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以時空資料探勘技術找出都會區交通路網瓶頸點的

模式 
 

 

學生: 陳曉涵                           指導教授: 曾憲雄 博士 

 

交通大學資訊科學與工程研究所 

 

摘要 

 

 因為都市化及交通工具的普及，交通擁塞情形也越來越嚴重，尤其是都

會區，許多研究因而提出來改善交通擁塞的問題，其中找到交通瓶頸點對於

改善交通擁塞將會是非常有效且重要的議題。因為高速公路路網比都會區路

網相對簡單的多且高速公路的瓶頸點大部分就位於閘道附近，所以大多數交

通瓶頸點的相關研究都在高速公路。又因為都會區路網的瓶頸點是會隨著時

間而改變的，所以找到都會區交通瓶頸點變成是一項非常困難但卻非常重要

的任務。所以我們提出了一個時空交通瓶頸點探勘模組(Spatiotemporal 

Traffic Bottleneck Mining Model, STBM)利用資料探勘方式加上我們提出

的三個瓶頸點特徵來找到都會區路網瓶頸點。我們的實驗設計在台北都會

區，利用即時的計程車派遣系統(Taxi Dispatch System)來收集交通資訊，

收集時間為 2006/02 到 2007/03。從實驗結果可以看出，STBM 的帄均準確率

確實比傳統統計法的略高，幾乎有高達近八成。而且分布結果相當帄均也比

較穩定。未來我們將會整合現有的 STBM 加上歷史的交通資訊以及即時交通資

訊，發展一個新的交通瓶頸點及時預測系統，用以提供用路人或交通管理者

更多及時有效的資訊。 

 

關鍵字: 智慧型運輸系統, 定位資訊系統, 計程車派遣系統, 交通瓶頸點, 

時空資料探勘 
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A Spatiotemporal Traffic Bottleneck Mining Model 

for Discovering Bottlenecks in Urban Network 
 

 

Student: Hsiao-Han Chen     Advisor: Dr. Shian-Shyong Tseng 

 

Department of Computer Science 

National Chiao Tung University 

 

Abstract 

 

 The occurrence of traffic congestion has been increasing around world-wide 

as the result of the increasing of motorization, urbanization, population growth 

and changes in population density, especially in Urban Network; therefore, many 

researches are proposed to improve the traffic congestion; moreover, finding the 

traffic bottlenecks is the most important thing to improve the traffic congestion. 

As we know, freeway bottlenecks are always fixed and well known as gateway 

but the urban network bottlenecks may vary with spatial and temporal 

environment; therefore, finding out urban network bottleneck becomes a very 

difficult but very important mission. We propose a Spatiotemporal Traffic 

Bottleneck Mining Model (STBM) in this thesis to discover the urban network 

bottlenecks based on three heuristics we developed. 

 In this thesis, STBM prototype model is implemented based on a real time 

LBS-based application to find out the Taipei urban network bottlenecks. 

Experimental results show that the average accuracy in workday of STBM is up to 

80% and it‟s better than the traditional statistic model. In the near future, the 

STBM model could be implemented as a real time bottleneck detection and 

prediction system, which integrates the historical traffic patterns and real-time 

traffic information. 

 

 

Keyword:  Intelligent Transportation System, Location Based Service, Traffic 

Bottleneck, Spatiotemporal data mining  
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Chapter 1 

Introduction 

 

 

 The occurrence of traffic congestion has been increasing around world-wide 

as the result of the increasing of motorization, urbanization, population growth 

and changes in population density, especially in Urban Network. Congestion 

reduced the utilization of the transportation infrastructure and increased travel 

time, air pollution and fuel consumption. Getting worse in traffic congestion is the 

main reason for developing the Intelligent Transportation System (ITS) to deal 

with such problem. The purpose and the essence of developing it are to utilize 

advanced information and communication techniques, traffic control and 

information to achieve a convenient, economic benefits and safety traffic 

environment. In ITS area, there are nine research topics. For instance, the topic, 

Advanced Traffic Management System (ATMS), plays a kernel position in traffic 

monitor and management for making the global traffic network more smooth and 

improving global performance of traffic network; another topic is Advanced 

Traveler Information System (ATIS) which has the objective to deliver reliable and 

useful real-time traffic information to travelers, whereas the topic in Commercial 

Vehicle Operation (CVO) is about cost efficiency on private company and making 

public transportation more convenient for users, likes taxi, for instance.  

The traffic network consists of a set of network objects, each of which is 

either a link or an intersection, and congestion occurs when the traffic flow cannot 
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be serviced by the objects. Moreover if an object`s traffic demand is always more 

than its capacity, it is thought as a traffic bottleneck. Our research focuses on 

ATMS which consists of data collection from various kinds of traffic data sources 

(sensors, cameras, probing vehicles, etc.), data cleaning and analyzing in order to 

discover the bottlenecks and then take actions to solve the bottlenecks, e.g., 

changeable message sign (CMS), electronic toll collection (ETC) [8].  

Finding out bottlenecks is very difficult because the relation between traffic 

demand and capacity of each object is hard to retrieve and the traffic demand is 

never known in advance. Therefore, this thesis uses the traffic information about 

object speed limitation and the average driving speed on the object to 

approximately formulate the relation between traffic demand and capacity. It‟s 

because the speed limitation and average driving speed can be gotten from 

location-based service and geographical information system. 

 The capacity and speed limitation are constants but the traffic demand and 

average driving speed always change with the different spatial or temporal 

condition. Here, traffic demand correlates closely with the average driving speed: 

if the traffic demand is increased, the average driving speed will be reduced; 

therefore, the ratio of traffic demand divided by capacity is positively related to 

the ratio of speed limitation divided by the average of driving speed.  

 The urban traffic network is more complex than freeway or simple arterial 

network so locating urban network bottlenecks is more difficult than locating 

freeway bottlenecks, since the freeway bottlenecks are always fixed and well 

known as gateway. Besides, the urban bottlenecks may vary with spatial or 
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temporal environment, so finding out bottlenecks has become a very complex and 

difficult mission to accomplish.  

 In this thesis, we propose a more cost-effective traffic information collection 

method using location based service (LBS), which is generally described as a 

mobile information service to provide useful location aware information to users. 

In this method, we regard the vehicles of LBS-based applications as the traffic 

status probing vehicles, where a vehicle of the LBS-based application is equipped 

with an OBU (On-Board Unit), which has GPS (Global Positioning System) 

positioning module and GPRS communication module. OBU collects vehicle 

position, traveling direction, and speed from the GPS module and uplinks the 

vehicle status to the backend system through GPRS module. The traffic area in 

which various traffic information is collected using the LBS-based probing 

vehicles is larger than that using traditional site-based or sensor-based method. 

 We propose a Spatiotemporal Traffic Bottleneck Mining Model (STBM) in 

this thesis to discover the traffic bottlenecks in Taipei urban network. The raw 

data collected from LBS application are used to find out the traffic congestion 

patterns, and then three our bottleneck heuristics are proposed to interpret these 

patterns and the reasons of congestion and finally the spatiotemporal bottlenecks 

can be obtained. These three heuristics in STBM are compared with the traditional 

statistic model in our experiments; the experimental results show the STBM has 

higher accuracy than statistic model since STBM not only observes the congestion 

but also discovers the traffic congestion patterns, whereas the statistic can only get 

the congestion objects.  
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The rest of this thesis is organized as follows. Chapter 2 shows the related 

works of traffic probing tools and traffic bottleneck issues. In Chapter 3, we give 

the introduction of LBS, and the traffic information derived from LBS. Chapter 4 

describes our Spatiotemporal Traffic Bottleneck Mining model (STBM) and 

introduces the three heuristics in more detail. In Chapter 5, we implement the 

STBM and apply the model into finding traffic bottlenecks in Taipei urban 

network, where the taxi dispatching system (TDS) [7] is utilized as our LBS data 

source. Three modules in STBM and the statistic model are evaluated and 

compared in this chapter. Finally, conclusions and future works are given in 

Chapter 6. 
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Chapter 2 

Related Works 

 

 

Discovering traffic bottleneck is a hot research topic in ITS domain, but only 

freeway bottleneck issue has been widely discussed. In this chapter, we describe 

the categories of traffic data collecting tools and related works of traffic 

bottleneck. 

 

2.1 Traffic Probing Tools  

 

 The probing tools can be used for measuring traffic data in two ways [9]: (1) 

logging the passage of vehicles from selected points along a road section or route 

is regarded as site-based, or (2) using moving observation platforms traveling in 

the traffic stream itself and recording information about their progress is regarded 

as vehicle-based. The site-based mode includes registration plate matching, 

remote or indirect tracking, input output methods, and so on. The stationary 

observer techniques include loop detectors, transponders, radio beacons, video 

surveillance, etc. In the past, many ITS studies and transportation agencies used 

the traffic data from dual-loop detectors which are readily available in many 

locations of freeways and urban roadways [9]. Dual-loop detector systems are 

capable of archiving with traffic count (the number of vehicles that pass over the 
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detector in that period of time), velocity, and occupancy (the fraction of time that 

vehicles are detected). These records can be used for further traffic statistic 

research. On the other hand, the development and application of Radio Frequency 

Identification (RFID) might be extended to the real-time goods tracking in freight 

transport and the Travel Time Prediction (TTP) issue in the near future. Besides, 

the advanced registration plate matching techniques consist of collecting vehicles 

license plate and arrival times at various checkpoints, matching the license plates 

between consecutive checkpoints, and computing travel times from the difference 

between arrival times. For example, Automatic Vehicle Identification (AVI) 

method can recognize and transform the license plate into digital data for later 

research. In addition, the cellular telephone system is one of the potential 

techniques for providing travel time. 

The moving observer mode (vehicle-based) includeing the floating car, 

volunteer driver and probe vehicle methods are developed incrementally by 

collecting traffic dataset in recent years. The micro computer instrumentations 

(such as OBU) are designed and installed on vehicles to record vehicle speed, 

travel times, directions or distance it passed. Additionally, mobile data such as 

GPS is useful, and the GPS-GIS combination can contribute the efficiency in both 

data collection and results analysis [12], especially for volunteer driver and fleets 

of probe vehicles. 

However, there is no traffic information collection methodology which can 

solve the above problems. For example, site-based TTP methods have the spatial 

coverage problem because the sensors or AVI devices are fixed and limited to 
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obtain the real-time traffic data, and vehicle-based TTP methods have the cost and 

temporal coverage problems because the cost of probing vehicles is very high if a 

dedicated fleet of probing vehicle is maintained. In this thesis, we propose an 

LBS-based method which is vehicle-based. And in the experiment, taxi fleets 

equipped with LBS to record the real-time traffic data are regarded as our probing 

tools. 

 

2.2 Traffic Bottleneck 

 

The traffic bottleneck is a novel important research topic in Advanced Traffic 

Management System (ATMS), many researches aimed to solve the traffic 

congestion problem. In the literature, many researches aimed to find out the traffic 

patterns [3][11][1] or traffic [6] state in urban network, and some researches 

worked on predicting the travel time to provide drivers about route 

suggestion[2][11]. B.S. Kerner et al. [6] proposed FCD (Floating Car Data) 

method for a reporting behavior at optimal costs of single vehicles in road 

networks. This method can be used to recognize traffic state (e.g., congested or 

not) by FCD vehicles in urban network, but it still cannot identify the locations of 

the bottlenecks.  

There are very few papers discussing the bottlenecks in urban network. Most 

of the papers related to bottlenecks are located in highway because bottlenecks on 

the freeway are usually fixed and located near around the gateway and there are 

no intersections or complicated panels and traffic signals. Since the highway 
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bottleneck is usually well known and can not be easily changed in the short period 

of time, it is not necessary to discuss where the bottleneck is located; most 

researches aim to control the traffic on bottleneck. B.S. Kerner, et al. [5] proposed 

an ANCONA approach which is trying to control the spatiotemporal congested 

traffic patterns at highway bottlenecks by keeping congestion conditions at the 

minimum possible level at the bottleneck. 

On the other hand, locating traffic bottlenecks in the urban network is a 

totally different story. The task of analyzing traffic patterns in urban network and 

finding out traffic bottlenecks is a complex and difficult mission; furthermore the 

urban network bottlenecks may vary with spatial or temporal environment, and 

there are many traffics as well as non-traffic factors have to be concerned in urban 

network, such as traffic signal, social event, etc. 

It is really a complicated and difficult task to find out the urban network 

bottlenecks. Therefore we propose a spatiotemporal mining model finding out 

bottlenecks in urban network. 
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Chapter 3 

Traffic Information Derived From LBS 

 

 

In this chapter, we introduce Location-Based Service (LBS) system which 

uses the commercial taxi fleet system in Taipei Metropolitan and the traffic 

information derived from LBS will be the input data source of the method in this 

thesis. 

 

3.1 LBS Introduction 

 

LBS, which provides appropriate information service for the users based on 

users‟ locations, has become the main stream of mobile commerce applications 

and telematics services. The main technologies in LBS are positioning and mobile 

communication. Front end device such as On-Board Unit (OBU) or smart phone 

which exchanges information with LBS backend system through mobile 

communication network for retrieving appropriate location-based information. 

There are many LBS-based applications had been proposed, such as electronic 

toll-collection by vehicle-positioning system (VPS) [8], telematics service, taxi 

dispatching system [7], and commercial fleet management system. 
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As shown in Figure 1, the system architecture of the LBS system includes: 

OBU, communication system (cellular network), backend systems (M-Server and 

E-Server). OBU, a small computer system installed on the vehicle, has computing, 

positioning, communication and human interface modules. OBU locates the 

vehicle through receiving GPS satellites signal by positioning module, sends and 

receives the messages to and from the backend system through the communication 

module, and interacts with user via the human interface module. Some other tools 

such as cell or gyro positioning technologies can be the assisted positioning tool 

when the GPS signal is not available. The communication system is the link 

between OBU and backend system, which can be any wireless communication 

mechanism, such as GSM/GPRS/UMTS cellular network, 802.11 wireless 

network, etc. GPRS cellular network is the most popular communication system 

in commercialized system, so far. The backend system consists of two parts: 

M-server and E-server. M-server is responsible for transmitting bi-direction 

messages and serves as a buffer of uplink and downlink packets between OBUs 

and backend system over the mobile network. E-Server, consisting of GIS engine, 

database and application server, is implemented according to the business rules in 

LBS applications and responsible for the information processes of all the business 

workflow. 
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OBU Cellular Network M-Server E-Server

GPRS module

GPR receiver

GPRS

WCDMA

GIS Engine

伺服器

Uplink / downlink

relay

Database

伺服器

APP server

 

Figure 1 Components of LBS application 

 

LBS-based applications accomplish the business processes by exchanging 

information between OBUs and the backend systems. The information is 

transmitted by the uplink packets (OBUs send to backend) and downlink packets 

(backend sends to OBUs) over the mobile network. Such interactions among 

OBUs and the backend system are the basis of the commercial fleet management 

system. With regarding to the fleet management system as an example, OBU 

communicates and exchanges information with the dispatching center through the 

mobile network, which reports the position, direction, speed, and status of the 

vehicle according to the predefined rules. Dispatching center dispatches and 

manages the fleet by sending command to the OBUs according to business 

requirements and the real time positions and status of the fleet. 

Taxi dispatching system (TDS), one of the most complicated applications in 

LBS applications, consists of several participants: customers (passengers), taxi 

drivers, operators and administrators. OBU automatically registers to the backend 

system when it is switched on, and turns into „available‟ state. Taxi drivers can 

change the state of the taxi or interact with the backend system by pressing the 
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buttons on OBU. There are several buttons designed for the driver to interact with 

the backend system and operator, including: state changes (available/occupied/ 

scheduled), polling reply (Y/N/minutes), emergency and message request. 

Customer requests a taxi via telephone call or Internet web site, operators key-in 

the requirements and feature of customer and TDS automatically searches the 

available taxi candidates nearby the location of customer, probing the candidates 

that fit in with the requirements. The dispatched (received final dispatch message) 

taxi driver can then response the probing message from TDS, and move on to the 

corresponding customer‟s location, where administrators are responsible for fleet 

dispatching, system monitoring, event and exception handling. The OBU 

automatically interacts with the backend system via uplink packets through the 

M-server over GPRS cellular network, reporting the status and position of the 

taxi.  

The backend system keeps the latest statuses and positions of all the taxis by 

collecting all the uplink packets of OBUs. In TDS, there are three kinds of uplink 

report packet (referred as URP): periodically report (in fixed time interval), cross 

boundary report (on taxi driving through the geographical boundary), and event 

report (on status changing or event occurring). By decoding these uplink rules, 

spatial mobile network information can be derived from communication raw data 

in LBS-based applications. 
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3.2 Traffic information derived from LBS 

 

The model proposed in this thesis utilizes the raw data of LBS-based 

application, regards the vehicles in the LBS-based application as the traffic 

probing vehicle. It is cost effective comparing to the traditional vehicle-based 

method. Meanwhile, the size of LBS fleet has the temporal and spatial coverage 

advantages. Traffic information can be dynamically gathered in the LBS fleet 

operation area 24 hours per day in real time.  

The vehicles of LBS are regarded as the traffic status probing vehicles of the 

urban network. A vehicle in the LBS application is equipped with an OBU, which 

has GPS (Global Positioning System) positioning module and wireless data 

communication module such as GPRS/UMTS. OBU collects vehicle position, 

traveling direction, and speed from the GPS module and uplinks the vehicle status 

to the backend system through communication module.  

    ),,,(  ),,,,,( DVTLTISSDVtYXU si

Gis

p      (3.1) 

 

 Each uplink packet (Up) representing the current position and traveling status 

of that vehicle, as shown in equation (3.1), is sent from the probing vehicle to the 

backend system. The information in Up includes: position coordinate(X, Y), 

traveling speed (V), direction (D), timestamp (t) and status (S). By combining 

with GIS, coordinate of a vehicle can be transformed to nearest address by 

interpolating the GPS position with road network database [11]. Thus traffic 

information can be gathered by transforming the uplink packet into traffic 
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information spot (TIS) of the link where the vehicle located (Li). A TIS (Li,Ts,V,D) 

is a sample of traffic information at two dimensions : spatial dimension (Li) and 

temporal dimension (Ts), which represents the traveling speed (V) and direction 

(D) of the link at these two spatiotemporal indices. Then, the real time traffic 

information of the urban network can be derived from LBS by aggregating all the 

collected TISs at the current time interval, for example, quarter or half an hour. 
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Chapter 4 

Spatiotemporal Bottleneck Mining Models 

 

 

The architecture of spatiotemporal bottleneck mining model (STBM) 

proposed in this thesis is shown in Figure 2. First of all, the raw data of LBS is 

used to extract the meaningful traffic congestion patterns, and then our three 

heuristics are applied to give reasonable interpretation for the congestion patterns. 

We describe three kinds of heuristics to interpret extracted traffic congestion 

patterns as follows: (1) congestion-propagate heuristic (CPH): if a bottleneck 

congests, as a consequent, it may result in more congestions to other objects, (2) 

congestion-converge heuristic (CCH): if a bottleneck congests, it must be caused 

by some other prior congested objects, (3) congestion-drop heuristic (CDH): if the 

congested status of an object decreases dramatically or even disappears afterwards, 

then it is treated as a bottleneck. 

The whole STBM model is divided into three phases: traffic information 

generation, traffic congestion patterns and spatiotemporal bottleneck mining, as 

illustrated in Figure 2. Traffic information database is generated from 

Location-Based Service (LBS) applications and Geographical Information System 

(GIS) urban network database in first phase. In Phase II, the traffic congestion 

patterns are extracted from the traffic information database obtained from Phase I, 

and there are two kinds of traffic congestion patterns: congestion consequent 

patterns (CCP), congestion drop downstream patterns (CDDP). Finally, the three 
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heuristics are used to interpret the traffic congestion patterns which will be used to 

discover the spatiotemporal bottlenecks in Phase III. The detailed discussion about 

the whole model is described in the following sections.  

 

GIS

LBS

Traffic Information

Generation

Phase I 

Traffic Congestion 

Patterns Recognition

Phase II Phase III

Congestion-Drop

Heuristic

Congestion-Converge 

Heutistic

Congestion-Propagation 

Heuristic

Spatiotemporal 

Bottleneck

 

 

Figure 2 Architecture of STBM 

 

 

4.1 Phase I: Traffic Information Generation 

 

 

Traffic information generation is the first phase in STBM. Raw data is 

collected from LBS-based applications (discussed in 3.1) and transformed into 

traffic information by combining the road network database in the GIS engine. 

Traffic network is composed of a set of connected network objects, where an 

object is either a link or an intersection. As shown in Figure 3, the white real line 

means links, and the red spot means the intersections in the network. 
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N

 

Figure 3 An example of traffic network which is composed of a set of links and intersections 

 

Taxi dispatching system (TDS) [7], which is one of the most complicated 

LBS-based applications, is selected as the LBS data source in this thesis. As 

shown in Figure 4, there are two modules in Phase I: data cleansing module and 

traffic information generation module. 

 

Phase I : Traffic info. Generation

GIS

LBS

Journey Sets

Data Collection & 

Cleansing 

Data Transformation

TIDB

Traffic information 

generation module 

Data collecting & 

cleansing module

NOIDB
 

Figure 4 The architecture of traffic information generation  
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In data collection and cleansing module, a batch process collects raw data 

from TDS system periodically (e.g., every day), and also collects the 

communication logs between the front-end devices (i.e., OBU) in the vehicles (i.e., 

taxis here) and backend system in the TDS system. The extracted vehicle journey 

information of each vehicle can then be transformed into vehicle journeys 

information.  

Traffic information generation module extracts „meaningful‟ taxi journey 

information by grouping and sorting the uplink records of each taxi and 

transforms the data into traffic spots by combining traffic network information 

from GIS. Thus, a journey consists of a set of meaningful continuous traffic spots 

reported by the same vehicle starting from origination to the destination. Here 

“meaningful” journey means the taxi is in the „dispatched‟ or „occupied‟ states. In 

other words, the taxi must be in „driving‟ state, and a journey is a set of 

continuous traffic spots of the same vehicle. The state transition diagram of OBU 

in TDS is shown in Figure 5. 
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Figure 5 State Transition Diagram of OBU in Taxi Dispatching System 

 

 

The taxi journey consists of journey identification, journey sequence, 

timestamp, address, speed, vehicle direction, and state of a taxi. It can be 

formulated as a vector <id, seq, ts, addr, v, d, s>, where the information of address, 

speed, and direction provides good data sources for mining traffic status of urban 

network. Journey id and sequence provide information for OD (origination and 

destination) analysis, where seq=1 indicates the origination and the last seq 

number of the same journey id represents the journey destination. Table 1 gives an 

example to illustrate the taxi journey. 
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Table 1 An example of taxi journey reported from probing vehicles 

id seq ts addr v d s 
J01 1 06:42 台北市信義路一段 5 號 38 113 O 

J01 2 06:43 台北市信義路一段 21 號 45 172 O 

J02 1 18:34 台北市敦化南路二段 105 號 20 86 O 

J02 2 18:38 台北市敦化南路一段 304 號 30 68 O 

 

After data collecting process, noise data (e.g., invalid values of speed, 

direction, or GPS state) need to be removed from the collection date, so we 

classify the useless data into three categories which are listed as follows: 

 

1. Missing Values   

There are some links of which probing vehicles do not record the traffic 

status information may due to GPRS communication or GPS errors. GPS errors 

might occur when a probing vehicle passes under an infrastructure such as tunnel 

or the vicinity of elevated structures (the so called urban canon). GPRS 

communication might be done in similar way or any unknown events to cause 

missing values. 

2. Useless Data 

If a probing vehicle`s speed is 0 for a long time and its status is ”driving”, we 

assume the vehicle is stopping in the ranking station and waiting for servicing 

because the LBS based probing vehicles are commercial taxi fleets and have “taxi 

behaviors” on their operating. Therefore in the content of URP, if a probing 

vehicle`s speed is 0 in the same position for a long time, this record is thought as a 

useless data. 
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3. Redundant 

Some reports of URP show the same messages from the same vehicle. This is 

because there may be several events occurred simultaneously, such as periodically 

report event after the cross boundary event. So, the reports of message which are 

counted twice need to be pruned. 

 

Data cleansing module is used to filter out the useless or incomplete data 

described above to facilitate the further analysis. Traffic information generation 

module then extracts useful taxi journey information and transforms it into traffic 

information database (TIDB) which contains the useful and meaningful traffic 

journey information by combining traffic network information from GIS. This can 

be done by transforming the report coordinates of each vehicle report point to the 

real traffic network address helped by the coordinate to address transforming 

function in GIS engine [10]. Each record in TIDB includes eight fields, journey 

identification, journey sequence, date, timeslot, dir, speed, link identification, and 

the section number of link, it can be formulated as a vector <id, seq, date, ts, d, v, 

link, sec>, where the timeslot is normalized, e.g., T1 to T96 which splits every 15 

minutes into a timeslot, the link indicates the corresponding link identification, 

and sec means the section number of the location. Table 2 gives an example of 

TIDB. 
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Table 2 An example of TIDB 

Id seq Date ts d v link Sec 
J01 1 06/12/15 T23 E 38 02B 3 

J01 2 06/12/15 T23 E 45 02B 3 

J02 1 07/01/01 T75 N 20 12A 3 

J02 2 07/01/01 T75 N 30 12A 2 

 

 

The traffic information of the traffic network objects can be obtained by an 

aggregation on the TIDB generated in the first phase. Each record in TIDB (i.e., a 

traffic information spot (TIS)) represents a piece of traffic information about 

where, when and how the vehicle is in the spatial and temporal condition.  

 Furthermore, we also construct network objects information database 

(NOIDB) which records the traffic status about all objects in the traffic network in 

each timeslot, there are six attributes in NOIDB: link, sec, dir, ts, limit, speed; 

limit indicates the speed limitation of this link, and speed are average driving 

speed calculated from TIDB of the corresponding link, sec, dir, and timeslot, and 

Table 3 gives an example of NOIDB. 

 

Table 3 An example of NOIDB 

link sec dir ts limit speed 
01A 1 N T1 60 30 

01A 1 S T1 60 55 

10B 1 E T3 50 36 

07B 1 W T4 80 45 

 

 

 



 

 

23 

4.2 Phase II: Traffic Congestion Patterns Mining 

 

Figure 6 represents the architecture of Phase II in STBM, and there are two 

modules for discovering the congestion patterns which are congestion consequent 

patterns (CCP) mining and congestion drop downstream patterns (CDDP) mining 

from the traffic information derived from Phase I. 
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Figure 6 The architecture of Phase II: traffic congestion patterns mining 
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4.2.1 Congestion Consequent Patterns Mining 

 

Figure 7 represents the architecture of congestion sequential patterns mining 

module, and including three processes: (1) spatiotemporal congested object 

(STCO) mining, (2) spatiotemporal heuristic clustering Algorithm (SHC) to 

cluster a set of STCOs into a spatiotemporal congestion area (STCA), and (3) 

discovering the consequent STCAs for each STCA as the congestion consequent 

patterns. 

Congestion Consequent Patterns Mining
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TIDB

Spatial Heuristic
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Figure 7 The architecture of congestion consequent patterns mining 

  

As we know, it is very difficult to represent the traffic status of each network 

object because of the different road categories and different time. For example, 

traffic status of average speed 35 km/hr on the workday peak hours for street may 

indicate that the traffic status on the street is „free‟, but on the expressway the 

same condition indicates the „congestion‟ state.  
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As mentioned above, a normalized formulation about the traffic status of a 

network object must be given. Traffic index factor (θ) is defined in order to 

normalize the traffic status, as shown in equation (4.1), where i is for the object 

index and
iV , Si represents the average speed and speed limit of the object i 

respectively due to the different road categories. The greater value of θ means the 

more serious congestion level of the object. θ equals one means the object is in a 

serious congestion status and θ near around zero means the object is in a free flow 

status. The traffic status of a network object Oi is formulated as a four elements 

vector Oi=<Sid, Tid, d, θ>, elements in the vector represent spatial id, temporal id, 

direction, and traffic index factor.  

Si

Vi
 - 1                                (4.1) 

By normalizing the traffic index factor (θ) of all the objects, we classify the 

traffic status of a network object by five classes (i.e., 1~5), where 1 indicates free 

flow state, and 5 indicates strongly congested state. So, the network object vector 

can be modified as Oi=<Sid, Tid, d, θ, c>, where c is the traffic status class (1~5). 

By aggregating the TIS, each network object in the traffic network has its 

own θ
i
, a threshold of θ called Congestion-Bound (CB) is used to determine 

whether an object is in congested status or not, if θ of network object is bigger 

than CB then the object is thought as a spatiotemporal congested object (STCO).  

An example of network object attribute and STCO determination is listed in Table 

4, and CB is set to 0.75. In this example, only network object O
2 

is justified as 

STCO because its θ value is greater than or equal to the threshold (0.75).  
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Table 4 An example of network object status, CB=0.75 

Object 
Speed limitation 

(S) 

Average speed 

(V) 
Time θ STCO 

O1 50 40 07:15 0.2 No 

O2 40 10 07:40 0.75 Yes 

O3 50 20 09:25 0.6 No 

O4 50 50 10:00 0 No 

 

 

 All traffic spots by spatial and temporal domain can be aggregated to 

represent the traffic status of urban network, where spatial domain groups the 

traffic spots by network objects, and temporal domain groups the traffic spots by 

time periods, for example, 15 minutes. Therefore it is easy to snapshoot the traffic 

status of the urban network by spatiotemporal aggregating all the traffic spots, and 

the traffic status of urban network can be easily represented using the traffic status 

snapshots. For example, the traffic status of urban network in morning peak hour 

(7~9 AM) includes eight 15-minutes network snapshots. 

Since the congested objects are found, we have to decide which congested 

objects might be the bottleneck. Only mining the information of objects (a link or 

an intersection) to find the relation between each other is not reliable due to the 

lower confidence. Our idea is to raise the confidence by clustering the STCOs into 

clusters so that the reliability will be increased. The clustering Algorithm we 

proposed called Spatiotemporal Heuristic Clustering Algorithm (SHC) is 

proposed. 
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Spatial Heuristic Clustering Algorithm (SHC) 

 

After STCOs are found, the second process in this phase is spatiotemporal 

congestion area (STCA) clustering, which clusters the STCOs in urban network 

into several clusters. We develop a Spatiotemporal Heuristic Clustering (SHC) 

Algorithm which is a three-dimensional clustering algorithm comparing to 

traditional two-dimensional clustering algorithm such as K-means, ISODATA. The 

SHC algorithm (Algorithm 1) clusters the STCOs by the spatiotemporal clustering 

consideration. 

Unlike the traditional two-dimension spatial clustering algorithm, the SHC 

algorithm is a three-dimension algorithm with additional temporal dimension. 

Every round of the SHC Algorithm deals with a network snapshot, and clusters all 

the STCOs on that snapshot by the temporal dimension.  
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Algorithm 1 Spatiotemporal Heuristic Clustering Algorithm 

 

Algorithm 1 : Spatiotemporal Heuristic Clustering  

Denotation :  

Si : the i-th snapshot  

Oi = <Oi1,Oi2,Oi3,…> denote the STCOs of Si which is sorted by TIF in 

descending order 

k : the total number of clusters of Si 

ClusterSetk : the k-th cluster in Si 

TC : the threshold of the objects in cluster 

Input : All STCOs of Si  

Output : The set of Neighborhood clusters represented by STCOs of Si 

Step1:  ClusterSetk =   

Step2:  For each Oim  Oi  

Step2.1:  If Oim does not belong to any cluster 

          Increase the number of k and ClusterSetk = ClusterSetk ∪ Oim 

          Else 

           Continue the next iteration 

   Step2.2:  For each connected object O of Oim in network 

               If | ClusterSetk | ≤ TC 

                  If O is a STCO and does not belong to any cluster 

                      ClusterSetk = ClusterSetk ∪ O 

Step3:  Return Clusterk 
 

 

Algorithm 1, the SHC algorithm searches connected neighborhood objects of 

each STCO and adds the neighborhood object into the cluster if it is also a 

congested object (STCO) and does not belong to any cluster. Besides, we assume 

the total number of objects in cluster is less than TC, which is the length limitation 

of cluster, and each cluster contains no more than TC congested objects. Until all 

STCOs in snapshot belong to some cluster, SHC is finished. Finally, all clusters 

returned are the spatiotemporal congestion areas (STCA) of each snapshot.  

Figure 8 gives an example of three snapshots of the same network, which are 

7:00AM, 7:15AM, 7:30AM respectively. Each connected red part indicates a 
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STCA which is composed of at least STCO, and we can find each snapshot has 

four STCAs. 

 

N N N
7:00 AM 7:15 AM 7:30 AM

 

Figure 8 An example of three snapshots of the same traffic network.  

 

 

  The final process of congestion sequential patterns mining module we 

proposed here is to discover the relations between STCAs (i.e., Consequent 

STCA Mining Algorithm (CSM)) by utilizing the TIDB derived from Phase I and 

the congestion area produced by SHC algorithm.  

 

 

Consequent STCA Mining Algorithm (CSM) 
 

 After the connected congested objects of each snapshot are clustered as a set 

of STCAs, the next step is to find the consequent relationship between congestion 

areas by an algorithm so called Consequent STCA Mining (CSM) Algorithm 

which is described in the following.  
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Algorithm 2 Consequent STCA Mining Algorithm  

 

Algorithm 2 : Consequent STCA Mining (CSM) 

Denotation: 

S=<So,S1,S2,…> denotes all snapshots ordered by timestamp 

Ai=<Ai1,Ai2,Ai3> denote all STCAs of Si  

T: the temporal limitation of consequent STCAs 

DOR-Bound: threshold of DOR 

Consequent Pair (Am,An) : pair (Am,An) , where the time interval between Am and 

An ≤ T and the DOR of the pair ≥ DOR-Bound 

PairSet: all pairs  

ResultSet : the set of all consequent pairs  

Input: STCAs on all snapshots 

Output: ResultSet 

Step1:  PairSet =   and ResultSet =    

Step2:  For each Aik of Si 

          For each A in Si+1, Si+2,…, Si+T 

              Construct P=(Aik,A) and PairSet = PairSet ∪ P 

Step3:  For each P=(Am,An) in PairSet 

         Step3.1:  Calculate DOR(P) 

         Step3.2:  If DOR(P) ≥ DOR-Bound 

                     ResultSet = ResultSet ∪ P 

Step4:  Return ResultSet 

 

CSM aims to find out all consequent STCAs of each STCA; therefore, we 

find pair P=(Am, An) which denotes there might be a consequent relation between 

Am and An. Moreover Consequent Pair (CP) denotes the pair P=(Am, An) and 

there is a consequent relation between Am and An indeed which means An is the c 

of Am and also the difference of timestamp of Am and timestamp of An should be 

less than T. In other words, if Am is in congestion, An will be in congestion 

consequently. The TIDB derived from Phase I, in detail, records the information 

about the journey: the journey identity, origin, destination, the position with the 

time it traveled. These particular records can help us to identify which An is really 

a consequent of Am.  
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The Demand overlapped ratio (DOR)  of P=(Am, An) is defined in equation 

(4.2), which indicates how much proportion of journeys of An are coming from 

Am, and Om,n means the number of the same journeys in Am and An; Jn means the 

total journey number of An. By definition, the value of  ranges from 0 to 1, when 

=0 means there is no journey from Am to An and also implies P is not a CP; 

otherwise, if =1, it means the all journeys in An are coming from Am and they 

have a very strong consequent relationship and P is a CP. Therefore the larger  

then the stronger relationship of P will be, and if  larger than DOR-Bound, which 

is the threshold of , then P is a CP.  

n

nm

J

O
  

,


                           (4.2) 

 

 There gives an example in Table 5 to illustrate the demand overlapped ratio, 

and DOR-Bound is set to 0.6, after DOR being calculated, the P1 and P3 are 

considered as Congestion Consequent Pairs (CCP). 

 

 

Table 5 An example of Demand Overlapped Ratio with DOR-Bound=0.6 

pair (Am,An) Om,n Jn DOR Consequent Pair 

P1=(A1,A2) 40 60 0.667 Yes 

P2=(A1,A3) 10 40 0.25 No 

P3=(A3,A5) 60 80 0.75 Yes 

P4=(A4,A6) 2 30 0.067 No 
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4.2.2 Congestion-Drop Downstream Patterns Mining 

 

Congestion-Drop Downstream Patterns Mining

Downstream Pattern Retrieve 

GIS

Congestion Drop Ratio 

Calculation Model

Congestion Drop

Downstream Pattern

NOIDB

 

Figure 9 The architecture of Congestion-Drop Downstream Patterns mining 

 

 

The Congestion-Drop Downstream Patterns (CDDP) Mining module is 

shown in Figure 9. The traffic stream has some directions, and then each object 

with direction in network has its upstream and downstream objects. Figure 4.9 

gives an example to illustrate the traffic stream. Each number represents the 

identity of every network object; if the direction of object4 is “east” then its 

upstream objects are: (object1, south), (object3, east), and (object6, north) and its 

downstream objects are: (object2, north), (object5, east), and (object7, south). The 

GIS engine can provide the geographical features of traffic network and the 

geographical relationship between each pair of network objects, which can be 

used to construct the downstream patterns. 
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Definition: Downstream Patterns (DP) 

 Each object in traffic network has its own downstream objects, the 

Downstream Pattern (DP) can be defined as follows: 

 DS (Oi) = {Oi1, Oi2, … , Oik} : which is a set of objects denoting the 

downstream objects of Oi, where k is the total number of downstream 

objects of Oi. 

 DP(Oi) = (Oi, DS(Oi), k) : each DP is defined as a triple indicates the 

network object Oi, its downstream objects as a set, and the number of its 

downstream objects. 

 

N

1 2

3 4 5

6 7

 

Figure 10 An example of traffic stream in network 

 

 Take Figure 10 as an example, we can get seven DPs from the network, 

e.g., DP (Obiect4) = (Object4, {Object2, Obect5, Object7}, 3). After DPs are 

constructed, we utilize the NOIDB derived from Phase I to find out the 

Congestion-Drop Downstream Patterns (CDDP) from DPs based on 

Congestion-Drop Heuristic (CDH). The idea of CDH is:” if the congested status 
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of an object decreases dramatically or even disappear afterwards, then it is treated 

as a bottleneck”; therefore, we can use the traffic index factor θ to extract CDDP 

from DPs, since the serious congested status indicates the higher θ and the free 

traffic indicates the lower θ.  

 For each DP= (Oi, DS(Oi), k) and DS (Oi) = {Oi1, Oi2, … , Oik}, we can 

calculate the difference of θ between Oi and its downstream objects DS(Oi) called 

Congestion Drop Ratio (CDR) χ , which is defined as equation (4.4), and θi is θ of 

Oi and θi1 to θik are θ of Oi`s downstream objects and k is the total number of 

downstream objects, so χ is the congestion difference between Oi and its 

downstream objects. 

k
O

k

j

ij

ii





1

  ))DP((



                       (4.4) 

 

 The value of χ is less than or equal to 1 and might be negative, when χ is 

close to 1 means the average θ of downstream objects is almost equal to 0 and θ of 

Oi is very close to 1 then DP(Oi) is a CDDP according to CDH. Otherwise, if χ is 

smaller than 0 means the θ of Oi is smaller than the average θ of its downstream 

objects and its physical meaning indicates the congested status is more serious in 

downstream than in Oi, then DP(Oi) disobeys the CDH and it is not a CDDP. 

Therefore if χ of DP is bigger than CD-bound, which is threshold of χ, and we can 

conclude this DP is also a CDDP. 
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4.3 Phase III: Spatiotemporal Bottleneck Mining 

 

 The two congestion patterns mining from Phase II are: (1) congestion 

consequent pair (CCP): (Am, An) which means if the STCA Am congests, An will 

congest consequently. Am is the antecedent of the pair and Aj is the consequent of 

the pair, (2) congestion drop downstream pattern (CDDP): (Oi, DS(Oi), k), DS(Oi) 

means the downstream objects of Oi and k is the number of DS(Oi). In this phase, 

we use two heuristics to verify the CCP we discovered from Phase II, and use the 

congestion confidence (CC) τ to verify the CDDP and to find out all the three 

kinds of bottlenecks. 

 

4.3.1 Congestion-Propagation Heuristic 

 

The idea of congestion-propagation heuristic (CPH) is:” if a bottleneck 

congests, as a consequence, it may result in more congestions to other objects”, 

therefore we know this heuristic is based on congestion consequent pairs 

discovered from Phase II. According to congestion-propagation heuristic, the 

bottlenecks may occur in the antecedent of consequent pairs.  

We define root-cause STCA (RC-STCA) as STCA which may imply more 

STCAs in consequent pairs, and means RC-STCA appears in the antecedent part 

of all consequent pairs is more than CPH-Bound times, which is a threshold of 

CPH. By definition of congestion-propagation heuristic, the bottlenecks may exist 
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in RC-STCA; therefore, the bottleneck mining can only be limited to RC-STCAs. 

All STCOs in RC-STCAs are thought as the bottleneck candidates. 

i

i
i

all

c
  

                        (4.3) 

The bottleneck must be in congested status more often or otherwise it is not a 

bottleneck; therefore, the congestion confidence τ is used to extract the real 

bottleneck from the bottleneck candidates. The definition of τ is given in equation 

(4.3), where ci means the congested days in the experiment and alli means the total 

experiment days. The value of τ ranges from 0 to 1 and when τ= 1 means the 

object is always congested; otherwise when τ= 0 indicates the object is always 

free. Therefore, if the congestion confidence of bottleneck candidate BC is larger 

than CC-Bound, which is the threshold of τ, we may conclude it is an STB. 

 

4.3.2 Congestion-Converge Heuristic 

 

 The idea of congestion-converge heuristic (CCH) is:” if a bottleneck 

congests, it must be caused by some other prior congested objects”; therefore, we 

know this heuristic is also based on congestion consequent pairs, and the 

bottlenecks may occur in the consequence of consequent pairs. The root-cause 

STCA (RC-STCA) is defined as the STCA, which appeared in the consequent part 

of all consequent pairs, is more than CCH-Bound times, which is a threshold of 

CCH. As shown in Section 4.3.1, the bottleneck mining can only be limited to 

RC-STCAs. All STCOs in RC-STCAs are thought as the bottleneck candidates 
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and we use congestion confidence τ (defined in equation (4.3)) to finally 

determine whether it is an STB or not. If τ of a bottleneck candidate is bigger than 

CC-Bound, we may conclude the bottleneck candidate is an STB. 

 

4.3.3 Congestion-Confidence to Verify CDDP 

 

 Since congestion drop downstream pattern (CDDP) =(Oi, DS(Oi), k), DS(Oi) 

are found in Phase II, the Oi is thought as a bottleneck candidate based-on 

congestion drop heuristic (CDH); therefore, we have to check the congestion 

confidence τ of Oi to decide if it is a spatiotemporal bottleneck or not. If τ of a 

bottleneck candidate is bigger than CC-Bound, we may conclude the bottleneck 

candidate is an STB. 
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Chapter 5 

Experiments 

 

 

The STBM prototype model was implemented based on a real time 

LBS-based application: taxi dispatch system (TDS) [2]. The TDS is an online 

724 system operated in Taipei urban area, and the current fleet size is about 500 

taxis, where the OBU reports its current status periodically (30 sec) or when some 

events occur. The types of event include spatial trigger event, dispatch/response 

event, customer on/off taxi events, etc. Currently TDS raw data could be half a 

million uplink reports per day, which becomes a good data source for this 

prototype model. In the data collecting and cleansing module, the OBU raw data 

has been collected and transformed to TISs in a period of 5 minutes in order to 

catch the real time traffic information and only the traffic information in 

„dispatch‟ or „occupied‟ state of OBU is extracted. 

Historical traffic information consists of journey sets, which can be obtained 

from the raw data by combining the GIS road network. For example, „dispatch‟ 

state journey starts from the dispatch location to the customer‟s location, and 

„occupied‟ state journey starts from the customer‟s location to customer‟s 

destination. 
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Figure 11 Main roads in Taipei urban network  

 

As shown in Figure 11, the target area of this prototype system focused on 

the urban network in Taipei city; each arterial in the network may have at least 

one link. The predefined link attributes including category, length, direction, 

speed limit, average signal delays and geographical coordinates vectors with 

default values are given by domain expert to facilitate STB discovering. In the 

congestion area mining phase (Phase II), traffic index factor θ is classified by 

aggregating the TISs at temporal and spatial dimensions and normalized by 

category and speed limit attributes. For example, if the traffic index factor is very 

close to 0 it means the link is in free flow state and the traveling speed is near 

around the speed limit; on the other hand, if traffic index factor is close to 1 it 

represents that the link is in extremely congestion status. 

In the experiment, raw data was collected during 2006/02~2007/03; the data 

in the first eleven months is for training the STBM model and the remaining is for 
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testing. The traffic index factor (θ) for workday and weekend are summarized as 

depicted in Figure 12, where each plot in Y-axis means a 15 minutes time slot. In 

Figure 12, it can be easily seen that there are two peaks in the curve of workday, 

which verify the common experience of on-duty and off-duty peak hours. 

Nevertheless, the curve of weekend does not have the obvious peak due to 

different patterns on workday and weekend. Therefore, we limit the STB search 

period on two peak hours of the workday in order to reduce the computing 

complexity. The average θ of the on-duty peak hour (07:30~09:30) is 0.45, and 

off-duty peak hour (17:30~19:30) is 0.54.  

 

 
 

Figure 12 Traffic index factor (θ) for workday and weekend 

 

The testing data from January to March in 2007 is divided into twelve weeks 

for testing, and three methods we proposed will be compared to the statistic model, 

which chooses the top k objects with the highest TIF and highest congestion 



 

 

41 

confidence. The experimental results in workday and weekend are shown in 

Figure 13 and Figure 14 respectively. Figure 13 shows the experiment of workday 

accuracy between three heuristics in STBM and statistic model, the accuracy of 

four methods are all around 75%; moreover, CPH and CCH are more stable than 

other two methods (CDH, statistic) and also have higher accuracy. Though the 

average accuracy (see Table 6) of statistic model is as good as STBM but it is not 

steady, the accuracy in some weeks are not higher as we expected.  

 

Figure 13 Three heuristics of STBM compare to statistic model in workday 

 

 
Table 6 The average experiment accuracy.  

 CCH CPH CDH Statistic 

Workday 0.795982 0.776282 0.7469 0.759009 

Weekend 0.726056 0.618511 0.714767 0.55 

 

 

The experimental results as shown in Figure 14, the accuracy in weekend is 

much unstable than the experiment results in workday and the workday results are 

better than weekend because the weekend traffic does not have the general traffic 
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pattern, like the workday traffic which always has the two clear patterns: (1) 

on-duty pattern which from home to company in the morning and (2) off-duty 

pattern which from company to home in the evening, so the accuracy distribution 

is much dispersed. But the average accuracy of STBM is still better than statistic 

result as shown in Table 5.1. 

 

 
 

Figure 14 Three methods of STBM compare to traditional statistic model in weekend 

 

 

 In Figure 15, the link on the map is the main roads of urban network, and the 

right-down side is the urban center and there are three arrows mined by CPH 

located on Taipei urban network: white means the on-duty bottlenecks on 7:30 to 

9:30 in the morning; blue means the off-duty bottlenecks on 5:30 to 7:30 in the 

evening; and yellow means the bottlenecks both in the morning and evening. The 

four edges of the map is the suburban, and we can see the on-duty bottlenecks is 

from the suburban into the urban center which is just like the traffic pattern when 

go to the work; furthermore the off-duty bottlenecks is just from the urban city 



 

 

43 

center to suburban which also means the traffic pattern going home. In Figure 15, 

we can see that the reliability and accuracy of STBM are quite high. 

 

 

 

 
 

Figure 15 The workday bottlenecks mined by CPH located on Taipei urban network. 
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Chapter 6 

Conclusions and Future Works 

 

 

Finding out bottlenecks in traffic network is one of the major tasks in ATMS 

in order to take some actions for improving global network performance. The 

STBM model, we proposed in this thesis, consists of three phases (traffic 

information generation, traffic congestion patterns and spatiotemporal bottleneck 

mining) for discovering the spatiotemporal bottlenecks in urban network. It 

utilizes the raw data collected from LBS-based applications (which has the 

advantages in term of cost and coverage comparing to traditional sensor based 

surveillance system) and the road network information from GIS for discovering 

the bottlenecks. 

Three heuristics for finding out bottlenecks are proposed to find the total 

solution to traffic network bottleneck, and experimental results showed that the 

average accuracy in workday using three heuristic-modules are higher than 76% 

and better than statistic model. Moreover, the average accuracy in weekend is 

little lower than workday may due to the clear traffic patterns in workday i.e., 

on-duty pattern in the morning and off-duty pattern in the evening. The basic idea 

of CPH and CCH is utilizing the consequent rules to gain the bottleneck; therefore 

the accuracy in weekend is a little bit lower than workday. 
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In the near future, the STBM model will be enhanced as a real time 

bottleneck detection and prediction system, which integrates the historical traffic 

patterns and real-time traffic information to predict the bottlenecks. And further 

traffic assignment suggestions will be provided by combining the domain 

knowledge of traffic assignment experts with the enhanced STBM model.  
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