B g 5pp A

i
;In_{

EAREETIESR

Wt m X

2 > OOMPN©ets 2z B % & &

Constructing a Development Environment for OOMPNets

FTERB AL+t FNA

= OOMPNets 2z P % Tk 5t

Constructing a Development Environment for OOMPNets

= S Student : Li-Chung Ho
hre:2¥% Advisor : Feng-Jian Wang

l_a?]iin’s’«’%
EAC ol S R A
L o, o=
A Thesis

Submitted to Institute of Computer Science and Engineering
College of ComputerScience
National Chiao‘Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science
August 2008

Hsinchu, Taiwan, Republic of China

c‘*ia:‘ﬁ\];:f]{—l-:_&,\g

§ T OOMPNets [B SBUH.

Mipd e R 18T #£4

SR
ER A S

4 11
|- Tg e

g

FOORFRE - AT AR RATF S LA A b e BN AT E
Bitcpig APRhzSeFsnBaefoftombiag Bl k- Bt §
el R R P R R RS d A H R L2 E
FARER o d LT - B e A KR B R F 51— i
1 Eohgm e F T e AR e AnIEE - BAREOE L BSA
P15 mERERET - BRAFLT T ¥ PR AT AR > RER Y
28) B | Wﬂ%%ﬁﬁﬁnﬂaaﬁﬁ Fil# dete i Ho 00 10 IR AT e 3
FES R, TR FADLP 2L LB ITR SRR EED

g e B TR e 0 FE TS e B B R eenp h e

MeEZ © ¥ mB g PR o BEFEL HIET A BERR

Constructing a Development Environment for OOMPNets

Student: Li-Chung Ho Advisor: Dr. Feng-Jian Wang
Institute of Computer Science and Engineering
National Chiao Tung University

1001 Ta Hsueh Road, Hsinchu, Taiwan, ROC

Abstract

Colored petri nets (CPNs) is a kind,of model which can be used to analyze many
kinds of systems. Object oriented (OQ) techniques, including analysis, design and
programming, are popular for years. Object oriented modular petri nets (OOMPNets),
proposed by our laboratory, is“a model extended from CPNs by integrating object
concept into CPNs. Our laboratory is now ‘developing the development environment
which consists of a series of tools to help simplify the development of OOMPNEets.
This thesis implements part of the environment, including an editor named OOMPNE
and a transformation tool. OOMPNE is used for constructing OOMPNets. OOMPNE
provides some checks to reduce the abnormal phenomena occurring in the modeling
OOMPNet. The analysis is done by transferring the modeled OOMPNets into CPNs
and calling the existing analysis methods of based on occurrence graph in CPNs. We
also discuss the technigues to locate the defect(s) and corresponding object/place(s) in

original OOMPNets, corresponding to the defects found in above analysis.

Keywords: Colored petri nets, object oriented modular petri nets, analysis.

i

GRS ARSI PO S T e
RIS TR PRSI - RS ETIOAIRERELR « PO - IR T
f‘g]fl@ﬂ[%\’l: l%ﬁ?}%%‘(F[[% I—quﬁ'j N F']‘[,FQ‘LEE?:'(]‘%[:{ ‘%’—3—!: &EJEL-]‘%[—{ }%A:Hj %ﬁ:EJ
Al H ﬁiﬂﬁrﬁﬁj’ B ﬁiﬁlffﬁﬂﬁ °

B S R g oS S o {ﬁn o %é%ayg g HIESS F‘Ufﬁl’a
> B PIT FREET PTRIRS i

i SHRURBESOE o ISR, £ o SRS R R - B
WP o LB B i T HBTRS AS R R | -

Table of Contents

F N 1 1 ¢ T F PP i
S B iii
Table Of CONENLS.ottt et et et e e enieens WY
List of Figures and Tables...........coovuiiiiiii e e vi
Chapter 1. INtrodUuCtion.ovuiii e e e e e e e e 1
Chapter 2. Background.............oooiiiiiiiiii e 3
2.1. Colored Petri NETS. ..o 3
2.2. Object Oriented Modular Petri Nets...........coooviiiiiiiiiieeeee 8
2.2.1. The Extensions of Places and, Transitions...........c.ccooevvrvoeereeiencnesecne e 8
2.2.2. The EXtensions Of TOKENS. ..o it s oaiti e cvereeeene e 10
2.2.3. Synchronization Relation and Share Node..................cccooveviveievieincnenne. 10
2.2.4. Formal Definition OFOOMPNELS ...t 12
Chapter 3. An Editor for OOMPNetS. ..o e 14
3.1. Edit Functions iN OOMPNE...........ctiiiiiiii e 15
3.2. Basic Abnormal Phenomena.ccocuvereeeiiiie e 22
3.3. Incremental Analysis for the Anomalies in OOMPNE..............c.ccccevveieiienenn, 25
Chapter 4. Technology of Analyzing OOMPNELS.........ccccovveeeeeeeciecieceeeeeeee e 30

4.1. The Mechanisms of Transformation Algorithm.......................................30
4.2. Transformation Algorithm......... ..., 42

Chapter 5. EXaMPIE.........ociiiiiiiie ettt et sne e e e e e e eaeeneneens D2

5.1 Edit OOMPNets With OOMPNE............cccoiiiiiiinie e 52
5.2 Analyzer in OOMPNets, OOMPOA.........ccoceceeee e e 60
Chapter 6. Conclusion and FUtUre WOIKS..........cccoeiiiiieiieeninieee e 67

Reference

List of Figures and Tables

Figure 3-1 The window in OOMPNE............cooiiiiiiiii 14
Figure 3-2 The windows in editing token properties and variables...................16
Figure 3-3 The popup menu of right click aplace...................ocoooiiin 17
Figure 3-4 The popup menu of operation duplicate..........cccceeeeevvveenennnnn. 17
Figure 3-5 The popup menu of @ tranSition.........ccoceevviiieiiiieeeee, 19
Figure 3-6 The popup menu of an iNPUE arcC............covvviiviiiiiiiiiieenennn. 20
Figure 3-7 The window in editing toKens..............ccooiiiiiiiiiiii e, 21
Figure 3-8 The reaction from OOMPNE of deleting used color set(s).............. 25
Figure 3-9 The net after deleting transition TO in Figure 3-8...........cc.cc............26

Figure 3-10 (a) the destination changed. into,turning point when user connects two
places. (b) the turning point.isishewn by. moving place P1............26
Figure 3-11 The window in editing input arc expression.............cccceeeevevenn.....27

Figure 3-12 (a) and (b) show the'reminding-ways of OOMPNE when user’s action

violates the TUlES. ...l e e 28
Figure 4-1 The hierarchical tree structure of an OOMPNet neto..................... 36
Figure 4-2 An OOMPNet SN contains two object-nets............................... 39
Figure 5-1 The window of declaring color Sets..........ccccevviveviiveiiei e 54
Figure 5-2 The OOMPNet of color set ATM.......cccocvvvevieieieieiiienennn..b4
Figure 5-3 The window of declaring variables..........................ocool. 55

Figure 5-4 The warning message of editing unbalance inscriptions of arc

(Start, Provide information to identify the identity)..............ccccoeue... 56
Figure 5-5 The OOMPNet of scenario “transfer account successfully”............... 56
Figure 5-6 The OOMPNet of refinement described in Table 5-3......................... 58
Figure 5-7 The OOMPNet of refinement described in Table 5-4......................... 59

Vi

Figure 5-8 The OOMPNet of scenario “transfer account successfully”...........
Figure 5-9 T-CPN of OOMPNet in Figure 5-5........cccccoiiiiiiniiiicecee,
Figure 5-10 The occurrence graph of T-CPN in Figure 5-9..........cccoovvviienenne,
Figure 5-11 The best integer bounds of the T-CPN..........cccooiiiiiiinincce,
Figure 5-12 The best multi-set bounds of the T-CPN.........ccccociiininiiiniininns
Figure 5-13 The home properties of the T-CPN..........ccccoiiniiiiieiiiencneens
Figure 5-14 The liveness properties of the T-CPN.........ccccocviiiieiineninens
Algorithm 4.1 OOMPNELTOCPN.ot
Algorithm 4.2 CreateTranSitioN.ccc. v it
Algorithm 4.3 ProducCeEIement..........ccoeiiiiiiie e
AlGOrithm 4.4 CreateSTG.cuoviiie it
Table 5-1 The specification of “Transfer ACCOUNt %x.......ccoceovviereiviniiiiieinne

Table 5-2 The scenario of “Transfer.Account Successfully”......................

Table 5-3 The refinement of transition“Provide-information to identify the

dentity”.....ooveee el

Table 5-4 The refinement of transition “transfer account™..............cooeve. ...

vii

Chapter 1 Introduction

Object Oriented Modular Petri Nets (OOMPNets) developed in our laboratory is
a model which can be represented with a sequence of graphs or mathematical
formulas, where the former is more readable. OOMPNets is extended from Colored
Petri Nets (CPNs) with object concept. This is achieved by allowing 1) a net to be a
token of another one, 2) nodes to be refined with nets and 3) nets to be combined with
shared nodes. OOMPNets contains the three distinct properties: 1) For one object-net,
the internal relationships of tokens encapsulated and the ripple-effect reactions caused
from external firing transitions are totally represented, 2) Refineable nodes
encapsulate the information with internal hierarchical presentation and 3) The nets can
be combined flexibly gives a fit éxpression to'serve. developers who concern specific

problems.

Currently, our laboratory is developing an environment to help the development
of OOMPNets. This thesis provides two parts of the development environment:
OOMPNE and OOMPOA are provided to edit and analyze OOMPNets, respectively.
OOMPNE is extended from a Petri Net editor, PIPE2 [3]. OOMPNE consists of a set
of edition activities to reduce the abnormal phenomena appearing in the modeled net
during edit. OOMPNE also provides some simple checks to help user find the defect
earlier, e.g. arc expression unbalance. In summary, OOMPNE helps user to model an
OOMPNets without fundamental errors, e.g. undefined color sets used, shared node
with different labels and arc expression unbalance. OOMPNE might reduce the time

of modeling well-form OOMPNets, since some abnormal phenomena are prevented.

There is no analysis method developed for OOMPNets yet. An OOMPOA
provided in this thesis is used to analyze OOMPNets with occurrence graph.
OOMPOA analyzes OOMPNets with four steps: 1) transform OOMPNets into CPNs,
2) construct the occurrence graph of the CPNs transformed from OOMPNets, 3)
investigate the dynamic properties of the occurrence graph to analyze the CPNs and 4)
map the analysis results back to OOMPNets. According to the transformation
information provided in OOMPOA, the dynamic properties for OOMPNets can be
studied further. Besides, the information can help to develop analysis method for

OOMPNEets.

The rest of this thesis is organized as follows. Chapter 2 introduces CPNs and
OOMPNets. The capabilities and checks of OOMPNE are described in Chapter 3. The
technology of analyzing OOMPNets is introduced in Chapter 4. Chapter 5 uses an
example to show how to use OOMPOA10-analyze O©OOMPNets. Chapter 6 concludes

the thesis and indicates some futurée works.

Chapter 2 Background

This chapter introduces Colored Petri Nets (CPNs) in Section 2.1. The Object

Oriented Modular Petri Nets (OOMPNets) is introduced in Section 2.2.

2.1 Colored Petri Nets

The definition of CPNs given in Definition 2-1 is modified from the one

presented in [1] with a variable tuple V.

Definition 2-1 (Colored Petri Net):
A Colored Petri Net is a 9-tuple’ CPNyj=(Z,V,P,T,F,C,G, A 1) satisfying the
requirements below:
(1) X is a finite set of non-empty types, called color sets.
(2) V is a set of variables. Variables are used to describe the guard expressions of
transitions and the expressions of arcs.
(3) P is a finite set of places.
(4) T is a finite set of transitions.
(5) F is a finite set of arcs such that:
PANT=PnF=TnF=¢J
(6) C is a color function. It is defined from P into X.
(7) G is a guard function. It is defined from T into expressions such that:
VteT : [Type(G(t))=Boolean AType(Var(G(t))) = 2]
where Type(Var(G(t))) represents the types of variables applied in G(t),
Type(G(t)) represents the type of value after G(t) is executed.
(8) Ais an arc expression function. It is defined from F into expressions such that:
Vi eF ([Type(A(f)) = C(p(f))AType(Var(A(f)))cx]

where p(f) is the place node of arc f.
(9) 1 is an initialization function. | is defined from P into closed expressions® such
that:

VpeP:[Type(1(p))=C(p)]

The elements defined in Definition 2-1 are illustrated with a net CPN one by one.
Let CPNbe (z,V,P,T,F,C,G,A 1), where

(1) Ifplacep, peP, holds set of tokens D, then U Type(d) < C(p).

deD

(2) The variable type of v, veV , belongs to X, denoted as Type(v) e X.
(3) A marking, a multi-set of net’s places, of CPN denotes a state of the net.

(4) Firing a transitiont, teT, changes state mto m’. m could equal to m”.
(5) Af,f,, f and f,eF, N(f)=N(f)"
(6) Color function C maps p, pe P, to aset of types.

(7) The guard expression of transition t,“t T, return a boolean value b. When b is
true, transition t is enables.

(8) The variable types involved in arc expression A(f) are contained in C(p(f)).

(9) The initial marking generated by | for VYp e P is restricted to satisfy the types

defined by all corresponding C(p).

A CPN is a directed graph. An example net CPN composed if four places and two
transitions is shown in Figure 2-1. The initial marking My of CPN s
(po(a,b,1,1),p1,p2,p3). The net is defined with two color sets (types) U and V. The
value of U type element (variable or token) is 1, 2, or 3. The value of V type element

is a or b. Variable x and y used in the net are declared with U and V type, respectively.

' An expression without variables is said to be a closed expression.
? Nis a node function. It is defined from A into PXTUT xP.
4

Each transition or arc is associated with an expression, which is composed of

variables or elements in color set above, respectively.

Color Sets:
U:1,2,3
V:ab

Variables:
U
vV

Figure 2-1 A simple.example of CPNs.

The behaviors of CPNs are-defined in Definition 2-3, 2-4 and 2-5:

Definition 2-2 A token element‘is:a pair (p,c) where peP and ceC(p),

while a binding element is a pair (t,o) where teT and beB(t)s. The set of

all token elements is denoted by TE while the set of all binding elements is denoted

by BE.

Definition 2-3 A marking is a multi-set over TE while a step is a non-empty and
finite multi-set over BE. The initial marking M is the marking which is obtained

by evaluating the initialization expressions:
V(p,c)eTE:M,(p,c)=(1(p))(c).

The set of all markings and steps are denoted by M and Y, respectively.
Astep Y is enabled in a marking M iff the following property is satisfied:

* B(t) is the set of all bindings for t.

VpeP: > A(pt)<M(p)

(tb)eY

Let the step Y be enabled in the marking M. When (t,b)eY, we say that t is

enabled in M for the binding b. We also say that (t,b) isenabled in M, and so is t.

If a transition t is firable in a marking M, there are two properties needed to be
satisfied: (1) The evaluation result of G(t) based on a binding b is true (2)

VpeP: > A(pt)<M(p).

(th)ey

Definition 2-4 When a step Y is enabled in a marking M;, the marking change from

M; to M, can be defined as:

VpeP:M,(p)=(My(p)- >, A(pit))+ > A(t,p)

(th)eY (th)ey
The first sum represents the tokens:removed while the second for the token added.

Moreover, we say that M, is directly reachable. from M; by the occurrence of the

step Y, which we also denote: M, [Y >M,.

The expressions of an input arc of a place describe that tokens are added into the
place when the corresponding transition is occurred. The tokens are removed from a
place are described in the expressions of the output arc of the place. When a transition
t fires, the tokens of corresponding places are added or removed. The addition and
removing tokens is basing on the corresponding arc expressions and binding of the

occurring step.

Definition 2-5 A marking is a multi-set over P while a step is a non-empty and
finite multi-set over T. The initial marking My is the marking which is obtained

from the initialization expressions:

VpeP:My(p)=I1(p).

6

The sets of all markings and steps are denoted by M and Y, respectively.

CPNs can be analyzed in four different ways [10]. The first analysis method is
interactive simulation. This means that user can use the simulator associated with the
editor make simulation to investigate the behavior of the modeled system. The second
analysis method is automatic simulation. It allows a fast simulation of thousands or
millions of transitions. The purpose is to investigate the functional correctness of the
system or to investigate the performance of the system, e.g. to identify bottlenecks, to
predict the use of buffer space or the mean/maximal service time ..., etc. The third
analysis method is occurrence graphs (also called state spaces or reachability graphs).
The basic idea behind occurrence graphs.is.to construct a directed graph which has a
node for each reachable systemistate and an. arc. for each possible state change.
Occurrence graph presents all=possible states of the modeled system with initial
parameters. All step changes “of. the."modeled System are also recorded in the
occurrence graph. User investigates the dynamic properties through the occurrence
graph. The investigated results help user to find the run-time error(s) embedded in the
modeled system. Obviously, such a graph may become very large, even for small
CPNs. However, it can be constructed and analyzed totally automatically, and there
are techniques working with condensed occurrence graphs without losing analytic
power. These techniques are built upon equivalence classes. The fourth analysis
method is place invariants. User constructs a set of equations which is proved to be
satisfied for all reachable system states. The equations are used to prove some

properties of the modeled system, e.g., absence of deadlock.

2.2 Object Oriented Modular Petri Nets

OOMPNet is an extension of CPNs. There are three extensions and two new
relations in OOMPNets. OOMPNets extends 3 elements in CPNs, places, transitions
and tokens. Synchronization relation (SR) and share nodes are provided in
OOMPNets. Besides above three extensions and two relations, the remaining parts of
OOMPNets are the same to CPNs. The extensions of places and transitions are
introduced in section 2.2.1. Section 2.2.2 introduces the extension of tokens. Two new
relations, SR and share nodes, are introduced in Section 2.2.3. Finally, a formal

definition for OOMPNets is described in Section 2.2.4.

2.2.1 The Extensions of Places and:Transitions

The places are separated into two sets, primary and abstract places in OOMPNets.
The primary places are defined the same as places in CPNs. The abstract places are

clarified further with refinement nets rPNet, as in Function 2-1.

Function 2-1 (refinement of abstract place):
An abstract place p can be refihed as an OOMPNets

rPNet=(X,V,P,T,D,F,C,G,A,l,L) where:

1L P ={pn PP

The input and output transitions of p are transferred to pi, and poy: respectively,
where
In(p)=In(p,,)={teT|3f eF:N(f)=(t, p)}
Out(p)=0ut(p,,)={teT |3f e F:N(f)=(p,t)}

8

2. If P =@, F c(ppxT)U(T X Po).
3. If P02
1) T =T UT,uUT, and the intersection of each pair is &, and
2) F c(pnxT) UM% Poy) V(T WT)xP)U(P (T UT,))
P

4. C(p):UC(pi), peP

i=1

The transitions are also separated into two different sets, primary and abstract
transitions in OOMPNets. The primary transitions are the same as transitions in CPNSs.
The abstract transitions are clarified further with refinement nets rTNet, as in

Function 2-2.

Function 2-2 (refinement-of abstract transition):
An abstract transition "t “can be . refined as an OOMPNets

rTNet=(=,V,P,T,D,F,C,G,A,I L), where
1. T ={t .t JuT

The input and output places of t are transferred to ti, and to, respectively, where
In(t) = In(t,,) ={p < P|3f e F:N(f)=(p,1)}
Out(t) =Out(t,,) ={peP|3f e F:N(f)=(t, p)}

2. If T =0,F < (t,xP)U(P xt,)

3. T =20

1) P =P UP, UP, and the intersection of each pair is &, and

2) F c(t,xR)U(Rxt,)U((P UR)xT)u(T x(P" UR))
4. The guard expression exp attached to 't is listed as

EXP, A EXP, A BXP, - ABXP,, ¥t €T, t's guards are in the list.

9

To handle incomplete requirements, abstract place and transition are introduced
in OOMPNets. The partial specification could be encapsulated and refined with net

later.

2.2.2 The Extensions of Tokens

All tokens are defined before they are used. The tokens are stated with the
token’s color, as color set: name = [C3,C,...cn]. They are separated into two sets,
primary and complex tokens, in OOMPNets. The token of primary type is defined
identically as the token in CPNs. The token of complex type is defined as an
OOMPNEet, called object-net. The object-net container is called the system-net. The
internal interaction of a complex.token is-presented sufficiently by OOMPNets with a
hierarchical expression and synchronization relation (SR) introduced in section 2.2.3.
The color set of the complex token-collects'all reachable markings in its net after

initialization.

2.2.3 Synchronization Relation and Share Node

When an application receives a request, it transits into another state. During such
a transition, the application may cause some ripple-effects, such as converting the
state of data objects. In the method, the data movement and state transitions are
depicted in system- and object-net, respectively. Actual display of this chain-reaction

employs the SR.

10

Definition 2-6 (synchronization relation):
Let SN=(%,V,P,T,D,F,C,G,A 1,L) be a system net and the set of object nets

which belongs to SN be denoted as ON=COD, ON={ON,|i>1}. The

intersection of T, and T, for corresponding object-net ON; and ON; is &,

i=j. The union of all transition sets inside ON; is named as T, T=[JT;.
i=1

Firing a transition teT, which has an SR with t eT , triggers the state

transition of t concurrently. An SR belongs to (T xT) whose transitive closure

IS asymmetric.

Let P ={p|p elIn(t)}, and t and t belong to SN and ON,, respectively.

ON, is defined into P, ={p;|j=L.m}cP.1<m<|P|. If 3(tt)eSR, T,

and t is enabled, the following-two conditions.have to be satisfied 1) the value of

G(t)(b) and G(t)(b) shall be true-and 2) both transitions are sure to be enabled.

A use case can be categorized into classes of usage scenarios. In most cases,
some actions may be defined in more than one above scenario. So, some places and
transitions could be shared to reflect the dependencies between scenarios for analysis.
Here, the mechanism constructs the relationships among these labelled nodes. The

details are clarified as follow:

Definition 2-7 (share node):
Let set of system-nets Net ={Net, |i =1..n,n>1} and Net; be an OOMPNet, where

1. A NodeSet is a set containing all the places and transitions in its Net.

NodeSet = (|_JR | JT;), where P; and T; represent the places and transitions
i=1 i=1

of the i" OOMPNet respectively.

2. R(x, y), the equivalence relation in a NodeSet, indicates that x and y in the

11

NodeSet have the same label and property (primitive or abstract), x#y, and is
described as follows:
R(x,y)=L(x)=L(Yy).
3. Anequivalence class for an element x in a NodeSet is defined as follows:
X ={y € NodeSet | (X, y) € R}

OOMPNEets take a label function which labels the place(s) and transition(s) to be
applied for nets combination. The mergence(s) takes out the replications in

requirement specification.

2.2.4 Formal Definition of OOMPNets

Definition 2-8 (OOMPNets):

For a character set L, an OOMPNets is a 11-tuple

Net=(Z,V,P,T,D,F,C,G, A, L) where

1. X is a finite set of non-empty.types, called color sets.

2. Vis a set of variables. Variables are used to describe the guard expressions of
transitions and the expressions of arcs. The type of a variable belongs to . In

other words, Vv eV, Type(v)eX.

3. P=PIPUABP is a set of places, where PIP is a set of primary places and
ABP is a set of abstract places.

4, T=PITUABT is a set of transitions, where PIT is a set of primary transitions
and ABT is a set of abstract transitions.

5. D=PIDUCOD is a set of tokens, where PID is a set of primary type tokens
and COD is a set of complex type tokens. COD set holds the net(s) build by
OOMPNEets to be the token(s) of another net.

vd, eCOD:
d.=C.,RP,T.,D,,F,C.,G,A,I.,L)

c' ¢’

6. Fc(PxT)U(TxP), F represents a set of directed arcs, known as a flow

12

relationship.

7. C:P—X isacolor function defined from P to a subset of X .

8. G:T —exp isa guard function to map each transition into an expression of
type boolean.

9. A:F —exp is an arc expression function. The function maps arc f into an

expression with the token types C(p) located in the place p connected by the arc
f.
10. 1 is an initialization function. It is defined from P into closed expression
11.L:PUT — ¢ is a label function that defines a distinct string associated with
node which is able to be merged with homogeneous node(s) in other net(s).

13

Chapter 3 An Editor for OOMPNets

The chapter presents an editor, OOMPNE, for editing OOMPNets. OOMPNE is
extended from a Petri Nets editor, PIPE2 [3]. The work of editing OOMPNets in
OOMPNE is easy since OOMPNE provides several tools. Figure 3-1 shows the
window in OOMPNE. Section 3.1 introduces the edit functions of net elements in
OOMPNE. The edit functions might cause some abnormal phenomena. These
abnormal phenomena are described in Section 3.2. Section 3.3 describes the

incremental analysis for the anomalies.

+ OOMPNEditor: Object Oriented Modular Petri Nets Editor: New OOMPNets 1

File Edit View Draw Animate Help

glals|a(®] alON RCERT BIEFRICIT™ Jele

R Wy OOMPNets 1|\ \\
Create New Tab Drawing Tool Buttons Zoom In and Out

Simulation Tool Buttons

Cloge Current Tab

Drawing Mode: Click on a button to start adding components to the Editor

Figure 3-1 The window in OOMPNE.

14

3.1 Edit Functions in OOMPNE

This section describes how the elements of an OOMPNet are created and edited
in OOMPNE. In OOMPNE, there are five types of edit activties:

1. Insert and Delete

2. Copy and Paste

3. Move

4. Naming the Element

5. Decompose
For example, the activities of type 1 are applied to create meaningful net elements in
OOMPNE. The section introduces edit, functions according to their element in the

followings.

A. Color Set and Variables

In the very beginning of constructing an OOMPNet, color sets and variables need
to be created. The color sets and variables of an OOMPNet are also called
declarations of an OOMPNet. Figure 3-2 shows the windows in editing color sets and
variables. Window “Token Property” is used to define the color set for describing the
type and value of tokens. When user creates a complex type of color set, OOMPNE
creates a new sheet for user to model the object-net corresponding to the type. An
object-net is defined with an OOMPNet. However, a token here is dynamic, i.e., the
tokens inside the OOMPNet represented by their token might be changed dynamically.
l.e., different inscriptions between an object-net and its type are the initial marking
and the label of elements. The other inscriptions cannot be modified. User can use

operation “Delete” to delete the color sets. Operation “Delete” pops out a list for user

15

to select and delete the color sets. The window “Set Variables” is used to edit he/she
wants variables in OOMPNets. These variables are used to edit the inscriptions of arcs
or transitions. The steps of operation “Delete” in function “Set Variables” are similar
to that in function “Token Property”. It also provides a list for users to select and

delete the variables.

Token Property

Token Type 1

Type Name: Type Form: | Primary .

Value Candidates:

Debte | Commit | Cancel

(a)
Set Yariables !En

Variable 1

Name:

Type:

Debte | Commit | Camcel |

{(b)-

Figure 3-2 The windoWs in editing. token properties and variables.

B. Place

Associated with a place, user can enter some special key to do the characteristics he

wants. Or, he can popup a menu as in Figure 3-3 to help do the work.

1. Insert and Delete:
The steps of creating places are described as follows. First, user selects the
function “Add a place” in the drawing tool buttons. Second, user uses mouse to
decide the position within the sheet. A place is now created into an OOMPNEet.
Then, user can edit the inscriptions of a place by using the operations in the popup
menu associated with the place. In the menu, the first operation “Delete”, used to

delete the target place. The rest operations will be introduced later.
16

PO

Edit label
Edit Tokens
Set Abstraction

Set Token Information
Show Detail

Figure 3-3 The popup menu of right click a place.

2. Copy and Paste:
A use case can be divided into several usage scenarios. Usually, an action may be
defined in more than one scenario. In order to create a share node fast, OOMPNE
provides users the facility of duplicating existing nodes. Figure 3-4 shows the
popup menu of duplicating operations, where the menu can be popped and each
case in the menu corresponds to a distinct operation. The list shows the labels of
existing places. User selects an element of the list to create the node with the same
label. The operation of duplicating is to create an element with the same element
type and label. Because an inscription is distinct in different scenarios, operation

“duplicate” in OOMPNE does not duplicate the inscription(s).

Place] PO initial state
Transition b P1 wait for checking
T P2 waitfor slecting server
P3end

Figure 3-4 The popup menu of operation duplicate.

17

3.

Naming the elements:
OOMPNE provides initial name, i.e. PO, P1, ..., of new created places. The

operation “Edit Label” in the popup menu in Figure 3-3 is used to edit the label of

the place.

4. Decompose:
“Set Abstraction” in the popup menu, shown in Figure 3-3, is in charge of
decomposing places. “Set Abstraction” can be used to refine the place. When an
abstract place is generated, the refinement is started by applying “Set Abstraction”.
“Cancel Abstraction” is used to change the level of a place from abstract to
primary.

C. Transition

There is an associated popup menu In Figure 3-5. The operations of editing

inscriptions of a transition are 4n the -menu.-These operations are introduced in the

followings.

1.

Insert and Delete:

The steps of creating transitions are similar to those of creating places. The
following introduces how to edit the inscriptions of a transition directly. The
operations in the popup menu of transitions are: delete, edit label, set or cancel
abstraction, set condition, show detail, set synchronization and rotate. Operation
“Set Condition” is used to edit the guard expression(s) of a transition. On the other
hand, user can use “Show Detail” to review the edited guard expression(s) of the
transition. During a review, if user finds an error in the guard expression(s), he can
use “Set Condition” to correct the guard expression(s). A synchronization
relationship between transitions is constructed by using “Set Synchronization”

operation. “Set Synchronization” provides user all transitions in corresponding
18

object-nets to select the synchronous transition(s). Operation “Rotate” has three
candidates, 45, 90 and -45. It is used to change the angle of a transition. The
operation “Delete” is similar to that in popup menu of places. Transitions can be

deleted through operation “Delete” or the “delete” key in keyboard.

r—

T0 Edit label
Set Abstraction

Set Condition

Show Detadl

Set Symchronization
Rotate »

Figure 3-5 The popup menu of a transition.

2. Copy and Paste:
In Figure 3-4, operation “duplicate” provides duplicating transitions. The steps of
duplicating transitions are similar-to the-work for places.

3. Naming the elements:
OOMPNE provides initial name, i.e. TO, T1, ..., of new created transitions. The
operation “Edit label” in the menu is used to edit the label of a transition.

4. Decompose:
“Set Abstraction” in the popup menu, shown in Figure 3-5, is in charge of
decomposing transitions. “Set Abstraction” can be used to refine the transition.
The operation in transitions is similar to that in places. Here omits the detail of the

operation.

D. Arc

Figure 3-6 shows the popup menu associated with an arc. The operations displayed in

19

such a popup menu include: delete, split arc segment, set input arc expression and

show detail.

1.

Insert and Delete:

Creating an arc basically include the following 3 steps: 1) selecting the “Add an
arc” function in drawing tool buttons, 2) using mouse to click an element to be the
source of the created arc, and 3) click another element to be the destination of the
created arc. There two popup menus associated with the arc, one for the arc whose
destination is a place and the other for transition. In OOMPNE, the arc is called
input arc if the destination is transition; otherwise the arc is called output arc.
Operation “Delete” is used to delete the target arc. An arc might cross other
elements in complex models. User can create turning point to mitigate the
crossing situation by using operation “Spht /Arc Segment” in the popup menu.
“Set Input Arc Expression”-is used to edit-the.are expression of the targeted input
arc, similarly, “Set Output Arc Expression™is used to edit the arc expression of the
targeted output arc. User can review. the-edited arc expression by using “Show

Detail” in the popup menu to help finding out error(s) to be fixed.

OO

PO Split Arc Segment Pl

Set Input Arc Expression
Show Detail

Figure 3-6 The popup menu of an input arc.

E. Token

The operations associated with tokens are list in popup menu in Figure 3-3. They

contains: edit token, set token information and show detail.

20

1.

Insert and Delete:

User can apply the function of “Add a token” in drawing tool buttons, shown in
Figure3-1. Then, he can click a place to add the token into the place. Now, the
token is not defined complete yet. A token has to be added necessary inscriptions
e.g. token type and token value. The work has to be done with the popup menu.
Operation “Edit tokens” is another way to add or delete tokens. Deleting tokens is
also achieved by using function “Delete a token” in the drawing tool buttons. The
steps in “Delete a token” are similar to that in “Add a token” function. Operation
“Set token information” is used to edit the inscriptions of tokens. After editing the
inscriptions of tokens, user can use “Show Detail” operation to review the
inscriptions of tokens. During review, user can use “Set token information”
operation again to modify the inseriptions of tokens to fix his problem.

Naming the element:

In OOMPNets, complex tokens are-hamed-for representing the object-nets. It is
easy to describe the marking of OOMPNets." The naming operation is associated

with operation “Set token information”. Figure 3-7 shows the window to edit.

B———
TO

M

Set Token Information !En

Token 1

Token Type: |int W | Token Yalue: ‘3 W | Token Name: ’

Token 2

Token Type: v TokenValue:| w TokenName:’
Comumit Cancel

Figure 3-7 The window in editing tokens.

3. Decompose:

After editing the inscriptions of tokens, OOMPNE can be applied to open a sheet

21

for user to model the object-net for a token whose type is complex. The newly
created sheets are already filled in the duplication of the type object-net. User can
modify the object-net to fit condition(s). It reduces the time of modeling

object-nets.

3.2 Basic Abnormal Phenomena

There might be some abnormal phenomenon after an editing activity. In this
section, we present the basic abnormal phenomenon right after an editing activity of
modification, including “create” and “delete”. The anomalies corresponding to the

activities in previous section are illustrated,and discussed below:

A. Color Set and Variables

The deletion of a color set"or. a-variable-might cause a problem, loss meaning.
Loss meaning means that user edits an inscription of a net element with undefined
types, values or variables. For tokens, a token with deleted type cannot be removed by
the corresponding arc expressions. It remains in the initial place at run time. For arcs,
arc expressions with deleted data cannot consume or produce the token from or to

corresponding place(s) at run time.

B. Place and Transition
(1) An arc cannot exist without source or destination. The deletion of a place or
transition causes the associated arc(s) to lose source or destination.
(2) The label of share nodes is different. A place or transition is called a share

node if at least one place or transition with the same label in other OOMPNets.

22

The label of share nodes is different when the label of a share node is

changed.

C. Arc

The edition of an arc might cause some abnormal phenomena, as follows:

(1) An arc connects two nodes with the same type in OOMPNets. From the
definition of OOMPNets, an arc cannot be positioned between the same type
elements. In other words, the source and destination of an arc cannot both be
places or transitions.

(2) A defined arc expression is combined with one or more undefined variables.
It causes the corresponding transition to be fired impossibly.

(3) Unbalance arc expression is an abnormal phenomenon which causes tokens to
be remained in a place or'an unfirable. transition. The edition of an arc
expression might cause-“unbalance-arc.expression”. There are two situations

to be concerned in the following:

1) For a place p, the union of its input arc expressions exprs, does not

combine with a token type which is defined in the union of output arc

expressions exprs,, .

JseC(p):the value of coefficient n of sis 0in exprs, , the value of

in?

coefficient n of s is greater than 0 in exprs,,.

During run time, firing the transitions connected with input arcs does not
add any token of type s into place p. However, without the token, some
transitions of the output arcs cannot be fired later. Because the tokens in p
cannot satisfy with the expressions of some output arcs, the transitions of

the unsatisfied output arcs are not firable even if the guard expressions of

23

these transitions are satisfied. The unfirable circumstances could spread to

the connected transitions arrowed.

2) For a place, the union of its input arc expressions exprs,, combines with

a token type which is not defined in the union of output arc expressions

eXprs,, -

JseC(p):the value of coefficient n of s is greater than O in exprs,,,
the value of coefficient n' of sis 0in exprs,,.

At the run time, a transition does not consume the tokens typed with s
from place p added by input arcs. These tokens remain in place p. A large
number of tokens remained in p could result in memory overhead that
happens depending on the execution time of the transitions which add
token of type s to p.

(4) The deletion of an arc:might cause some unbalance arc expression(s). Each

arc deletion might cause “exprs,. or exprs , to change. So, unbalance arc

out

expressions might be caused by deleting arcs.

D. Token

(1) The tokens are positioned everywhere within a sheet without associated with
places. Tokens cannot be positioned freely within a sheet. From the definition
of OOMPNets, it is meaningless if a token is not put inside a place in an
OOMPNet.

(2) Users might use undefined types or values to edit the inscriptions of tokens. It
causes the token to be unconsumable, because the corresponding arc
expressions are not combined with the undefined type.

(3) In an OOMPNet, a complex token has to be named necessarily. Naming a
24

primary token is unnecessary and then user is confused primary tokens with

complex tokens.

3.3 Incremental Analysis for the Anomalies in OOMPNE

The anomalies in previous section indicate some wrong net structures potentially.
This section describes how OOMPNE reminds users to prevent those anomalies. The
functions for preventing each anomalies are illustrated below:

A. Color Set

To prevent loss meaning, OOMPNE checks the inscriptions of all net elements in
OOMPNets whenever user deletes token, type(s). OOMPNE uses message to remind
user that the deletion causes some meaning-loss. Figure 3-8 shows the message of
deleting types, int and char. Type “int is used in the OOMPNet. The message shows

that type int cannot be deleted.

int: 1~10
char:a~h
numl, num?2: int
2.4 If numl>1
: @ 1'numl ‘I 1'numl O
PO hul Pl
| B3 Token Propert -[ofx| 1 el = ‘:‘1”
Token Type 1 }.7 ;m P n
Type Name: iint Type Form: |Pn'mary = | v char
Value Candidates: |1~1CI ! E The following color set(s) cannot be deleted: int
Token Type 2
Type Name: |c}m Type Form: |Primary .
Value Cantidates: |a~}. oK Cancel
add | peet | Commit | Comel |

Figure 3-8 The reaction from OOMPNE of deleting used color set(s).

25

B. Place and Transition
(1) To prevent an arc without source or destination, OOMPNE deletes the arc(s)
connected to the deleted place or transition directly. Figure 3-9 shows the net
after deleting transition TO in Figure 3-8.
(2) When user changes the label of a share node, OOMPNE synchronizes the

label of the share nodes in the other OOMPNets.

int: 1~10
char: a~h
numl, num2: int

2,4

O O

PO Pl

Figure 3-9 The net after deleting transition TO in Figure 3-8.

C. Arc
(1) To prevent that the source and destination of an arc are the same type,
OOMPNE changes the destination point into turning point directly. Figure
3-9(a) shows the destination changed into turning point behind place P1.

Figure 3-9(b) shows the turning point by moving place P1.

turning point

20

P 131

T0

(a) (b)
Figure 3-10 (a) the destination changed into turning point when user connects two

places. (b) the turning point is shown by moving place P1.

26

(2) OOMPNE provides a defined variable list for user to edit arc expressions.
Each variable in the list is associated with a blank space to be filled in an
integer representing the limitation for the corresponding variable when the
transition is fired. It prevents that user uses undefined variables to edit arc
expressions. Figure 3-10 shows the window in editing input arc expressions

from Figure 3-8.

Set Input Arc Expression !EB

Variable Name: numl ~ Variable Type: int Number of This Variable: m

Variable Name: num2 Variable Type: it Number of This Variable: ﬁ

Commit Cancel

Figure 3-11 The windew: in“editing input arc expression

(3) To prevent an unbalance arc.expression: below, the corresponding arc
expressions will be checked when user-edits an arc. The rules of detecting

unbalance arc expressions are described in the followings:

N:F —>(PxT)u(TxP),N is a node function. The node function maps each
arc into a pair where the first element is the source node and the second
the destination node.

IAOA:PUT > F’

IA(p)={feF|3teT ,N(f)=(t,p)}IA(p)is aset of input arcs of place p
OA(p)={feF|3teT,N(f)=(p,t)},OA(p)is a set of output arcs of place p
Var :(F UT) —Variables,Var(e)={v eVariables|v is used in A(e) or G(e)}
Type :Variables — X, Type(v) ={t € Z|the type of vist}

Rulel:VpeP,If IA(p)=@and OA(p)= @, then |J |J Twe(v)= (J |J Type(v)=C(p)

fielA(p)veVar(f;) f,€0A(p)veVar(f,)

Rule2:vpeP,If IA(p)=and OA(p)=D,then]] Type(v)=C(p)

f,0A(p)vevar(fy)

27

Rule3:vVpeP,If IA(p)=2and OA(p)=@,then]] Type(v)=C(p)

fielA(p) veVar(;)

The unbalance arc expression will be checked when user deletes an arc or
edits the expression of an arc. The action of editing the expression(s) of an
arc or deleting an input arc could cause the problem of case 1) in section 3.2.
The action of editing expression(s) of an arc or deleting an output arc could
cause the problem of case 2) in section 3.2. When an edition violates above
rules, OOMPNE reminds user with a corresponding message. Figure 3-11(a)
shows the message of editing an arc expression which causes an unbalance
arc expression. The message of user’s deleting action which causes an
unbalance arc expression is shown in Figure 3-11(b).

Bare

num: int
var: char

:%D 1'num mnill 1'num G 1'num+1'var 4 Q

Pl m P2

- ol
@ e Expression Unbalance

Variable Name: num Variable Type:int Number of This Variable: H

Variable Name: var ~ Variable Type: char Number of This Variable: F

Comnit Cancel

(a) edit expression of arc (P1,T1)

int: 1~6
char: a~d
num: int
var: char

null null

5d
<)l‘num+l'var Il'num+l‘va@‘num+l'va(l 1'num+]'var O
B0 0 Pl sl P2

Warning x|

! § This Action Becomes Arc Expression Unbalance

(b) delete arc (T0,P1)

Figure 3-12 (a) and (b) show the reminding ways of OOMPNE when user’s action violates the rules.

28

D. Token

1)

(2)

The tokens are associated with places. There are two ways to create a token: 1)
perform operation “Edit Tokens” in the menu associated with place and 2)
perform the function “Add a token” in drawing tool buttons. The action of adding
tokens through “Add a token” is valid when the clicked element is a place. The
two ways of creating tokens ensure that the created token is put in places.

Figure 3-8 shows the window in editing the inscriptions of a token. The combo
selection of token type provides the pre-defined types for user to select. After
selecting a type, the combo selection of token value provides the corresponding
value candidates for user to select. Token name is unable to be filled in if the
selected type is primary type. From the above functions, OOMPNE avoids using

undefined token types to edit inscriptions of tokens and naming a primary token.

29

Chapter 4 Technology of Analyzing OOMPNets

In order to analyze OOMPNets, this chapter provides algorithms to transform
OOMPNEets into CPNs. The CPN transformed from an OOMPNet is called T-CPN.
Our algorithm merges object-nets with system-net recursively till the T-CPN is
generated. During the transformation, the hierarchical relationship between
object-nets and system-nets are maintained in a table for indexing. The names
assigned for the token types, complex tokens and variables included in the OOMPNet
are unique. The mechanisms adopted in our algorithms are introduced in section 4.1.

The details of the algorithms proposed in this thesis are illustrated in section 4.2.

4.1 The Mechanisms of Transformation Algorithms

The mechanisms adopted for‘implementing_ the algorithms proposed in this thesis
can be separated into two parts: unfolding abstract node and generating transition. The
definitions and functions included in the two parts are introduced one by one. In our
methodology, all the abstract nodes of a system-net are unfolded before
transformation. The transformation algorithms operate a system-net unfolded with its
object-nets which have primary tokens only. The transitions of transformation result
are generated by referring SRs on the condition.

The functions offered for unfolding abstract nodes are established as follows:

Function 4-1 (Unfolding an Abstract Place of an OOMPNet) :

Let an OOMPNet N =(%,P,T,D,F,C,G, A, I,L) be defined with an abstract place

p whose refinement is rPNet=(Z,P,T,D,F,C,G,A,l,L). The result of

30

- > = = = = = = - —

(1) £=3UZ s the union of two sets of types (colour sets) which belongs to net N

and p’s refinement, respectively.

(2) P=PUP \{p} contains all places of P and P"except the abstract places p .

3 T =T UT is the union of two sets of transitions which belongs to net N and p’s

refinement, respectively.

(4) D=DUD'js the union of two sets of tokens which belongs to net N and p’s
refinement, respectively.

(5) The directed arcs of N are enumerated in set F which is consist of the two parts:
(1) the first part holds the arcs contained in‘F,and F’ except which exist between

p and a transition or vicefversa and :(2) the ‘second part includes the arcs
connecting the input transitions of pto'the places of P and the places of P to the
output transitions of p

F=FUF \{(n,n,)eF|n=pvn,=p}u
{t,p) 1t p)eF teT,p, e P A(Poe,DI(P,Y) eF,teT, p,, P}

. = - . = =4 = A~ C(p) !If p € P
(6) The color functionC is defined fromPtoD .Vpe P,C(p) =14 _. i :
C(p) .,fpeP

(7) The guard function G maps each transition to boolean expression.

G@t) if teT

VteT’G(t):{e'(t) ifteT

31

A(f) ,iffeF

®) vf E A= A(D TR

A(T) I N(E) = (4 pg) vV N(F) = (P D), LT
I e F,N(f)=(t p)vN(f)=(p1)

(9) The initialization function I is defined from P into expressions with tokens inD .

I(p) Jif peP

VpeP,I(p):{l.(p) ifpeP

(10) The level function L is defined from PuUT into levels.

L(n) ifnePUT

YnePuUT,L(n)=4 .) o
L(n) ,ifneP uUT

Function 4-2 (Unfolding abstract transition)-:

Let an OOMPNet, O=(Z,V,P,T,D,F,C,G, A I,L) with an abstract transition t,
and the refinement is rTNet=(Z' VP, T,D;F,C,G,A,l,L). Then we define

- - > > > > = = = —

(1) £=2UX s the union of two sets of types (color sets) which belongs to net O

and t’s refinement, respectively.

(2) V.=V UV s the union of two sets of variables which belongs to net O and t’s

refinement, respectively.

(3) P=PUP is the union of two sets of places which belongs to net O and t’s

refinement, respectively.

(4) T=TUT \{t} contains all transitions of T and T’ expect the abstract transition

t.

32

(5) D=DUD’ s the union of two sets of tokens which belongs to net O and t’s
refinement, respectively.

(6) The directed arcs of O are enumerated in set F which is consist of the two
parts: (1) the first part holds the arcs contained in F and F’* except which exist
between t and a place or vice versa and (2) the second part includes the arcs
connecting the input places of t to the transitions of T’ and the transitions of T’

to the output places of t

F=FUF u{(p.,t,)|(p,t)eF,peP,t eT}U
{(tw: Pt p)eF, peP,ty, e TH{(n,n,)|n =tvn, =t}

(7) The color function C is defined from P to D
oo C if P
vpeB,G(py= SP) I PeP
C(p) .,if peP

(8) The guard function G maps each transition'to boolean expression.

Vtef,é(t)z{e.(t) '_iftET.
G(t) . if teT
A(f) if feF
©) i e FAf) = A(f)y iffeF
A(f) f N(f)=(p,t,) vN(f) =(t,,. p).peP
3 eF,N(f)=(p,t)vN(f)=(t, p)

(10) The initialization function I is defined from P into expressions with tokens
in D.

I(p) Jf peP

VpeP,I(p)z{l.(p) if pep

(11) The label function L is defined from PUT into labels.

33

L(n) ,if nePUT

YnePuUT,L(n)=4 . _ o
L(n) ,if neP UT

In addition, for the complex token(s) located in the input place(s) of transition t,
the binding function bct of t (defined in Definition 4-1) selects a set of complex tokens
from t’s input places for consuming. The notations used for defining bct are

introduced here:
(1) VnePUT:S(n)={f eF|3In ePUT:[N(f)=(n,n)vN(f)=(n,n)]}

Function S maps node n to the set of n’s incoming and outgoing arcs, i.e., n is at
one of the end of these arcs.

(2) VteT :Var(t)={v|veVar(G(t)) v.3f e S(t):veVar(A(f))}
The set of variables in the guard expression:of transition t is denoted byVar(t) .

(3) VteT :CTVar(t) =Var(t) \{v|wv.type is-prime}

Set CTVar (t) contains all variables typed‘with complex inVar(t) .

Definition 4-1 (Complex Tokens Binding):
A complex tokens binding of a transition t is a function bct defined onCTVar(t),
such that:

Vv e CTVar(t) :bct(v) e Type(v)

we denote the set of all complex tokens bindings for t by BCT (t).

Complex token bindings are usually written in the form

(ctv, =ct,,ctv, =ct,,...,ctv, =ct,) where ctv; eCTVar(t) and ct; eCOD , 1<i<n .

When an element cty, =ct; belongs to a binding generated by bct, we use

34

ctv, =ct; >bct to denote the relation. bct is used as(ctv, =ct,,...,ctv, =ct,)in the

followings because, for each(ctv, =ct,,...,ctv, =ct,), there is a corresponding binding

function. The relationship is defined by the binding element given in Definition 4-2.

Definition 4-2 (Binding Element of Complex Tokens):
A binding element of complex token(s) is a pair (t,bct) where teT and
bct e BCT(t). The set of all binding elements of complex tokens is denoted by

BECT .

An OOMPNEet can be represented to a tree structureG = (V,E) as the example
net, shown in Figure 4-1. The case is:applied for demonstrating the concepts proposed
in the thesis. In the figure, a rectangle depicts a.net.and a directed arc connects two
nets. The head of an arc is net n;j located-at the. ith level and the tail is net nj.1x located
at one level higher which takes nijas a part. The-nede r having no superior is the root
of the tree, denoted the system-net of the OOMPNet net,. The child nodes of r are
object-nets, ny1, N2 and ny3, representing the complex tokens of r. A system-net
holds the object-net(s) built by OOMPNets to be its complex token(s) and the
complex token can be unfolded further to another system-net and object-net(s), e.g.
N, is a system-net of object-net n3; and nz,. The belonging relationships are kept by
the nets located in adjacent levels for all levels lower than r. Therefore, for all
descendants of r, a net ni.1x is a system-net of another net n;; if ni.1 is a parent node

of n;j in the hierarchy.

35

12 system-net

net ny

netny,

netnys

net ns;

net nsp

net .11

:

Ll

net Ny, net N2

net N3

net N4

net Ny s

Figure4-1 the hierarchical tree structure of an OOMPNet net,

level 1

level 2

level 3

level m-1

level m

The transformation algorithm provided in the thesis transforms an OOMPNet into

a T-CPN by the bottom-up transformation procedure. The procedure traverses the tree

of net, from leaves at the bottom to r at the top. One step progress of the

transformation is proceeded by reconstructing the system-net nj.;x with it object-nets

Ni1,...,Nin. The net obtained replaces the sub-tree depicted for ni.1x and nja,...,Nin. The

four operations: (1) combining the variables and color sets belonging to nj.;x and

Ni1,...,Nin, (2) duplicating the places and tokens of n;,...,ni, iNto ni.1k, (3) generating

transitions based on the complex token bindings and the synchronization

relationship(s) of ni..x and (4) connecting the nodes generated in (2) and (3) by arcs

according to net niix and nji,....ni, are performed for accomplishing the

reconstruction.

The concept of the algorithm moves the object-nets into the corresponding

36

system-net. So, the first two steps of the transformation algorithm collect the color
sets, variables, tokens and places of the object-nets. Then, these elements are putted
into the corresponding system-net directly. Before transformation, the complex tokens
in system-net reference to object-nets respectively. After the two steps, a complex
token references to the transformed places corresponding to the object-net which is
referenced by the complex token before. It is because that the marking of object-net is

also needed in T-CPN when builds occurrence graph.

In order to maintain the behaviors of OOMPNets in T-CPN, the third step of
transformation concerns about the BCT of each transition and SR set. Here, this
chapter defines the term Synchronous Transition Groups (STG), as Definition 4-3.
Each group in STG defines which.transitions are merged together. Each synchronous
transition group is a set of transition(s) represented by a new transition in T-CPN. The
transformation of transitions = hasy-three—activities: First, creating transitions
corresponding to the elements of ‘BECT from. each transition in the transforming
OOMPNEet. Second, the algorithm bases on the transitions from BECT and SR set to
construct the STG and create the transition(s) representing the group(s) in STG. Third,
the algorithm deletes the transition(s) which is(are) not representing the group(s) in
STG. In a transformation, each transition t in the system-net is replaced by the
transitions of the corresponding elements in set BECT ifthe BCT(t) is not empty.
The guard expressions of a transition corresponding to BCT (t) are the primary
guard expressions of the transition t. Then, the algorithm bases on the BECT and SR
set to collect which transitions are merged together. If the BCT(t) is empty, the
transition t is added into the T-CPN directly. If a transition in system-net has
synchronization relationship with a transition in object-net, its BCT is not empty. The

transition mergence is according to SR set and the bct of each element in BECT. For
37

example, a transition t in the object-net and a transition (t,bct) are merged

together if (t,t) belongs to SR set and the bct contains the complex token

representing the object-net in the system-net.

Definition 4-3 (Synchronous Transition Groups, STG):
A set of transitions form a synchronous transition group iff they fulfill the follows:

1. If the transition’s BCT is empty or the transition in an object-net without SR
with a transition in system-net, it constitutes a synchronous transition group of
its own.

2. For each transition in a synchronous transition group has synchronization
relation with another transition in the synchronous transition group.

3. Each synchronous transition group contains one transition from the system-net

and the other transitions from .object-netswhich are contained in bct of the

system-net transition are not:grouped from the same transition.

For example, an OOMPNet SN with two object-nets, ON1 and ON2, is shown in

Figure 4-2. The SR of SN is (SN *T0,ON1:T0)--. The-BECT of the SN contains binding
element (SN : TO,<ctv=0ON1>)and (SN :TO,<ctv=0ON2>). The synchronization
transition set of SN :TO holding elements ((SN : TO,<ctv=0ON1>),ON1:T0) and
(SN :TO,<ctv=0N2>)is generated by the binding elements. Moreover, the STG set
{(ON2:T0,)} generated for ON2:TO denotes that there is no complex token

consumed when the transition is fired.

If SN is an object-net of another OOMPNet USN and transition TO of USN has a
synchronization relation with SN:TO, the SRs of USN is adapted by the STG set of
SN :TO. Thus, the adaption results are (USN : TO,((SN :TO,<ctv =0ON1>),ON1:T0))

and (USN : TO,(SN : TO,<ctv=0ON2>)). The synchronization relations are kept by
this way during net transformation.

38

Sync to SN:TO
onfptv=0

1 @(lonfptv);l (lonfptv;O

ON1:PO ON1:TO ON1:P1

ctv=(1;-) A ptv=1

{(Iptv,lctv) \I {Iptv,lcty) \O

SH:TO SN:P1

(15,534

SN:PD

| onsptv:=0
<>(lonspt\f) I(lonsptvg ()
ONZ:P0 ON2:TO ONZ:P1

Figure.4-2. An OOMPNet SN contains two object-nets.

For each synchronous transition group, here defines the guard expression of the
transition which represents the synchronous transition group. The synchronous guard
function SGF is defined from- the- set -of-transition groups, STG, into boolean

expressions:
VT eSTG:

SGF(T)= A(

teT

G(t)\{geG(t)|Type(q)is complex} if tinsystem-net and G is the guard function of system- net
G(t) if tinthe i object-net and G, is the guard function of i" object - net

The transformation of an arc is according to transitions and places in the T-CPN.
Arcs in OOMPNEet are duplicated, created or modified to ensure that the behavior of
the T-CPN could be similar to its corresponding behavior in the OOMPNet. In order
to maintain the guard expressions of transitions about object-nets, this chapter defines
OOT-Property Arcs (OOTPA). The format of guard expression about object-nets is

ctv=m where ctv is a complex type variable and m is a marking of the

39

corresponding object-net. During a transformation, OOTPA is created according to the
marking(s) in the guard expression(s). OOT-Property arcs are created in pairs. For
example, Figure 4-2 shows a transition SN:TO has a complex guard expression
ctv=(1;-). Because the marking (1;-) has empty part, the corresponding places can be
omitted the OOT-Property arcs. There are four OOT-Property arcs, (ON1:P0,SN:T0),
(SN:TO,0ON1:P0), (ON2:PO,SN:TO) and (SN:TO,ON2:P0), existed in the T-CPN.
(ON1:PO,SN:TO) and (SN:T0O,ON1:PO0) is a pair of OOT-Property arcs. Similarly,
(ON2:P0,SN:T0) and (SN:TO,ON2:P0) is a pair of OOT-Property arcs. In this example,
SN:TO has synchronization relation with ON1:TO, so the arc (ON1:PO,SN:TO) is
already existed in T-CPN before creating OOT-Property arcs. Here discusses the arc
expression of OOT-Property arcs. The creation of arc expression(s) of OOT-Property
arcs is called OOT-Property arc function (OOTPAE). It contains two situations: 1) The
OOT-Property arc can be added-into' the T-CPN directly. 2) There is an arc existed in
the position where is the OOT-Property-arc-created. In the situation 1), the arc
expression of the arc is multi-set of the. marking described in the guard expression
corresponding to the place. For example, arc expression of OOT-Property arc
(ON2:P0,SN:TO) and (SN:TO,0ON2:P0) in T-CPN of Figure 4-2 is 1’1. In the situation
2), it can be separated into two Kinds: i) the destination of the existed arc is a
transition and ii) the destination of the existed arc is a place. The algorithm uses the
existed arc to be an OOT-Property arc by modifying the arc expression(s). Concerning
i), algorithm bases on the arc expression of the existed arc and the marking in the
guard expression to edit the arc expression of pair OOT-Property arcs. The arc
expression of the existed arc is changed into the multi-set of marking in the guard
expression corresponding to the place. And, the arc expression(s) of the matched
OOT-Property arc is a function. Input of the function is the multi-set of the original

arc expression of the existed arc. The output of the function is subtracting the
40

multi-set of the original arc expression of the existed arc from the multi-set of the
marking in the guard expression corresponding to the place. In Figure 4-2, the arc
expressions of (ON1:PO,SN:T0O) and (SN:TO,ON1:P0O) are 7’/ and f(exp)=1"1-exp
respectively. If the arc expression of OOT-Property arc is empty, the OOT-Property
arc can be omitted. Concerning ii), the arc expression of the existed arc is adding the
multi-set of the marking in the guard expression corresponding to the place and the
original arc expression of the existed arc. And, the arc expression(s) of the matched
OOT-Property arc is(are) the multi-set of the marking in the guard expression

corresponding to the place.

Function 4-3 (2-levels OOMPNet transformed into CPN):

Let an OOMPNet O=(%,V,P,T;D,;F,C,G Ak, L) where there is no abstract

place or transition. A T-CPN: '“T —Net=(%,V,P,T,F,C,G,A 1) generated by

transformation algorithm where:
1 If COD=y,then O is a Colored. Petri Net.

1-1. The COD is empty, so there is no complex type color set. = =3

1-2. There is no complex type variable existed in V. So, V =V.

1-3. There is no complex token, so the place set of objct-nets is empty. Then, P = P.
1-4. There is no complex token, so the transition set of objct-nets is empty. Then, T =T.
1-5. There is no complex token, so the arc set of objct-nets is empty. Then, F = F.
1—6. The input of C is the places in P. Because P=P, C=C.

1—7. Theinput of G is the transitions in T. Because T =T, G =G.

1-8. Theinput of A is the arcs in F. Because F = F, A= A

41

1-9. Theinputof I is the places in P. Because P=P, I =1.

2 If COD=d,and|COD |=m,then

vd, eCOD,d, =(, .V, ,P.,T,,D,,F.,N,,C.,G,,AI)and COD, =@

G G' g

2-1. £=3u({J)

i=l..m

2-2. V=vu(UW)

i=1..m

2-3. P=PuU(|J R):Vi=1.mPNP, =0

i=l..m
2—-4. T=STG

2-5. F={(f.D)e(Fu [J F,)xT|t(f) eT}UOOTPA
C(p) if peP

2-6. Vpeﬁ,é(p):{c () itpeP

ACE) if f eF
2-7. vf=(f T)eF A(f)= Ai(f') ,iff'eFCi—OOTPA
OOTPAF(f) Jif f e OOTPA
2-8. VteT,G(t) = SGF(t)
- 1(p) Jif peP
2-9. VpeP,I(p)_{Iq(p) if peP

4.2 Transformation Algorithm

An algorithm, named OOMPNetToCPN, for transforming an OOMPNet to a
CPN is presented in this section. The algorithm involves three sub-algorithms,
ProduceElement, CreateSTG and CreateTransition, sequentially to achieve its goal.

The ProduceElement algorithm is utilized to duplicate elements of the original net to

42

result. The CreateSTG algorithm is used to generate synchronize transition set(s) for
keeping the dependent relations between transitions. The CreateTransition algorithm
is applied to create transition(s) according to the BCTs of the system-net and the
synchronization transition sets generated by CreateSTG.

Let OOMPNet N be a source net of a series of transformations. A hierarchical

representation of N isG = (V,E) . Depth-first search [11] is applied to traverse graph
G. The OOMPNetToCPN algorithm is executed on object-net nij,n;; €V, and its
system-net ni.1x when the algorithm finishes examining n;j's adjacent nodes. Let

N =(V,P,T,D,F,N,C,G,Al,L)andn eCOD.

Algorithm 4.1: OOMPNetToCPN(OOMPNet oonet, HashMap hierarchy){

1. /lnput: oonet=(Z, P, T, D, F, N, C, G, A, 1, L): an OOMPNets with complex tokens
2. 1 hierarchy: a hashmap tostore the hierarchical level of the transformed net
3. /[Output: net: 1-level OOMPNet

4. for each apNeteoonet.P.AP.net{

5. oonet = UnfoldAbstractPlaces(oonet; apNet);

6. }

7. for each atNeteoonet. T.AT.net{

8. oonet = UnfoldAbstractTransitions(oonet, atNet);

9. }

10. /IUnfolding all abstract places and transitions in oonet

11. if(oonet.D.COD.size > 0){

12. /loonet.D.COD.size means the complex token number of oonet

13. for each deoonet.D.COD {

14, /lrecursively transforms OOMPNets into T-CPNs

15. OOMPNet cpn = OOMPNetToCPN(d.net, hierarchic);

16. /lintegrate color sets, variables and places of object-net into correspond system-net
17. oonet = ProduceElement(oonet, cpn, d, hierarchic);

18. }

19. /lcreate the BECT transitions into net

20. oonet=CreateTransition(oonet);

21. ArrayList STGroup = CreateSTG(oonet. T, oonet);

22. /lthe creation of synchronous transition groups is according to Def 4-3

23. ArrayList STGTransition = new ArrayList();

43

24,
25.
26.
27.
28.
29.
30.
31
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42,
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.

/Istore the transitions correspond to each group in STGroup
for each geSTGroup{
Transition newTransition = new Transition();
newTransition.stg = g;
oonet.addPlaceTransition(newTransition);
STGTransition.add(newTransition);
}
/lcollect arcs existed in object-nets of oonet
Arc[] F’ =new Arc[];
for each deoonet.D.COD{
F’=F’ud.net.F;
}
for each stgteSTGTransition{
for each testgt.stg{
stgt.guardExpres = stgt.guardExpres A t. guardExpres;
for each feoonet.FUF’{
if(t(f)==t{
Arc newArc = new Arc();
if(f.source == t){
newArc.source = stgt;

newArc.target = p(f):

}
else{
newArc.source = p(f);
newAurc.target = stgt;
}

newArc.expres = f.expres;

oonet.addArc(newArc);

}
[lcreate the arcs of OOTPA

if(teT && (complex guard expressions of t is not empty)){
for each meM{
/IM is the set of the markings in the complex guard expressions of t
OOMPNets on = getCorrespondObjectNet(m);
/lgetCorrespondObjectNet is used to find the object-net

/lcorresponds to the marking m

44

62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81
82.
83.
84.
85.
86.
87.
88.
89.
90.
9L
92.
93.
94.
95.
96.
97.
98.
99.

for each peon.pt.p{
if(m(p)!=null){

if((p,t)gF && (t,p)¢F){
Arc newlnputArc = new Arc();
Arc newOutputArc = new Arc();
newlnputArc.addExpres(multi-set of M(p));
newOutputArc.addExpres(multi-set of M(p));
newlnputArc.source = p;
newOutputArc.target = p;
newlnputArc.target = stgt;
newOutputArc.source = stgt;
netl.addArc(newlnputArc);
netl.addArc(newOutputArc);

}

else if(f==(p,t)eF){
Arc newArc = new Arc();
newArc.addExpres(f(exp)=, multi-set of M(p) — f.guardExpres);
newArc.seurce = t;
newArcitarget = p;
f.guardExpres = null;
f.addExpres(multi=setof M(p));
netl.addArc(newArc);

}

else if(f=(t,p)eF){
Arc newArc = new Arc();
newArc.addExpres(multi-set of M(p));
newArc.source = p;
newArc.target = t;
netl.addArc(newArc);
f.guardExpres = f.guardExpres+multi-set of M(p);

}

for each teoonet.T{
if(t¢STGTransition){

oonet.deletePlaceTransition(t);

45

100. }

101. }

102. return oonet;

103. }

104. else if(oonet.D.COD.size == 0){
105. /loonet without complex token
106. return oonet;

107. }

108. }

This algorithm is the main recursive algorithm to transform OOMPNets into
T-CPN. Inputs of the algorithm are one OOMPNet and a hashmap which is an index
table described in Sec. 4.1. 1-level OOMPNEet is an output of the algorithm. The final

output is a T-CPN conform the description in Sec. 4.1.

Lines 4 to 9 in the algorithm.unfold the-abstract nodes in the OOMPNet. Lines
11 to 107 separate the input OOMPNet into-two,situations according to the number of
complex token. An OOMPNet is 1-level.if its:.complex token number is 0. Lines 104
to 107 return the inputted OOMPNet which is 1-level originally. Lines 11 to 105
concern the number of complex token is bigger than 0. Lines 8 to 13 find out the
object-net which is 1-level OOMPNet by calling itself. Then, function
ProduceElement in line 17 integrates the declarations, places and tokens of the
object-net into its system-net. For a 2-level OOMPNet, the declarations, places and
tokens of all object-nets are integrated into the system-net after the for-loop in line 13
to 18 finish. Then, lines 20 to 101 realize the third and forth steps in transformation.
Lines 20 to 30 transform transitions and lines 31 to 101 transform arcs. Line 20 calls
function CreateTransition for creating the transitions corresponding to BCT of all
transitions in oonet and put these new created transitions into oonet. Lines 21 to 30,

like STG described in Def. 4-3, create STG and transitions correspond to the group of
46

STG. These transitions corresponding to the groups in STG are the final result of
transforming transitions. The other transitions will be deleted in lines 97 to 101. Lines

39to 53, like set {(f,f)e(Fu |J F,)xT|t(f)et} in Function 4-3, transform the

i=1..m

original arcs. Lines 56 to 96 create the arcs of OOTPA described in Sec. 4.1.

Algorithm 4.2: CreateTransition(OOMPNet sn){
1. /Nnput: sn=Z, P, T, D, F, N, C, G, A, I): is a 2-level OOMPNet without the transitions
created based on BCT.

2. /[Output: rn: an OOMPNet with the transitions created based on BCT.
3. for each teT{

4, T’ = the set of transitions corresponding to BCT (%)

5. foreach ’eT’{

6. /ledit the initial data of transition t’

7. t’.correspond=t;

8. /lstore the t” is corresponding to,which original transition
9. t’.addGuardExpres(IGE);

10. /It’ corresponds to:bct, IGE=bctu{primary type guard expression of transition t}
11. if(sn not contain t*){

12. sn.addPlaceTransition(t’);

13. /fadd the t’ transition into sn

14. }

15. }

16. }

17. for each teT{

18. if(t.correspond == null && BCT(t)+@){

19. sn.deletePlaceTransition(t);

20. }

21. }

22. rn=sn;

23. returnrn;

24. }

Lines 3 to 16 in the algorithm create transition(s) corresponding to the BCT of all

transition(s) in the inputted OOMPNet. Lines 5 to 13 add new created transition(s)

47

into the inputted OOMPNEet. In order to recognize the new created transition from
which transition, a transition associates with a tag correspond. Line 7 let the new
created transition store the transition which it corresponds to into the tag. Line 9 adds
the guard expression into the new created transition. The guard expression(s) are the
corresponding bct and primary guard expression(s) from the transition which the new
crated transition corresponds to. After above activities, the new crated transition is
added into the inputted OOMPNet in line 12. Lines 17 to 21 delete the transitions

which are replaced by their BCT.

Algorithm 4.3: ProduceElement (OOMPNet netl, OOMPNEet net2, ComplexToken ct, HashMap
hierarchy){

1. /Nnput: netl=(Z, P, T, D, E, N, C, G, A, I): the system-net corresponds to net2
2. // net2=(X’, P>, T°, D’, E2aN*, C°, G*, A%, 1’): the object-net corresponds to netl
3. 1 ct: a complex token‘in netl represents:net2

4, 1 hierarchy: store the hierarchical level of transformed OOMPNet

5. /IOutput: resultNet: after merging net2‘into netl

6. netl.X =netl. £ U net2. X’;

7. [lunite declarations of netl and net2

8. ArrayList integratedPlaces = new ArrayList();

9. for each penet2.P{

10. /IAdd all places of net2 into netl

11. Place clonePlace = p.clone();

12. netl.addPlaceTransition(clonePlace);

13. integratedPlaces.add(clonePlace);

14. }

15. hierarchy.put(ct.name, integratedPlaces);

16. /Istore the representation relation of net2 in netl

17. resultNet=net1;

18. return resultNet;

19. }

This algorithm integrates the color sets, variables and places of the object-net

into the corresponding system-net. Line 6 integrates the color sets and variable of net2
48

into netl. Lines 9 to 14 integrate the clones of places in net2 into netl. The complex
token references to the clones of places in net2 in netl and store the relation into

index table in line 15.

Algorithm 4.4: CreateSTG(OOMPNet sn){

1. /Nnput: sn: the system-net which is needed to transform

2. /IOutput: ArrayList: groups, the transitions are grouped into synchronous transition group

3. ArrayList STG = new ArrayList();

4. ArrayList total Added = new ArrayL.ist();

5. for each tesn.T{

6. if(t.correspond=null){

7. /lconcerning the transition created from function CreateTransition

8. OOMPNets[] ON = getObjectNetsInbct(t);

9. /lget all object-nets contained in the bct where t is corresponding to bet

10. ArrayList[] syncTransitions = new ArrayListfON.size+1];

11. int count = 0;

12. for each oneON{

13. ArrayList addedTransition = new ArrayList();

14. /I used to record the collected transitions

15. for each t’eon.T{

16. /lon.T is the transition set'in on

17. AvrrayList tempArray = new ArrayList();

18. /I used to collect the synchronous transitions which are

19. /lcreated from the same transition into to an array

20. if((t.correspond, t”)€sr && t’¢addedTransition){

21. //t and t” have synchronization relation and t’ is not collected

22. tempArray.add(t’);

23. addedTransition.add(t’);

24, for each t”€on.T{

25. if(t”.stg and t’.stg#@ have transitions representing the BCT
from the same transition){

26. tempArray[count].add(t”);

217. addedTransition.add(t”);

28. }

29. }

30. if(tempArray is not empty){

49

31. syncTransition[count].add(tempArray);

32. }

33. }

34. }

35. total Added.addAll(added Transition);

36. count++;

37. }

38. syncTransition[count].add(t);

39. STG.addAll(Combination(syncTransition));

40. /[Combination is used to create the stgs containing transition t.
41. /lthe function Combination collects different groups from the arrays in syncTransition
42. /leach group is created from pick up exactly one transition from
43. /leach array in syncTransition

44, for each desn.D.COD{

45, for each t”ed.net.T{

46. if(t” ¢total Added){

47. STG.add(t”);

48. }

49, }

50. }

51. }

52. else{

53. STG.add(t);

54, }

55. }

56. return STG;

57. }

This algorithm creates STG described in Def. 4-3. The input of the algorithm is
the transition set of the corresponding system-net. The STG is the output of the
algorithm. This algorithm separates the inputted transition set into two situations. One
is the original transitions where the BCT of the transition is empty. The other is the
transitions corresponding to BCT. Lines 6 to 51 deal the transition corresponding to
BCT. The other transitions are dealt at lines 52 to 54. Line 8 calls function

getObjectNetsInbct to get the object-nets which are related to the input transition.
50

Lines 12 to 37 is a for loop which concerns the transitions in related object-nets to
collect transitions into corresponding arrays. In the for loop, it concerns the transitions
in related object-nets where the transitions have synchronous relationship with current
transition in system-net. An array collects the transitions which are transformed from
the same transition. If transitions are transformed from the same transition, the groups
which are represented by the transitions contain elements representing the elements of
BCT from the same transition. Lines 24 to 29 collect the transitions which are
transformed from the same transition into the same array. And, the transition in
system-net is represented an array and putted into the arrays. The arrays of each
transition in system-net are input of function Combination to generate synchronous
transition groups in line 39. The way of grouping synchronous transition groups in
function Combination is that each*array is picked. one transition to be a group. The
output of function Combination is" different groups from the input arrays. After
grouping all synchronous transition groups.of-transitions in system-net, the ungrouped
transitions in system-net or object-nets.are.grouped respectively and putted into the
group set from above activities at lines 44 to 55. Line 56 return the finial group set to

the calling function.

51

Chapter5 Example

To demonstrate the usages of OOMPNE and OOMPOA, this section introduces a
scenario “transfer account successfully” in use case “Transfer Account”. The scenario
is modeled as an OOMPNet by using OOMPNE. The modeling process of using
OOMPNE is introduced step by step as the following. Then, OONPOA is applied in
this example to illustrate the steps of transforming OOMPNets into T-CPN, and the

corresponding analysis.

51 Edit OOMPNets with OOMPNE

Table 5-1 shows the specification of-use case “Transfer Account” and Table 5-2

shows a scenario “Transfer Account Successfully” ofithe use case.

Use Case

Title: Transfer Account
Goal: ATM supports user to transfer money from one account to another.
Related Actors: User, System Manager
Primary Actors: User
Trigger: User
Precondition: ATM is turned on and the ATM is idle.
Primary Scenario:
Steps:
Pre: ATM is turned on and the ATM is idle.
1. User provides card and information to identify his identity.
Pre: User identity has no problem.
2. User transfers money.
Alternatives:
1a. User doesn’t pass the identity verification within 1 times.

1lal. ATM shows an “invalid identity” message.

52

Pre: The message is shown.
132. GO TO step 1.
1b. User doesn’t pass the identity verification 2 times.
1b1. ATM terminates the transaction.
2a. The transaction is fail.
2al. ATM terminates the transaction.
Exceptions: could happen at any time
1. The power supply is cut off suddenly.
(1) Maintainer turns on ATM’s power supply.

(2) System manager turns on ATM system.

Postcondition: A transfer of money is executed successfully.

Table 5-1 The specification of “Transfer Account”.

Scenario: Transfer Account Successfully

Pre: ATM is closed.

1. System manager turns on ATM.

Pre: ATM is turned on and the ATM is idle.

2. User provides card and information to identify his identity.

Pre: User identity has no problem.

3. User transfers money.

Table 5-2 The scenario of “Transfer Account Successfully”

In the process of modeling scenario “transfer account successfully”, the first step
declares the color sets and variables needed. Figure 5-1 shows the window of
declaring four color sets. The declared color sets are ATM, Information, Customer,
and Management. Color set ATM belongs to complex type and the others belong to
primary type. Because color set ATM is complex, OOMPNE creates a new sheet for
the user to model the type of the complex color set after user declares color sets.
Figure 5-2 shows the net of the color set ATM. The details of modeling ATM are
similar to modeling scenario “transfer account successfully”, so it is described later.

Figure 5-3 shows the activities of declaring variables. Here, this OOMPNet needs be

53

declared five variables, e.g. controller, user, machine, password, and account.

Token Property !EE

~Token Type 1

Type Name: Management Type Form: |Primary . v

Value Candidates: jcontroller

~Token Type 2

Type Name: Customer Type Form: | Primary .

Value Candidates: ju

~Token Type 3

Type Name: Information Type Form: |Primary . v

Value Candidates: unchecked,valid|

~Token Type 4
Type Name: ATM Type Form: {Complex - |
Valve Candidates:
add | Dekte | Commit | Cancel |
—F
Figure 5-1 T ! ‘,gf,sg mg color sets.

.!' ;_-‘ "-“

E

g -r.?'f'-‘E
=T;'-"r-l

-1
[i‘“
a5 5 =
| ATMachine: a~z
M : ATMachine a
L
Tum off
'™
L
. True
Tum on
1I'™M
Y
Turm on and idle
1I'M
N4
N True
Cand is inserted
1'M
Occupied

Figure 5-2 The OOMPNet of color set ATM.

54

Set Yariables !EE

Variable 1

Name: |Controller Type: |Management 97
Variable 2 —
Name: [Usex Type: |Customer v
Variable 3

Name: {Machine Type: |ATM v
Variable 4

Name: [Password Type: |Information 97
Variable 5

Name: |Account] Type: |Information 97

Add | Delete] Commit | Cancel |

Figure 5-3 The window of declaring variables.

The second step is based on Table 5-2 to model the net structure of scenario
“transfer account successfully” 'an'd edit theihscriptions of the net elements. The
process of creating and editing het elements are deseribed in Section 3.1. When user
edits the inscription of arcs, OOMPNE-will_remind user of his/her error edition.
Figure 5-4 shows the reaction of OOMPNE if user edits an inscription which might
cause some abnormal phenomena. After creating and editing net elements, the
modeled OOMPNet of scenario “transfer account successfully” is shown in Figure
5-5. The top-left is the declared color sets and variables. And, transition “System

manager turns on ATM” synchronizes with the transition “turn on” in object-net atm.

55

Color Sets:
Management: controller

Customer: u
Information: unchecked, valid
ATM: complex type controller, atm
Variables: g
Controller: Management ATM is shut
User: Customer 1'Machine+1'Controller
Machine: ATM
Password, Account: Information If Machine=(a;~-)
Sync to transition "Turn on" in atm
System manager tom on ATM
1'Machine

u
<o
6 Arc Expression Unbalence Start

Correct
Y
]

Provide information to identify the identity 1'Machine+ 1 'User

O

4
>]

Transfer account

Figure 5-4 The warning message of editing unbalance inscriptions of arc (Start,

Valid

End

Provide information to identify the:identity).

|

Color Sets:
Management: controller
Customer: u
Information: unchecked, valid controller, atm
ATM: complex type o
: ATM is shut
Natiables: 1'Machine+!'Controller

Controller: Management

User: Customer i
Y [f Machine=(a;-;-)

Machine: ATM =) =
Password, Account: Information Sync to transition "Turn on" in atm

System manager tum on ATM]
1"Machine
u
C.
Start

1"Machine+1'User

‘-'If Machine=(-;a;-)

Provide information to identify the identity : 4 i
1'Machine+1'User

O

1'Machine+1'User

Information valid

‘-'If Machine=(-;-a)

Transfer accomnt | | A S
1'Machine+1'User

O

Figure 5-5 The OOMPNet of scenario “transfer account successfully”.

End

56

The final step of the modeling process refines the nodes which are needed to be
refined. In current status of the modeled OOMPNet, transition “provide card and
information to identify the identity” need be refined. Table 5-3 shows the refinement
of transition “provide card and information to identify the identity”, and user uses the
popup menu associated with transition to set the transition to be abstract. OOMPNE
creates new sheet for user to model the refinement in Table 5-3. Figure 5-6 shows the
OOMPNet of the refinement. Transition “Insert ATM card” in the refinement
synchronizes with transition “Card is inserted” in object-net atm. Similarly, transition
“transfer account” in Figure 5-5 need be refined. The refinement of transition
“transfer account” is shown in Table 5-4. The modeled OOMPNet of the refinement is

shown in Figure 5-7.

Refinement of transition “provide card'and information to identify the identity”

Pre: ATM is turn on and idle

1. User inserts the ATM cash card.
Pre: ATM is occupied

2. User enters the password.

Pre: ATM is occupied and password is unchecked.

3. ATM verifies password.

Table 5-3 The refinement of transition “provide card and information to identify the identity”

57

Color Sets:
Management: controller
Customer: u
Information: unchecked, valid
ATM: complex type

Variables:
Controller: Managerment It Machine=(=a;-)
User: Customer -Sync to transition "Card is inserted" in atm
Machine: ATM Insert ATM card
Password, Account: Information 1'Machine+1'User

&

O

1'Machine+1'User

Caurd valid

ﬂ If Machine=(-;-a)

Input password [
1'Machine+1'User+1 'Password =unchecked

C‘B
Password format is correct
1'Machine+1 'User+1 'Password

Y
hlf Machine=(~;-;a) * Password=unchecked
Verify password

Figure 5-6 The OOMPNet of refinement.described in Table 5-3

Refinement of transition “transfer-account”

Pre: ATM is occupied.

1. User selects function “transfer account”.
Pre: ATM is occupied.

2. User enters account number.

Pre: ATM is occupied and account is unchecked.
3. ATM checking account number format.
Pre: ATM is occupied and account is valid.

4. User enters the amount of money.

Pre: ATM is occupied.

5. User rechecks transfer information.

Table 5-4 The refinement of transition “transfer account”.

58

Color Sets:
Management: controller
Customer: u

Information: unchecked, valid

ATM: complex type W I Machine=(--a)
Variables: Select function "transfer account”) 1h 2 chine +1'User

Controller: Management v

User: Customer

Machine: ATM

Password, Account: Information Start transfer account

1'Machine+1'User

alf Machine=(-;a;-)

Input account number
1'Machine+1'User+1'Account=unchecked

(VD
Account number ready
1'Machine+1'User+1'Account

Y
ﬁlf Machine=(~-;a) * Account=unchecked

Accomt format check
1'Machine+1'User+1' Account=valid

O

1'Machine+1'User+1'Account

Account format valid

A4
M [f Machine=(~;-;a) * Account=valid

Input the amount of money

1'Machine+1'User

Y

Transfer successtully |] ,
1'Machine+1'User

If Machine=(-;-;a)
Recheck transfer information

Figure 5-7 The OOMPNet of refinement described in Table 5-4.

From the above three steps, a scenario can be modeled as an OOMPNet by using
OOMPNE. User can use function “Merge abstract nodes” to unfold the abstract node.
After unfolding abstract nodes, user can see the whole OOMPNet of scenario
“transfer account successfully” without aligning. Figure 5-8 shows the whole
OOMPNEet of scenario “transfer account successfully”. The two abstract transitions
are replaced by their OOMPNets of refinements respectively. The inscriptions in

above figure are the same as those in latter Figures. They will be omitted then.

59

Insert ATM cand

Card valid

)
Input pa,ssword%
(‘\

Password format is correct

Verify password

()
ATM is shut
Systemn manager tum on ATM
()
Start
C Select function “transfer account”
)

Information valid
Start transfer account
=]
Input account number

End |

Account number ready

L
Account format check

Account format valid

-

Input the amomnt of money

Transfer successfully

Recheck transfer information

Figure 5-8 The OOMPNet of-scenario “transfer account successfully”.

5.2 Analyzer in OOMPNets, OOMPOA

To analyze OOMPNEets, there are four steps to achieve. The first one transforms
the OOMPNet into T-CPN with a transformation algorithm. Secondly, user constructs
the occurrence graph of the T-CPN. This step can be done automatically, too. The
third step uses the built occurrence graph to investigate dynamic properties, e.g.
liveness property, home property and so on. According the results of the investigated
dynamic properties, the error(s) embedded in the T-CPN can be found. The forth step
maps the found errors to the original OOMPNet. Figure 5-9 and 5-10 show the T-CPN

transformed from the OOMPNet of scenario “transfer account successfully” and the

60

occurrence graph respectively. The T-CPN contains an index table which maps the
transformed complex token in OOMPNet to the transformed places of the
corresponding object-net. The red arcs in the T-CPN are arcs of OOTPA described in
Sec. 4.1. The transitions in the T-CPN are corresponding to the groups of STG. So, the
label of each transition in the T-CPN is the format of the groups in STG. For example,
the transition {(System manager turn on ATM,< Machine = atm >), Turn on} in the
T-CPN is generated by grouping the bct of transition
System manager turn on ATM and the transition Turn on in the object-net atm.
The bct is < Machine=atm> where Machine is complex type variable and atm is
the name of the complex token. The occurrence graph in Figure 5-10 is a direct graph.
\ertices in occurrence graph are representing the reachable markings of the T-CPN.
The format of markings is (multi-set of tokens in‘place 1; multi-set of tokens in place
2; ...; multi-set of tokens in place n)'where n.is the number of places in the T-CPN. A
complex token is represented- by ithe_marking ‘of the corresponding object-net
according to the index table. Because:the format of markings is too long, the code
names are used to represent markings instead. For example, (1) in Figure 5-10
represents the marking ((a;—;—), controller;u;—,— — — — ——;—) and so on. An edge
in occurrence graph means a transition fired associated with a binding. The format of
steps is (transition, binding element) : For example, step3
({(Input password, < Machine = atm >)},<User =u >) fires the transition Input password

and the binding element is <User=u>.

61

Index Table:
atm | Turn off, Turn on and idle, Occupied

=

ATM msh\:ti

Tomoff {(System manager turn on & TM, <Machine=atm=), Tum on} l

sml

Tumn on and idle {{Insert ATM card, <Machine=atm>),Cad is insened}l

cots

{{Input password, <Machine=atm>)} ¢
Password format is comct¢

{{Verify password, <Machine=atm=)}

Occupied

{(Select function "transfer account”, <Machine=atm=)}

Start transfer account

{(Input account number, <Machine=atm>) }

Account number ready

{(Account format check, <Machine=atm=)}

Account format va]idl

{(Input the amount of money, <Machine=atm>)}

Transfer successfully

{(Recheck transfer information, <Machine=atm=)}

Figure 5-9 T-CPN'of OOMPNet in Figure 5-5.

L& i Aan

. Stepl . Step2 . Step3 . Step4 . Step5> .

Marking:

) :((a;-;-dcontroller ju;-;-5-3-3-5-3-37)
@ i Gsasu;-s-s-i-5--5-50)

I G CHEE R B

Stepl :
Step2 :
Step3 :
Stepd :
StepS @

P R T A e T T

({(System manager turn on ATM, <Machine=atmz), Turn on}, <Conyroller=controllers)
{{(Insert ATM card, <Machine=atmz>), Card is inserted}, <User=us)

{{(Input password, <Machine=atmz=)}, <User=us)

{({(Verify password, <Machine=atm>)}, <Password=unchecked, User=u=)

{{(Select function "transfer account", <Machine=atms=)}, <User=us)

Figure 5-10 The occurrence graph of T-CPN in Figure 5-9.

62

Now the occurrence graph is analyzed to calculate four dynamic properties, best
integer bounds, best multi-set bounds, liveness and home properties. According to the
dynamic properties described in [1] and [2], Figures 5-11~5-14 show the results of the

investigated dynamic properties.

Best Integer Bounds Upper Lower
ATM is shut 2 0
Start 2 0
Card valid 2 0
Password format is correct 3 0
Information valid 2 0
Start transfer account 2 0
Account number ready 3 0
Account format valid 3 0
Transfer successfully 2 0
End 2 0
Turn off 1 0
Turn on and idle 1 0
Occupied 1 0

Figure 5-11 The best ‘integer bounds of the T-CPN.

Figure 5-11 shows the best integer bounds of the T-CPN. It contains two kinds,
best upper integer bounds and best lower integer bounds. The best upper integer
bound of a place specifies the maximum number of tokens associated with the place
in any reachable markings. The upper integer bound of place Start is 2 which means
place Start has at most 2 tokens, and there is at least one reachable marking whose
place Start has 2 tokens too. Similarly, the lower integer bound of a place specifies the
minimum number of tokens associated with the place in any reachable markings. The
lower integer bound of place Start is 0 which means that there is at least zero token

associated with place Start and there exists a reachable marking where there is no

63

token associated with place Start. A similar remark applies to other places.

Best Upper Multi-set Bounds

ATM is shut 1’atm+1’controller
Start I’atm+1’u

Card valid I’atm+1’u
Password format is correct 1’atm+1’u+1 unchecked
Information valid I’atm+1’u

Start transfer account I’atm+1’u
Account number ready empty

Account format valid empty

Transfer successfully empty

End empty

Turn off I’a

Turn on and idle I’a

Occupied I’a

Best Lower Multi-set Bounds

ATM is shut empty
Start empty

Card valid empty
Password format is correct empty
Information valid empty
Start transfer account empty
Account number ready empty
Account format valid empty
Transfer successfully empty

End empty
Turn off empty

Turn on and idle empty
Occupied empty

Figure 5-12 The best multi-set bounds of the T-CPN.

Above paragraph describes the best integer bounds of a place which ignores the

token colors. Figure 5-12 shows the best upper and lower multi-set bounds of places.

64

It considers not only the number of tokens but also the colors of tokens. The best
upper multi-set bound of a place specifies all possible multi-sets of token colors
associated with the place where the sum of the coefficient of colors in each multi-set
is equal to the best upper integer bound of the place. For example, the best upper
multi-set bound of place Start has only one possible multi-set, 1’atm+1’u, where the
sum of coefficient of colors in the multi-set is equal to the best upper integer bound of
the place. It means that there exist reachable markings where one atm and one u are
associated with place Start. Similarly, the best lower multi-set bound of a place
specifies all possible multi-sets of token colors associated with the place where the
sum of the coefficient of colors in each multi-set is equal to the best lower integer
bound of the place. For example, the best lower multi-set bound of place Start is
empty where the sum of coefficient of colors'is.0 equal to the best lower integer
bound of place Start. It means that.there exists a reachable marking where there is no

token associated with place Start. A similar-remark applied to other places.

Home Properties
Home Markings: (6)

Figure 5-13 The home properties of the T-CPN.

Figure 5-13 shows the home properties of the T-CPN. The home properties show
that there exists a single home marking, (6). Home marking means that all reachable
markings can reach to the home marking. In other words, it is impossible to have an

occurrence sequence which cannot be extended to reach the home marking [1].

65

Liveness Properties
Dead Markings: (6)
Dead Transitions: {(Input account number, < Machine = atm >)},
{(Account format check,< Machine = atm >)},
{(Input the amount of money, < Machine =atm >)},
{(Recheck transfer inf ormation,< Machine = atm >)}

Live Transitions: None

Figure 5-14 The liveness properties of the T-CPN.

The liveness properties specify three items which are dead markings, dead
transitions and live transitions. A marking is dead if and only if it is impossible to
enable a transition in the marking. A transition is a dead transition if and only if the
transition cannot be enabled in any reachable markings. A transition is a live transition
if and only if the transition is enabled in any reachable markings. The liveness
properties of the T-CPN above: are shown in Eigure 5-14. There is a single dead
marking (6) specified in Figure 5-14. There are four dead transitions in the T-CPN.
Finally, there are no live transitions.

According to the above investigated dynamic properties, developer traces to find

out errors which are embedded in net elements. The OOT-Property arcs connect to

transition {(Input account number, < Machine = atm >)} cause transition
{(Input account number,< Machine =atm>)} to be unfirable. OOT-Property arcs are
transformed from the complex type guard expression of transitions. And, transition
{(Input account number,< Machine = atm >)} corresponding to the group in STG is
grouped from the transition Input account number in original OOMPNet. So,
developer can check the guard expression of transition Input account number to find
out errors. It finds that the guard expression Machine =(—;a;—) in transition Input
account number is an error inscription. The error inscription causes the transition and

the following transitions to be dead transitions.

66

Chapter 6 Conclusion and Future Work

The major contribution of this thesis is to develop OOMPNE and OOMPOA of
the development environment for OOMPNets. OOMPNE is an editor for user to
model a well-form net structure OOMPNets. During the editing, OOMPNE provides
some checks to prevent abnormal phenomena appearing in the OOMPNet being
modeled. After modeling an OOMPNet, the net is analyzed to find out error(s).
Besides, the thesis provides an analysis tool, OOMPOA, to analyze OOMPNets based
on CPN and occurrence graph. OOMPOA transforms an OOMPNet into CPNs and

calls the analysis methods of CPNs to analyze the results.

The future works are listed as follows:

1. Most editors for modeling:CPNSs have a simulator to validate the net modeled by
finding some anomalies Telated to the net’s behaviors. A simulator for
OOMPNE is an extension in the future.

2. The dynamic properties are applied to analyze CPN. Current dynamic properties
found in transformed CPNs might be transformed back as the dynamic

properties for OOMPNets for analysis.

67

Reference

[1]
[2]
3]
[4]

[5]

[6]

[7]

8]

Kurt Jensen, “Coloured Petri Nets: Basic Concepts,” Springer, 1992.
Kurt Jensen, “Coloured Petri Nets: Analysis Methods,” Springer, 1995.

PIPE2, http://pipe2.sourceforge.net/.

Ching Huey Wang, Feng Jian Wang, “An Object-Oriented Modular Petri Nets
for Modeling Service Oriented Applications”, International Computer Software
and Applications Conference (COMPSAC 2007).

Anne Vinter Ratzer, Lisa Wells, Henry Michael Lassen, Mads Laursen, Jacob
Frank Qvortrup, Martin Stig Stissing, Michael Westergaard, Sgren Christensen,
Kurt Jensen, “CPN Tools for Editing, Simulating, and Analysing Coloured Petri
Nets”, Applications and: Theory-of “Petri “Nets 2003: 24th International
Conference, ICATPN 2003, pages 450-462, Springer-Verlag, Berlin, 2003.

Kurt Jensen, Lars Michael Kristensen and Lisa Wells, “Coloured Petri Nets and
CPN Tools for Modelling andValidation of Concurrent Systems”, International
Journal on Software Tools for Technology Transfer, vol. 9 (2007), Springer
Verlag, 213-254.

Glenn Lewis, Charles Lakos, “Incremental State Space Construction for
Coloured Petri Nets”, Applications and Theory of Petri Nets 2001: 22nd
International Conference, ICATPN 2001, pages 263-282, Springer-Verlag,
Berlin, 2001.

Sgren Christensen, Niels Damgaard Hansen, “Coloured Petri Nets Extended
with Channels for Synchronous Communication”, Applications and Theory of
Petri Nets 1994: 15th International Conference, ICATPN 1994, pages 159-178,

Springer-Verlag, Berlin, 1994.

68

http://pipe2.sourceforge.net/

[9] Charles Lakos, “From Coloured Petri Nets to Object Petri Nets”, Applications
and Theory of Petri Nets 1995: 16th International Conference, ICATPN 1995,
pages 278-297, Springer-Verlag, Berlin, 1995.

[10] Colored Petri Nets, http://www.daimi.au.dk/CPnets/.

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein,

“Introduction to Algorithms” Second Edition, The MIT Press, 2001.

69

http://www.daimi.au.dk/CPnets/

