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Abstract

Predication-based techniques are able to reduce the energy consumption in object track-
ing sensor networks. Prior works exploit mining object moving patterns for prediction-
based object tracking sensor network and developed a hierarchical architecture to ef-
ficiently track objects. Note that sensors are inherently storage-constrained. Clearly,
mining and storing individual object moving patterns unavoidably need a considerable
amount of storage spaces in sensor nodes, which is not of practical. Thus, in this pa-
per, we propose a group-based object tracking sensor network (abbreviated as GBOT)
which explores the feature of group mobility of objects for storage-constrained object
tracking sensor networks. Specifically, we first formulate a dissimilarity function among
object moving patterns, where objectmoving-patterns are viewed as emission trees. In
light of the dissimilarity function,the dissimilarity relationships among objects are de-
rived. Given dissimilarity relationships among.objects, we further propose two clus-
tering schemes to discover group mobility patterns of objects. Furthermore, for each
group, we judiciously select one representative emission tree and utilize this emission
tree for prediction. In addition, a mainténance algerithm is derived to preserve the pre-
diction accuracy when moving behaviors of objeets*vary. Experimental results show that
GBOT not only effectively reduces storage cost but also has a good prediction accuracy
in storage-constrained sensor networks.

Keywords — Object tracking, sensor networks, group mobility, clustering
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Chapter 1

Introduction

Object tracking is one of the killer applications for wireless sensor networks. In object
tracking sensor networks (referred to as OTSN), a large number of static sensor nodes
are deployed over a monitored region. There are access points (or called sinks) serving
as interface for injecting queries‘and collecting tracking results (e.g., the location of
objects). Sensor nodes obtain up-to-date location data of objects with a given sampling
frequency. Data is reported tothe sink*via multi-hop communications according to a
required reporting frequency. Typically sensor nodes use small batteries as their power
source. As a result, energy conservation in object tracking sensor networks is a primary
research issue to tackle.

Various energy conservation schemes for object tracking sensor networks have been
extensively studied in the literature [20, 21, 12, 16, 17]. In particular, a predication-
based OTSN is shown to be very energy-efficient for tracking objects. Explicitly, in
predication-based OTSN only those sensor nodes whose sensing regions are likely to
contain tracking objects are active, whereas the rest of sensor nodes are put in sleep
mode to conserve energy. Clearly, predication-based object tracking sensor networks
typically relies on certain prediction mechanisms to achieve energy saving. Prior works
in [12] has proposed an in-network mining object moving patterns in a hierarchical track-

ing model (abbreviated as HTM) in which a large number of inexpensive sensor nodes
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perform sensing operations and a limited number of powerful sensor nodes (standing for
cluster heads) offer data collection, queries and mining capabilities. Specifically, HTM
exploits object moving patterns to predict the next positions of moving objects. Object
moving patterns in HTM are represented as emission trees and stored at cluster heads.
Though HTM has better prediction accuracy, storing emission trees for each object needs
a considerable amount of storage space. Cluster heads are intrinsically storage-constraint
sensors as well. Hence, how to exploit limited storage space of cluster heads efficiently
is an important issue.

Generally speaking, many creatures usually have group movement behaviors [2, 6,
7, 14]. To deal with the problem mentioned above, in this paper, we propose the group-
based OTSN framework (referred to as GBOT) in HTM. objects tend to move together
in a gregarious fashion and consequently have similar emission trees. The main idea is
that objects with similar moving behaviors (i.el; similar emission trees) form a group.
For a group, we only keep an emission tree and the objects belonging to the same group
share one representative emission tree. Therefore, the total number of emission trees to
be stored decreases.

To perform GBOT, we first divide ebjects into groups in which objects would move
similarly. To distinguish the moving behavior of objects, we adopt both the emission
trees and up-to-date locations. According to the properties of the emission tree and
up-to-date location, we define the dissimilarity and spatial proximity respectively. Re-
garding the problem of grouping objects, the grouping problem, we reduce the clique
cover problem to the grouping problem by the dissimilarity measures. Then, two clus-
tering schemes are formulated to group objects reactively or proactively. After grouping
objects, we provide two metrics to judiciously select the representative emission tree for
each group so that the storage cost can be further reduced and the prediction accuracy
can be preserved. Note that the VMM model is originally designed for one object in

HTM. In GBOT, we have to modify the VMM model to suit groups which are composed



of multiple objects. Training the representative emission tree for a group is more com-
plicated than for an object. If the VMM model is not well modified, multiple objects
share one representative emission tree at the risk of lowering prediction accuracy. Lower
prediction accuracy causes more recovery procedures and consumes more energy in the
network. Therefore, we develop a group VMM model to train the representative emis-
sion trees well. In addition, it is necessary to observe the variation in moving behavior of
intra-group and inter-group. An object needs to be split from the group to avoid wrong
prediction when it escapes from its group. One group is also required to merge with
another group to reduce the storage cost when they become similar in moving behavior.
In this case, we propose a maintenance algorithm to periodically check the variation. To
evaluate the performance of GBOT, a series of experiments are conducted to show that
GBOT not only effectively reduce the storage cost but preserve the prediction accuracy.

A significant amount of researchés [1, 3,4, 5; 11, 12, 13, 15, 16, 17, 18, 20, 21, 22]
have focused on the issue of using sensor; networks to track objects. In [1], a sim-
ple tracking scheme based on binary sensor model iS proposed. Using the minimalist
sensors, each sensor’s value is converted to-only ‘one bit of information. Prior works
[3, 15, 18] use a cluster-based approach soithat a cluster head can collect data from
its slave sensors and generate the localization results. The authors in [4, 22] adopt a
information-driven approach in which a leader sensor node determines which sensors
should be selectively turned on. In [20, 21], a tree-based approach is presented to facili-
tate sensor nodes collaborating in detecting or tracking an object. Although prediction-
based scheme has been refereed in [18, 20], the historical movements of an object is not
taken into account carefully. In [16, 17], the authors propose a simple prediction model
based on an observation that object movement usually remains constant for a certain
period of time. In [12], the moving patterns of an object are mined by HTM to predict
the future movements according to the historical movements of an object. In [13], the

authors utilize the characteristic of the group movement of objects to achieve energy



conservation in OTSN. Besides the tracking techniques, the trade-offs between power
conservation and quality of surveillance are studied in [5, 11]. Different to previous
works, we consider the objects with gregarious, periodic moving behaviors and propose
the framework GBOT to perform group-based object tracking for HTM.

The rest of the paper is organized as follows. In Section 2, the overview of HTM,
the storage overflow problem and the group-based object tracking sensor networks are
presented. The details of the group-based object tracking sensor network are described
from Section 3 to Section 6. Experimental results are shown in Section 7. Section 8

concludes with this paper.



Chapter 2

Preliminary

In this section, we first describe the overview of Heterogeneous Tracking Model (HTM)
in Section 2.1. Then, the storage overload problem in HTM is presented in Section 2.2.

Finally, an overview of group-based object tracking sensor network is proposed.

2.1 Overview of Heterogeneous Tracking Model

HTM consists of a large number+of inexpensive sensor nodes that perform sensing op-
erations and a limited number of powerful 'sensor nodes (standing for cluster heads) that
offer data collection, queries and mining capabilities. Generally speaking, cluster heads
have powerful computing capability and larger storage space. By exploring heteroge-
neous sensor nodes and the hierarchical feature, HTM not only provides in-network
mining mechanism but also utilizes mining results for location predictions. Essentially,
execution of HTM consists of two phases: (1)data collection and mining phase: In the
data collection and mining phase, cluster heads collect the positions of objects and mines
object moving patterns. In the beginning, low-end sensors and cluster heads turn on their
power to monitor objects. At the mean time, cluster heads use current moving patterns
to predict the next position of objects. (2)prediction phase: Once discovering that the

prediction rate for objects is higher than a given threshold, cluster heads will be in the



prediction phase and start to predict the next location of objects. This phase is basically

to utilize predication-based OTSN to reduce energy consumption of sensors.

2.1.1 Data Collection and Mining Phase

To facilitate collaborative data collection processing in object tracking sensor networks,
the hierarchical cluster architecture is exploited in which sensors are organized into clus-
ters, where each cluster consists of a cluster head and low-end sensors. For simplicity,
the monitored region is divided into grids and each low-end sensor is responsible for
one grid. Figure 2.1 shows an example of three-level hierarchical cluster architecture
with 4*4 grid structure. In Figure 2.1, there are one level-1 cluster head, four level-0
cluster heads and 16 low-end sensors in the monitored region. Each level-0 cluster head
is responsible for corresponding subregion, i.e. one-fourth monitored region. Assume
that low-end sensors and cluster heads have unique sensor identifications and these sen-
sor nodes are well time-synchronized. "Suppose‘that each low-end sensor is a logical
representation of a set of sensor nodes-which-collaboratively detect an object. Given
a sampling frequency, low-end sensors sense and report the sensing information to the
sink. When a low-end sensor detects an object, this low-end sensor will inform the
corresponding cluster head of the detected object identification, object arrival time and
its sensor identification. In our work, object locations are represented as sensor iden-
tifications. Consequently, the movements of an object is viewed as a stream, which is
composed of a series of sensor identifications.

Since the movements of objects have high dependence relationships, cluster heads
in HTM thus adopt variable memory Markov model (referred to as VMM) to discover
object moving behavior. In particular, given a stream of movements, a suffix tree, called
emission tree [19], is proposed to mine moving behavior of objects. Specifically, each
edge of an emission tree represents a moving record (i.e., sensor id) appearing in the

moving path. A tree node of an emission tree is denoted as a concatenation of the edge
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Figure 2.1: Architecture of Heterogeneous Tracking Model

labels from the node to the root. In other words, a tree node labeled as ry,...ror; can
be reached from the traversal path from root —r; — ry — ... — ri. In an emission
tree, each tree node will maintain a conditional table to record the appearing counts and
the conditional probabilities of all appeated dabels that follow its label. Initially, the
emission tree has only a root node. , Whenever.a new moving record is generated, the
corresponding label will be put into the buffer.  According to the labels in the buffer,
the conditional tables of tree nodes will be updated. If the appearing count of the label
r; is larger than the minimal support, one child node labeled as r; will be inserted into
the emission tree. Consider an illustrative example in Figure 2.2, where there are 16
low-end sensors deployed in the coverage region of cluster head C'H and the object has
3 moving paths. The corresponding labels of moving records are put into the buffer.
The label ”*” means that there is no sensor node reporting the detection of this object.
Figure 2.3 shows the evolution of the object’s emission tree during the process of 15
moving records. In Figure 2.3(a), the emission tree has only a root node after receiving
5 moving records. In Figure 2.3(b), after receiving 11 moving records, node A and node
B are inserted since the appearing counts of label A and label B are larger than minimal
support (e.g., 2) according to the conditional table of root node. In Figure 2.3(c), node
AB is inserted because the appearing count of label B is also larger than minimal support

according to the conditional table of node A. Figure 2.3(d) shows the resulting emission
7
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Figure 2.2: An illustrative example for moving record collection.

tree when the cluster head receives the 15th moving record.

2.1.2 Prediction Phase

If an object is within the coverage tegion of level-O cluster head, the corresponding
cluster head should predict the next movement of the object. Note that there are two
kinds of nodes: mature node and immatute node. A mature node has more sufficient
statistical information and is used for prediction. .On the other hand, an immature node
stills need more moving records to have more stable statistical information. According
to the most recent moving records of the buffer received at this cluster head, the cluster
head will traverse the emission tree to predict possible next movements. Consider an
example in Figure 2.4, where nodes with dash circles are immature nodes and nodes
with solid circles are mature nodes. Given a recent moving records (i.e., DCAEF), a
cluster head traverses the emission tree and reaches the node AEF. Since node AEF is
not a mature node, the cluster head should not use the conditional table of node AEF for
prediction. The nearest mature node is EF and from the conditional table of node EF, the

next movement is D since D has a higher probability.



(a) buffer

Node root
SID | Count | C. Prob.
A 1 0.25
B 1 0.25
Cc 1 0.25
D 1 0.25

(b) buffer| ABCD*ABFGH*

(c)buffer ABCD*ABFGH*AB

(d) buffer [ ABCD*ABFGH*ABFE

Node root Node A
@ SID | Count C. Prob. SID | Count C. Prob.
A 2 0.22 B 1 1
A B B 2 0.22 Node B
0 e c ! 011 siD | count | c.Prob.
D 1 0.11 F 1 1
F 1 0.11
G 1 0.11
H 1 0.11
Node root Node A
SID | Count | C.Prob. SID | Count | C. Prob.
A 3 0.27 B 2 1
B 3 0.27 Node B
3 I ,0-09 SID | Count | C.Prob.
F 1 +0.09
=T - Node AB
G b 0.09
- .| SID | Count | C.Prob.
H L 0.09 1
Node root Node A
SID | Count | C.Prob. SID | Count | C.Prob.
A 3 0.23 B 2 1
B 3 0.23 Node B
c 1 0.07 SID | Count | C.Prob.
D 1 0.07 E 2 1
E 1 0.07
Node AB
F 2 0.15
SID | Count C. Prob.
G 1 0.07
F 2 1
H 1 0.07
Node F
SID | Count C. Prob.
E 1 1
Node BF
SID | Count | C. Prob.
E 1 1

Figure 2.3: The evolution of an emission tree after 15 moving records.




Node EF

SID | Count | C.Prob.
D 12 0.60
E 5 0.25
G 3 0.15

current position

buffer. ... DCAEF What'’s the next position ?

Figure 2.4: An example of utilizing emission trees for prediction, where nodes with dash
circles are immature and nodes with solid lines are mature.

2.2 Storage Overflow Problem in HTM

Prior works have shown that exploring emission trees for mining object moving patterns
are very effective in that emission trees fully captures dependencies of movements. The
dependence relationship has a gteat/impact-on the location prediction. Through emis-
sion trees, one could traverse emission trees and utilize conditional tables to estimate
the next movement of an object.“Experimental-results in [12] show that exploring emis-
sion trees for prediction significantly’ outperforms other heuristic prediction strategies
in [17]. Although emission tree can good prediction accuracy, a considerable storage
space is needed at cluster heads. To verify this claim, we simulate both periodic and
random moving behaviors of one object, and then calculate the storage space required.
Figure 2.5 shows the storage space of an object. As time goes by, a storage cost for
one emission tree significantly increase. Once the number of objects tracked increases,
a huge amount of storages are needed, thereby resulting in the overflow of storages in
storage-constrained sensors. Though cluster heads are more powerful sensors, cluster
heads are still constrained by storage spaces. Thus, it is important to reduce the storage

cost of emission trees.
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Figure 2.5: An experimental result of storage cost for emission trees.

2.3 Overview of Group-Based Object Tracking Sensor
Networks

To deal with the storage overflow problem mentioned above, we propose group-based
object tracking sensor networks (abbreviated as GBOT). As pointed out early, many
creatures have group moving behaviors. ‘Thus, objects with similar moving behaviors
should be grouped together, and only one emission: tree is maintained for each group.
Clearly, by clustering objects with similar moving behaviors, storage costs of cluster
heads are reduced. Specifically, in the beginning, GBOT performs data collection and
mining phase function as usual in HTM. Then, GBOT performs the following steps:
Step 1: Clustering objects with similar moving behaviors

In this step, we first define the dissimilarity among emission trees. Then, in light of
dissimilarity among emission tree, we develop two clustering schemes to group objects
with similar moving behaviors.
Step 2: Selecting one representative emission tree for each group

Once objects are clustered into several groups, we should determine the representa-
tive emission tree for each group. By traveling representative trees, one could not only
achieve the predication accuracy but also reduce the storage cost.

Step 3: Training representative emission trees
11



In GBOT, each group has its own representative emission tree and the cluster heads
use representative emission trees to predict next movements of objects. At the same
time, in order to continue mine object moving patterns for each object, we develop a
mechanism to train representative emission trees with multiple buffers that are used for
keep recent moving records of objects. Note that creatures may change their moving
behaviors. Thus, we further propose a maintenance algorithm to dynamically adopt

groups to reflect the changes of moving behaviors.
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Chapter 3

Clustering Objects with Similar

Moving Behaviors

In this section, we first formulate dissimilarity among emission trees in Section 3.1.

Based on the dissimilarity derived; we propose.two.clustering schemes in Section 3.2.

3.1 Dissimilarity betwéen Emission Trees

Each object has its own emission tree and in order to clustering objects with similar
moving behaviors, we should first define dissimilarity measurements of emission trees.

The following sections are two dissimilarity measurements used in GBOT.

3.1.1 Dissimilarity based on Label Set

In emission trees, labels of nodes represent spatial areas that objects frequently stay.
Hence, the dissimilarity of emission trees is determined based on label sets of emission
trees. Clearly, given two emission trees, a larger number of nodes that have the same
labels, the more similar these two emission trees are. Therefore, each emission tree is
transformed into one label set that includes labels of all nodes in an emission tree. For

example, the label set of 7} in Figure 3.2 is { A, B, AB}. Given two emission trees T;
13



and T}, the dissimilarity d;¢ between two emission trees, , is defined as follows:

|(LST; ULST,)—(LST,NLST)|
|LSTZ- mLSTj | ’

6LS(E7 irj>=

where LSt, denotes the label set of 7;.

Note that by exploring the intersection and the difference features, d;¢ is able to
reflect spatial dissimilarity of two emission trees. Explicitly, in d;g, the intersection
of two label sets represents how many nodes with same labels two emission trees have
and the difference of two label sets demonstrates how many nodes with different labels
two emission trees have. Clearly, when two emission trees have the same label sets,
the dissimilarity of these two emission trees are zero, meaning that moving behaviors
of the corresponding objects have exact the same moving patterns in terms of spatial
areas. Consider emission trees 77, 75 and 75 in Figure 3.2. It can be verified that
6rs(Ty, To) = %+ = 5,and 0,5(T, Ty) =125+ = 4, respectively. where LSy, LS, and
LSt,. Thus, T} is more similar to T tham Z5;which agrees with the intuition observed
from their emission trees.

0rs only determines dissimilarity measurement in terms of spatial information of
emission trees. Note that though two emission trees have exact the same number of nodes
with the same labels, these two emission trees may represent different moving behaviors
in terms of temporal information. For example, Figure 3.1 shows that two emission trees
with the same number of tree nodes having the same labels. However, these two emission
trees reflect two different moving behaviors since conditional probabilities alone with
trees nodes are not exact the same. In order to accurately formulate dissimilarity of
moving behaviors, both spatial and temporal information hidden in emission trees should

be taken into consideration. This is the call for the design of 6,57

3.1.2 Dissimilarity based on Moving Sequence List

Note that emission trees reflect moving behaviors of objects. By traveling emission trees

from the root node to leaf nodes, moving paths of objects are extracted. These mov-
14



ability.

Node root

SID | Count | C. Prob.
A 7 0.7
B 3 0.3

Node root
SID | Count | C. Prob.
A 3 0.3
B 7 0.7

Figure 3.1: An example of tree nodes with the same label but different conditional prob-

Node root Node root
1 SID | Count | C. Prob. Node A ’T—z‘ SID | Count | C. Prob.
0.5 SID 2 0.25
0.375 : C 3 0.375
0.125" Eis 3 0375
Node B ; Node D
Count |' C. Prob. Count | C. Prob.
17 1 1 1
SID ‘
B Node CD
C 033 Node AB Count | C. Prob.
SID | Count | C. Prob. - - -
A 1 1
Count | C. Prob.
Node root 4 0.363
SID | Count | C. Prob. 3 0272
5 0.55 1 0.091
1 0.11 3 0.272
3 0.33
Node D
SID | Count | C. Prob.
Node A
SID SID | Count Node B
5 B 5 Count | C. Prob.
C 0.66 Node AC C 1 0.33 . !
SID | Count | C. Prob. Node AB
A 1 1 SID | Count | C. Prob.
A 1 1

Figure 3.2: An example profile of emission trees.
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ing paths are referred to as frequent sequential moving paths of objects. Furthermore,
the order of frequent sequential moving paths is distinguishable due to the construction
processing of emission trees. Specifically, the frequent sequential moving paths in the
left side appear more previously than those frequent sequential moving paths in the right
side. In addition, since emission trees have statistical information stored in conditional
tables of emission trees, each node in frequent moving paths extracted from emission
trees is able to further determine their corresponding weights in terms of probabilities
that indicate how frequent objects appear at the corresponding label. Consider emis-
sion tree 7 in Figure 3.2 as an example. From the conditional table of emission tree
Ty, we could obtain that the frequency that the object stays in area A is 0.5 and with
probability 0.33 (i.e., P(AB) = P(A) x P(B|A)), this object will frequently move
along AB. Clearly, when formulating dissimilarity among emission trees, how frequent
objects stay along which moving path provides'more detailed moving behaviors of ob-
jects. Furthermore, tree nodes with more:larger probabilities should be more important
in dissimilarity measurements.=In the above case, node A is more important than node
AB since the object is more likely torappear-A than AB. Consequently, we design a
dissimilarity measurement in which the abovefeatures of emission trees are considered.

In order to capture structure similarity of emission trees, we transform an emission
tree into a moving sequence list, where each element in a moving sequence list represents
a moving path from the root node to a leaf node and elements are ordered from the left to
the right of emission trees. To facilitate the presentation of this paper, a moving sequence
list of emission tree 7} is denoted as M SL;, and MSL;={MS} , MS2,..., M S}, where
M Sf is the jth element in M SL;, and the number of moving paths is n. Specifically,
M S? is a moving sequence of location pairs, denoted as (TLﬁ > p(TLZ ;)), where TLQ ;
is the kth tree node label from the root node to the leaf node of the jth moving path and
p(TLﬁ j) is the probability that this object is likely to stay at area TLﬁ ;- Consequently,

the weight of moving path M S/ is formulated as w(M S?) = >0 p(T Lk ;), where n is
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the number of elements in M Sij . For example, the moving sequence list in emission tree
Ty is ([(A,0.5)], [(B,0.375)(AB, 0.33)]) that includes two moving paths. The weight of
moving path [(A,0.5)] is 0.5 and the weight of moving path [(B,0.375)(AB, 0.33)] is
0.705.

In light of some terms defined above, we now design a dissimilarity measurement
that takes spatial and temporal information into account. Explicitly, given two emis-
sion trees T; and Tj, we first transform these emission trees as two moving sequence
lists as M.SL; and MSL;. Similar to the editing problem in [9, 10], the dissimilarity
between two emission trees (e.g., 0rsz.(75,7;)) is determined by the editing distance
between two moving sequence lists, denoted by dist(M SL;, M SL;). The distance be-
tween two moving sequence lists, M .SL; and M SL;, is calculated as the minimal cost of
transforming M SL; into M SL; through three operations: insertion, deletion and match

operations. Three operations and thé corresponding costs are described as follows:

e Insertion: Insert one moving sequence’into. M S L; so as to transform M .SL; into
M SL;. Assume that one moving sequence )/ S]’? is inserted into M SL;. Thus, the

cost is the weight of M S¥ (1. w(ALS})):

e Deletion: Suppose that one moving sequence (i.e., M S¥) of MSL; is deleted and

and the corresponding cost is defined as w(M SF)

e Match: Match two moving sequences from the first location pairs to the last lo-
cation pairs. We begin to compare the location pairs of two moving sequences in
order. If the tree labels of two location pairs are equivalent, we eliminate the first
location pairs of two moving sequences and add the difference of probabilities of
two location pairs as the corresponding cost. Then, continue to compare two mov-
ing sequences with the remaining location pairs until the moving sequences are
matched completely. Otherwise, the match is over. By the suffix property of emis-
sion trees, we know the remaining tree labels of location pairs will be all different.
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The probabilities of remaining location pairs are summed up as the corresponding

Ccost.

According to the above three operations, we can derive recurrence relation for
dist(MSL;, MSLj;). For the presentation of the recurrence relation, M.SL; (respec-
tively, M SL;) is represented as M SL;[1..m] (respectively, M SL;[1..n], where the num-

bers of elements in M SL; and M SL; are m and n, respectively. Thus, we could have

dist(MSL;[1..m], MSL;[1..n]) =
dist(MSL;[1.m], MSL;[1.n — 1]) + w(MSY}) (insertion)
Min S dist(MSL;[1..m — 1], MSL;[1..n]) + w(MS™) (deletion)
dist(MSL;[1..m — 1], MSL;[1..n — 1]) + match(M S, MS?)  (match)

, where match(MS]", MSY) =
match({TL,,, ..., TL}, } ATL,,. ..., TLL,3) + |p(TL},,) — p(TL},)|, if TL},, = TLj,

i,m) 2,1

ey P(TLE ) + Yoy P(TLS ). otbierwise

The boundary conditions are given as-follows:
dist(MSL;[0], MSL;[1..n]) = Yiy w(MS5),
dist(MSL;[1..m], MSL;[0]) = > w(MSY)
for MS™ = {TL} ,TL? ...,TLﬁm} MS} = {TL} ,TL? ...,TLé-ﬁn}

i,m> i,m? Jmn? J,n?

Generally speaking, by exploiting dynamic programming, the dissimilarity between
two moving sequence lists is derived from the above recurrence relation. For exam-
ple, the dissimilarity between emission tree 77 and emission tree 73 in Figure 3.2 is
determined by calculating dist(M SLy[1..2], M\SL3[1..2]). Table 3.1 shows the execu-
tion scenario of determining the dissimilarity of 77 and 75. Table entry, denoted as
t[i,j1, represents the costs of dist(MSL;([1..i], MSL3[1..j]). Since there are three op-
erations performed, each table entry therefore have three costs (i.e., costs for insertion,
deletion and match). For example, dist(MSL;[1..1], MSL3[1..1]) is calculated by in-

sertion, deletion and match. The costs of these three operations are shown in t[1,1].
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Among three costs in t[1, 1], only the minimal cost is selected to represent the value
of dist(MSLy[1..1], MSL3[1..1]). Then, according to t[1,1], we could further deter-
mine dist(MSLy[1..1], MSLs[1..2]) (i.e., t[1, 2]). Specifically, the insertion cost is
obtained by summing up the insertion of moving path ([C, 0.33), (AC, 0.36)] to the
cost of t[1, 1]. Clearly, the insertion cost at t[1,2] is 0.74 (i.e., t[1, 1]+w(MS3) =
0.05 + 0.33 4+ 0.36 = 0.74). Similar to the derivation of insertion, we could derive
deletion and match costs at t[1,2]. Also, only the minimal cost is selected at t[1,2],
showing the cost of transforming M SL;[1..1] to M .S L3[1..2]. Following the above pro-
cedure, the value of dist(M SLq[1..2], MSL3[1..2]) is easily calculated at t[2,2], thereby
deriving dissimilarity of 7} and 75 in terms of the dissimilarity measurement of moving

sequence lists.

0 1 2
MSL3 1 {(A,0.55)]  [(C,0.33)(AC,0.36)]
0 MSL, 0 0.55 1.24
1.05(2) 0.74(z)
1 [(A,0.5)]9" 0.5 1.05(d) 1.74(d)
0.05(m) 1.74(m)
1.755(%) 1.445(7)
2 [(B.0.375)(AB,0.33)]"} 205 | 0.755(d) 1.445(d)
1.755(m) 1.445(m)

Table 3.1: An execution scenario for the dissimilarity of 7} and 75.

By exploring dynamic programming, dissimilarity among emission trees are effi-
ciently determined. To verify the correctness of our design of 0,57, we derive 651, (717,
T) is 0.602. Given three emission trees 77, T3 and 7}, by comparing tree structures
of these three emission trees, it can be verified that emission tree 7 is more similar to
emission tree 7, than emission tree 75. We could justify the dissimilarity by assum-
ing that the emission trees 73, T3 and T, are constructed for objects O;, O3 and Oy,
respectively. By glancing through three emission trees, object O, and object O4 move
along the paths A and A — B frequently. However, object O; and object O3 only move

along the path A frequently. Thus, moving behavior of O; is more similar to Os. This
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agrees to our dissimilarity measurement derived above (i.e, dy57,(77, T4) is smaller than

Imsr(Th,T3)).

3.2 Clustering Schemes in GBOT

According to the above two dissimilarity measurements, dissimilarities among emission
trees are derived. Based on dissimilarities derived, in this section, we develop two clus-

tering schemes to cluster objects with similar moving behaviors.

3.2.1 Reactive Grouping Algorithm

As mentioned in Section 2.1, cluster heads at the lowest level are responsible for tracking
objects in their monitored regions. Consequently, each cluster head maintains an emis-
sion tree for each object that ever stays in the corresponding monitored region. However,
we could further classify objects into two-Kinds of objects. For each cluster head, those
objects that are currently within the corresponding monitored regions are referred to as
active objects. On the other hands, those objects that ever appeared in the monitored
regions are referred to as inactive objects. For example, in Figure 3.3, there are five ob-
jects in the monitored regions of four cluster heads. Suppose that all five objects move
around the entire monitored regions and thus each cluster head maintenances five emis-
sion trees for each object. In cluster head C'Hj, there are five emission trees since all
objects ever appear in the monitored region of C'H3;. Among these five objects, it can
be verified that objects O3 and O, are active objects, whereas objects O, Oy and Os
are inactive. Though each cluster head has emission trees for objects appearing in the
corresponding monitored region, not all objects should be clustered since each cluster
head has two kinds of objects (i.e., active and inactive objects). Thus, two clustering
schemes are proposed. Explicitly, one is to only cluster active objects (referred to as

reactive grouping) and the other is cluster both active and inactive objects (referred to as
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2 63 3

Figure 3.3: An example of active and inactive objects in HTM.

proactive grouping).

Reactive grouping scheme only clusters active objects. In light of dissimilarity mea-
surements proposed, dissimilarity measurements of active objects are first determined.
In addition to dissimilarity measurements, current locations of objects should be con-
sidered since objects are not always spatially close even if these objects have similar
emission trees. To formulate the spatial proximity among objects, we define 7 — close
as follows:

Definition 1: (7 — close)

Given two objects O; and @;, object"O; is-7 — close to object O; if the maximal
distance of object O; and object O} is.T grid size:

For an object, its 7 — close neighbors are those objects whose distance are within
T — close grid size.

Based on dissimilarity measurements, the definition of the spatial proximity, the gen-
eral problem of clustering objects with similar moving behaviors is defined as follows:

Definition 2: (the grouping problem)

Given a set of objects S, the dissimilarity threshold ¢, and the spatial proximity
threshold 7, objects are divided into groups such that the number of group is minimal
and in each group, each pair of objects (e.g., O;,0; ) should satisfy (i) 6(70,, To,) < d
and (ii) O; is 1 — close to O;

From the definition of the group problem, the number of groups is expected to be

minimal. Since each group will select one representative emission tree, the minimal
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number of groups means that only the minimal number of emission trees are preserved,
thereby reducing storage cost at cluster heads. Furthermore, since the dissimilarity of
each pair objects is within dissimilarity threshold and the spatial proximity is also re-
quired. Thus, objects within a group have similar moving behaviors. By judiciously
selecting one emission tree for each group, movements of objects in a group are accu-
rately predicted. Note that the grouping problem is able to reduced from the clique cover
problem. The clique cover problem is that given a graph G = (V, E') and a positive in-
teger k < |V, the decision problem is that ”Are there k cliques of G covering all the
vertices of G 77 We prove that the grouping problem is reduced from the clique cover
problem. Moreover, since the clique cover problem is a NP-complete, the group problem
is thus a NP-complete as well.

Theorem 1: The grouping problem is NP-complete.

Proof: Given an instance (G =:(V, E), k) of the clique cover problem, we trans-
form this instance into an instance I'(.S, 0, 7 ).of the grouping problem. Explicitly, the
vertices of graph G is viewed as-objects in S. If there exists an edge (7, 7) between vertex
i and vertex j, the corresponding ebjeets (O;;0;) are 7, — close and §(Tp,,To,;) < 6.
Therefore, the instance (G = (V, E), k) ican'be transformed to the instance I'(S, 0, 7¢).
Notice that I’ has a solution if 7 has a solution. Furthermore, if the solution for the
grouping Problem exists, this can be verified in polynomial time.[]

According to the above proof, the grouping problem is a NP-Complete problem.
Thus, we propose a heuristic algorithm for the grouping problem. Basically, the idea is
to model the grouping problem as a clique cover problem. The reactive grouping algo-
rithm (abbreviated as RG) is shown in Algorithm 1. Specifically, similar to the proof of
Theorem 1, a graph is constructed, where each vertex represents an object and an edge
between two objects is created if they are 7; — close and the dissimilarity measurements
of these two emission trees are smaller than the threshold ¢;. Once the graph G is con-

structed, algorithm RG is greedy in nature and select the largest cliques each run so as to
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minimize the number of cliques. Explicitly, selecting vertices with lager degrees implies
larger cliques. Thus, from line 2 to line 3, we start to select vertex O; with the highest
degree in graph (G. In line 4, those vertices adjacent to vertex O; are put into list L.
Then, the objects in list L form a graph together and recompute their node degrees (line
5). This step only to calculate the degrees of vertices in list L. We construct a group R;
that contains object O; and repeatedly select object O; with the highest node degree in
list L and put object O, into group R; if object O; has edges with all objects in R; (from
line 7 to line 12). Objects in group R; are removed from graph G (line 14). Following
the above operations, we are able to discover all cliques until all vertices are visited (i.e.,

G is empty).

Algorithm 1 : Reactive Grouping Algorithm
Input: S,..., set of active objects; ¢;, dissimilarity threshold; 7;, spatial proximity
threshold
Output: R, set of groups including active objects
1: Transform the relation between the objeetsin Sy into a graph G|
2: while G is not empty do
3:  select the object O; with-the highest node degree in graph G;

4:  put those objects adjacent to object O; into list'L;
5:  recompute the node degree of the objects in'list L;
6:  construct a group R; which contains object O;;
7:  while L is not empty do
8: select the object O; with the highest node degree in L and remove O; from L;
9: if O; is adjacent to all the objects in RR; then
10 put object O, into group R;;
11: end if

12:  end while

13:  insert group R; into set R;

14:  remove the objects in group R; from graph G
15: end while

Note that in algorithm RG, we only cluster those active objects. In order to further
reduce the storage cost, one could cluster both active and inactive objects. This is the

call for the design of algorithm proactive grouping.
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3.2.2 Proactive Grouping Algorithm

In algorithm PG, cluster heads group not only active objects but inactive objects. As a
result, more storage cost is reduced. For active objects, algorithm PG performs the same
clustering operations in algorithm RG. On the other hands, for inactive objects, cluster
heads have no up-to-date locations of these objects. To maintenance recent up-to-date
locations of these objects, in algorithm PG, cluster heads have 7, — close neighbor lists
for each object. Those objects 7, — close to object O; are kept in object O;’s 7, — close
neighbor list. Note that when object O; moves into a monitored region of other cluster
heads, 7. — close neighbor list of O, is updated. According to 73 — close neighbor lists for
inactive objects, algorithm PG is able to cluster objects with similar moving behaviors
and objects are in 7; — close neighbor lists. Clearly, by exploring 7, — close neighbor
lists, we approximately estimate the moving behaviors of objects. Hence, algorithm PG
first clusters active objects and then further clusters. inactive objects. For active objects,
the clustering operations are the same as algorithm RG. For inactive objects, we also
transform inactive objects into @ graph,-Where each vertex represents an inactive object
and an edge between objects are‘generated if inactive objects satisfy the dissimilarity

threshold and both objects are in 7; — close neighbor lists.

Algorithm 2 : Proactive Grouping Algorithm
Input: S, .., set of active objects; Sinqcrive, S€t Of inactive objects; d;, dissimilarity
threshold; 7;, spatial proximity threshold
Output: R, set of groups for active objects; Rijqctives S€t of groups for inactive
objects
/* group active objects according to emission tree and up-to-date location */
1: Perform algorithm PG for clustering active objects;
/* group inactive objects according to emission tree and 7; — close neighbor list */
2: Transform the relation between the objects in S, qctive into a graph G;

/* line 3 to line 16 are the same as the line 2 to line 15 of reactive grouping algorithm
*/

For example in Figure 3.3, cluster head C'H3 can group inactive objects (O1,02,05)

given their emission trees and 7; — close neighbor lists. Clearly, by grouping inactive
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objects, the number of emission trees is reduced. However, the grouping result of in-
active objects may not fit in with real circumstances when the inactive objects become
active. Assume that cluster head C' H3 has a grouping result as {(O103)(0304)(Os)}. Tt
can be seen that inactive objects O; and O, form a group together. Suppose that object
O moves from the monitored region of C'H; to that of C'H3 and object O, stays in the
monitored region of C'Hy. Clearly, from the perspective of C'Hj, object O; becomes
active, whereas object O, remains inactive. Consequently, we should further perform
maintenance operations, such as intra-group split or inter-group merge in Section 6, to
adoptively adjust the grouping result. Hence, in algorithm PG, some maintenance over-
heads are required.

By grouping both active and inactive objects, algorithm PG can significantly reduce
the number of emission trees compared to algorithm RG. However, some overheads
are needed in algorithm PG due tosvarious moving behaviors of inactive objects. The

experimental results will show the properties of algorithms PG and RG later.
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Chapter 4

Selecting One Representative Tree for

Each Group

The objective of selecting one representative tree for each group is to decrease the total
number of emission trees so that,the original emission trees for objects can be deleted
from cluster heads. Here, we select a representative emission tree from those emission
trees whose corresponding objects are'ina group. Considering a group R with & objects
(O;..0y) and corresponding emission:trees (1;:.70, ), instead of keeping one emission
tree for each object, we select a representative emission tree among k emission trees.
That is, k objects discard their original emission trees but share the representative one.
To select a representative emission tree, there are two factors to be considered: one
is the storage cost of a representative emission tree and the other is the dissimilarity
between emission trees. First, the smaller size of a representative emission tree is, the
more storage cost reduction we can achieve. We can further reduce the storage cost, even
though the total number of representative emission trees have been fixed after clustering
objects. Second, we hope that the dissimilarity between representative emission tree
and other emission trees in a group can be small as possible. So, the representative
emission tree will be used to predict the movements of a group well. For simplicity,
the size of emission tree (7p),) is represented as the number of tree nodes (N (7p,)) and
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the error sum (F5) is used to quantify the dissimilarity between representative emission
tree and other emission trees in a group. The error sum of emission tree 7o, is defined
as the sum of the dissimilarity between 7y, and other £ — 1 emission trees, denoted by
ES(Tp,) = Zle d(To,, To,). Note that 6(Tp,,Tp,) = 0. To select a representative

emission tree from k emission trees, we define two metrics as follows:

e Metric 1: Min{N(Tp,) x ES(To,)}

The emission tree with the minimum value of N (7Tp,) x ES(Tp,) is selected as
the representative emission tree of group R. On the one hand, we can reduce
more storage cost if the size of emission tree 7o, is smaller. On the other hand,
emission tree T, is more similar to other emission trees in group R if the error
sum of emission tree Tp, is smaller. That means HTM can use emission tree 7p,
to predict the movements of group R mere precisely than other emission trees. In
order to take a balance between tree size and. error sum, we select the emission

tree with the minimal product of tree sizeé and error sum among & emission trees.

o Metric 2: Min{p x 0L Spiaigys £ F500) v < )<

ElN(Toj) gl ES(To,)
Metric 1 is not flexible enough for applications although it can easily take a balance
between tree size and error sum. Suppose a user thinks that storage cost is more
important than error sum and he desires to consider both storage cost and error
sum. In such case, metric 1 fails to content the user. To improve this, we define
the metric 2 which is more flexible than metric 1. We normalize tree size and error
sum in Metric 2. Furthermore, a variable p is added for users to give different
weights to tree size and error sum. Experimental results show that Metric 2 can

obtain almost the same results as Metric 1 when p = 0.5, and it thus follows the

flexibility of Metric 2.

In the following, we consider a group with three objects (01, Oz, O3) and emission

trees (To,,70,,T0,). The tree size and error sum of each emission tree is listed in
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Table 4.1. To select a representative emission tree among (1o, ,710,,10,), we adopt
Metric 1 and Metric 2 with different values of the variable p. For emission tree 7y, ,
the measurement of Metric 1 is 710 (100 x 7.1) and the measurement of Metric 2 with
p =0.9is0.350 (0.9x 3834 (1—0.9) X o). Table 4.2 shows the results of representative
tree selection. Using Metric 1, the emission tree 7y, with the minimal product of tree
size and error sum is selected as the representative emission tree. Similarly, the emission
tree Tp, is selected as the representative emission tree by using Metric 2 if we respect
tree size and error sum equally and set the variable p to 0.5. In the case of Metric 2 with
p = 0.9, the emission tree Tp, is selected as the representative emission tree because
its tree size is the smallest among three emission trees. Inversely, in the case of Metric
2 with p = 0.1, the emission tree Ty, is selected as the representative emission tree
because of the least error sum among three emission trees. Note that the emission tree

To, will never be selected due to the'biggest treé:size and the most error sum.

Table 4.1: Tree size and error sum.of three objects

Tree Size (N (71p,)) Dissimilarity (0(To,, To,)) Error Sum (ES(Tp,))
To, 100 3(Toy o, "= 83:0(T0, . To,) = 3.8 7.1
To, 95 d(To,, Toy)-= 3.3, 6(TosTo,) = 3.1 6.4
To, 90 5(Toy, To, ) = 8856(Ts,, To,) = 3.1 6.9

Table 4.2: Example of selecting a representative emission tree.

Tree Metric1 Metric2 (p = 0.9) Metric2 (p = 0.5) Metric2 (p =0.1)

To, 710 0.350 0.349 0.348
To, 608 0.331 0.323 0.315
To, 621 0.318 0.327 0.335
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Chapter 5

Training Representative Emission

Trees

In this section, we develop a group VMM model so that the representative emission tree
can be trained for each group. In"HTM, cluster héads originally construct an emission
tree which is trained by VMM:meodel for each object. Thus, it is necessary to modify
VMM model to suit a group that'is composed of multiple objects. The basic concept is
to allow cluster heads to construct’a VMM model with multiple buffers for a group. The
buffers are used to hold the most recent moving records of objects in a group. There are

two cases to illustrate the training process of a group VMM model.

e Case 1: group with one object

In this case, an object forms a group individually. Cluster heads construct a VMM
model and a buffer to hold the most recent moving records for the group. Then,
VMM model mines the moving patterns according to the buffer and trains the
representative emission tree. Regardless of predicting correctly or incorrectly, the

labels which object visited are put into the buffer for moving pattern mining.

e Case 2: group with multiple objects

In this case, multiple objects form a group together. Considering a group R with &
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objects and a representative emission tree, cluster heads construct a VMM model
and k buffers for the group with k objects. Then, VMM model will mine the
moving patterns according to the £ buffers and trains the representative emission
tree. Different from case 1, not all labels which objects visited are put into the

buffers. The rules to put labels into the buffers are:
Case 2.1: correct prediction

If cluster head predicts the movement of object correctly, we put the visited la-
bel into the buffer. The visited label would be worthy to put into the buffer for

repetitive VMM model training when correct prediction happened.
Case 2.2: wrong prediction

If cluster head predicts the movement of object wrong and there exists no 0 —
close objects which are predicted correctly, we put the visited into the buffer. It
means that cluster head can net correctly predict the next position of such object
according to its current position by representative emission tree. Thus, the visited
label should be put into the buffer.in-orderto contribute to the moving pattern
mining. Otherwise, we discard the-visited label but put a character # into the
buffer. The visited label would not be put into the buffer if the object is predicted
incorrectly and there exists a 0—close object which is predicted correctly. We think
that this visited label is unreliable and unworthy to put into the buffer for moving
pattern mining because there exists another object which is predicted correctly
according to the same current position. Instead, we put a character # into the
buffer so that only the moving records behind character # can contribute to the

moving pattern mining.

Figure 5.1 illustrates a example of case 2. Three objects {O1, O,, O3} with current
positions { M, H, M} form a group R together. Cluster head C'H; predicts the positions
of {O1, 03,03}, which are {N, I, N}. The actual next positions of {Oy, Os, O3} are
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R ={0,,0,,0,}

prediction {N,I,N}
next position {N,N,R
| {N.N.R}

ol oufer,
[
E-ind oufer, [GHN ]

\ outer, [V
[

current position

Figure 5.1: Different cases: put the visited labels into the buffers

{N, N, R}. Cluster head C'H; constructs a VMM model with three buffers for group R.
According to the principle of case 2.1, object Oy is predicted correctly. Thus, the visited
label N is put into the buffer. For object O,, cluster head predicts its position incorrectly
and there exists no 0 — close objects which are predicted correctly. Hence, the visited
label N is also put into the buffer. However; object Os is predicted incorrectly and there
exists 0 — close object O which is predicted:correctly according to the same current
position M. Accordingly, we discard the label of current position 12 and put a character

# into the buffer.
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Chapter 6

Maintenance Algorithm in GBOT

In Section 6.1, we first introduce two conditions, split condition and merge condition.
In Section 6.2, a maintenance algorithm is proposed to detect such two conditions and

execute corresponding operations.

6.1 Split condition & Merge condition

To examine the variations in moving behavior of intra-group and inter-group, we focus
on detecting the following two conditions.

Condition 1: (Split-Condition)

In this condition, for a group, there exists an object which left far away from other
objects. The object which escaped from its group is called the spatial outlier. By detect-
ing the split condition, the spatial outliers in a group are dug out. For example, Figure
6.1 illustrates the split condition. As seen, object Os is far away from other objects in
Groupl. Thus, object Ojs is a spatial outlier in Groupl.

Condition 2: (Merge-Condition)

In this condition, there exists the overlap between two groups when they are spatially
close. Figure 6.2 illustrates the merge condition that Groupl overlaps Group2. Object

O, and object O4 occupy the same grid M which is the overlap between Groupl and
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Figure 6.1: An illustrative example for Split-Condition
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Group2.

In the maintenance step, we execute the periodic maintenance operation to detect
the split condition and merge condition. Then, the intra-group split operation and inter-
group operation are executed to deal with these two conditions respectively. The three

operations are described in the following:

e Periodic Maintenance

A maintenance algorithm is proposed to periodically detect if there is any condi-
tion happened every 7' time units. If the split condition is detected, the mainte-
nance algorithm calls the intra-group split operation. Similarly, the maintenance

algorithm would call the inter-group merge operation if the merge condition is
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detected.

e Intra-group Split

If the spatial outlier has been detected for consecutive x times, it would be split
from original group to avoid wrong prediction. Then, the spatial outlier forms a
group singly and obtains a copy of emission tree from original group. The param-
eter x is used to prevent frequent overhead for immediate split. It is possible that
the object provisionally leaves the group and return to join the group soon. To

avoid such event, we set up the parameter x to confirm that the object left for sure.

e Inter-group Merge

When one group overlaps another group, we check whether the two groups should
merge into one group or not. If the two groups have similar representative emission
trees mutually and are geographically neat.each other. Then, two groups merge
into one group for saving storage -and execute the representative tree selection

operation.

6.2 Maintenance Algorithm

In this section, we propose a maintenance algorithm to execute the periodic maintenance
operation, intra-group split operation and inter-group merge operation. In order to detect
the split condition and merge condition, each cluster head executes the periodic main-
tenance operation from line 1 to line 15 of Algorithm 3. For each group, we sort all
objects by their number of 7, — close neighbors and construct a empty list L (from line 2
to line 4). The object with more 7; — close neighbors have higher priority to be selected.
We start to select the object from high to low number of 7, — close neighbors. For each
object O;, if it is 7, — close to all objects in list L, we put the object O; into list L (from
line 5 to line 7). Or, we mark object O; as the spatial outlier (from line 8 to line 9). Then,

we search object Ojs 0 — close neighbors. If there exists an object O; € R; which is
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0 — close to object O;, the merge candidate pair (R?;, ;) is generated (from line 11 to
line 13). That is, group R; overlaps group I?;. To execute the intra-group split operation,
for each spatial outlier O,,, we split it from original group if it has been detected for
consecutive z times (from line 17 to line 21). To execute the inter-group merge, for each
merge candidate pair (R;, R;), we merge R; and R; into a group if 6(7,, TRj) < ¢; and

any two objects in R; U R; are 7, — close.

Algorithm 3 : Maintenance Algorithm
Input: Rg, set of groups; ¢;, dissimilarity threshold; 7;, spatial proximity threshold
Output: R, set of groups after maintenance

1: Periodic Maintenance

2: for each group R; € Rg and |R;| > 2 do

3:  sort the objects in R; by the number of 7; — close neighbors;

4:  construct a empty list L;
5:  for each object O; € R; do
6: if object O, is 7, — close to all objects in L then
7 put object O; into list L;
8 else
9 mark object O; as thé spatial outlier;
10: end if
11: if there exists an object O; € Ry which is 0 = close to O; then
12: generate merge candidate pait (R R, );
13: end if
14:  end for
15: end for

16: Intra-group Split
17: for each spatial outlier O, do
18:  if spatial outlier Oj, has been detected for consecutive x times then

19: split spatial outlier O, from its group;
20:  end if
21: end for

22: Inter-group Merge
23: for each merge candidate pair (R;, ;) do
24:  if 0(Tr,,Tg;) < d; and any two objects in R; U R; are 7; — close then

25: merge R; and R; into a group;
26:  end if
27: end for

For example, the input of maintenance algorithm are R; = {Groupl(O1, Oy, O3, Oy)

}, 8;, 7 = 1 in Figure 6.1. The intra-group split operation is executed because object O3
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is a spatial outlier. object O3 would be split from Groupl if it has been detected for con-
secutive = times. Suppose that object is split from Groupl and form a group singly. The
output of maintenance algorithm is R, = {Groupl(Oy, Oz, O4), Group2(O3)}. An-
other example in Figure 6.2, the input of maintenance algorithm are Ry = {Groupl(Oy,
Os,03), Group2(0y4,05)}, 0;, 7 = 1. For object O, there exists an object O, €
Group2 which is 0 — close to object Oy. Thus, the inter-group merge operation is ex-
ecuted because the merge candidate pair (Groupl, Group2) is generated. Groupl and
Group2 will merge into one group if §(TGroupts Teroup2) < O and any two objects are
7; — close in Groupl U Group2. Suppose that Groupl and Group2 merge into one

group. The output of maintenance algorithm is R, = {Groupl1(O;, Oz, 03,04, O5)}.

36



Chapter 7

Performance Evaluation

In this section, experiments are conducted to evaluate the effectiveness and efficiency of

the framework GBOT by simulation.

7.1 Simulation Model

To simulate GBOT, we adopt the heterogeneous tracking model and design a group mo-
bility model based on city mobility. model [8]. In“our heterogeneous tracking model,
there are three levels hierarchy and 10*10 low-end sensors in each level-0 cluster. To-
tally, there are one level-2 cluster head, 4 level-1 cluster heads, 16 level-O cluster heads
and 1600 low-end sensors. To simulate the objects’ movement with gregarious property,
we design a group mobility model based on city mobility model. In our group mobility
model, a logical group pilot is first generated for a group and the objects in a group fol-
low their group pilot according to two parameters: variation period and variation radius.
For every variation period, an objet will choose a random direction to move the dis-
tance of variation radius away from the group pilot. Given a maximum variation radius
mazy g, the variation radius of each objects is uniformly distributed from 0 to maxy g.
For example, an objet with variation period = 2 and variation radius = 3 is 3-close to the

group pilot every 2 time units. We simulate the moving behavior of the group pilot which
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makes a tour between several specified locations in monitor region. The group pilot will
repeatedly visit those specified locations by turns. During the tour, the group pilot will
leave the subregion of one level-i cluster head to another one with probability p; and stay
with probability 1 - p;. The probability p; is determined by an exponential probability

e=¢2" where C'is a positive constant. A higher value C' means higher locality. Also,

the leaving probability is e~2¢

when the group pilot moves from the location of one
low-end sensor to another one.

In the following experiments, we generate 30 objects and one group pilot for objects
to follow. Then, the group pilot visits four different positions which are randomly se-
lected from four level-1 subregions. The variation period is set to 3 and the maximum
variation radius is set to 4. The OTSN works for 10000 time units. For HTM, in the
initial 3000 time units, the moving records of objects are collected for mining object
moving patterns by cluster heads. After 3000 time units, the cluster heads will turn to
be in prediction phase. For GBOT, in the beginning of prediction phase, the initializa-
tion step will be executed with the dissimilarity threshold J, = 2.5, the spatial proximity
T, = 2, dissimilarity d,,¢;, and metric T-for representative tree selection. During the pre-

diction phase, the maintenance algorithm will be periodically executed every 500 time

units.

7.2 Performance of GBOT

In this section, we study compare the performance of GBOT and HTM in terms of stor-
age cost and prediction accuracy. We implement two clustering schemes of GBOT, re-
active grouping (RG) and proactive grouping (PG). Two performance metrics are used

to evaluate the performance of HTM, RG and PG. The first performance metric, average

Total Number of Tree Nodes
Number of Objects

number of tree nodes which is defined as , 1s used to measure the
average storage cost for each objects. Total number of tree nodes represents the total

number of nodes in all emission trees. The second performance metric, called hit rate of
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Total Number of Correct Prediction
Total Number of Prediction

prediction = , 1s used to measure the prediction accuracy
for all cluster heads. In prediction phase, we record the total number of prediction and

the total number of correct prediction to calculate the hit rate of prediction.

7.2.1 Comparison of HTM, RG and PG

The storage cost of HTM, RG and PG are shown in Figure 7.1(a). At the 3000th time
unit, the average number of tree nodes of RG and PG largely decrease because cluster
heads cluster objects and preserve only an emission tree for each group. Obviously, RG
and PG have much smaller average number of tree nodes than HTM does. As mentioned
before, the storage cost at cluster heads will increase gradually with time. We also
observe that the average number of tree nodes of HTM increases faster than RG and PG
with time. Thus, GBOT can reduce the storage cost at each cluster head effectively. In
addition, PG reduces more storage'cost than RG due to grouping both active and inactive
objects. It can be also verified that RG reduces the storage cost by degrees from 3000 to
5000 time units.

In Figure 7.1(b), we can see that RG and PG have slightly lower hit rate of predic-
tion than HTM. As expected, we reduce the storage cost at cluster heads at the risk of
lowering prediction accuracy. However, in the worst case, the prediction rate of HTM is
only 5% higher than PG and RG. With time passing by, the prediction rates of RG and
PG converge to 0.84 which is about 0.7% lower than HTM. In sum, a plenty of storage

cost reduction outweighs the slight loss of prediction accuracy.

7.2.2 Dissimilarity 0,,5; & Dissimilarity ;¢

In this experiment, we show the influence of dissimilarity d,;5; and d7s on performance.
To compare fairly dissimilarity d,,¢7, with dissimilarity d,,51, we set the threshold ¢; for
Opsr to 2.5 and the threshold o, for 6. to 0.3. Let dissimilarity d,,57, and 55 have

almost the same storage cost, we can see the impact on the hit rate of prediction in Fig-
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Figure 7.1: Comparison of HTM, RG and PG.
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ure 7.2(b). As expected, dissimilarity d,,¢;, outperforms dissimilarity ¢ in prediction
accuracy. For dissimilarity 07, it only achieves about 76% hit rate of prediction. By
thinking of the characteristics of an emission tree, dissimilarity d,,5; can measure how
two emission tree are dissimilar more precisely than dissimilarity d;¢. Thus, dissimilar-

ity 05757 improves the hit rate of prediction to about 83%.

7.2.3 The Impact of Maintenance in GBOT

In this experiment, we examine the effectiveness of maintenance algorithm when the
moving behaviors of intra-group and inter-group vary with time. By former experiment
settings, we show the impact of maintenance algorithm in Figure 7.3. Clearly, GBOT
(RG and PG) with maintenance reduces more storage cost than that without maintenance
due to the inter-group merge operation. Additionally, the hit rate of prediction is almost
the same whether the maintenance:algorithm is exécuted or not. In this case, the moving
behaviors of groups become more similar with time-and consequently the inter-group
merge operations are executed-to furtherreduce the-storage cost. Note that the intra-
group split operation is scarcely €xecuted in this.case.

To show the effect of the intra-group split operation, we allow objects to alter their
moving behaviors during the simulation time. Assuming that 30 objects move by follow-
ing the group pilot during the simulation time [0,6000]. After 6000 time units, instead
of following the group pilot, 15 objects are picked to randomly visit four specified lo-
cations. The spatial outlier would be split from its group if it has been detected for
consecutive 3 times. Figure 7.4 shows the experimental results of this case. In Figure
7.4(a), GBOT with maintenance causes more storage cost after 6000 time units. This is
because the intra-group split operation is executed when objects have become dissimi-
lar in moving behaviors. We can observe that GBOT without maintenance worsens the
prediction accuracy after 6000 time units. However, GBOT with maintenance can pre-

serve the prediction accuracy because the spatial outliers are split from groups to avoid
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wrong prediction. Therefore, with maintenance, GBOT can further reduce the storage
cost and preserve the prediction accuracy if the moving behaviors of objects vary beyond

expectation.

7.3 Sensitivity Analysis

In this section, we analyze the impact of varying parameters of GBOT. In order to em-

phasize the storage cost reduction of GBOT, we introduce the reduction rate, which is

Total Number of Tree Nodesgry — Total Number of Tree Nodesgpor
defined as Total Number of Tree NodesgT g

, to make clear the
storage cost reduction of different parameter settings. At the meantime, we also discuss

hit rate of prediction effected by different parameter settings.

7.3.1 Number of Objects

In this experiment, we show the impact'of number of objects in Figure 7.5. As seen
in Figure 7.5(a), the reduction rate increases while the number of objects increases. In
other words, GBOT can achieve: more storage cost reduction when more objects are
involved in object tracking. Thus, the performance of GBOT exhibits good scalability.
Note that the variations in number of objects do not influence the hit rate of prediction.
The reason is that the dissimilarity threshold d; and the spatial proximity threshold 7,

generally dominate the prediction accuracy.

7.3.2 Dissimilarity Threshold & Spatial Proximity Threshold

In this experiment, we examine the impact of the dissimilarity threshold ¢; for dissim-
ilarity d);5; and the spatial proximity threshold 7;. In Figure 7.6, the reduction rate
increases when the dissimilarity threshold ¢; or the spatial proximity threshold 7; is en-
larged. With larger dissimilarity threshold ¢; or the spatial proximity threshold 74, an

objet is more likely to form a group with other objects Thus, more storage cost of emis-
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sion trees can be reduced. Another observation is that the reduction rate increases no
more when the dissimilarity threshold o, is more than 6. It is intuitive that the dissim-
ilarities between emission trees are all less than 6 in this case. Also, we can observe
that the hit rate of prediction decreases when the dissimilarity threshold o, or the spatial

proximity threshold 7; is enlarged in Figure 7.7.

7.3.3 Variation Period & Maximum Variation Radius

In this experiment, the impact of variation period and maximum variation radius is inves-
tigated. Figure 7.8 shows the experimental results of variation period. As seen in Figure
7.8(a), the reduction rate increases when variation period is lengthened. The reason is
that the gregarious property is more obvious when the objects less often move away from
the group pilot. Consequently, more objects are able to form a group and more storage
cost at cluster heads could be reduced due to gregarious property. In Figure 7.8(b), we
can see that varying variation period does not affect the hit rate of prediction since the hit
rate of prediction is primarily dominatedby the dissimilarity threshold ¢; and the spatial
proximity threshold ;.

Figure 7.9 shows the experimental results of maximum variation radius. Figure
7.9(a) shows that the reduction rate decreases consistently when max variation radius
is enlarged. The reason is that the gregarious property become less obvious when ob-
jects move farther away from the group pilot. Consequently, fewer objects can form a
group and less storage cost of emission trees can be reduced due to gregarious property.
Note that the hit rate of prediction also decreases when max variation radius is enlarged.
The objects are more likely to cross the boundary of the subregion because max varia-
tion radius is enlarged. Therefore, cluster heads make more wrong predictions and thus

lowers the prediction accuracy.
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7.3.4 Representative Tree Selection

In this experiment, we evaluate the performance of two metrics of representative tree
selection and vary variable p between [0,1] to show the flexibility for applications. In
Figure 7.10, the comparison between representative tree selection metrics and the effec-
tiveness of variable p are presented. As seen, the reduction rate increases as variablep
increases. If we only favor the storage cost of emission tree and set variable p to be 1,
we can obtain the reduction rate which is higher than others. Inversely, we can obtain
the hit rate of prediction which is higher than others if the variable p is set to be 0. For
metric 1, its performance is very close to the performance of metric 2 with p = 0.5. It
supports that metric 2 really enjoy the flexibility between reduction rate and hit rate of

prediction.
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Chapter 8

Conclusion

In this paper, we consider how to reduce the huge storage cost resulted from storing emis-
sion trees. For the sake of saving storage, we propose the framework GBOT to perform
group-based object tracking for HTM. There are mainly three steps to be executed. To
clustering objects with similar moving behaviors, we first define the dissimilarity among
emission trees to distinguish the moving behaviors of objects. Based on such dissimi-
larity measures, we formulate two clustering schemes, reactive grouping and proactive
grouping, to group objects reactively or proactively. In order to select the representative
emission tree for a group, two metrics are provided to further reduce the storage cost and
increase the prediction accuracy. Then, we develop a group VMM model to adequately
train the representative emission trees. In addition, a maintenance algorithm is proposed
to maintain the quality of groups. We also conduct several experiments to evaluate the
performance of GBOT. The experimental results show GBOT not only effectively reduce

the storage cost but preserve the prediction accuracy.
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