Jacobian.  Practical experiments suggest that by taking r= 

20 the pseudo random walk behaves almost like a purely random walk. 

For each Ri of the random walk, test its smoothness by factoring the 

a-polynomial of Ri.  If all its irreducible factors have degree at most B (then it is 

smooth), express it on the factor base; otherwise, throw it away.  Thus we collect a 

subsequence of the sequence (Ri) where all the divisors are smooth.  We denote this 

subsequence by (Sk) with kth smooth element Sk=αkD1+βkD2.  Hence we can put the 

result of this computation in a matrix M, each column representing an element of the 

factor base, and each row being a reduced divisor Sk expressed on the basis: for a row 

k, we have 1 2
1 #

k ki i k k
i F

S m g D Dα β
≤ ≤

= = +∑ , where M = (mki). We collect #F + 1 rows 

in order to have a (# 1) #F F+ ×  matrix.  Thus the kernel of the transpose of M is of 

dimension at least 1. 

Using linear algebra, we find a non-zero vector (γk) of this kernel, which 

corresponds to a relation between the Sk’s.  So that 

( ) ( )1 20k k k k k kk k k
S D Dγ γ α γ β= = +∑ ∑ ∑ , and then (mod )k kk

k kk

n
γ α

λ
γ β

= −∑
∑

.  The 

discrete logarithm is now found with high probability, because the denominator is 

zero with probability 1
n

. 

In this algorithm, there are two crucial points: one is to search enough smooth 

relations, and another is to solve the large linear system.  In the matrix obtained in 

the algorithm, each row is a smooth divisor written as sum of at most g elements of 

the factor base.  Hence the matrix is very sparse, and we have at most g terms in 
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each row.  For such a sparse matrix, Lanczos’s [21] or Wiedemann’s [33][5] 

algorithm can be used, in order to get a solution in time quadratic in the number of 

rows, instead of cubic by Gaussian elimination.  

We know that the index calculus algorithm can solve HCDLP in a 

subexponential time 1 , 2
2gq

O L⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 when logg q  [1], where 

( ) ( )( )1( , ) exp log log logNL c c N Nα αα −= .  When the genus is relatively small (say at 

most 9), the theoretical optimal smoothness bound 1log , 2
2gq q

B L⎡ ⎤⎛ ⎞= ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥
 which 

tends to 0.  In this case, B= 1 is the best choice.  The first index calculus algorithm 

for hyperelliptic curve of small genus was proposed by Gaudry in 2000.  We 

summarize in the following algorithm. 

 

Algorithm 4.2 Index calculus algorithm for small genus HCDLP 

Input:  A hyperelliptic curve C of small genus g over Fq, 

a divisor D1 in JC(Fq) with know order n = ord(D1),  

and a divisor D2∈<D1>. 

Output: An integer λ sucht that D2=λD1. 

1. /* Build the factor base F */ 

For each monic irreducible polynomial ai over Fq of degree 1, try to find bi such 

that div(ai, bi) is a divisor of the curve.  If there is a solution, store gi =div(ai, bi) 

in F. 

2. /* Initialization of the random walk */ 

For j from 1 to 20, select aj and bj at random in [0, n-1], and compute 

   Tj := ajD1 + bjD2. 

Select α0 and β0 at random in [0, n-1] and compute R0 := α0D1 +β0D2. 
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Set k to 1. 

3. /* Main loop */ 

(a) /* Look for a smooth divisor */ 

Compute j := H(R0), R0 := R0 + Tj, α0 := α0 + aj mod n, andβ0 := β0 + bj mod n. 

Repeat this step until R0 is a smooth divisor. 

(b) /* Express R0 on the factor base F */ 

Factor a0(u) over Fq, and determine the positions of the factors in the basis G.. 

Store the result as a row Rk = ki im g∑ of a matrix M = (mki). 

Store the coefficients αk = α0 and βk = β0. 

If k < #F + 1, then set k := k + 1, and return to step 3.a. 

4. /* Linear algebra */ 

Find a non-zero vector (γk) of the kernel of the transpose of the matrix M. 

The computation can be done in Zn. 

5. /* Solution */ 

Return (mod )k kk

k kk

n
γ α

λ
γ β

= −∑
∑

. 

 

Lemma 4.1  
 The proportion of smooth divisors in the Jacobian of a curve of genus g over Fq 

tends to 1
!g
. 

Proof:  

 By the Hasse-Weil bound, #F= #C(Fq) = O(q) and #JC(Fq) = O(qg).  The 

smooth divisors can be written as the sum of at most g points in C(Fq), hence we have 

about 
!

gq
g

 smooth divisors in JC(Fq).  The proportion is 1
!g
. 

 In step 1, we need to perform q times a resolution of an equation of degree 2 over 
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Fq.  Step 2 requires a constant number of Jacobian operations.  Step 3 is a loop of 

O(q) times to find enough smooth relations.  In step 4, this linear algebra step 

consists in finding a vector of the kernel in a sparse matrix of size O(q), and of weight 

O(gq); the coefficient are in Zn.  Hence Lanczos's algorithm provides a solution with 

cost O(gq2).  This last step requires only O(q) multiplications modulo n, and one 

inversion.  When q is large, we can regard g and logq as small constant.  Then the 

complexity of this algorithm is O(q2). 

 

Theorem 4.1 [13] 
 Let C be a hyperelliptic curve of genus g over the finite field Fq.  If q>g! then 

the discrete logarithms in JC(Fq) can be computed in expected time ( )3 2O g q ε+ . 

 

Example 4.1 
Given a genus 2 hyperelliptic curve C: y2 = x5 + 2x4 + 1 over F3.  This curve is 

also used as an example in Example 3.2.  Let D1 = div(x2, 1) with ord(D1) = 17, and 
D2 = div(x2+1, x+2) ∈<D1>.  We can use the index calculus algorithm described in 
Algorithm 4.2 to find an integer λ such that D2=λD1. 

1. Construct factor base  
F = {g1=div(x, 1), g2=div(x+2, 2), g3=div(x+2, 1), g4=div(x, 2)}. 

2. Initialize the pseudo-random walk: 
T1 = 2D1+ 10D2 = div(x2+2x+2, 2x+1) 
T2 = 13D1 + 5D2 = div(x2+1, x+1) 
T3 = 3D1 + 7D2 = div(x+2, 2) 

 3. Search enough smooth relations by using a pseudo random walk: 
  R0 = 1D1+1D2 = div(x2+x+1, 2x+2)    = 2g3. 
  R1 = R0+T2 =14D1+6D2 = div(x2, 1)    = 2g1. 
  R2 = R1+T1 =16D1+16D2 = div(x2+x+1,x+1)  = 2g2. 
  R3 = R2+T1 = 1D1+9D2 = div(x2+2x, 1)   = g1+g3. 
  R4 = R3+T3 = 4D1+16D2 = div(x,1)   = g1. 
   If Ri is smooth we can store it in a matrix M, otherwise discard it. 
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These smooth relations are stored in a matrix M: 

 
4. When there is enough(#F+1 = 5) smooth relations, we can find a non-trivial 
kernel r of M, such that rM=0.  We have r =(0, 1, 0, 0, -2)T. 

 

2 1 0
0 0 0

0 0 0 2
0 0 0
0 0 0

r M

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ = + + + − ⋅ =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
14 4 6

0 0 0 2
6 16 26

i

i

r
α
β
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⇒ ⋅ = + + + − ⋅ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
 

 Hence, 6D1-26D2 = 0, 
 2 1 1D  = [6/26 (mod 17)] D =12D⇒ . 
 
 

4.2.1 Reduced factor base 

Because the running time for Gaudry’s algorithm is dominated by the cost of 

solving the linear algebra, a natural approach to improve the algorithm is to reduce the 

cost of linear algebra part.  Hence we need to reduce the size of the linear system, 

which means reducing the size of factor base.  This was first introduced by Robert 

Harley.  We can choose the factor base F with |F|=qr where r is a real number in the 

interval (0, 1).  This increases the cost of searching relation, because it also reduces 

the proportion of the smooth divisors in the Jacobian.  To balance the cost of the 

relation search and linear algebra 
1

gr
g

≈
+

 is the best choice.  Then, the time 

αi 

βi 

g1  
g2  
g3  
g4 

Matrix M 

4 
16
1 
0 
0 
0 

1 
1 
0 
0 
2 
0 

14 
6 
2 
0 
0 
0 

16 
16 
0 
2 
0 
0 

1 
9 
1 
0 
1 
0 
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complexity of the index calculus algorithm with reduced factor base is 
22

1gO q
−

+
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

. 

 

Theorem 4.2 [13] 
 Let C be a hyperelliptic curve of genus g over the finite field Fq.  If q>g! then 

the discrete logarithms in JC(Fq) can be computed in expected time 
22

5 1gO g q
ε− +

+
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

. 

 
 

4.2.2 Single large prime variation 

As the index calculus algorithm for the multiplicative group of a finite field, the 

hyperelliptic index calculus algorithm can be improved by using large primes. 

 

Definition 4.3 (Large prime) 
 Let r be a real number such that 0<r<1.  A subset S of Fq of size qr is fixed 

arbitrarily.  The factor base F is the set { ( , ) ( ) ( ); }q C qF P x y C F J F x S= = ∈ ⊂ ∈ .  

The set of large primes L is the set { ( ) ( )} \q C qL P C F Jac F F= ∈ ⊂ . 

 We have # rF q≈  and # L q≈ .  The union of factor base and large primes is 

the set of Fq-rational points (xi, yi) ∈C(Fq) which can represent the prime divisors 

with div(ai, bi) = div(x-xi, yi). 

 

Definition 4.4 (1-almost smooth divisor) 

 A reduced divisor i iD m P m= − ∞∑  is said to be 1-almost smooth if all but 

exactly one of the Pi’s are in F and the remaining Pi is a large prime. 
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Definition 4.5 (2-almost smooth divisor) 

 A reduced divisor i iD m P m= − ∞∑  is said to be 2-almost smooth if all but 

exactly two of the Pi’s are in F and the remaining Pi’s are two large primes. 

  

Simple combinatorial arguments give good estimates for the probabilities of 

obtaining almost smooth divisors in the relation search. 

 

Lemma 4.2  

 The probability for a random divisor to be smooth is approximately 
( 1)

!

g rq
g

−

.  

The probability for a random divisor to be 1-almost smooth is approximately 
( 1)( 1)

( 1)!

g rq
g

− −

−
.  The probability for a random divisor to be 2-almost smooth is 

approximately 
( 2)( 1)

2( 2)!

g rq
g

− −

−
. 

 

We now consider the single large prime variation of the index calculus algorithm.  

In order to take advantage of the high number of 1-almost smooth divisors, we must 

find pairs of these divisors with the same large prime.  For example, given two 

1-almost smooth divisors 1 1 *
i

i i
P F

D m P n Q
∈

= + − ∞∑ , 2 2 *
i

i i
P F

D m P n Q
∈

= + − ∞∑  where 

Q is a large prime, then we can obtain a smooth divisor by computing 2 1 1 2n D n D− . 

The following algorithm shows how this method can be applied in the relation 

search of the original index calculus algorithm. 

 

Algorithm 4.4.5: Searching relation with single large prime 

Input:  A hyperelliptic curve C of small genus g over Fq, 

a divisor D1 in JC(Fq) with know order n = ord(D1),  
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a divisor D2∈<D1>, 

a factor base F, and the set of large primes L. 

Output: A system of k smooth divisors of the form 1 2i i iR D Dα β= + . 

1. /* Initialization of the random walk */ 

For j from 1 to 20, select aj and bj at random in [0, n-1], and compute 

   Tj := ajD1 + bjD2. 

Select α and β at random in [0, n-1] and compute R:= αD1 +βD2. 

P {} 

i 1 

2. /* Main loop */ 

   While i k do{≦  

      R R+Tj for some randomly chosen j, update α and β. 

      Decompose R into prime divisors 

 If R is smooth then 

          Ri R 

          i i+1 

      If R is 1-almost smooth with a large prime Q then 

         If Q is already in P then 

            Obtain a smooth divisor R by cancelling the large prime Q 

Ri R 

            i i+1 

         else (Q is not in P) 

            Add Q to the set P with the associated relation R 

   } 

   Return {R1, R2, …, Rk} 
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According to Theriault’s analysis, by choosing the factor base F such that 

1 1/
2 2 2| |

g g
F O g q

ε⎛ ⎞ ⎛ ⎞− + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
, we get the following result: 

 

Theorem 4.3 [32] 
 Let C be a hyperelliptic curve of genus g over the finite field Fq.  If q>g! then 

the discrete logarithms in JC(Fq) can be computed in expected time 
42

5 2 1gO g q
ε− +

+
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

. 

 
Example 4.2 

Given the same HCDLP as in Example 4.1.  
Let C: y2 = x5 + 2x4 + 1 over F3. 
D1 = div(x2, 1) with ord(D1) = 17, and D2 = div(x2+1, x+2) ∈<D1>.  We want 

to find an integer λ such that D2=λD1. 
1. Construct factor base F = {g1=div(x, 1), g2=div(x+2, 2), g3=div(x+2, 1)}, and 
the set of large primes is {g4=div(x, 2)}. 
2. Initialize the pseudo-random walk: 

T1 = 2D1+ 10D2 = div(x2+2x+2, 2x+1) 
T2 = 13D1 + 5D2 = div(x2+1, x+1) 
T3 = 3D1 + 7D2 = div(x+2, 2) 

 3. Search enough smooth relations by using a pseudo random walk: 
  R0 = 16D1+8D2= div(x2+2x, 2)     = g2+g4. 
  R1 = R0+T1 = 1D1+1D2 = div(x2+x+1, 2x+2)  = 2g3. 
  R2 = R1+T2 = 14D1+6D2 = div(x2,1)    = 2g1. 
  R3 = R2+T2 = 10D1+11D2 = div(x2+2x, 2x+2)  = g3+g4. 
  R4 = R3+T2 = 6D1+16D2 = div(x2+2x, x+1)  = g1+g2. 
   R0 and R3 are 1-almost smooth relations with the same large prime g4.  We 
can calculate a smooth relation R’= R0-R3=6D1-3D2=g2-g3. 

These smooth relations are stored in a matrix M: 
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4. When there is enough(#F+1 = 4) smooth relations, we can find a non-trivial 
kernel r of M, such that rM=0.  We have r =(1, 1, 2, -2)T. 

 
0 2 0 1 0
0 0 2 1 2 1 0
2 0 1 0 0

r M
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ = + + ⋅ − ⋅ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
1 14 6 6 15

2 2
1 6 3 16 31

i

i

r
α
β
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⇒ ⋅ = + + ⋅ − ⋅ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
 

 Hence, 15D1-31D2 = 0, 
 2 1 1D  = [15/31 (mod 17)] D =12D⇒ . 
 
 
 

4.2.3 Double large prime variation 

Since 1-almost smooth divisors can be used to produce relations so much faster, it 

is natural to also consider 2-almost smooth divisors.  By the definition of 2-almost 

smooth divisor, the smallest genus g of a hyperelliptic curve is 3 such that a reduced 

divisor which is 2-almost smooth is of the form D=P+Q1+Q2-3∞ where P is in factor 

base and Qi are large primes.  Here is an example to cancel the large primes. 

 

Example 4.3 
Let C be a hyperelliptic curve of genus g=3.  D1=P1+Q1+Q2-3∞, 

D2=P2+Q2+Q3-3∞, and D3=P3+Q3+Q1-3∞ where Pi are in the factor base and Qi are 

large primes.  We can cancel the large primes by multiplying the divisors by a 

αi 

βi 

g1  
g2  
g3  Matrix M 

1 
1 
0 
0 
2 

14 
6 
2 
0 
0 

6 
-3 
0 
1 
-1 

6 
16 
1 
1 
0 
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relative constant and adding them together.  In this example, the constants are 1 or -1.  

Hence 1 2 3 1 2 3 12 3D D D P P P Q− + = − + + − ∞  is a 1-almost smooth divisor.  If we 

have another 1-almost smooth divisor D4=P4+Q1-2∞ then we can get a smooth divisor 

by 1 2 3 4 1 2 3 42 2D D D D P P P P− + − = − + − +∞ . 

 

To manipulate the chain of almost smooth divisors, Gaudry and Thome introduce 

the graph of large prime relations (LP-graph, in short).  LP-graph is an undirected 

acyclic graph with 1+#L vertices, corresponding to the elements of the set of large 

primes L and the special vertex 1.  All edges of the LP-graph are labeled with a 

relation.  An edge between vertex 1 and vertex Qi represents a 1-almost smooth 

divisor with the large prime Qi, and an edge between vertex Qi and Qj represents a 

2-almost smooth divisor with these two large primes. 

 

Algorithm 4.3 Searching relation with double large primes 
Input:  A hyperelliptic curve C of small genus g 3 over F≧ q, 

a divisor D1 in JC(Fq) with know order n = ord(D1),  

a divisor D2∈<D1>, 

a factor base F, and the set of large primes L. 

Output: a system of k smooth divisors of the form 1 2i i iR D Dα β= + . 

1. /* Initialization of the random walk */ 

For j from 1 to 20, select aj and bj at random in [0, n-1], and compute 

   Tj := ajD1 + bjD2. 

Select α and β at random in [0, n-1] and compute R:= αD1 +βD2. 

G empty graph 

i 1 

2. /* Main loop */ 

   While i k do{≦  

      R R+Tj for some randomly chosen j, update α and β. 

      Decompose R into prime divisors 
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 If R is smooth then 

          Ri R 

          i i+1 

      If R is 1-almost smooth with a large prime Q then 

         If there is a path from vertex 1 to Q then 

            Obtain a smooth divisor R by cancelling the large primes in the path 

Ri R 

            i i+1 

            Leave G unchanged 

         else (edge(1, Q) would not create a cycle in G)  

            Add edge(1, Q) to G with the associated relation R 

      If R is 2-almost smooth with large prime Q1, Q2 then 

         If edge(Q1, Q2) would create a cycle containing vertex 1 in G then 

            Use the relations in the cycle to cancel the large primes and  

then obtain a new smooth divisor R. 

Ri R 

            i i+1 

            Leave G unchanged 

         If edge(Q1, Q2) would create a cycle not containing vertex 1 in G then 

            Use the relations in the cycle to cancel the large primes other than Q1

            If Q1 is also canceled then a new smooth divisor R is obtained 

Ri R 

               i i+1 

               Leave G unchanged 

            Else (the new divisor R is 1-almost smooth divisor with Q1) 

               Add edge(1, Q1) to G with the associated relation R 

   Else ( (Q1, Q2) is not connected in G) 

      Add edge(Q1, Q2) to G with the associated relation R 

   } 

   Return {R1, R2, …, Rk} 

 

To test if adding an edge would create a cycle, we can use the union-and-find 

algorithm to find if these two vertices of the edge are in the same set (connected 
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component).  

 

Theorem 4.4 [16] 
 Let C be a hyperelliptic curve of genus g 3 over the finite field F≧ q.  If q>g! 

then the discrete logarithms in JC(Fq) can be computed in expected time 

22
5 gO g q

ε− +⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

. 

 
 

4.3 Computational comparison 

4.3.1 Solving large sparse linear system 

The last step in the index calculus algorithm is to solve a large sparse linear 

system over finite field.  We implemented Lanczos’s algorithm to do this work.  

Here is the Lanczos’s algorithm to solve the system Ax w=  for a column n-vector x, 

where A is a n×n matrix and w is a column n-vector. 

 

Algorithm 4.4 Lanczos’s algorithm 

Input:  A n×n matrix A and a column n-vector w 

Output: A column n-vector x for the system Ax = w. 

1. w0 = w, 

v1 = Aw0, 

1 1
1 1 0

0 1

( , )
( , )

v vw v w
w v

= − . 

2. i = 1 

While (wi, Awi) ≠ 0 do 
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   1i iv Aw+ = , 

   1 1 1
1 1 1

1 1

( , ) ( , )
( , ) ( , )

i i i i
i i i i

i i i i

v v v vw v w w
w v w v
+ + +

+ + −
+ −

= − − , 

   i = i+1. 

3. If wi = 0, then 

1

0 1

( , )
( , )

i
j

j
j j j

w w
x w

w v

−

= +

= ∑  is a solution. 

In Algorithm 4.4, the notation (,) denote the inner product of two vectors. 

In general, the systems we need to solve are not symmetric, and are of the form 

Bx = u, where B is m×n matrix, m n, x is an unknown column n≧ -vector, and u is a 

given column m-vector.  Suppose we need to solve the system Bx = u over field K.  

Let D be a m×m diagonal matrix with the diagonal elements randomly selected from 

K\{0}, and let  

2TA B D B= , 

2Tw B D u= . 

We can expect that with high probability a solution to the system Ax w=  is a 

solution to the system Bx u= . 

 

4.3.2 Curve selection 

To select a suitable hyperelliptic curve, we need to check if the order of Jacobian 

has a large prime factor in order to avoid the square root attacks.  Koblitz first 

described a method of calculating the number of points on the Jacobian of a 

hyperelliptic curve of genus 2 and of small characteristic, by using zeta functions.  

Sakai and Sakurai [30] improved the method by proposing a point counting method 

for curves of small characteristic but of arbitrary genus.  
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Algorithm 4.5 Sakai and Sakurai method 

Input:   A hyperelliptic curve C of genus 2 over the field nq
F . 

Output: ( )# nC q
J F . 

1. Determine Nr, the number of points on the curve over rq
F  for r=1,…,g. 

2. Determine the coefficients of 
2

0

( )
q

g
i

F i
i

L t a t
=

= ∑  in the following way: 

(a) a0 = 1 

(b) for 1 i g≤ ≤ : ( )( )
1

1 / .
i

k
i k i k

k

a N q a i−
=

⎛ ⎞= − +⎜ ⎟
⎝ ⎠
∑  

(c) for 1 2g i g+ ≤ ≤ : 2
i g

i g ia q a−
−= . 

3. Compute ( )
1

(1)
n qq

n
k

F F
k

L L ζ
=

=∏ , where ζ  runs over the n-th root of unity. 

Return # ( ) (1)
nq

C q FJ F L= . 

 

Note that it should be easy to count N1, …, Ng if Fq is small, so this algorithm is 

only suitable for fields of small characteristic. 

We have implemented the Sakai and Sakurai method to select the suitable 

Jacobian of a hyperelliptic curve having an order which containing a large prime 

factor.   

Example 4.4 lists the test data we use to test the index calculus algorithms for 

solving HCDLP in section 4.3.3 and section 5.4. 

 

Example 4.4 
Genus 2 hyperelliptic curves: 

(a) C: 2 5 4 3y y x x x+ = + +  over 112
F , 112

# ( ) 4196353 7 599479CJ F = = × . 
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(b) C: 2 2 5 4(x +x+1)y y x x+ = +  over 132
F , 

132
# ( ) 66695006 2 7 4763929CJ F = = × × . 

(c) C: 2 5 3y y x x+ = +  over 172
F , 132

# ( ) 17247109633 13 1326700741CJ F = = × . 

(d) C: 2 2 5 4(x +x+1)y y x x+ = +  over 192
F , 

192
# ( ) 274720225346 2 7 19622873239CJ F = = × × . 

Genus 3 hyperelliptic curves: 

(e) C: 2 3 2 7(x +x +1) 1y y x+ = +  over 112
F , 

112
# ( ) 8589762730 2 5 858976273CJ F = = × × . 

(f) C: 2 3 2 7(x +x +1) 1y y x+ = +  over 132
F , 

132
# ( ) 549756909530 2 5 131 419661763CJ F = = × × × . 

(g) C: 2 3 2 7 6 5(x +x +1)y y x x x+ = + +  over 172
F , 

17
4

2
# ( ) 2255872542702704 2 140992033918919CJ F = = × . 

(h) C: ( )2 3 2 71 1y x x y x+ + + = +  over 192
F , 

192
# ( )=144115188252574570 = 2 5 14411518825257457CJ F × × . 

Genus 4 hyperelliptic curves: 

(i) C: 2 3 9y x y x x+ = +  over 112
F , 

11
4

2
# ( ) 18566518893488 = 2 1160407430843CJ F = × . 

(j) C: 2 3 9y x y x x+ = +  over 132
F , 

13
4

2
# ( ) 4546690000751824  2 284168125046989CJ F = = × . 
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4.3.3 Comparisons 

We have implemented the index calculus algorithms and several variations 

described in section 4.2 including original index calculus, index calculus with reduced 

factor base, index calculus with single large prime, index calculus with double large 

primes.  In order to implement these algorithms we use the C++ library NTL [31] to 

manipulate the operations over finite field.  NTL (Number Theory Library) is a 

high-performance, portable C++ library providing data structures and algorithms for 

manipulating signed, arbitrary length integers, and for vectors, matrices, and 

polynomials over the integers and over finite fields. 

 We ran our programs on the computer with 1800 MHz CPU and 1G ram to 

generate the results in Table 4.2. 

 
Table 4.2 Running time (seconds) of hyperelliptic index calculus 

Genus g 2 3 4 

Field size q = |Fq| 211 213 215 211 213 215 211 213 

Original index calculus 68 3760 >3days 110 5261 >3days 1136 10321 

with reduced factor base 6 34 403 93 891 10595 830 6374 

with 1 large prime 2 9 18 22 533 665 248 2677 

with 2 large primes － － － 17 301 458 191 1813 

 

From Table 4.2 we can realize the following facts.  

When the original index calculus is applied to small genus HCDLP, using a 

relative large factor base reduce the time to obtain a smooth relation but result in a 

large linear system which becomes dominating the running time.  By using a reduced 

factor base to balance the search time and the time of solving linear system, the index 

calculus algorithm with reduced factor base solves HCDLP in a much shorter time.  

And the large prime variations can further improve the index calculus algorithm.
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Chapter 5  

A Fast Algorithm for Genus 2 HCDLP 

5.1 Introduction 

For genus 2 hyperelliptic curves, the index calculus algorithm is asymptotically 

slower than Pollard’s rho method.  In this chapter, we present a faster algorithm for 

solving genus 2 HCDLP.  A comparison of the time complexity can be found in 

Table 4.1.  The bottleneck of the index calculus algorithms is due to its linear 

algebra part.  Hence the idea of our algorithm is to use a graph method to find the 

relation of D1 and D2 such that ( ) ( )1 2 0k k k kk k
D Dγ α γ β+ =∑ ∑  without the linear 

algebra part. 

We choose the factor base as all the prime divisors with degree of a-polynomial 

being 1, which can be constructed by finding all the rational points on C in the base 

field.  For a genus g=2 hyperelliptic curve C over Fq, if a reduced divisor is smooth 

then it can be represented by the sum of at most 2 points in C(Fq).  By Lemma 4.1, 

the probability to get a smooth divisor is 1 1
! 2g
= . 

Example 5.1 gives examples of all the cases that would appear in our algorithm. 

 

 

Example 5.1 
Let C be a hyperelliptic curve of genus 2 over Fq.  Let Pi be the points of C(Fq) 

and Ri=αiD1+βiD2 ∈JC(Fq). 
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(a) Let R1= P1+P2-2∞, R2= P2+P3-2∞, R3= P3+P4-2∞. 

Then we can get a relation of P1 and P4 by R1-R2+R3= P1+ P4-2∞. 

(b) Let R1= P1+P2-2∞, R2= P2+P3-2∞, R3= P3+P4-2∞, R4= P4+P1-2∞. 

Then R1-R2+R3-R4 = 0 

(c) Let R1= P1+P2-2∞, R2= P2+P3-2∞, R3= P3+P1-2∞. 

Then R1-R2+R3=2P1-2∞,  

R1+R2-R3=2P2-2∞, 

-R1+R2+R3=2P3-2∞, 

In this case, we can not get a relation 0i iRγ =∑ , but we can get relations of any 

one of the points. 

(d) Let R1= P1+P2-2∞, R2= P2+P3-2∞, R3= P3+P1-2∞, R4= P2+P4-2∞, R5= P4+P5-2∞, 

R6= P5+P2-2∞. 

Then (R2-R3+R1)- (R4-R5+R6)=(2P2-2∞)- (2P2-2∞)=0. 

(e) Let R1= P1+P2-2∞, R2= P2+P3-2∞, R3= P3+P1-2∞, R4= P3 -∞. 

Then -R1+R2+R3-2R4 = 0 

The following figure shows that we can use the graph for finding cycles to get a 

relation 0i iRγ =∑ . 
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(a) A path 

 

 (b) A cycle of even length                  (c) A cycle of odd length 

                 
(d) A component containing 2 cycles         (e) A component containing 2 cycles

        

Figure 5.1 Possible sub-graphs appear in our algorithm 
 

From the example above, we can realize some facts: 

1. Case (a): If there is a path from vertex Pi to Pj then we can compute a relation for 

Pi and Pj.   

2. Case (b): If there is a cycle of even length then we can compute a relation R such 

that 0i iR Rγ= =∑  for some γi.  

3. Case (c): If there is a cycle of odd length then we can compute a relation of any 

one of the points. 

4. Case (d), (e): If there is a connected component containing 2 odd length cycles 

then we can compute a relation R such that 0i iR Rγ= =∑  for some γi. 
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By regarding these edges in the graph as a smooth relation found in the relation 

search, it isn’t hard to imagine that a new algorithm for solving genus 2 HCDLP can 

be designed with the graph. 

 

 

5.2 The algorithm 

Our algorithm first uses a pseudo random walk to create random reduced divisors 

of the form Ri=αiD1+βiD2.  Then, create a graph G with |F| vertices corresponding to 

the elements in the factor base F, each edge specifying a relation written as the sum of 

the points.  Initially the graph G contains no edges.  If Ri is smooth then write Ri as 

the sum of at most 2 points in C(Fq), and then add the corresponding edge between 

these two points in the edge.  Notice that if Ri is written as Ri=cPj-c∞ where c=1 or 2 

and some Pj∈C(Fq) then it is an edge of self-loop of the point Pj. 

The data structure of the graph can be implemented as an array to represent trees 

with a union-find algorithm.  In other words, we only need to record the parent node 

of each element in the array.  To test if adding an edge (Pi, Pj) would create a cycle, 

we can traverse the trees from vertices Pi and Pj to see if they have the same root.  If 

adding an edge would create an even length cycle then we get a relation 

( ) ( )1 2 0i i i i i iR R D Dγ γ α γ β= = + =∑ ∑ ∑  for some γi such that the discrete 

logarithm of D2=λD1 can be computed as i i

i i

γ α
λ

γ β
= −∑
∑

.  If adding an edge would 

create an odd length cycle then we can compute a relation R=cPi-c∞ where Pi is the 

root of the tree as the case (c) in Example 5.1.  Hence we can store such information 

of odd length cycles (including self-loop) in the roots of the trees without creating 
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cycles in the graph G.  If later we have another odd length cycle within the same tree 

then we can compute a relation S=dPi-d∞.  With the information of the root Pi, the 

relations R and S, we can compute dR-cS=0 which implies the discrete logarithm. 

Here is our algorithm in detail. 

 

Algorithm 5.1 A faster algorithm for genus 2 HCDLP 

Input:  A hyperelliptic curve C of small genus g=2 over Fq, 

a divisor D1 in JC(Fq) with know order n = ord(D1),  

and a divisor D2∈<D1>. 

Output: An integer λ sucht that D2=λD1. 

1. /* Build the factor base F */ 

For each xi qF∈ , solve v2+h(xi)v=f(xi) to find yi qF∈  such that (xi, yi) in C(Fq), 

and store Pi= (xi, yi) in F. 

2. /* Initialization of the random walk */ 

For j from 1 to 20, select aj and bj at random in [0, n-1], and compute 

   Tj := ajD1 + bjD2. 

Select α and β at random in [0, n-1] and compute R := αD1 +βD2. 

G empty graph 

3. /* Main loop */ 

   While G contains no even length cycles  

or no component with 2 odd length cycles do 

3.1    R R+Tj for some randomly chosen j, update α and β. 

3.2    If R is smooth and R=cPi-c∞ for some Pi in F, c=1 or 2 

         Use the relations in the path from Pi to the root of the tree containing Pi 

to get a relation of the root. 
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         If there already exists a relation of the root then go to step 4. 

3.3    If R is smooth and R=Pi+Pj-2∞ for some Pi and Pj in F 

         Traverse the trees from Pi and Pj to find the roots Pri and Prj respectively. 

3.3.1     If Pri≠Prj then combine these two trees 

Use the relations in the path Pri Pi Pj Prj to get a relation R’ of Pri 

and Prj.  Combine these 2 trees by adding an edge (Pri, Prj) and 

making Pri as the parent node of Prj.  If there is a relation of Prj 

(self-loop of Prj), we also update it as a relation of Pri. 

If there already exists a relation of Pri then go to step 4. 

3.3.2     If Pri=Prj then a cycle is found 

            If the cycle is of even length then go to step 4. 

            Else (the cycle is of odd length, store as self-loop of the root) 

              Use the relations in the cycle Pri Pi Pj Prj to obtain a relation 

of Pri. 

              If there already exists a relation of Pri then go to step 4. 

4.  Obtain a relation of ( ) ( )1 2 0i i i iD Dγ α γ β+ =∑ ∑  by using the relations in an 

even length cycle or 2 self-loops of the same point. 

Return i i

i i

γ α
λ

γ β
= −∑
∑

 mod n. 

 

To implement this algorithm we can use an array of #F=O(q) elements.  Each 

element in the array contains a point Pi in C(Fq) and a link to the parent node Pj with 

associated relation of the form R=αD1+βD2(=Pi+ Pj-2∞).  The link is nil before such 

a relation appears in the pseudo random walk.  Hence this algorithm requires O(q) 

storage space. 
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5.3 Time complexity 

In order to analyze the time complexity of this algorithm, we refer to Flajolet, 

Knuth and Pittel’s work [8], which provides comprehensive knowledge of the cycle 

appearance in random graphs.  We quote some of their results in [8]. 

 

Definition 5.1 (Uniform model) 
The uniform model is a procedure to enrich an initially empty graph on the 

vertices {1,2,…,n}. At each step we generate an ordered pair <x, y>, where x and y 

are uniformly distributed between 1 and n, and all n2 pairs are equally likely.  The 

(undirected edge) x－y is then added to the graph.  In this way we obtain a 

multi-graph, which may have duplicate edges or self-loops x－x. 

 

A bicyclic component in a graph is a component with more than one cycle. 

 

Corollary 5.1 (Expected time) [8] 

In the uniform model, the first cycle appears at the expected time 
3
nm ≈  steps.  

And at this time, the expected cycle length is of order 
1
6n , and the size of the 

component containing the first cycle will be 
1
2nθ

⎛ ⎞
⎜ ⎟
⎝ ⎠

.  The waiting time for the first 

bicyclic component is approximately 
2
n . 

 

The graph constructed in our algorithm can be viewed as the uniform model with 
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|F|=O(q) vertices.  At each step of pseudo random walk, the relation R=αD1+βD2 is 

smooth with probability 1
2

.  In other words, it is half chance to add an edge into the 

graph at each step.  By Corollary 5.1, the first bicyclic component will appear in the 

graph after about 
2
q  edges have been added.  This requires about q steps of the 

pseudo random walk.  Hence, we conclude our algorithm solving the genus 2 

HCDLP in expected time of O(q) Jacobian operations. 

A practical comparison between Pollard’s method and our algorithm is given in 

section 5.4.  

 
 

5.4 Computational comparison 

 In this section, we implement our algorithm for solving genus 2 HCDLP, and use 

the implementation of Pollard’s rho algorithm by Niels Lubbes [23] to be the 

comparison.  We execute both programs on the same computer to generate the 

following results.  The comparison between our algorithm and Pollard’s rho 

algorithm are showed in Table 5.1, and the results are averages from 10 times running 

the tests. 
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Table 5.1 Comparison between Pollard’s rho and our algorithm 
genus 2 
Field size q = |Fq| 211 213 217 219 

Average time 
(sec) 

1.238 5.502 113.391 827.459 

Average iterations 923.4 2642.8 50239.5 236119.6 

Pollard’s 
rho 

Average number of 
useless collisions 

1.7 0.7 1.3 2.2 

Average time 
(sec) 

0.236 1.018 17.394 80.809 

Average iterations 699.4 2350.4 40222 137832 
Average number of 
smooth divisors 

351.4 1169.2 20222.3 74338.8 

Graph size 1024 4071 65792 261993 

Our 
algorithm 

Average number 
of cycles 

2.1 2.2 2.9 2.9 

  

As we can see in Table 5.1, the average number of iterations in our algorithm 

needed for solving genus 2 HCDLP is less than the average number of iterations in 

Pollard’s rho algorithm, and the running time of our algorithm is also less than the 

running time of Pollard’s algorithm.  For example, in the case of base field GF(219), 

Pollard’s rho algorithm takes 827.459 seconds to run 236119.6 iterations in average 

for solving the given HCDLP, and it meets 2.2 useless collisions before the solution is 

found.  While running our algorithm in the same case, it takes only 80.809 seconds 

to solve the given HCDLP.  After 137832 iterations in average there are 74338.8 

smooth divisors which can be added in the graph, and then average 2.9 cycles are 

found.  The rate of 74338.8 0.539
137832

≈  is about a half chance to get a smooth divisor 

as in Lemma 4.1.  And the graph size dividing the number of edges 

74338.8 0.284
261993

≈  is less than the expected time estimated in Corollary 5.1. 
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Chapter 6  

Conclusion and Future Research 

6.1 Summary 

We introduced the additive group Jacobian on a hyperelliptic curve and Cantor’s 

algorithm for computing group law in Chapter 3.  For a hyperelliptic curve of genus 

g over finite field Fq, the group order of Jacobian is ( )gO q .  And the group order of 

a elliptic curve over finite field Fq is ( )O q .  Therefore, the advantage of 

hyperelliptic curves over elliptic curves is that a smaller base field can be used in 

order to obtain the same level of security.  But the disadvantage is that there exists an 

algorithm, the hyperelliptic index calculus algorithm, solving HCDLP in 

subexponential time complexity when the genus becomes large enough.  Hence, the 

small genus hyperelliptic curves are preferred for constructing a hyperelliptic curve 

cryptosystem.  According to Table 4.1, we can extend Table 1.1 to the following 

Table 6.1.   

In Chapter 4, we described several variations of hyperelliptic index calculus 

algorithm.  The settings of test data are given in section 4.3.  And a computational 

comparison between these variations is shown in Table 4.2.  

We also proposed a better algorithm for solving genus 2 HCDLP in Chapter 5.  

The implementation results can be found in section 5.4.  In Table 5.1, detailed 

comparisons between our algorithm and Pollard’s rho algorithm are given.  It is 

shown that our algorithm is faster than Pollard’s rho algorithm in practice. 
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Table 6.1 Suggested key size for hyperelliptic curve cryptography. 
Minimum size (bits) of public keys 

HECC Security 
(bits) ECC 

Genus 2 Genus 3 Genus 4 Genus 5 

80 160 80 60 54 50 

112 224 112 84 75 70 

128 256 128 96 86 80 

192 382 192 144 128 120 

256 512 256 192 171 160 

 
 

6.2 Future work 

There are several interesting topics for further research. 

1. Solving large sparse linear system over finite field: 

This is one of the crucial parts in the index calculus algorithm.  An 

improvement of the algorithm for solving large sparse linear system over 

finite field implies an improvement of the index calculus algorithm. 

2. Reduce the space requirement 

The disadvantage of our algorithm compared with Pollard’s rho method 

is the space requirement.  It takes O(q) memory space in our algorithm.  

Perhaps, there are other methods which can save the space requirement. 

3. Algorithm design: 
Design a systematic index calculus algorithm which can extensively use 

more large primes without much overhead.  And analyze how many large 
primes is the optimal value for collecting enough smooth relations. 
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