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摘      要 

在無線感測網路中利用預測技術來追踨物體的移動路徑可以減少能源的耗

費。在之前的研究中，我們透過探勘物體的移動模式來預測無線感測網路中物體

的移動路徑並且發展階層式的架構來有效率地追踨物體。感測節點本質上具有儲

存空間的限制。然而，儲存每一個物體的移動樣式需要消耗感測節點大量的儲存

空間，這會增加實際應用的難度。因此，在本篇論文我們利用群組移動模型的特

色，提出了在具儲存空間限制的無線感測感網路中進行群集式物體追踨的應用，

簡稱 GBOT。首先，我們制定物體移動樣式之間的相似度，在此移動樣式被表示

成散發樹。根據所制定的相似度，我們可以推知物體間的相似度關係。在給定物

體間的相似度關係，我們進一步地提出分群演算法，將具有相似移動模式的物體

分成一個群組。之後我們會為每一個群組選出最具代表性的散發樹並且使用這個

散發樹來預測群組的移動路徑。此外，當物體的移動行為改變時，我們也設計了

一個演算法來維持無線感測網路的預測準確率。實驗結果顯示 GBOT 應用於具

儲存空間限制的無線感測網路中，不僅有效地減少儲存的成本並且有著極佳的預

測準確率。 

 
關鍵字：物體追踨，無線感測網路，群組移動模型，分群。 



Abstract

Predication-based techniques are able to reduce the energy consumption in object track-
ing sensor networks. Prior works exploit mining object moving patterns for prediction-
based object tracking sensor network and developed a hierarchical architecture to ef-
ficiently track objects. Note that sensors are inherently storage-constrained. Clearly,
mining and storing individual object moving patterns unavoidably need a considerable
amount of storage spaces in sensor nodes, which is not of practical. Thus, in this pa-
per, we propose a group-based object tracking sensor network (abbreviated as GBOT)
which explores the feature of group mobility of objects for storage-constrained object
tracking sensor networks. Specifically, we first formulate a dissimilarity function among
object moving patterns, where object moving patterns are viewed as emission trees. In
light of the dissimilarity function, the dissimilarity relationships among objects are de-
rived. Given dissimilarity relationships among objects, we further propose two clus-
tering schemes to discover group mobility patterns of objects. Furthermore, for each
group, we judiciously select one representative emission tree and utilize this emission
tree for prediction. In addition, a maintenance algorithm is derived to preserve the pre-
diction accuracy when moving behaviors of objects vary. Experimental results show that
GBOT not only effectively reduces storage cost but also has a good prediction accuracy
in storage-constrained sensor networks.

Keywords — Object tracking, sensor networks, group mobility, clustering
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Chapter 1

Introduction

Object tracking is one of the killer applications for wireless sensor networks. In object

tracking sensor networks (referred to as OTSN), a large number of static sensor nodes

are deployed over a monitored region. There are access points (or called sinks) serving

as interface for injecting queries and collecting tracking results (e.g., the location of

objects). Sensor nodes obtain up-to-date location data of objects with a given sampling

frequency. Data is reported to the sink via multi-hop communications according to a

required reporting frequency. Typically sensor nodes use small batteries as their power

source. As a result, energy conservation in object tracking sensor networks is a primary

research issue to tackle.

Various energy conservation schemes for object tracking sensor networks have been

extensively studied in the literature [20, 21, 12, 16, 17]. In particular, a predication-

based OTSN is shown to be very energy-efficient for tracking objects. Explicitly, in

predication-based OTSN only those sensor nodes whose sensing regions are likely to

contain tracking objects are active, whereas the rest of sensor nodes are put in sleep

mode to conserve energy. Clearly, predication-based object tracking sensor networks

typically relies on certain prediction mechanisms to achieve energy saving. Prior works

in [12] has proposed an in-network mining object moving patterns in a hierarchical track-

ing model (abbreviated as HTM) in which a large number of inexpensive sensor nodes
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perform sensing operations and a limited number of powerful sensor nodes (standing for

cluster heads) offer data collection, queries and mining capabilities. Specifically, HTM

exploits object moving patterns to predict the next positions of moving objects. Object

moving patterns in HTM are represented as emission trees and stored at cluster heads.

Though HTM has better prediction accuracy, storing emission trees for each object needs

a considerable amount of storage space. Cluster heads are intrinsically storage-constraint

sensors as well. Hence, how to exploit limited storage space of cluster heads efficiently

is an important issue.

Generally speaking, many creatures usually have group movement behaviors [2, 6,

7, 14]. To deal with the problem mentioned above, in this paper, we propose the group-

based OTSN framework (referred to as GBOT) in HTM. objects tend to move together

in a gregarious fashion and consequently have similar emission trees. The main idea is

that objects with similar moving behaviors (i.e., similar emission trees) form a group.

For a group, we only keep an emission tree and the objects belonging to the same group

share one representative emission tree. Therefore, the total number of emission trees to

be stored decreases.

To perform GBOT, we first divide objects into groups in which objects would move

similarly. To distinguish the moving behavior of objects, we adopt both the emission

trees and up-to-date locations. According to the properties of the emission tree and

up-to-date location, we define the dissimilarity and spatial proximity respectively. Re-

garding the problem of grouping objects, the grouping problem, we reduce the clique

cover problem to the grouping problem by the dissimilarity measures. Then, two clus-

tering schemes are formulated to group objects reactively or proactively. After grouping

objects, we provide two metrics to judiciously select the representative emission tree for

each group so that the storage cost can be further reduced and the prediction accuracy

can be preserved. Note that the VMM model is originally designed for one object in

HTM. In GBOT, we have to modify the VMM model to suit groups which are composed
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of multiple objects. Training the representative emission tree for a group is more com-

plicated than for an object. If the VMM model is not well modified, multiple objects

share one representative emission tree at the risk of lowering prediction accuracy. Lower

prediction accuracy causes more recovery procedures and consumes more energy in the

network. Therefore, we develop a group VMM model to train the representative emis-

sion trees well. In addition, it is necessary to observe the variation in moving behavior of

intra-group and inter-group. An object needs to be split from the group to avoid wrong

prediction when it escapes from its group. One group is also required to merge with

another group to reduce the storage cost when they become similar in moving behavior.

In this case, we propose a maintenance algorithm to periodically check the variation. To

evaluate the performance of GBOT, a series of experiments are conducted to show that

GBOT not only effectively reduce the storage cost but preserve the prediction accuracy.

A significant amount of researches [1, 3, 4, 5, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22]

have focused on the issue of using sensor networks to track objects. In [1], a sim-

ple tracking scheme based on binary sensor model is proposed. Using the minimalist

sensors, each sensor’s value is converted to only one bit of information. Prior works

[3, 15, 18] use a cluster-based approach so that a cluster head can collect data from

its slave sensors and generate the localization results. The authors in [4, 22] adopt a

information-driven approach in which a leader sensor node determines which sensors

should be selectively turned on. In [20, 21], a tree-based approach is presented to facili-

tate sensor nodes collaborating in detecting or tracking an object. Although prediction-

based scheme has been refereed in [18, 20], the historical movements of an object is not

taken into account carefully. In [16, 17], the authors propose a simple prediction model

based on an observation that object movement usually remains constant for a certain

period of time. In [12], the moving patterns of an object are mined by HTM to predict

the future movements according to the historical movements of an object. In [13], the

authors utilize the characteristic of the group movement of objects to achieve energy
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conservation in OTSN. Besides the tracking techniques, the trade-offs between power

conservation and quality of surveillance are studied in [5, 11]. Different to previous

works, we consider the objects with gregarious, periodic moving behaviors and propose

the framework GBOT to perform group-based object tracking for HTM.

The rest of the paper is organized as follows. In Section 2, the overview of HTM,

the storage overflow problem and the group-based object tracking sensor networks are

presented. The details of the group-based object tracking sensor network are described

from Section 3 to Section 6. Experimental results are shown in Section 7. Section 8

concludes with this paper.
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Chapter 2

Preliminary

In this section, we first describe the overview of Heterogeneous Tracking Model (HTM)

in Section 2.1. Then, the storage overload problem in HTM is presented in Section 2.2.

Finally, an overview of group-based object tracking sensor network is proposed.

2.1 Overview of Heterogeneous Tracking Model

HTM consists of a large number of inexpensive sensor nodes that perform sensing op-

erations and a limited number of powerful sensor nodes (standing for cluster heads) that

offer data collection, queries and mining capabilities. Generally speaking, cluster heads

have powerful computing capability and larger storage space. By exploring heteroge-

neous sensor nodes and the hierarchical feature, HTM not only provides in-network

mining mechanism but also utilizes mining results for location predictions. Essentially,

execution of HTM consists of two phases: (1)data collection and mining phase: In the

data collection and mining phase, cluster heads collect the positions of objects and mines

object moving patterns. In the beginning, low-end sensors and cluster heads turn on their

power to monitor objects. At the mean time, cluster heads use current moving patterns

to predict the next position of objects. (2)prediction phase: Once discovering that the

prediction rate for objects is higher than a given threshold, cluster heads will be in the
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prediction phase and start to predict the next location of objects. This phase is basically

to utilize predication-based OTSN to reduce energy consumption of sensors.

2.1.1 Data Collection and Mining Phase

To facilitate collaborative data collection processing in object tracking sensor networks,

the hierarchical cluster architecture is exploited in which sensors are organized into clus-

ters, where each cluster consists of a cluster head and low-end sensors. For simplicity,

the monitored region is divided into grids and each low-end sensor is responsible for

one grid. Figure 2.1 shows an example of three-level hierarchical cluster architecture

with 4*4 grid structure. In Figure 2.1, there are one level-1 cluster head, four level-0

cluster heads and 16 low-end sensors in the monitored region. Each level-0 cluster head

is responsible for corresponding subregion, i.e. one-fourth monitored region. Assume

that low-end sensors and cluster heads have unique sensor identifications and these sen-

sor nodes are well time-synchronized. Suppose that each low-end sensor is a logical

representation of a set of sensor nodes which collaboratively detect an object. Given

a sampling frequency, low-end sensors sense and report the sensing information to the

sink. When a low-end sensor detects an object, this low-end sensor will inform the

corresponding cluster head of the detected object identification, object arrival time and

its sensor identification. In our work, object locations are represented as sensor iden-

tifications. Consequently, the movements of an object is viewed as a stream, which is

composed of a series of sensor identifications.

Since the movements of objects have high dependence relationships, cluster heads

in HTM thus adopt variable memory Markov model (referred to as VMM) to discover

object moving behavior. In particular, given a stream of movements, a suffix tree, called

emission tree [19], is proposed to mine moving behavior of objects. Specifically, each

edge of an emission tree represents a moving record (i.e., sensor id) appearing in the

moving path. A tree node of an emission tree is denoted as a concatenation of the edge
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Figure 2.1: Architecture of Heterogeneous Tracking Model

labels from the node to the root. In other words, a tree node labeled as rk...r2r1 can

be reached from the traversal path from root →r1 → r2 → ... → rk. In an emission

tree, each tree node will maintain a conditional table to record the appearing counts and

the conditional probabilities of all appeared labels that follow its label. Initially, the

emission tree has only a root node. Whenever a new moving record is generated, the

corresponding label will be put into the buffer. According to the labels in the buffer,

the conditional tables of tree nodes will be updated. If the appearing count of the label

ri is larger than the minimal support, one child node labeled as ri will be inserted into

the emission tree. Consider an illustrative example in Figure 2.2, where there are 16

low-end sensors deployed in the coverage region of cluster head CH and the object has

3 moving paths. The corresponding labels of moving records are put into the buffer.

The label ”*” means that there is no sensor node reporting the detection of this object.

Figure 2.3 shows the evolution of the object’s emission tree during the process of 15

moving records. In Figure 2.3(a), the emission tree has only a root node after receiving

5 moving records. In Figure 2.3(b), after receiving 11 moving records, node A and node

B are inserted since the appearing counts of label A and label B are larger than minimal

support (e.g., 2) according to the conditional table of root node. In Figure 2.3(c), node

AB is inserted because the appearing count of label B is also larger than minimal support

according to the conditional table of node A. Figure 2.3(d) shows the resulting emission

7



Figure 2.2: An illustrative example for moving record collection.

tree when the cluster head receives the 15th moving record.

2.1.2 Prediction Phase

If an object is within the coverage region of level-0 cluster head, the corresponding

cluster head should predict the next movement of the object. Note that there are two

kinds of nodes: mature node and immature node. A mature node has more sufficient

statistical information and is used for prediction. On the other hand, an immature node

stills need more moving records to have more stable statistical information. According

to the most recent moving records of the buffer received at this cluster head, the cluster

head will traverse the emission tree to predict possible next movements. Consider an

example in Figure 2.4, where nodes with dash circles are immature nodes and nodes

with solid circles are mature nodes. Given a recent moving records (i.e., DCAEF), a

cluster head traverses the emission tree and reaches the node AEF. Since node AEF is

not a mature node, the cluster head should not use the conditional table of node AEF for

prediction. The nearest mature node is EF and from the conditional table of node EF, the

next movement is D since D has a higher probability.
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Figure 2.3: The evolution of an emission tree after 15 moving records.
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Figure 2.4: An example of utilizing emission trees for prediction, where nodes with dash
circles are immature and nodes with solid lines are mature.

2.2 Storage Overflow Problem in HTM

Prior works have shown that exploring emission trees for mining object moving patterns

are very effective in that emission trees fully captures dependencies of movements. The

dependence relationship has a great impact on the location prediction. Through emis-

sion trees, one could traverse emission trees and utilize conditional tables to estimate

the next movement of an object. Experimental results in [12] show that exploring emis-

sion trees for prediction significantly outperforms other heuristic prediction strategies

in [17]. Although emission tree can good prediction accuracy, a considerable storage

space is needed at cluster heads. To verify this claim, we simulate both periodic and

random moving behaviors of one object, and then calculate the storage space required.

Figure 2.5 shows the storage space of an object. As time goes by, a storage cost for

one emission tree significantly increase. Once the number of objects tracked increases,

a huge amount of storages are needed, thereby resulting in the overflow of storages in

storage-constrained sensors. Though cluster heads are more powerful sensors, cluster

heads are still constrained by storage spaces. Thus, it is important to reduce the storage

cost of emission trees.
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Figure 2.5: An experimental result of storage cost for emission trees.

2.3 Overview of Group-Based Object Tracking Sensor

Networks

To deal with the storage overflow problem mentioned above, we propose group-based

object tracking sensor networks (abbreviated as GBOT). As pointed out early, many

creatures have group moving behaviors. Thus, objects with similar moving behaviors

should be grouped together, and only one emission tree is maintained for each group.

Clearly, by clustering objects with similar moving behaviors, storage costs of cluster

heads are reduced. Specifically, in the beginning, GBOT performs data collection and

mining phase function as usual in HTM. Then, GBOT performs the following steps:

Step 1: Clustering objects with similar moving behaviors

In this step, we first define the dissimilarity among emission trees. Then, in light of

dissimilarity among emission tree, we develop two clustering schemes to group objects

with similar moving behaviors.

Step 2: Selecting one representative emission tree for each group

Once objects are clustered into several groups, we should determine the representa-

tive emission tree for each group. By traveling representative trees, one could not only

achieve the predication accuracy but also reduce the storage cost.

Step 3: Training representative emission trees
11



In GBOT, each group has its own representative emission tree and the cluster heads

use representative emission trees to predict next movements of objects. At the same

time, in order to continue mine object moving patterns for each object, we develop a

mechanism to train representative emission trees with multiple buffers that are used for

keep recent moving records of objects. Note that creatures may change their moving

behaviors. Thus, we further propose a maintenance algorithm to dynamically adopt

groups to reflect the changes of moving behaviors.
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Chapter 3

Clustering Objects with Similar

Moving Behaviors

In this section, we first formulate dissimilarity among emission trees in Section 3.1.

Based on the dissimilarity derived, we propose two clustering schemes in Section 3.2.

3.1 Dissimilarity between Emission Trees

Each object has its own emission tree and in order to clustering objects with similar

moving behaviors, we should first define dissimilarity measurements of emission trees.

The following sections are two dissimilarity measurements used in GBOT.

3.1.1 Dissimilarity based on Label Set

In emission trees, labels of nodes represent spatial areas that objects frequently stay.

Hence, the dissimilarity of emission trees is determined based on label sets of emission

trees. Clearly, given two emission trees, a larger number of nodes that have the same

labels, the more similar these two emission trees are. Therefore, each emission tree is

transformed into one label set that includes labels of all nodes in an emission tree. For

example, the label set of T1 in Figure 3.2 is {A,B,AB}. Given two emission trees Ti
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and Tj , the dissimilarity δLS between two emission trees, , is defined as follows:

δLS(Ti, Tj)=
|(LSTi

∪LSTj
)−(LSTi

∩LSTj
)|

|LSTi
∩LSTj

| ,

where LSTi
denotes the label set of Ti.

Note that by exploring the intersection and the difference features, δLS is able to

reflect spatial dissimilarity of two emission trees. Explicitly, in δLS , the intersection

of two label sets represents how many nodes with same labels two emission trees have

and the difference of two label sets demonstrates how many nodes with different labels

two emission trees have. Clearly, when two emission trees have the same label sets,

the dissimilarity of these two emission trees are zero, meaning that moving behaviors

of the corresponding objects have exact the same moving patterns in terms of spatial

areas. Consider emission trees T1, T2 and T3 in Figure 3.2. It can be verified that

δLS(T1, T2) = 6−1
1

= 5, and δLS(T1, T3) = 5−1
1

= 4, respectively. where LST1 , LST2 and

LST3 . Thus, T1 is more similar to T3 than T2, which agrees with the intuition observed

from their emission trees.

δLS only determines dissimilarity measurement in terms of spatial information of

emission trees. Note that though two emission trees have exact the same number of nodes

with the same labels, these two emission trees may represent different moving behaviors

in terms of temporal information. For example, Figure 3.1 shows that two emission trees

with the same number of tree nodes having the same labels. However, these two emission

trees reflect two different moving behaviors since conditional probabilities alone with

trees nodes are not exact the same. In order to accurately formulate dissimilarity of

moving behaviors, both spatial and temporal information hidden in emission trees should

be taken into consideration. This is the call for the design of δMSL.

3.1.2 Dissimilarity based on Moving Sequence List

Note that emission trees reflect moving behaviors of objects. By traveling emission trees

from the root node to leaf nodes, moving paths of objects are extracted. These mov-
14



Figure 3.1: An example of tree nodes with the same label but different conditional prob-
ability.

Figure 3.2: An example profile of emission trees.

15



ing paths are referred to as frequent sequential moving paths of objects. Furthermore,

the order of frequent sequential moving paths is distinguishable due to the construction

processing of emission trees. Specifically, the frequent sequential moving paths in the

left side appear more previously than those frequent sequential moving paths in the right

side. In addition, since emission trees have statistical information stored in conditional

tables of emission trees, each node in frequent moving paths extracted from emission

trees is able to further determine their corresponding weights in terms of probabilities

that indicate how frequent objects appear at the corresponding label. Consider emis-

sion tree T1 in Figure 3.2 as an example. From the conditional table of emission tree

T1, we could obtain that the frequency that the object stays in area A is 0.5 and with

probability 0.33 (i.e., P (AB) = P (A) × P (B|A)), this object will frequently move

along AB. Clearly, when formulating dissimilarity among emission trees, how frequent

objects stay along which moving path provides more detailed moving behaviors of ob-

jects. Furthermore, tree nodes with more larger probabilities should be more important

in dissimilarity measurements. In the above case, node A is more important than node

AB since the object is more likely to appear A than AB. Consequently, we design a

dissimilarity measurement in which the above features of emission trees are considered.

In order to capture structure similarity of emission trees, we transform an emission

tree into a moving sequence list, where each element in a moving sequence list represents

a moving path from the root node to a leaf node and elements are ordered from the left to

the right of emission trees. To facilitate the presentation of this paper, a moving sequence

list of emission tree Ti is denoted as MSLi, and MSLi={MS1
i , MS2

i ,..., MSn
i }, where

MSj
i is the jth element in MSLi, and the number of moving paths is n. Specifically,

MSj
i is a moving sequence of location pairs, denoted as (TLk

i,j, p(TLk
i,j)), where TLk

i,j

is the kth tree node label from the root node to the leaf node of the jth moving path and

p(TLk
i,j) is the probability that this object is likely to stay at area TLk

i,j . Consequently,

the weight of moving path MSj
i is formulated as w(MSj

i ) =
∑n

i=1 p(TLk
i,j), where n is
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the number of elements in MSj
i . For example, the moving sequence list in emission tree

T1 is 〈[(A, 0.5)], [(B, 0.375)(AB, 0.33)]〉 that includes two moving paths. The weight of

moving path [(A, 0.5)] is 0.5 and the weight of moving path [(B, 0.375)(AB, 0.33)] is

0.705.

In light of some terms defined above, we now design a dissimilarity measurement

that takes spatial and temporal information into account. Explicitly, given two emis-

sion trees Ti and Tj , we first transform these emission trees as two moving sequence

lists as MSLi and MSLj . Similar to the editing problem in [9, 10], the dissimilarity

between two emission trees (e.g., δMSL(Ti, Tj)) is determined by the editing distance

between two moving sequence lists, denoted by dist(MSLi,MSLj). The distance be-

tween two moving sequence lists, MSLi and MSLj , is calculated as the minimal cost of

transforming MSLi into MSLj through three operations: insertion, deletion and match

operations. Three operations and the corresponding costs are described as follows:

• Insertion: Insert one moving sequence into MSLi so as to transform MSLi into

MSLj . Assume that one moving sequence MSk
j is inserted into MSLi. Thus, the

cost is the weight of MSk
j (i.e.,w(MSk

j )).

• Deletion: Suppose that one moving sequence (i.e., MSk
i ) of MSLi is deleted and

and the corresponding cost is defined as w(MSk
i )

• Match: Match two moving sequences from the first location pairs to the last lo-

cation pairs. We begin to compare the location pairs of two moving sequences in

order. If the tree labels of two location pairs are equivalent, we eliminate the first

location pairs of two moving sequences and add the difference of probabilities of

two location pairs as the corresponding cost. Then, continue to compare two mov-

ing sequences with the remaining location pairs until the moving sequences are

matched completely. Otherwise, the match is over. By the suffix property of emis-

sion trees, we know the remaining tree labels of location pairs will be all different.
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The probabilities of remaining location pairs are summed up as the corresponding

cost.

According to the above three operations, we can derive recurrence relation for

dist(MSLi,MSLj). For the presentation of the recurrence relation, MSLi (respec-

tively, MSLj) is represented as MSLi[1..m] (respectively, MSLj[1..n], where the num-

bers of elements in MSLi and MSLj are m and n, respectively. Thus, we could have

dist(MSLi[1..m],MSLj[1..n]) =

Min





dist(MSLi[1..m],MSLj[1..n− 1]) + w(MSn
j ) (insertion)

dist(MSLi[1..m− 1],MSLj[1..n]) + w(MSm
i ) (deletion)

dist(MSLi[1..m− 1],MSLj[1..n− 1]) + match(MSm
i ,MSn

j ) (match)

, where match(MSm
i ,MSn

j ) =



match({TL2
i,m, ..., TLk

i,m}, {TL2
i,m, ..., TLl

i,m}) + |p(TL1
i,m)− p(TL1

j,n)|, if TL1
i,m = TL1

j,n

∑k
c=1 p(TLc

i,m) +
∑l

c=1 p(TLc
j,n), otherwise

The boundary conditions are given as follows:

dist(MSLi[0],MSLj[1..n]) =
∑n

c=1 w(MSc
j ),

dist(MSLi[1..m],MSLj[0]) =
∑m

c=1 w(MSc
i )

for MSm
i = {TL1

i,m, TL2
i,m, ..., TLk

i,m}MSn
j = {TL1

j,n, TL2
j,n, ..., TLl

j,n}

Generally speaking, by exploiting dynamic programming, the dissimilarity between

two moving sequence lists is derived from the above recurrence relation. For exam-

ple, the dissimilarity between emission tree T1 and emission tree T3 in Figure 3.2 is

determined by calculating dist(MSL1[1..2],MSL3[1..2]). Table 3.1 shows the execu-

tion scenario of determining the dissimilarity of T1 and T3. Table entry, denoted as

t[i,j], represents the costs of dist(MSL1[1..i],MSL3[1..j]). Since there are three op-

erations performed, each table entry therefore have three costs (i.e., costs for insertion,

deletion and match). For example, dist(MSL1[1..1],MSL3[1..1]) is calculated by in-

sertion, deletion and match. The costs of these three operations are shown in t[1,1].
18



Among three costs in t[1, 1], only the minimal cost is selected to represent the value

of dist(MSL1[1..1],MSL3[1..1]). Then, according to t[1,1], we could further deter-

mine dist(MSL1[1..1],MSL3[1..2]) (i.e., t[1, 2]). Specifically, the insertion cost is

obtained by summing up the insertion of moving path ([C, 0.33), (AC, 0.36)] to the

cost of t[1, 1]. Clearly, the insertion cost at t[1,2] is 0.74 (i.e., t[1, 1]+w(MS2
3) =

0.05 + 0.33 + 0.36 = 0.74). Similar to the derivation of insertion, we could derive

deletion and match costs at t[1,2]. Also, only the minimal cost is selected at t[1,2],

showing the cost of transforming MSL1[1..1] to MSL3[1..2]. Following the above pro-

cedure, the value of dist(MSL1[1..2],MSL3[1..2]) is easily calculated at t[2,2], thereby

deriving dissimilarity of T1 and T3 in terms of the dissimilarity measurement of moving

sequence lists.

0 1 2
MSL3 [(A,0.55)] [(C,0.33)(AC,0.36)]

0 MSL1 0 0.55 1.24

1 [(A,0.5)] 0.5
1.05(i)
1.05(d)
0.05(m)

0.74(i)

1.74(d)
1.74(m)

2 [(B,0.375)(AB,0.33)] 1.205
1.755(i)
0.755(d)

1.755(m)

1.445(i)

1.445(d)

1.445(m)

Table 3.1: An execution scenario for the dissimilarity of T1 and T3.

By exploring dynamic programming, dissimilarity among emission trees are effi-

ciently determined. To verify the correctness of our design of δMSL, we derive δMSL(T1,

T4) is 0.602. Given three emission trees T1, T3 and T4, by comparing tree structures

of these three emission trees, it can be verified that emission tree T1 is more similar to

emission tree T4 than emission tree T3. We could justify the dissimilarity by assum-

ing that the emission trees T1, T3 and T4 are constructed for objects O1, O3 and O4,

respectively. By glancing through three emission trees, object O1 and object O4 move

along the paths A and A → B frequently. However, object O1 and object O3 only move

along the path A frequently. Thus, moving behavior of O1 is more similar to O3. This
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agrees to our dissimilarity measurement derived above (i.e, δMSL(T1, T4) is smaller than

δMSL(T1, T3)).

3.2 Clustering Schemes in GBOT

According to the above two dissimilarity measurements, dissimilarities among emission

trees are derived. Based on dissimilarities derived, in this section, we develop two clus-

tering schemes to cluster objects with similar moving behaviors.

3.2.1 Reactive Grouping Algorithm

As mentioned in Section 2.1, cluster heads at the lowest level are responsible for tracking

objects in their monitored regions. Consequently, each cluster head maintains an emis-

sion tree for each object that ever stays in the corresponding monitored region. However,

we could further classify objects into two kinds of objects. For each cluster head, those

objects that are currently within the corresponding monitored regions are referred to as

active objects. On the other hands, those objects that ever appeared in the monitored

regions are referred to as inactive objects. For example, in Figure 3.3, there are five ob-

jects in the monitored regions of four cluster heads. Suppose that all five objects move

around the entire monitored regions and thus each cluster head maintenances five emis-

sion trees for each object. In cluster head CH3, there are five emission trees since all

objects ever appear in the monitored region of CH3. Among these five objects, it can

be verified that objects O3 and O4 are active objects, whereas objects O1, O2 and O5

are inactive. Though each cluster head has emission trees for objects appearing in the

corresponding monitored region, not all objects should be clustered since each cluster

head has two kinds of objects (i.e., active and inactive objects). Thus, two clustering

schemes are proposed. Explicitly, one is to only cluster active objects (referred to as

reactive grouping) and the other is cluster both active and inactive objects (referred to as
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Figure 3.3: An example of active and inactive objects in HTM.

proactive grouping).

Reactive grouping scheme only clusters active objects. In light of dissimilarity mea-

surements proposed, dissimilarity measurements of active objects are first determined.

In addition to dissimilarity measurements, current locations of objects should be con-

sidered since objects are not always spatially close even if these objects have similar

emission trees. To formulate the spatial proximity among objects, we define τ − close

as follows:

Definition 1: (τ − close)

Given two objects Oi and Oj , object Oi is τ − close to object Oj if the maximal

distance of object Oi and object Oj is τ grid size.

For an object, its τ − close neighbors are those objects whose distance are within

τ − close grid size.

Based on dissimilarity measurements, the definition of the spatial proximity, the gen-

eral problem of clustering objects with similar moving behaviors is defined as follows:

Definition 2: (the grouping problem)

Given a set of objects S, the dissimilarity threshold δt and the spatial proximity

threshold τt, objects are divided into groups such that the number of group is minimal

and in each group, each pair of objects (e.g., Oi,Oj ) should satisfy (i) δ(TOi
, TOj

) ≤ δt

and (ii) Oi is τt − close to Oj

From the definition of the group problem, the number of groups is expected to be

minimal. Since each group will select one representative emission tree, the minimal
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number of groups means that only the minimal number of emission trees are preserved,

thereby reducing storage cost at cluster heads. Furthermore, since the dissimilarity of

each pair objects is within dissimilarity threshold and the spatial proximity is also re-

quired. Thus, objects within a group have similar moving behaviors. By judiciously

selecting one emission tree for each group, movements of objects in a group are accu-

rately predicted. Note that the grouping problem is able to reduced from the clique cover

problem. The clique cover problem is that given a graph G = (V,E) and a positive in-

teger k ≤ |V | , the decision problem is that ”Are there k cliques of G covering all the

vertices of G ?” We prove that the grouping problem is reduced from the clique cover

problem. Moreover, since the clique cover problem is a NP-complete, the group problem

is thus a NP-complete as well.

Theorem 1: The grouping problem is NP-complete.

Proof: Given an instance I(G = (V, E), k) of the clique cover problem, we trans-

form this instance into an instance I ′(S, δt, τt) of the grouping problem. Explicitly, the

vertices of graph G is viewed as objects in S. If there exists an edge (i, j) between vertex

i and vertex j, the corresponding objects (Oi, Oj) are τt − close and δ(TOi
, TOj

) ≤ δt.

Therefore, the instance I(G = (V,E), k) can be transformed to the instance I ′(S, δt, τt).

Notice that I ′ has a solution if I has a solution. Furthermore, if the solution for the

grouping Problem exists, this can be verified in polynomial time.¤

According to the above proof, the grouping problem is a NP-Complete problem.

Thus, we propose a heuristic algorithm for the grouping problem. Basically, the idea is

to model the grouping problem as a clique cover problem. The reactive grouping algo-

rithm (abbreviated as RG) is shown in Algorithm 1. Specifically, similar to the proof of

Theorem 1, a graph is constructed, where each vertex represents an object and an edge

between two objects is created if they are τt − close and the dissimilarity measurements

of these two emission trees are smaller than the threshold δt. Once the graph G is con-

structed, algorithm RG is greedy in nature and select the largest cliques each run so as to
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minimize the number of cliques. Explicitly, selecting vertices with lager degrees implies

larger cliques. Thus, from line 2 to line 3, we start to select vertex Oi with the highest

degree in graph G. In line 4, those vertices adjacent to vertex Oi are put into list L.

Then, the objects in list L form a graph together and recompute their node degrees (line

5). This step only to calculate the degrees of vertices in list L. We construct a group Ri

that contains object Oi and repeatedly select object Oj with the highest node degree in

list L and put object Oj into group Ri if object Oj has edges with all objects in Ri (from

line 7 to line 12). Objects in group Ri are removed from graph G (line 14). Following

the above operations, we are able to discover all cliques until all vertices are visited (i.e.,

G is empty).

Algorithm 1 : Reactive Grouping Algorithm
Input: Sactive, set of active objects; δt, dissimilarity threshold; τt, spatial proximity

threshold
Output: Ractive, set of groups including active objects

1: Transform the relation between the objects in Sactive into a graph G;
2: while G is not empty do
3: select the object Oi with the highest node degree in graph G;
4: put those objects adjacent to object Oi into list L;
5: recompute the node degree of the objects in list L;
6: construct a group Ri which contains object Oi;
7: while L is not empty do
8: select the object Oj with the highest node degree in L and remove Oj from L;
9: if Oj is adjacent to all the objects in Ri then

10: put object Oj into group Ri;
11: end if
12: end while
13: insert group Ri into set R;
14: remove the objects in group Ri from graph G;
15: end while

Note that in algorithm RG, we only cluster those active objects. In order to further

reduce the storage cost, one could cluster both active and inactive objects. This is the

call for the design of algorithm proactive grouping.
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3.2.2 Proactive Grouping Algorithm

In algorithm PG, cluster heads group not only active objects but inactive objects. As a

result, more storage cost is reduced. For active objects, algorithm PG performs the same

clustering operations in algorithm RG. On the other hands, for inactive objects, cluster

heads have no up-to-date locations of these objects. To maintenance recent up-to-date

locations of these objects, in algorithm PG, cluster heads have τt − close neighbor lists

for each object. Those objects τt − close to object Oi are kept in object Oi’s τt − close

neighbor list. Note that when object Oi moves into a monitored region of other cluster

heads, τt−close neighbor list of Oi is updated. According to τt−close neighbor lists for

inactive objects, algorithm PG is able to cluster objects with similar moving behaviors

and objects are in τt − close neighbor lists. Clearly, by exploring τt − close neighbor

lists, we approximately estimate the moving behaviors of objects. Hence, algorithm PG

first clusters active objects and then further clusters inactive objects. For active objects,

the clustering operations are the same as algorithm RG. For inactive objects, we also

transform inactive objects into a graph, where each vertex represents an inactive object

and an edge between objects are generated if inactive objects satisfy the dissimilarity

threshold and both objects are in τt − close neighbor lists.

Algorithm 2 : Proactive Grouping Algorithm
Input: Sactive, set of active objects; Sinactive, set of inactive objects; δt, dissimilarity

threshold; τt, spatial proximity threshold
Output: Ractive, set of groups for active objects; Rinactive, set of groups for inactive

objects
/* group active objects according to emission tree and up-to-date location */

1: Perform algorithm PG for clustering active objects;
/* group inactive objects according to emission tree and τt − close neighbor list */

2: Transform the relation between the objects in Sinactive into a graph G;
/* line 3 to line 16 are the same as the line 2 to line 15 of reactive grouping algorithm
*/

For example in Figure 3.3, cluster head CH3 can group inactive objects (O1,O2,O5)

given their emission trees and τt − close neighbor lists. Clearly, by grouping inactive
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objects, the number of emission trees is reduced. However, the grouping result of in-

active objects may not fit in with real circumstances when the inactive objects become

active. Assume that cluster head CH3 has a grouping result as {(O1O2)(O3O4)(O5)}. It

can be seen that inactive objects O1 and O2 form a group together. Suppose that object

O1 moves from the monitored region of CH1 to that of CH3 and object O2 stays in the

monitored region of CH2. Clearly, from the perspective of CH3, object O1 becomes

active, whereas object O2 remains inactive. Consequently, we should further perform

maintenance operations, such as intra-group split or inter-group merge in Section 6, to

adoptively adjust the grouping result. Hence, in algorithm PG, some maintenance over-

heads are required.

By grouping both active and inactive objects, algorithm PG can significantly reduce

the number of emission trees compared to algorithm RG. However, some overheads

are needed in algorithm PG due to various moving behaviors of inactive objects. The

experimental results will show the properties of algorithms PG and RG later.
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Chapter 4

Selecting One Representative Tree for

Each Group

The objective of selecting one representative tree for each group is to decrease the total

number of emission trees so that the original emission trees for objects can be deleted

from cluster heads. Here, we select a representative emission tree from those emission

trees whose corresponding objects are in a group. Considering a group R with k objects

(O1..Ok) and corresponding emission trees (TO1 ..TOk
), instead of keeping one emission

tree for each object, we select a representative emission tree among k emission trees.

That is, k objects discard their original emission trees but share the representative one.

To select a representative emission tree, there are two factors to be considered: one

is the storage cost of a representative emission tree and the other is the dissimilarity

between emission trees. First, the smaller size of a representative emission tree is, the

more storage cost reduction we can achieve. We can further reduce the storage cost, even

though the total number of representative emission trees have been fixed after clustering

objects. Second, we hope that the dissimilarity between representative emission tree

and other emission trees in a group can be small as possible. So, the representative

emission tree will be used to predict the movements of a group well. For simplicity,

the size of emission tree (TOi
) is represented as the number of tree nodes (N(TOi

)) and
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the error sum (ES) is used to quantify the dissimilarity between representative emission

tree and other emission trees in a group. The error sum of emission tree TOi
is defined

as the sum of the dissimilarity between TOi
and other k − 1 emission trees, denoted by

ES(TOi
) =

∑k
j=1 δ(TOi

, TOj
). Note that δ(TOi

, TOi
) = 0. To select a representative

emission tree from k emission trees, we define two metrics as follows:

• Metric 1: Min{N(TOi
)× ES(TOi

)}

The emission tree with the minimum value of N(TOi
) × ES(TOi

) is selected as

the representative emission tree of group R. On the one hand, we can reduce

more storage cost if the size of emission tree TOi
is smaller. On the other hand,

emission tree TOi
is more similar to other emission trees in group R if the error

sum of emission tree TOi
is smaller. That means HTM can use emission tree TOi

to predict the movements of group R more precisely than other emission trees. In

order to take a balance between tree size and error sum, we select the emission

tree with the minimal product of tree size and error sum among k emission trees.

• Metric 2: Min{ρ× N(TOi
)

k∑
j=1

N(TOj
)

+ (1− ρ)× ES(TOi
)

k∑
j=1

ES(TOj
)

}, 0 ≤ ρ ≤ 1

Metric 1 is not flexible enough for applications although it can easily take a balance

between tree size and error sum. Suppose a user thinks that storage cost is more

important than error sum and he desires to consider both storage cost and error

sum. In such case, metric 1 fails to content the user. To improve this, we define

the metric 2 which is more flexible than metric 1. We normalize tree size and error

sum in Metric 2. Furthermore, a variable ρ is added for users to give different

weights to tree size and error sum. Experimental results show that Metric 2 can

obtain almost the same results as Metric 1 when ρ = 0.5, and it thus follows the

flexibility of Metric 2.

In the following, we consider a group with three objects (O1, O2, O3) and emission

trees (TO1 , TO2 , TO3). The tree size and error sum of each emission tree is listed in
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Table 4.1. To select a representative emission tree among (TO1 , TO2 , TO3), we adopt

Metric 1 and Metric 2 with different values of the variable ρ. For emission tree TO1 ,

the measurement of Metric 1 is 710 (100 × 7.1) and the measurement of Metric 2 with

ρ = 0.9 is 0.350 (0.9× 100
285

+(1−0.9)× 7.1
20.4

). Table 4.2 shows the results of representative

tree selection. Using Metric 1, the emission tree TO2 with the minimal product of tree

size and error sum is selected as the representative emission tree. Similarly, the emission

tree TO2 is selected as the representative emission tree by using Metric 2 if we respect

tree size and error sum equally and set the variable ρ to 0.5. In the case of Metric 2 with

ρ = 0.9, the emission tree TO3 is selected as the representative emission tree because

its tree size is the smallest among three emission trees. Inversely, in the case of Metric

2 with ρ = 0.1, the emission tree TO2 is selected as the representative emission tree

because of the least error sum among three emission trees. Note that the emission tree

TO1 will never be selected due to the biggest tree size and the most error sum.

Table 4.1: Tree size and error sum of three objects

Tree Size (N(TOi
)) Dissimilarity (δ(TOi

, TOj
)) Error Sum (ES(TOi

))
TO1 100 δ(TO1 , TO2) = 3.3, δ(TO1 , TO3) = 3.8 7.1
TO2 95 δ(TO2 , TO1) = 3.3, δ(TO2 , TO3) = 3.1 6.4
TO3 90 δ(TO3 , TO1) = 3.8, δ(TO3 , TO2) = 3.1 6.9

Table 4.2: Example of selecting a representative emission tree.

Tree Metric 1 Metric 2 (ρ = 0.9) Metric 2 (ρ = 0.5) Metric 2 (ρ = 0.1)
TO1 710 0.350 0.349 0.348
TO2 608 0.331 0.323 0.315
TO3 621 0.318 0.327 0.335
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Chapter 5

Training Representative Emission

Trees

In this section, we develop a group VMM model so that the representative emission tree

can be trained for each group. In HTM, cluster heads originally construct an emission

tree which is trained by VMM model for each object. Thus, it is necessary to modify

VMM model to suit a group that is composed of multiple objects. The basic concept is

to allow cluster heads to construct a VMM model with multiple buffers for a group. The

buffers are used to hold the most recent moving records of objects in a group. There are

two cases to illustrate the training process of a group VMM model.

• Case 1: group with one object

In this case, an object forms a group individually. Cluster heads construct a VMM

model and a buffer to hold the most recent moving records for the group. Then,

VMM model mines the moving patterns according to the buffer and trains the

representative emission tree. Regardless of predicting correctly or incorrectly, the

labels which object visited are put into the buffer for moving pattern mining.

• Case 2: group with multiple objects

In this case, multiple objects form a group together. Considering a group R with k
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objects and a representative emission tree, cluster heads construct a VMM model

and k buffers for the group with k objects. Then, VMM model will mine the

moving patterns according to the k buffers and trains the representative emission

tree. Different from case 1, not all labels which objects visited are put into the

buffers. The rules to put labels into the buffers are:

Case 2.1: correct prediction

If cluster head predicts the movement of object correctly, we put the visited la-

bel into the buffer. The visited label would be worthy to put into the buffer for

repetitive VMM model training when correct prediction happened.

Case 2.2: wrong prediction

If cluster head predicts the movement of object wrong and there exists no 0 −
close objects which are predicted correctly, we put the visited into the buffer. It

means that cluster head can not correctly predict the next position of such object

according to its current position by representative emission tree. Thus, the visited

label should be put into the buffer in order to contribute to the moving pattern

mining. Otherwise, we discard the visited label but put a character # into the

buffer. The visited label would not be put into the buffer if the object is predicted

incorrectly and there exists a 0−close object which is predicted correctly. We think

that this visited label is unreliable and unworthy to put into the buffer for moving

pattern mining because there exists another object which is predicted correctly

according to the same current position. Instead, we put a character # into the

buffer so that only the moving records behind character # can contribute to the

moving pattern mining.

Figure 5.1 illustrates a example of case 2. Three objects {O1, O2, O3} with current

positions {M,H, M} form a group R together. Cluster head CH1 predicts the positions

of {O1, O2, O3}, which are {N, I,N}. The actual next positions of {O1, O2, O3} are
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Figure 5.1: Different cases: put the visited labels into the buffers

{N,N, R}. Cluster head CH1 constructs a VMM model with three buffers for group R.

According to the principle of case 2.1, object O1 is predicted correctly. Thus, the visited

label N is put into the buffer. For object O2, cluster head predicts its position incorrectly

and there exists no 0 − close objects which are predicted correctly. Hence, the visited

label N is also put into the buffer. However, object O3 is predicted incorrectly and there

exists 0 − close object O1 which is predicted correctly according to the same current

position M . Accordingly, we discard the label of current position R and put a character

# into the buffer.
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Chapter 6

Maintenance Algorithm in GBOT

In Section 6.1, we first introduce two conditions, split condition and merge condition.

In Section 6.2, a maintenance algorithm is proposed to detect such two conditions and

execute corresponding operations.

6.1 Split condition & Merge condition

To examine the variations in moving behavior of intra-group and inter-group, we focus

on detecting the following two conditions.

Condition 1: (Split-Condition)

In this condition, for a group, there exists an object which left far away from other

objects. The object which escaped from its group is called the spatial outlier. By detect-

ing the split condition, the spatial outliers in a group are dug out. For example, Figure

6.1 illustrates the split condition. As seen, object O3 is far away from other objects in

Group1. Thus, object O3 is a spatial outlier in Group1.

Condition 2: (Merge-Condition)

In this condition, there exists the overlap between two groups when they are spatially

close. Figure 6.2 illustrates the merge condition that Group1 overlaps Group2. Object

O1 and object O4 occupy the same grid M which is the overlap between Group1 and
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Figure 6.1: An illustrative example for Split-Condition

Figure 6.2: An illustrative example for Merge-Condition

Group2.

In the maintenance step, we execute the periodic maintenance operation to detect

the split condition and merge condition. Then, the intra-group split operation and inter-

group operation are executed to deal with these two conditions respectively. The three

operations are described in the following:

• Periodic Maintenance

A maintenance algorithm is proposed to periodically detect if there is any condi-

tion happened every T time units. If the split condition is detected, the mainte-

nance algorithm calls the intra-group split operation. Similarly, the maintenance

algorithm would call the inter-group merge operation if the merge condition is
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detected.

• Intra-group Split

If the spatial outlier has been detected for consecutive x times, it would be split

from original group to avoid wrong prediction. Then, the spatial outlier forms a

group singly and obtains a copy of emission tree from original group. The param-

eter x is used to prevent frequent overhead for immediate split. It is possible that

the object provisionally leaves the group and return to join the group soon. To

avoid such event, we set up the parameter x to confirm that the object left for sure.

• Inter-group Merge

When one group overlaps another group, we check whether the two groups should

merge into one group or not. If the two groups have similar representative emission

trees mutually and are geographically near each other. Then, two groups merge

into one group for saving storage and execute the representative tree selection

operation.

6.2 Maintenance Algorithm

In this section, we propose a maintenance algorithm to execute the periodic maintenance

operation, intra-group split operation and inter-group merge operation. In order to detect

the split condition and merge condition, each cluster head executes the periodic main-

tenance operation from line 1 to line 15 of Algorithm 3. For each group, we sort all

objects by their number of τt− close neighbors and construct a empty list L (from line 2

to line 4). The object with more τt− close neighbors have higher priority to be selected.

We start to select the object from high to low number of τt − close neighbors. For each

object Oi, if it is τt − close to all objects in list L, we put the object Oi into list L (from

line 5 to line 7). Or, we mark object Oi as the spatial outlier (from line 8 to line 9). Then,

we search object O′
is 0 − close neighbors. If there exists an object Oj ∈ Rj which is
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0 − close to object Oi, the merge candidate pair (Ri, Rj) is generated (from line 11 to

line 13). That is, group Ri overlaps group Rj . To execute the intra-group split operation,

for each spatial outlier Osp, we split it from original group if it has been detected for

consecutive x times (from line 17 to line 21). To execute the inter-group merge, for each

merge candidate pair (Ri, Rj), we merge Ri and Ri into a group if δ(TRi
, TRj

) ≤ δt and

any two objects in Ri ∪Rj are τt − close.

Algorithm 3 : Maintenance Algorithm
Input: RS , set of groups; δt, dissimilarity threshold; τt, spatial proximity threshold
Output: R′

S , set of groups after maintenance
1: Periodic Maintenance
2: for each group Ri ∈ RS and |Ri| ≥ 2 do
3: sort the objects in Ri by the number of τt − close neighbors;
4: construct a empty list L;
5: for each object Oi ∈ Ri do
6: if object Oi is τt − close to all objects in L then
7: put object Oi into list L;
8: else
9: mark object Oi as the spatial outlier;

10: end if
11: if there exists an object Oj ∈ Rj which is 0− close to Oi then
12: generate merge candidate pair (Ri, Rj);
13: end if
14: end for
15: end for
16: Intra-group Split
17: for each spatial outlier Osp do
18: if spatial outlier Osp has been detected for consecutive x times then
19: split spatial outlier Osp from its group;
20: end if
21: end for
22: Inter-group Merge
23: for each merge candidate pair (Ri, Rj) do
24: if δ(TRi

, TRj
) ≤ δt and any two objects in Ri ∪Rj are τt − close then

25: merge Ri and Rj into a group;
26: end if
27: end for

For example, the input of maintenance algorithm are Rs = {Group1(O1, O2, O3, O4)

}, δt, τ = 1 in Figure 6.1. The intra-group split operation is executed because object O3
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is a spatial outlier. object O3 would be split from Group1 if it has been detected for con-

secutive x times. Suppose that object is split from Group1 and form a group singly. The

output of maintenance algorithm is R′
s = {Group1(O1, O2, O4), Group2(O3)}. An-

other example in Figure 6.2, the input of maintenance algorithm are Rs = {Group1(O1,

O2, O3), Group2(O4, O5)}, δt, τ = 1. For object O1, there exists an object O4 ∈
Group2 which is 0 − close to object O1. Thus, the inter-group merge operation is ex-

ecuted because the merge candidate pair (Group1, Group2) is generated. Group1 and

Group2 will merge into one group if δ(TGroup1, TGroup2) ≤ δt and any two objects are

τt − close in Group1 ∪ Group2. Suppose that Group1 and Group2 merge into one

group. The output of maintenance algorithm is R′
s = {Group1(O1, O2, O3, O4, O5)}.
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Chapter 7

Performance Evaluation

In this section, experiments are conducted to evaluate the effectiveness and efficiency of

the framework GBOT by simulation.

7.1 Simulation Model

To simulate GBOT, we adopt the heterogeneous tracking model and design a group mo-

bility model based on city mobility model [8]. In our heterogeneous tracking model,

there are three levels hierarchy and 10*10 low-end sensors in each level-0 cluster. To-

tally, there are one level-2 cluster head, 4 level-1 cluster heads, 16 level-0 cluster heads

and 1600 low-end sensors. To simulate the objects’ movement with gregarious property,

we design a group mobility model based on city mobility model. In our group mobility

model, a logical group pilot is first generated for a group and the objects in a group fol-

low their group pilot according to two parameters: variation period and variation radius.

For every variation period, an objet will choose a random direction to move the dis-

tance of variation radius away from the group pilot. Given a maximum variation radius

maxV R, the variation radius of each objects is uniformly distributed from 0 to maxV R.

For example, an objet with variation period = 2 and variation radius = 3 is 3-close to the

group pilot every 2 time units. We simulate the moving behavior of the group pilot which
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makes a tour between several specified locations in monitor region. The group pilot will

repeatedly visit those specified locations by turns. During the tour, the group pilot will

leave the subregion of one level-i cluster head to another one with probability pi and stay

with probability 1 - pi. The probability pi is determined by an exponential probability

e−C·2i+2 , where C is a positive constant. A higher value C means higher locality. Also,

the leaving probability is e−2C when the group pilot moves from the location of one

low-end sensor to another one.

In the following experiments, we generate 30 objects and one group pilot for objects

to follow. Then, the group pilot visits four different positions which are randomly se-

lected from four level-1 subregions. The variation period is set to 3 and the maximum

variation radius is set to 4. The OTSN works for 10000 time units. For HTM, in the

initial 3000 time units, the moving records of objects are collected for mining object

moving patterns by cluster heads. After 3000 time units, the cluster heads will turn to

be in prediction phase. For GBOT, in the beginning of prediction phase, the initializa-

tion step will be executed with the dissimilarity threshold δt = 2.5, the spatial proximity

τt = 2, dissimilarity δMSL and metric 1 for representative tree selection. During the pre-

diction phase, the maintenance algorithm will be periodically executed every 500 time

units.

7.2 Performance of GBOT

In this section, we study compare the performance of GBOT and HTM in terms of stor-

age cost and prediction accuracy. We implement two clustering schemes of GBOT, re-

active grouping (RG) and proactive grouping (PG). Two performance metrics are used

to evaluate the performance of HTM, RG and PG. The first performance metric, average

number of tree nodes which is defined as Total Number of Tree Nodes
Number of Objects

, is used to measure the

average storage cost for each objects. Total number of tree nodes represents the total

number of nodes in all emission trees. The second performance metric, called hit rate of
38



prediction = Total Number of Correct Prediction
Total Number of Prediction

, is used to measure the prediction accuracy

for all cluster heads. In prediction phase, we record the total number of prediction and

the total number of correct prediction to calculate the hit rate of prediction.

7.2.1 Comparison of HTM, RG and PG

The storage cost of HTM, RG and PG are shown in Figure 7.1(a). At the 3000th time

unit, the average number of tree nodes of RG and PG largely decrease because cluster

heads cluster objects and preserve only an emission tree for each group. Obviously, RG

and PG have much smaller average number of tree nodes than HTM does. As mentioned

before, the storage cost at cluster heads will increase gradually with time. We also

observe that the average number of tree nodes of HTM increases faster than RG and PG

with time. Thus, GBOT can reduce the storage cost at each cluster head effectively. In

addition, PG reduces more storage cost than RG due to grouping both active and inactive

objects. It can be also verified that RG reduces the storage cost by degrees from 3000 to

5000 time units.

In Figure 7.1(b), we can see that RG and PG have slightly lower hit rate of predic-

tion than HTM. As expected, we reduce the storage cost at cluster heads at the risk of

lowering prediction accuracy. However, in the worst case, the prediction rate of HTM is

only 5% higher than PG and RG. With time passing by, the prediction rates of RG and

PG converge to 0.84 which is about 0.7% lower than HTM. In sum, a plenty of storage

cost reduction outweighs the slight loss of prediction accuracy.

7.2.2 Dissimilarity δMSL & Dissimilarity δLS

In this experiment, we show the influence of dissimilarity δMSL and δLS on performance.

To compare fairly dissimilarity δMSL with dissimilarity δMSL, we set the threshold δt for

δMSL to 2.5 and the threshold δt for δLS to 0.3. Let dissimilarity δMSL and δLS have

almost the same storage cost, we can see the impact on the hit rate of prediction in Fig-
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Figure 7.1: Comparison of HTM, RG and PG.
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ure 7.2(b). As expected, dissimilarity δMSL outperforms dissimilarity δLS in prediction

accuracy. For dissimilarity δLS , it only achieves about 76% hit rate of prediction. By

thinking of the characteristics of an emission tree, dissimilarity δMSL can measure how

two emission tree are dissimilar more precisely than dissimilarity δLS . Thus, dissimilar-

ity δMSL improves the hit rate of prediction to about 83%.

7.2.3 The Impact of Maintenance in GBOT

In this experiment, we examine the effectiveness of maintenance algorithm when the

moving behaviors of intra-group and inter-group vary with time. By former experiment

settings, we show the impact of maintenance algorithm in Figure 7.3. Clearly, GBOT

(RG and PG) with maintenance reduces more storage cost than that without maintenance

due to the inter-group merge operation. Additionally, the hit rate of prediction is almost

the same whether the maintenance algorithm is executed or not. In this case, the moving

behaviors of groups become more similar with time and consequently the inter-group

merge operations are executed to further reduce the storage cost. Note that the intra-

group split operation is scarcely executed in this case.

To show the effect of the intra-group split operation, we allow objects to alter their

moving behaviors during the simulation time. Assuming that 30 objects move by follow-

ing the group pilot during the simulation time [0,6000]. After 6000 time units, instead

of following the group pilot, 15 objects are picked to randomly visit four specified lo-

cations. The spatial outlier would be split from its group if it has been detected for

consecutive 3 times. Figure 7.4 shows the experimental results of this case. In Figure

7.4(a), GBOT with maintenance causes more storage cost after 6000 time units. This is

because the intra-group split operation is executed when objects have become dissimi-

lar in moving behaviors. We can observe that GBOT without maintenance worsens the

prediction accuracy after 6000 time units. However, GBOT with maintenance can pre-

serve the prediction accuracy because the spatial outliers are split from groups to avoid
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Figure 7.2: The impact of dissimilarity δMSL & δLS .
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Figure 7.3: The impact of maintenance algorithm (merge condition).
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wrong prediction. Therefore, with maintenance, GBOT can further reduce the storage

cost and preserve the prediction accuracy if the moving behaviors of objects vary beyond

expectation.

7.3 Sensitivity Analysis

In this section, we analyze the impact of varying parameters of GBOT. In order to em-

phasize the storage cost reduction of GBOT, we introduce the reduction rate, which is

defined as Total Number of Tree NodesHTM − Total Number of Tree NodesGBOT

Total Number of Tree NodesHTM
, to make clear the

storage cost reduction of different parameter settings. At the meantime, we also discuss

hit rate of prediction effected by different parameter settings.

7.3.1 Number of Objects

In this experiment, we show the impact of number of objects in Figure 7.5. As seen

in Figure 7.5(a), the reduction rate increases while the number of objects increases. In

other words, GBOT can achieve more storage cost reduction when more objects are

involved in object tracking. Thus, the performance of GBOT exhibits good scalability.

Note that the variations in number of objects do not influence the hit rate of prediction.

The reason is that the dissimilarity threshold δt and the spatial proximity threshold τt

generally dominate the prediction accuracy.

7.3.2 Dissimilarity Threshold & Spatial Proximity Threshold

In this experiment, we examine the impact of the dissimilarity threshold δt for dissim-

ilarity δMSL and the spatial proximity threshold τt. In Figure 7.6, the reduction rate

increases when the dissimilarity threshold δt or the spatial proximity threshold τt is en-

larged. With larger dissimilarity threshold δt or the spatial proximity threshold τt, an

objet is more likely to form a group with other objects Thus, more storage cost of emis-
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Figure 7.4: The impact of maintenance algorithm (split condition).
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Figure 7.5: The impact of number of objects.
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sion trees can be reduced. Another observation is that the reduction rate increases no

more when the dissimilarity threshold δt is more than 6. It is intuitive that the dissim-

ilarities between emission trees are all less than 6 in this case. Also, we can observe

that the hit rate of prediction decreases when the dissimilarity threshold δt or the spatial

proximity threshold τt is enlarged in Figure 7.7.

7.3.3 Variation Period & Maximum Variation Radius

In this experiment, the impact of variation period and maximum variation radius is inves-

tigated. Figure 7.8 shows the experimental results of variation period. As seen in Figure

7.8(a), the reduction rate increases when variation period is lengthened. The reason is

that the gregarious property is more obvious when the objects less often move away from

the group pilot. Consequently, more objects are able to form a group and more storage

cost at cluster heads could be reduced due to gregarious property. In Figure 7.8(b), we

can see that varying variation period does not affect the hit rate of prediction since the hit

rate of prediction is primarily dominated by the dissimilarity threshold δt and the spatial

proximity threshold τt.

Figure 7.9 shows the experimental results of maximum variation radius. Figure

7.9(a) shows that the reduction rate decreases consistently when max variation radius

is enlarged. The reason is that the gregarious property become less obvious when ob-

jects move farther away from the group pilot. Consequently, fewer objects can form a

group and less storage cost of emission trees can be reduced due to gregarious property.

Note that the hit rate of prediction also decreases when max variation radius is enlarged.

The objects are more likely to cross the boundary of the subregion because max varia-

tion radius is enlarged. Therefore, cluster heads make more wrong predictions and thus

lowers the prediction accuracy.
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Figure 7.6: The impact of δt and τt on reduction rate.
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Figure 7.7: The impact of δt and τt on hit rate of prediction.
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Figure 7.8: The impact of variation period.
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Figure 7.9: The impact of maximum variation radius.
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7.3.4 Representative Tree Selection

In this experiment, we evaluate the performance of two metrics of representative tree

selection and vary variable ρ between [0,1] to show the flexibility for applications. In

Figure 7.10, the comparison between representative tree selection metrics and the effec-

tiveness of variable ρ are presented. As seen, the reduction rate increases as variableρ

increases. If we only favor the storage cost of emission tree and set variable ρ to be 1,

we can obtain the reduction rate which is higher than others. Inversely, we can obtain

the hit rate of prediction which is higher than others if the variable ρ is set to be 0. For

metric 1, its performance is very close to the performance of metric 2 with ρ = 0.5. It

supports that metric 2 really enjoy the flexibility between reduction rate and hit rate of

prediction.
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Figure 7.10: The impact of variable ρ.
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Chapter 8

Conclusion

In this paper, we consider how to reduce the huge storage cost resulted from storing emis-

sion trees. For the sake of saving storage, we propose the framework GBOT to perform

group-based object tracking for HTM. There are mainly three steps to be executed. To

clustering objects with similar moving behaviors, we first define the dissimilarity among

emission trees to distinguish the moving behaviors of objects. Based on such dissimi-

larity measures, we formulate two clustering schemes, reactive grouping and proactive

grouping, to group objects reactively or proactively. In order to select the representative

emission tree for a group, two metrics are provided to further reduce the storage cost and

increase the prediction accuracy. Then, we develop a group VMM model to adequately

train the representative emission trees. In addition, a maintenance algorithm is proposed

to maintain the quality of groups. We also conduct several experiments to evaluate the

performance of GBOT. The experimental results show GBOT not only effectively reduce

the storage cost but preserve the prediction accuracy.
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