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A Spatiotemporal Traffic Bottleneck Mining Model
for Discovering Bottlenecks in Urban Network

Student: Hsiao-Han Chen Advisor: Dr. Shian-Shyong Tseng

Department of Computer Science
National Chiao Tung University

ABSTRACT

The occurrence of traffic congestion has been increasing around world-wide
as the result of the increasing of motorization, urbanization, population growth
and changes in population density, especially in Urban Network; therefore, many
researches are proposed to improve the traffic congestion; moreover, finding the
traffic bottlenecks is the most important thing to improve the traffic congestion.
As we know, freeway bottlenecks are always fixed and well known as gateway
but the urban network bottlenecks may vary with spatial and temporal
environment; therefore, finding out urban network bottleneck becomes a very
difficult but very important mission. We propose a Spatiotemporal Traffic
Bottleneck Mining Model (STBM) in this thesis to discover the urban network
bottlenecks based on three heuristics we developed.

In this thesis, STBM prototype model is implemented based on a real time
LBS-based application to find out the Taipei urban network bottlenecks.
Experimental results show that the average accuracy in workday of STBM is up to
80% and it’s better than the traditional statistic model. In the near future, the
STBM model could be implemented as a real time bottleneck detection and
prediction system, which integrates the historical traffic patterns and real-time
traffic information.

Keyword: Intelligent Transportation System, Location Based Service, Traffic
Bottleneck, Spatiotemporal data mining
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CHAPTER 1

INTRODUCTION

The occurrence of traffic congestion has been increasing around world-wide
as the result of the increasing of motorization, urbanization, population growth
and changes in population density, especially in Urban Network. Congestion
reduced the utilization of the transportation infrastructure and increased travel
time, air pollution and fuel consumption. Getting worse in traffic congestion is the
main reason for developing the Intelligent Transportation System (ITS) to deal
with such problem. The purpose and the essence of developing it are to utilize
advanced information and communication techniques, traffic control and
information to achieve a convenient, economic benefits and safety traffic
environment. In ITS area, there are nine research topics. For instance, the topic,
Advanced Traffic Management System (ATMS), plays a kernel position in traffic
monitor and management for making the global traffic network more smooth and
improving global performance of traffic network; another topic is Advanced
Traveler Information System (ATIS) which has the objective to deliver reliable and
useful real-time traffic information to travelers, whereas the topic in Commercial
Vehicle Operation (CVO) is about cost efficiency on private company and making
public transportation more convenient for users, likes taxi, for instance.

The traffic network consists of a set of network objects, each of which is

either a link or an intersection, and congestion occurs when the traffic flow cannot



be serviced by the objects. Moreover if an object’s traffic demand is always more
than its capacity, it is thought as a traffic bottleneck. Our research focuses on
ATMS which consists of data collection from various kinds of traffic data sources
(sensors, cameras, probing vehicles, etc.), data cleaning and analyzing in order to
discover the bottlenecks and then take actions to solve the bottlenecks, e.g.,
changeable message sign (CMS), electronic toll collection (ETC) [8].

Finding out bottlenecks is very difficult because the relation between traffic
demand and capacity of each object is hard to retrieve and the traffic demand is
never known in advance. Therefore, this thesis uses the traffic information about
object speed limitation and the average driving speed on the object to
approximately formulate the relation between traffic demand and capacity. It’s
because the speed limitation and average driving speed can be gotten from
location-based service and geographical information system.

The capacity and speed limitation are constants but the traffic demand and
average driving speed always change with the different spatial or temporal
condition. Here, traffic demand correlates closely with the average driving speed:
if the traffic demand is increased, the average driving speed will be reduced;
therefore, the ratio of traffic demand divided by capacity is positively related to
the ratio of speed limitation divided by the average of driving speed.

The urban traffic network is more complex than freeway or simple arterial
network so locating urban network bottlenecks is more difficult than locating
freeway bottlenecks, since the freeway bottlenecks are always fixed and well

known as gateway. Besides, the urban bottlenecks may vary with spatial or



temporal environment, so finding out bottlenecks has become a very complex and
difficult mission to accomplish.

In this thesis, we propose a more cost-effective traffic information collection
method using location based service (LBS), which is generally described as a
mobile information service to provide useful location aware information to users.
In this method, we regard the vehicles of LBS-based applications as the traffic
status probing vehicles, where a vehicle of the LBS-based application is equipped
with an OBU (On-Board Unit), which has GPS (Global Positioning System)
positioning module and GPRS communication module. OBU collects vehicle
position, traveling direction, and speed from the GPS module and uplinks the
vehicle status to the backend system through GPRS module. The traffic area in
which various traffic information is collected using the LBS-based probing
vehicles is larger than that using traditional site-based or sensor-based method.

We propose a Spatiotemporal Traffic Bottleneck Mining Model (STBM) in
this thesis to discover the traffic bottlenecks in Taipei urban network. The raw
data collected from LBS application are used to find out the traffic congestion
patterns, and then three our bottleneck heuristics are proposed to interpret these
patterns and the reasons of congestion and finally the spatiotemporal bottlenecks
can be obtained. These three heuristics in STBM are compared with the traditional
statistic model in our experiments; the experimental results show the STBM has
higher accuracy than statistic model since STBM not only observes the congestion
but also discovers the traffic congestion patterns, whereas the statistic can only get

the congestion objects.



The rest of this thesis is organized as follows. Chapter 2 shows the related
works of traffic probing tools and traffic bottleneck issues. In Chapter 3, we give
the introduction of LBS, and the traffic information derived from LBS. Chapter 4
describes our Spatiotemporal Traffic Bottleneck Mining model (STBM) and
introduces the three heuristics in more detail. In Chapter 5, we implement the
STBM and apply the model into finding traffic bottlenecks in Taipei urban
network, where the taxi dispatching system (TDS) [7] is utilized as our LBS data
source. Three modules in STBM and the statistic model are evaluated and
compared in this chapter. Finally, conclusions and future works are given in

Chapter 6.



CHAPTER 2

RELATED WORKS

Discovering traffic bottleneck is a hot research topic in ITS domain, but only
freeway bottleneck issue has been widely discussed. In this chapter, we describe
the categories of traffic data collecting tools and related works of traffic

bottleneck.

2.1 TRAFFIC PROBING TOOLS

The probing tools can be used for measuring traffic data in two ways [9]: (1)
logging the passage of vehicles from selected points along a road section or route
is regarded as site-based, or (2) using moving observation platforms traveling in
the traffic stream itself and recording information about their progress is regarded
as vehicle-based. The site-based mode includes registration plate matching,
remote or indirect tracking, input output methods, and so on. The stationary
observer techniques include loop detectors, transponders, radio beacons, video
surveillance, etc. In the past, many ITS studies and transportation agencies used
the traffic data from dual-loop detectors which are readily available in many
locations of freeways and urban roadways [9]. Dual-loop detector systems are

capable of archiving with traffic count (the number of vehicles that pass over the



detector in that period of time), velocity, and occupancy (the fraction of time that
vehicles are detected). These records can be used for further traffic statistic
research. On the other hand, the development and application of Radio Frequency
Identification (RFID) might be extended to the real-time goods tracking in freight
transport and the Travel Time Prediction (TTP) issue in the near future. Besides,
the advanced registration plate matching techniques consist of collecting vehicles
license plate and arrival times at various checkpoints, matching the license plates
between consecutive checkpoints, and computing travel times from the difference
between arrival times. For example, Automatic Vehicle Identification (AVI)
method can recognize and transform the license plate into digital data for later
research. In addition, the cellular telephone system is one of the potential
techniques for providing travel time.

The moving observer mode (vehicle-based) includeing the floating car,
volunteer driver and probe vehicle methods are developed incrementally by
collecting traffic dataset in recent years. The micro computer instrumentations
(such as OBU) are designed and installed on vehicles to record vehicle speed,
travel times, directions or distance it passed. Additionally, mobile data such as
GPS is useful, and the GPS-GIS combination can contribute the efficiency in both
data collection and results analysis [12], especially for volunteer driver and fleets
of probe vehicles.

However, there is no traffic information collection methodology which can
solve the above problems. For example, site-based TTP methods have the spatial

coverage problem because the sensors or AVI devices are fixed and limited to



obtain the real-time traffic data, and vehicle-based TTP methods have the cost and
temporal coverage problems because the cost of probing vehicles is very high if a
dedicated fleet of probing vehicle is maintained. In this thesis, we propose an
LBS-based method which is vehicle-based. And in the experiment, taxi fleets
equipped with LBS to record the real-time traffic data are regarded as our probing

tools.

2.2 TRAFFIC BOTTLENECK

The traffic bottleneck is a novel important research topic in Advanced Traffic
Management System (ATMS), many researches aimed to solve the traffic
congestion problem. In the literature, many researches aimed to find out the traffic
patterns [3][11][1] or traffic [6] state in urban network, and some researches
worked on predicting the travel time to provide drivers about route
suggestion[2][11]. B.S. Kerner et al. [6] proposed FCD (Floating Car Data)
method for a reporting behavior at optimal costs of single vehicles in road
networks. This method can be used to recognize traffic state (e.g., congested or
not) by FCD vehicles in urban network, but it still cannot identify the locations of
the bottlenecks.

There are very few papers discussing the bottlenecks in urban network. Most
of the papers related to bottlenecks are located in highway because bottlenecks on
the freeway are usually fixed and located near around the gateway and there are

no intersections or complicated panels and traffic signals. Since the highway



bottleneck is usually well known and can not be easily changed in the short period
of time, it is not necessary to discuss where the bottleneck is located; most
researches aim to control the traffic on bottleneck. B.S. Kerner, et al. [5] proposed
an ANCONA approach which is trying to control the spatiotemporal congested
traffic patterns at highway bottlenecks by keeping congestion conditions at the
minimum possible level at the bottleneck.

On the other hand, locating traffic bottlenecks in the urban network is a
totally different story. The task of analyzing traffic patterns in urban network and
finding out traffic bottlenecks is a complex and difficult mission; furthermore the
urban network bottlenecks may vary with spatial or temporal environment, and
there are many traffics as well as non-traffic factors have to be concerned in urban
network, such as traffic signal, social event, etc.

It is really a complicated and difficult task to find out the urban network
bottlenecks. Therefore we propose a spatiotemporal mining model finding out

bottlenecks in urban network.



CHAPTER 3

TRAFFIC INFORMATION DERIVED FROM LBS

In this chapter, we introduce Location-Based Service (LBS) system which
uses the commercial taxi fleet system in Taipei Metropolitan and the traffic
information derived from LBS will be the input data source of the method in this

thesis.

3.1 LBS INTRODUCTION

LBS, which provides appropriate information service for the users based on
users’ locations, has become the main stream of mobile commerce applications
and telematics services. The main technologies in LBS are positioning and mobile
communication. Front end device such as On-Board Unit (OBU) or smart phone
which exchanges information with LBS backend system through mobile
communication network for retrieving appropriate location-based information.
There are many LBS-based applications had been proposed, such as electronic
toll-collection by vehicle-positioning system (VPS) [8], telematics service, taxi

dispatching system [7], and commercial fleet management system.
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As shown in Figure 1, the system architecture of the LBS system includes:
OBU, communication system (cellular network), backend systems (M-Server and
E-Server). OBU, a small computer system installed on the vehicle, has computing,
positioning, communication and human interface modules. OBU locates the
vehicle through receiving GPS satellites signal by positioning module, sends and
receives the messages to and from the backend system through the communication
module, and interacts with user via the human interface module. Some other tools
such as cell or gyro positioning technologies can be the assisted positioning tool
when the GPS signal is not available. The communication system is the link
between OBU and backend system, which can be any wireless communication
mechanism, such as GSM/GPRS/UMTS cellular network, 802.11 wireless
network, etc. GPRS cellular network is the most popular communication system
in commercialized system, so far. The backend system consists of two parts:
M-server and E-server. M-server is responsible for transmitting bi-direction
messages and serves as a buffer of uplink and downlink packets between OBUs
and backend system over the mobile network. E-Server, consisting of GIS engine,
database and application server, is implemented according to the business rules in
LBS applications and responsible for the information processes of all the business

workflow.
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~—Cellular Network—~ ,—— M-Server —— ,—— E-Server ——

Y
- APP server

GPR receiver

Uplink / downlink T

GPRS module GIS Engine

Figure 1 Components of LBS application

LBS-based applications accomplish the business processes by exchanging
information between OBUs and the backend systems. The information is
transmitted by the uplink packets (OBUs send to backend) and downlink packets
(backend sends to OBUSs) over the mobile network. Such interactions among
OBUs and the backend system are the basis of the commercial fleet management
system. With regarding to the fleet management system as an example, OBU
communicates and exchanges information with the dispatching center through the
mobile network, which reports the position, direction, speed, and status of the
vehicle according to the predefined rules. Dispatching center dispatches and
manages the fleet by sending command to the OBUs according to business

requirements and the real time positions and status of the fleet.

Taxi dispatching system (TDS), one of the most complicated applications in
LBS applications, consists of several participants: customers (passengers), taxi
drivers, operators and administrators. OBU automatically registers to the backend
system when it is switched on, and turns into ‘available’ state. Taxi drivers can

change the state of the taxi or interact with the backend system by pressing the
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buttons on OBU. There are several buttons designed for the driver to interact with
the backend system and operator, including: state changes (available/occupied/
scheduled), polling reply (Y/N/minutes), emergency and message request.
Customer requests a taxi via telephone call or Internet web site, operators key-in
the requirements and feature of customer and TDS automatically searches the
available taxi candidates nearby the location of customer, probing the candidates
that fit in with the requirements. The dispatched (received final dispatch message)
taxi driver can then response the probing message from TDS, and move on to the
corresponding customer’s location, where administrators are responsible for fleet
dispatching, system monitoring, event and exception handling. The OBU
automatically interacts with the backend system via uplink packets through the
M-server over GPRS cellular network, reporting the status and position of the

taxi.

The backend system keeps the latest statuses and positions of all the taxis by
collecting all the uplink packets of OBUs. In TDS, there are three kinds of uplink
report packet (referred as URP): periodically report (in fixed time interval), cross
boundary report (on taxi driving through the geographical boundary), and event
report (on status changing or event occurring). By decoding these uplink rules,
spatial mobile network information can be derived from communication raw data

in LBS-based applications.
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3.2 TRAFFIC INFORMATION DERIVED FROM LBS

The model proposed in this thesis utilizes the raw data of LBS-based
application, regards the vehicles in the LBS-based application as the traffic
probing vehicle. It is cost effective comparing to the traditional vehicle-based
method. Meanwhile, the size of LBS fleet has the temporal and spatial coverage
advantages. Traffic information can be dynamically gathered in the LBS fleet
operation area 24 hours per day in real time.

The vehicles of LBS are regarded as the traffic status probing vehicles of the
urban network. A vehicle in the LBS application is equipped with an OBU, which
has GPS (Global Positioning System) positioning module and wireless data
communication module such as GPRS/UMTS. OBU collects vehicle position,
traveling direction, and speed from the GPS module and uplinks the vehicle status

to the backend system through communication module.

U, (X,Y,tV,D,S) —=>TIS(L,T,,V, D) (3.1)

Each uplink packet (Up) representing the current position and traveling status
of that vehicle, as shown in equation (3.1), is sent from the probing vehicle to the
backend system. The information in Up includes: position coordinate(X, Y),
traveling speed (V), direction (D), timestamp (t) and status (S). By combining
with GIS, coordinate of a vehicle can be transformed to nearest address by
interpolating the GPS position with road network database [11]. Thus traffic

information can be gathered by transforming the uplink packet into traffic
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information spot (TIS) of the link where the vehicle located (L;). A TIS (L, T,,V,D)
is a sample of traffic information at two dimensions : spatial dimension (L;) and
temporal dimension (Ts), which represents the traveling speed (V) and direction
(D) of the link at these two spatiotemporal indices. Then, the real time traffic
information of the urban network can be derived from LBS by aggregating all the

collected TISs at the current time interval, for example, quarter or half an hour.



CHAPTER 4

SPATIOTEMPORAL BOTTLENECK MINING MODELS

The architecture of spatiotemporal bottleneck mining model (STBM)
proposed in this thesis is shown in Figure 2. First of all, the raw data of LBS is
used to extract the meaningful traffic congestion patterns, and then our three
heuristics are applied to give reasonable interpretation for the congestion patterns.
We describe three kinds of heuristics to interpret extracted traffic congestion
patterns as follows: (1) congestion-propagate heuristic (CPH): if a bottleneck
congests, as a consequent, it may result in more congestions to other objects, (2)
congestion-converge heuristic (CCH): if a bottleneck congests, it must be caused
by some other prior congested objects, (3) congestion-drop heuristic (CDH): if the
congested status of an object decreases dramatically or even disappears afterwards,
then it is treated as a bottleneck.

The whole STBM model is divided into three phases: traffic information
generation, traffic congestion patterns and spatiotemporal bottleneck mining, as
illustrated in Figure 2. Traffic information database is generated from
Location-Based Service (LBS) applications and Geographical Information System
(GIS) urban network database in first phase. In Phase Il, the traffic congestion
patterns are extracted from the traffic information database obtained from Phase I,
and there are two kinds of traffic congestion patterns: congestion consequent

patterns (CCP), congestion drop downstream patterns (CDDP). Finally, the three

15
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heuristics are used to interpret the traffic congestion patterns which will be used to
discover the spatiotemporal bottlenecks in Phase I11. The detailed discussion about

the whole model is described in the following sections.

( )
Phase | Phase Il Phase Il
e N\ N (7 \
Congestion-Propagation
NS Heuristic
N )
N7
(¢} (N
LBS 1 1
Traffic Information [ Traffic Congestion L} Congestion-Converge Spatiotemporal
Generation V| Patterns Recognition [ Heutistic J Bottleneck
- b
<R Congestion-Drop
GIS Heuristic
\ J A g,
\ J

Figure 2 Architecture of STBM

4.1 PHASE |: TRAFFIC INFORMATION GENERATION

Traffic information generation is the first phase in STBM. Raw data is
collected from LBS-based applications (discussed in 3.1) and transformed into
traffic information by combining the road network database in the GIS engine.
Traffic network is composed of a set of connected network objects, where an
object is either a link or an intersection. As shown in Figure 3, the white real line

means links, and the red spot means the intersections in the network.
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Figure 3 An example of traffic network which is composed of a set of links and intersections

Taxi dispatching system (TDS) [7], which is one of the most complicated
LBS-based applications, is selected as the LBS data source in this thesis. As
shown in Figure 4, there are two modules in Phase I: data cleansing module and

traffic information generation module.

s Phase | : Traffic info. Generation

Data collecting & Data Collection &
cleansing module Cleansing

Journey Sets

Traffic information
- e

D
Data Transformation
2R

Figure 4 The architecture of traffic information generation
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In data collection and cleansing module, a batch process collects raw data
from TDS system periodically (e.g., every day), and also collects the
communication logs between the front-end devices (i.e., OBU) in the vehicles (i.e.,
taxis here) and backend system in the TDS system. The extracted vehicle journey
information of each vehicle can then be transformed into wvehicle journeys
information.

Traffic information generation module extracts ‘meaningful’ taxi journey
information by grouping and sorting the uplink records of each taxi and
transforms the data into traffic spots by combining traffic network information
from GIS. Thus, a journey consists of a set of meaningful continuous traffic spots
reported by the same vehicle starting from origination to the destination. Here
“meaningful” journey means the taxi is in the ‘dispatched’ or ‘occupied’ states. In
other words, the taxi must be in ‘driving’ state, and a journey is a set of
continuous traffic spots of the same vehicle. The state transition diagram of OBU

in TDS is shown in Figure 5.
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Figure 5 State Transition Diagram of OBU in Taxi Dispatching System
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The taxi journey consists of journey identification, journey sequence,
timestamp, address, speed, vehicle direction, and state of a taxi. It can be
formulated as a vector <id, seq, ts, addr, v, d, s>, where the information of address,
speed, and direction provides good data sources for mining traffic status of urban
network. Journey id and sequence provide information for OD (origination and
destination) analysis, where seq=1 indicates the origination and the last seq
number of the same journey id represents the journey destination. Table 1 gives an

example to illustrate the taxi journey.
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Table 1 An example of taxi journey reported from probing vehicles

id seq ts addr v d S
Jo1 1 06:42 T [EFME - FE 55K 38 113 o)
Jo1 2 06:43 1177 G50 - B 215 45 172 0
J02 1 18:34 %] g pEE R 1058k 20 86 o)
J02 2 18:38 7 A%k e - B304 5K 30 68 0

After data collecting process, noise data (e.g., invalid values of speed,
direction, or GPS state) need to be removed from the collection date, so we

classify the useless data into three categories which are listed as follows:

1. Missing Values

There are some links of which probing vehicles do not record the traffic
status information may due to GPRS communication or GPS errors. GPS errors
might occur when a probing vehicle passes under an infrastructure such as tunnel
or the vicinity of elevated structures (the so called urban canon). GPRS
communication might be done in similar way or any unknown events to cause
missing values.
2. Useless Data

If a probing vehicle’s speed is 0 for a long time and its status is ”’driving”, we
assume the vehicle is stopping in the ranking station and waiting for servicing
because the LBS based probing vehicles are commercial taxi fleets and have “taxi
behaviors” on their operating. Therefore in the content of URP, if a probing
vehicle’s speed is 0 in the same position for a long time, this record is thought as a

useless data.
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3. Redundant

Some reports of URP show the same messages from the same vehicle. This is
because there may be several events occurred simultaneously, such as periodically
report event after the cross boundary event. So, the reports of message which are

counted twice need to be pruned.

Data cleansing module is used to filter out the useless or incomplete data
described above to facilitate the further analysis. Traffic information generation
module then extracts useful taxi journey information and transforms it into traffic
information database (TIDB) which contains the useful and meaningful traffic
journey information by combining traffic network information from GIS. This can
be done by transforming the report coordinates of each vehicle report point to the
real traffic network address helped by the coordinate to address transforming
function in GIS engine [10]. Each record in TIDB includes eight fields, journey
identification, journey sequence, date, timeslot, dir, speed, link identification, and
the section number of link, it can be formulated as a vector <id, seq, date, ts, d, v,
link, sec>, where the timeslot is normalized, e.g., T1 to Tgs Which splits every 15
minutes into a timeslot, the link indicates the corresponding link identification,
and sec means the section number of the location. Table 2 gives an example of

TIDB.
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Table 2 An example of TIDB

Id seq Date ts d v link  Sec
Jo1 1 06/12/15  T23 E 38 02B 3
Jo1 2 06/12/15  T23 E 45 02B 3
J02 1 07/01/01  T75 N 20 12A [ 3
J02 2 07/01/01  T75 N 30 12A 2

The traffic information of the traffic network objects can be obtained by an
aggregation on the TIDB generated in the first phase. Each record in TIDB (i.e., a
traffic information spot (TIS)) represents a piece of traffic information about
where, when and how the vehicle is in the spatial and temporal condition.

Furthermore, we also construct network objects information database
(NOIDB) which records the traffic status about all objects in the traffic network in
each timeslot, there are six attributes in NOIDB: link, sec, dir, ts, limit, speed;
limit indicates the speed limitation of this link, and speed are average driving
speed calculated from TIDB of the corresponding link, sec, dir, and timeslot, and

Table 3 gives an example of NOIDB.

Table 3 An example of NOIDB

link sec dir ts limit speed
01A 1 N T1 60 30
01A 1 S T1 60 55
10B 1 E T3 50 36
07B 1 W T4 80 45
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4.2 PHASE II: TRAFFIC CONGESTION PATTERNS MINING

Figure 6 represents the architecture of Phase Il in STBM, and there are two
modules for discovering the congestion patterns which are congestion consequent
patterns (CCP) mining and congestion drop downstream patterns (CDDP) mining

from the traffic information derived from Phase I.

Phase Il : Traffic Congestion Patterns Recognition

4 Az Congestion Consequent Patterns

Spatiotemporal congestion
[ object mining

Spatiotemporal congestion
Area mining
Spatial Heuristic

@ - [ Consequent STCA mlnlng -— %
on

Consequent Pattern TIDB
COngestlon Drop Downstream Patterns Mining
Downstream Pattern Retrieve 4—
GIS
Congestion Drop Ratio
[ Calculation Model ]
‘ NOIDB
orjgestion Drop
wnstream Pattern
G %

Figure 6 The architecture of Phase Il: traffic congestion patterns mining
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4.2.1 CONGESTION CONSEQUENT PATTERNS MINING

Figure 7 represents the architecture of congestion sequential patterns mining
module, and including three processes: (1) spatiotemporal congested object
(STCO) mining, (2) spatiotemporal heuristic clustering Algorithm (SHC) to
cluster a set of STCOs into a spatiotemporal congestion area (STCA), and (3)

discovering the consequent STCAs for each STCA as the congestion consequent

patterns.
— Congestion Consequent Patterns Mining ~N
Spatiotemporal congested I
object mining j
NOIDB
Step2 y
cpatlotemporal congestion
Area mining STCA f\_
Spatial Heuristic Q@%/@)
Step3
[ Consequent STCA mining jd— %
on
Consequent Pattern TIDB
G J

Figure 7 The architecture of congestion consequent patterns mining

As we know, it is very difficult to represent the traffic status of each network
object because of the different road categories and different time. For example,
traffic status of average speed 35 km/hr on the workday peak hours for street may
indicate that the traffic status on the street is ‘free’, but on the expressway the

same condition indicates the ‘congestion’ state.
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As mentioned above, a normalized formulation about the traffic status of a
network object must be given. Traffic index factor (6) is defined in order to
normalize the traffic status, as shown in equation (4.1), where i is for the object
index andy,, S;i represents the average speed and speed limit of the object i
respectively due to the different road categories. The greater value of & means the
more serious congestion level of the object. § equals one means the object is in a
serious congestion status and € near around zero means the object is in a free flow
status. The traffic status of a network object O; is formulated as a four elements
vector O;=<Sj4, Tig, d, 8>, elements in the vector represent spatial id, temporal id,

direction, and traffic index factor.
Vi
0=1-— 4.1
S (4.1)
By normalizing the traffic index factor (6) of all the objects, we classify the
traffic status of a network object by five classes (i.e., 1~5), where 1 indicates free

flow state, and 5 indicates strongly congested state. So, the network object vector

can be modified as O;=<Sjq, Tig, d, 0, c>, where c is the traffic status class (1~5).

By aggregating the TIS, each network object in the traffic network has its

own Oi, a threshold of 6 called Congestion-Bound (CB) is used to determine

whether an object is in congested status or not, if 6 of network object is bigger
than CB then the object is thought as a spatiotemporal congested object (STCO).
An example of network object attribute and STCO determination is listed in Table

4, and CB is set to 0.75. In this example, only network object O2 is justified as

STCO because its 0 value is greater than or equal to the threshold (0.75).
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Table 4 An example of network object status, CB=0.75

Speed limitation Average speed

(S) (V)
0, 50 40 0745 02  No
0, 40 10 07:40 075  Yes
05 50 20 0925 06  No
0, 50 50 10:00 0 No

All traffic spots by spatial and temporal domain can be aggregated to
represent the traffic status of urban network, where spatial domain groups the
traffic spots by network objects, and temporal domain groups the traffic spots by
time periods, for example, 15 minutes. Therefore it is easy to snapshoot the traffic
status of the urban network by spatiotemporal aggregating all the traffic spots, and
the traffic status of urban network can be easily represented using the traffic status
snapshots. For example, the traffic status of urban network in morning peak hour
(7~9 AM) includes eight 15-minutes network snapshots.

Since the congested objects are found, we have to decide which congested
objects might be the bottleneck. Only mining the information of objects (a link or
an intersection) to find the relation between each other is not reliable due to the
lower confidence. Our idea is to raise the confidence by clustering the STCOs into
clusters so that the reliability will be increased. The clustering Algorithm we
proposed called Spatiotemporal Heuristic Clustering Algorithm (SHC) s

proposed.
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Spatial Heuristic Clustering Algorithm (SHC)

After STCOs are found, the second process in this phase is spatiotemporal
congestion area (STCA) clustering, which clusters the STCOs in urban network
into several clusters. We develop a Spatiotemporal Heuristic Clustering (SHC)
Algorithm which is a three-dimensional clustering algorithm comparing to
traditional two-dimensional clustering algorithm such as K-means, ISODATA. The
SHC algorithm (Algorithm 1) clusters the STCOs by the spatiotemporal clustering
consideration.

Unlike the traditional two-dimension spatial clustering algorithm, the SHC
algorithm is a three-dimension algorithm with additional temporal dimension.
Every round of the SHC Algorithm deals with a network snapshot, and clusters all

the STCOs on that snapshot by the temporal dimension.
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Algorithm 1 Spatiotemporal Heuristic Clustering Algorithm

Algorithm 1 : Spatiotemporal Heuristic Clustering

Denotation :

Si : the i-th snapshot

Oi = <0i1,0i2,0i3,...> denote the STCOs of S; which is sorted by TIF in
descending order

k : the total number of clusters of S;

ClusterSety : the k-th cluster in S;

TC : the threshold of the objects in cluster

Input : All STCOs of S;

Output : The set of Neighborhood clusters represented by STCOs of S;

Stepl: ClusterSetx = ¢
Step2: Foreach O, € Oi
Step2.1: If Oiy, does not belong to any cluster
Increase the number of k and ClusterSety = ClusterSetx U Oim
Else
Continue the next iteration
Step2.2: For each connected object O of O, in network
If | ClusterSetx | <TC
If O isa STCO and does not belong to any cluster
ClusterSety = ClusterSetx U O
Step3: Return Clustery

Algorithm 1, the SHC algorithm searches connected neighborhood objects of
each STCO and adds the neighborhood object into the cluster if it is also a
congested object (STCO) and does not belong to any cluster. Besides, we assume
the total number of objects in cluster is less than TC, which is the length limitation
of cluster, and each cluster contains no more than TC congested objects. Until all
STCOs in snapshot belong to some cluster, SHC is finished. Finally, all clusters
returned are the spatiotemporal congestion areas (STCA) of each snapshot.

Figure 8 gives an example of three snapshots of the same network, which are

7:00AM, 7:15AM, 7:30AM respectively. Each connected red part indicates a
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STCA which is composed of at least STCO, and we can find each snapshot has

four STCA:s.

S

Figure 8 An example of three snapshots of the same traffic network.

The final process of congestion sequential patterns mining module we
proposed here is to discover the relations between STCAs (i.e., Consequent
STCA Mining Algorithm (CSM)) by utilizing the TIDB derived from Phase | and

the congestion area produced by SHC algorithm.

Consequent STCA Mining Algorithm (CSM)

After the connected congested objects of each snapshot are clustered as a set
of STCAs, the next step is to find the consequent relationship between congestion
areas by an algorithm so called Consequent STCA Mining (CSM) Algorithm

which is described in the following.
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Algorithm 2 Consequent STCA Mining Algorithm

Algorithm 2 : Consequent STCA Mining (CSM)

Denotation:

S=<S,,51,S,,...> denotes all snapshots ordered by timestamp

Ai=<Ai1,Air,Aiz> denote all STCASs of S;

T: the temporal limitation of consequent STCAs

DOR-Bound: threshold of DOR

Consequent Pair (Am,An) : pair (Am,An) , where the time interval between A, and
A, <T and the DOR of the pair > DOR-Bound

PairSet: all pairs

ResultSet : the set of all consequent pairs

Input: STCAs on all snapshots

Output: ResultSet

Stepl: PairSet= ¢ and ResultSet = ¢
Step2: For each A of S;
For each A in Sii1, Siso,..., Si+T
Construct P=(Aik,A) and PairSet = PairSet U P

Step3: For each P=(Am,A,) in PairSet

Step3.1: Calculate DOR(P)

Step3.2: If DOR(P) > DOR-Bound

ResultSet = ResultSet U P

Step4: Return ResultSet

CSM aims to find out all consequent STCAs of each STCA,; therefore, we
find pair P=(Am, An) which denotes there might be a consequent relation between
An and A,. Moreover Consequent Pair (CP) denotes the pair P=(An, An) and
there is a consequent relation between A, and A, indeed which means A, is the ¢
of Anand also the difference of timestamp of A, and timestamp of A, should be
less than T. In other words, if Ay is in congestion, A, will be in congestion
consequently. The TIDB derived from Phase I, in detail, records the information
about the journey: the journey identity, origin, destination, the position with the
time it traveled. These particular records can help us to identify which A, is really

a consequent of An,.
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The Demand overlapped ratio (DOR) a of P=(Am, An) is defined in equation
(4.2), which indicates how much proportion of journeys of A, are coming from
Anm, and Op, , means the number of the same journeys in An, and An; J, means the
total journey number of A,. By definition, the value of a ranges from 0 to 1, when
o=0 means there is no journey from A, to A, and also implies P is not a CP;
otherwise, if a=1, it means the all journeys in A, are coming from An, and they
have a very strong consequent relationship and P is a CP. Therefore the larger o
then the stronger relationship of P will be, and if o larger than DOR-Bound, which

is the threshold of a, then P is a CP.

J (4.2)

There gives an example in Table 5 to illustrate the demand overlapped ratio,
and DOR-Bound is set to 0.6, after DOR being calculated, the P, and P; are

considered as Congestion Consequent Pairs (CCP).

Table 5 An example of Demand Overlapped Ratio with DOR-Bound=0.6

Consequent Pair

P1=(A1,A2) 40 60 0.667 Yes
P2=(A1,As3) 10 40 0.25 No
P3=(As,As) 60 80 0.75 Yes

P4=(As,As) 2 30 0.067 No
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4.2.2 CONGESTION-DROP DOWNSTREAM PATTERNS MINING

— Congestion-Drop Downstream Patterns Mining

S
Downstream Pattern Retrieve - =,

Congestion Drop Ratio
[ Calculation Model ]
Congestion Drop
Downstream Pattern

- J

Figure 9 The architecture of Congestion-Drop Downstream Patterns mining

The Congestion-Drop Downstream Patterns (CDDP) Mining module is
shown in Figure 9. The traffic stream has some directions, and then each object
with direction in network has its upstream and downstream objects. Figure 4.9
gives an example to illustrate the traffic stream. Each number represents the
identity of every network object; if the direction of object4 is “east” then its
upstream objects are: (objectl, south), (object3, east), and (object6, north) and its
downstream objects are: (object2, north), (object5, east), and (object7, south). The
GIS engine can provide the geographical features of traffic network and the
geographical relationship between each pair of network objects, which can be

used to construct the downstream patterns.
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Definition: Downstream Patterns (DP)
Each object in traffic network has its own downstream objects, the
Downstream Pattern (DP) can be defined as follows:
® DS (O)) = {Ois, Oiz, ..., Oi} : which is a set of objects denoting the
downstream objects of O;, where k is the total number of downstream
objects of O;
® DP(O;) = (Oi, DS(Oj), k) : each DP is defined as a triple indicates the
network object O;, its downstream objects as a set, and the number of its

downstream objects.

« DY
§ 1

) | —) 2
N 4‘7'5’

< >

Figure 10 An example of traffic stream in network

Take Figure 10 as an example, we can get seven DPs from the network,
e.g., DP (Obiect4) = (Object4, {Object2, Obect5, Object7}, 3). After DPs are
constructed, we utilize the NOIDB derived from Phase | to find out the
Congestion-Drop Downstream Patterns (CDDP) from DPs based on

Congestion-Drop Heuristic (CDH). The idea of CDH is:” if the congested status
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of an object decreases dramatically or even disappear afterwards, then it is treated
as a bottleneck”; therefore, we can use the traffic index factor 6 to extract CDDP
from DPs, since the serious congested status indicates the higher 6 and the free
traffic indicates the lower 9.

For each DP= (O;, DS(O;), k) and DS (Oi) = {Oi1, Oz, ..., Oik}, we can
calculate the difference of 6 between O; and its downstream objects DS(O;) called
Congestion Drop Ratio (CDR) y , which is defined as equation (4.4), and 6; is 6 of
Oi and 6;; to O are 6 of O;'s downstream objects and k is the total number of
downstream objects, so y is the congestion difference between O; and its
downstream objects.

k

2.9

#(DP(0)) =6, —= (4.4)

The value of y is less than or equal to 1 and might be negative, when y is
close to 1 means the average 6 of downstream objects is almost equal to 0 and 6 of
Oi is very close to 1 then DP(O;) is a CDDP according to CDH. Otherwise, if y is
smaller than 0 means the 6 of O; is smaller than the average 0 of its downstream
objects and its physical meaning indicates the congested status is more serious in
downstream than in O;, then DP(O;) disobeys the CDH and it is not a CDDP.
Therefore if y of DP is bigger than CD-bound, which is threshold ofx, and we can

conclude this DP is also a CDDP.
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4.3 PHASE lll: SPATIOTEMPORAL BOTTLENECK MINING

The two congestion patterns mining from Phase Il are: (1) congestion
consequent pair (CCP): (Am, An) which means if the STCA A, congests, A, will
congest consequently. An, is the antecedent of the pair and A is the consequent of
the pair, (2) congestion drop downstream pattern (CDDP): (O;, DS(Oj), k), DS(Oj)
means the downstream objects of O; and k is the number of DS(O;). In this phase,
we use two heuristics to verify the CCP we discovered from Phase Il, and use the
congestion confidence (CC) t to verify the CDDP and to find out all the three

kinds of bottlenecks.

4.3.1 CONGESTION-PROPAGATION HEURISTIC

The idea of congestion-propagation heuristic (CPH) is:” if a bottleneck
congests, as a consequence, it may result in more congestions to other objects”,
therefore we know this heuristic is based on congestion consequent pairs
discovered from Phase Il. According to congestion-propagation heuristic, the
bottlenecks may occur in the antecedent of consequent pairs.

We define root-cause STCA (RC-STCA) as STCA which may imply more
STCAs in consequent pairs, and means RC-STCA appears in the antecedent part
of all consequent pairs is more than CPH-Bound times, which is a threshold of

CPH. By definition of congestion-propagation heuristic, the bottlenecks may exist
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in RC-STCA, therefore, the bottleneck mining can only be limited to RC-STCA:s.

All STCOs in RC-STCAs are thought as the bottleneck candidates.

C.

T = all, (4.3)

The bottleneck must be in congested status more often or otherwise it is not a
bottleneck; therefore, the congestion confidence t is used to extract the real
bottleneck from the bottleneck candidates. The definition of t is given in equation
(4.3), where c¢; means the congested days in the experiment and all; means the total
experiment days. The value of t ranges from 0 to 1 and when 1= 1 means the
object is always congested; otherwise when 1= 0 indicates the object is always
free. Therefore, if the congestion confidence of bottleneck candidate BC is larger

than CC-Bound, which is the threshold of T, we may conclude it is an STB.

4.3.2 CONGESTION-CONVERGE HEURISTIC

The idea of congestion-converge heuristic (CCH) is:” if a bottleneck
congests, it must be caused by some other prior congested objects”; therefore, we
know this heuristic is also based on congestion consequent pairs, and the
bottlenecks may occur in the consequence of consequent pairs. The root-cause
STCA (RC-STCA) is defined as the STCA, which appeared in the consequent part
of all consequent pairs, is more than CCH-Bound times, which is a threshold of
CCH. As shown in Section 4.3.1, the bottleneck mining can only be limited to

RC-STCAs. All STCOs in RC-STCAs are thought as the bottleneck candidates
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and we use congestion confidence t (defined in equation (4.3)) to finally
determine whether it is an STB or not. If T of a bottleneck candidate is bigger than

CC-Bound, we may conclude the bottleneck candidate is an STB.

4.3.3 CONGESTION-CONFIDENCE TO VYERIFY CDDP

Since congestion drop downstream pattern (CDDP) =(0;, DS(O;), k), DS(O;)
are found in Phase IlI, the O; is thought as a bottleneck candidate based-on
congestion drop heuristic (CDH); therefore, we have to check the congestion
confidence t of O; to decide If it is a spatiotemporal bottleneck or not. If T of a
bottleneck candidate is bigger than CC-Bound, we may conclude the bottleneck

candidate is an STB.



CHAPTER DS

EXPERIMENTS

The STBM prototype model was implemented based on a real time
LBS-based application: taxi dispatch system (TDS) [2]. The TDS is an online
7x24 system operated in Taipei urban area, and the current fleet size is about 500
taxis, where the OBU reports its current status periodically (30 sec) or when some
events occur. The types of event include spatial trigger event, dispatch/response
event, customer on/off taxi events, etc. Currently TDS raw data could be half a
million uplink reports per day, which becomes a good data source for this
prototype model. In the data collecting and cleansing module, the OBU raw data
has been collected and transformed to TISs in a period of 5 minutes in order to
catch the real time traffic information and only the traffic information in
‘dispatch’ or ‘occupied’ state of OBU is extracted.

Historical traffic information consists of journey sets, which can be obtained
from the raw data by combining the GIS road network. For example, ‘dispatch’
state journey starts from the dispatch location to the customer’s location, and
‘occupied’ state journey starts from the customer’s location to customer’s

destination.

38
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Figure 11 Main roads in Taipei urban network

As shown in Figure 11, the target area of this prototype system focused on
the urban network in Taipei city; each arterial in the network may have at least
one link. The predefined link attributes including category, length, direction,
speed limit, average signal delays and geographical coordinates vectors with
default values are given by domain expert to facilitate STB discovering. In the
congestion area mining phase (Phase II), traffic index factor 6 is classified by
aggregating the TISs at temporal and spatial dimensions and normalized by
category and speed limit attributes. For example, if the traffic index factor is very
close to 0 it means the link is in free flow state and the traveling speed is near
around the speed limit; on the other hand, if traffic index factor is close to 1 it
represents that the link is in extremely congestion status.

In the experiment, raw data was collected during 2006/02~2007/03; the data

in the first eleven months is for training the STBM model and the remaining is for
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testing. The traffic index factor (0) for workday and weekend are summarized as
depicted in Figure 12, where each plot in Y-axis means a 15 minutes time slot. In
Figure 12, it can be easily seen that there are two peaks in the curve of workday,
which verify the common experience of on-duty and off-duty peak hours.
Nevertheless, the curve of weekend does not have the obvious peak due to
different patterns on workday and weekend. Therefore, we limit the STB search
period on two peak hours of the workday in order to reduce the computing
complexity. The average 0 of the on-duty peak hour (07:30~09:30) is 0.45, and

off-duty peak hour (17:30~19:30) is 0.54.

TIF (Workday vs Weekend)

0.5

0.4

0.3

00:00~00:15
02:30~02:45
05:00~05:15
07:30~07:45
10:00~10:15
12:30~12:45
15:00~15:15
17:30~17:45
20:00~20:15
22:30~22:45

Figure 12 Traffic index factor (0) for workday and weekend

The testing data from January to March in 2007 is divided into twelve weeks
for testing, and three methods we proposed will be compared to the statistic model,

which chooses the top k objects with the highest TIF and highest congestion
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confidence. The experimental results in workday and weekend are shown in
Figure 13 and Figure 14 respectively. Figure 13 shows the experiment of workday
accuracy between three heuristics in STBM and statistic model, the accuracy of
four methods are all around 75%; moreover, CPH and CCH are more stable than
other two methods (CDH, statistic) and also have higher accuracy. Though the
average accuracy (see Table 6) of statistic model is as good as STBM but it is not

steady, the accuracy in some weeks are not higher as we expected.

Workday

1

R NS -3
0.6 ,/ \V/

0.4
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s CPH e CCH CDH e Statistic

Figure 13 Three heuristics of STBM compare to statistic model in workday

Table 6 The average experiment accuracy.

|l ccH | CPH | CDH | Statistic |
10795982 0776282 0.7469  0.759009

0.726056  0.618511  0.714767 0.55

The experimental results as shown in Figure 14, the accuracy in weekend is
much unstable than the experiment results in workday and the workday results are

better than weekend because the weekend traffic does not have the general traffic
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pattern, like the workday traffic which always has the two clear patterns: (1)
on-duty pattern which from home to company in the morning and (2) off-duty
pattern which from company to home in the evening, so the accuracy distribution
is much dispersed. But the average accuracy of STBM is still better than statistic

result as shown in Table 5.1.

Weekend
1
0.8 K\ /,—-—'—'ﬂ / : i "'\..‘
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s CPH e CCH CDH e Statistic

Figure 14 Three methods of STBM compare to traditional statistic model in weekend

In Figure 15, the link on the map is the main roads of urban network, and the
right-down side is the urban center and there are three arrows mined by CPH
located on Taipei urban network: white means the on-duty bottlenecks on 7:30 to
9:30 in the morning; blue means the off-duty bottlenecks on 5:30 to 7:30 in the
evening; and yellow means the bottlenecks both in the morning and evening. The
four edges of the map is the suburban, and we can see the on-duty bottlenecks is
from the suburban into the urban center which is just like the traffic pattern when

go to the work; furthermore the off-duty bottlenecks is just from the urban city
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center to suburban which also means the traffic pattern going home. In Figure 15,

we can see that the reliability and accuracy of STBM are quite high.
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Figure 15 The workday bottlenecks mined by CPH located on Taipei urban network.




CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

Finding out bottlenecks in traffic network is one of the major tasks in ATMS
in order to take some actions for improving global network performance. The
STBM model, we proposed in this thesis, consists of three phases (traffic
information generation, traffic congestion patterns and spatiotemporal bottleneck
mining) for discovering the spatiotemporal bottlenecks in urban network. It
utilizes the raw data collected from LBS-based applications (which has the
advantages in term of cost and coverage comparing to traditional sensor based
surveillance system) and the road network information from GIS for discovering
the bottlenecks.

Three heuristics for finding out bottlenecks are proposed to find the total
solution to traffic network bottleneck, and experimental results showed that the
average accuracy in workday using three heuristic-modules are higher than 76%
and better than statistic model. Moreover, the average accuracy in weekend is
little lower than workday may due to the clear traffic patterns in workday i.e.,
on-duty pattern in the morning and off-duty pattern in the evening. The basic idea
of CPH and CCH is utilizing the consequent rules to gain the bottleneck; therefore

the accuracy in weekend is a little bit lower than workday.
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In the near future, the STBM model will be enhanced as a real time
bottleneck detection and prediction system, which integrates the historical traffic
patterns and real-time traffic information to predict the bottlenecks. And further
traffic assignment suggestions will be provided by combining the domain

knowledge of traffic assignment experts with the enhanced STBM model.
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