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Human Action Recognition Based on Layered-HMM

Student : Yen-Chiech Wu Advisors : Suh-Yin Lee

Institute of Computer Science and Engineering
National Chiao Tung University

ABSTRACT

We address the problem of human action understanding of the upper human from video
sequences captured by single camera. Time-sequential images expressing human actions are
transformed to sequences of feature vectors containing the configuration of the human body.
A human is modeled as a collection of body parts, linked in a kinematic structure. Beginning
with the root part, the head, body parts are searched along the structure hierarchically. The
relation of the joints, inferred from the configuration of parts, is used to estimate the human
pose. A proposed layered HMM framework decomposes the human action recognition
problem into two layers. The first layer models the actions of two arms individually from
low-level features. The second layer models the interrelationship of two arms as an action.

Our approach has some advantages over previous work. First, by decomposing the problem

il



hierarchically, training and recognition are performed on low-dimensional observation spaces,
avoiding an excess of model parameters. Second, our framework is easy to interpret and
extend since each human action can be regarded as a combination pattern of arm actions.
Third, the layered framework and the rule-based pose estimation method solve the problem of
over-fitting with limited training data a standard HMM often faces. Experiments with a set of
six types of human actions demonstrate the effectiveness of our proposed method, and the

comparisons with other HMM systems show the robustness.

Index Terms: Action recognition, Layered HMM, part-based object recognition.
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Chapter 1

Introduction

Vision-based human motion capture and analysis is a highly active research area due to
the number of potential applications and its inherent complexity. Applications can roughly be
grouped into three categories: surveillance, control, and analysis. Surveillance applications are
generally used for real-time monitoring and detecting abnormal behaviors over hospitals or
airports where a crowd of people pass through all the time. Control applications provide an
interface for entertainment to control equipment, e.g., as seen in Virtual Reality,
Human-Computer Interfaces, or robots industry. Analysis applications are for example tactics
analysis of sports video [18], sign-language-analysis, or content-based retrieval of video for
compact data storage or efficient-data transmission. The research area encounters a number of
difficulties such as inferring the pose-of a highly articulated and self-occluding object from
images, and recognizing ill-defined and unstructured actions varying from person to person.
This complexity makes this research topic challenging and usually application-orientated.

Most of the previous applications recognize complex human actions based on
information from multi-channels, such as multiple cameras, multimodal including visual and
audio features, or electrical hand-worn gloves. For a simple environment equipped with single
monocular camera, only actions with intensive motions can be recognized with high precision.
Our aim is to develop an action recognition system that can detect complex actions with
subtle movements in a simple setting. In this thesis, we focus on the action of an upper human

body.

In our method, time-sequential images expressing human actions are transformed to



sequences of feature vectors containing the configuration of human body parts. Human poses
are estimated based on the extracted features. Then, a two-layer HMM framework is proposed
to decompose the human action recognition problem into two layers. The goal of the first
layer is to recognize the actions of two arms individually using the pose features. The output
of this layer provides the input to the second layer, which models the interrelationship of two
arms as a human action.

The traditional methods to estimate poses can be classified as exemplar-based and
rule-based methods. The exemplar-based method should build a representative codebook of
poses from training data first. The pose estimation is achieved by finding the best match of
extracted features to all the pose exemplars in the codebook. The rule-based method omits the
procedure of building a codebook. The pose is estimated according to the defined rules.

We present a novel rule-based method of pose estimation to approximate the human pose
according to the relation of joints. The locatiens' of joints are inferred from the previously
extracted feature, the configuration of-human-body parts. Every defined rule classified all the
possible pose patterns into subgroups: Estimating a human pose is to determine the pose
pattern by applying all the rules. Without building a pose codebook and matching the
extracted features to all the poses in the codebook, our rule-based method is more efficient
than exemplar-based methods. Also, our method is effective to represent the configuration of
the body parts as a pose pattern.

Although HMMs are robust to changes in the temporal segmentation of observations,
they suffer from a lack of structure, an excess of parameters, and an over-fitting of data with
insufficient training samples. The layered scheme of our system decomposes the recognition
problem hierarchically. Learning and recognizing patterns are performed on low-dimensional
observation spaces, resulting in simpler models. Hence, the layered framework successfully

avoids the difficulties HMMs encounter.



Our human action recognition approach has some advantages over previous work.
First, by decomposing the problem hierarchically, training and recognition of HMMs are
performed on low-dimensional observation spaces, avoiding an excess of model parameters.
Second, our framework is easy to interpret and extend since each human action can be
regarded as a combination pattern of arm actions. Third, the layered framework and the
rule-based pose estimation method solve the problem of over-fitting with limited training data
a standard HMM often faces.
The thesis is organized as follows. Chapter 2 and 3 review the related work and the
concept of HMM respectively. Chapter 4 presents our human action recognition approach.
Experiments and discussion are reported in Chapter 5. Conclusions and future work are drawn

in Chapter 6.



Chapter 2
Related Work

There were plenty of approaches to human action recognition over the past few years.
For a detailed survey of recent techniques see [1]. In general, the approaches for action
recognition can be classified into three categories: motion-based methods [2, 3],
appearance-based methods [4, 5, 6] and model-based methods [7, 8, 9]. Motion-based
methods attempt to recognize the action directly from the motion without any structural
information about the physical human body. Therefore, this kind of methods yield better
results dealing with intense actions. In contrast, the appearance-based and model-based
methods utilize the idea that thesappearanee-of human and background is different. The
model-based method builds the human model by appearance accompanied with shape or other
information. Intuitively, the complex model promises precise configuration of articulated
body parts at the expense of time.

[2, 3] propose a superposed representation of an action based on motion information only.
A motion-history image (MHI) is generated as a scalar-valued image where intensity is a
function of recency of motion. Then, identifying an unknown action is achieved by matching
its MHI to MHIs of defined actions in the database. That is to say, the approach is based on
temporal templateds and their dynamic matching in time. However, since the method assumes
all motion present in the image should be incorporated into the temporal templates, it is
difficult to present cyclic actions. The spotting of the start and end of an action becomes
critical.

In [4, 5], the human body is represented as one entity. [4] segments the human body out

from the background and reserves the silhouette of the body as the pose feature. [5] further



builds the star skeleton, which is a fast skeletonizing technique based on the silhouette of the
human body. The star skeleton consists of only the contour extremes of a target joined to its
centroid, which form a shape of a star. The work in [6] clusters the feature vectors formed by
spatial-textural components of image pixels. The pixels with similar color and spatial values
form coherent connected regions, or “blobs.” In general, there are seven blobs to describe the
head, two hands, two feet, the upper half of the body, and the bottom half of the body.
Although the blob representation reveals more pose information than the silhouette and the
skeleton representations, it is not sufficient to depict precise postures. For example, when two
hands are close, it is not easy to distinguish between the right and the left hand. The
appearance-based methods are usually used for recognizing intense actions.

It is natural to recover human pose employing the body structure. The model-based
approaches focus on constructing the configuration.of articulated body parts including limbs.
References [7, 8] represent a human. body as spring-like connected parts. Similarly, the work
in [9] links the joints between- parts-as-an-invariant representation. In [7], probabilistic
assemblies of parts are introduced for direct bottom-up pose estimation by first detecting
potential locations of body parts and then assembling them into meaningful configurations.
The configuration which best matches the observing image is chosen from the various
combinations. In [8], the body is treated as a collection of connected parts linked in a
kinematic structure. Search for configurations of this collection is commenced from the most
reliably detectable part, e.g. torso. Comparing [7] to [8], the spatial relationship between parts
is lost when they are detected individually which potentially leads to a large number of false
positives making the assembling procedure complex and time-consuming. Therefore, the
majority of vision-based recognizing systems assume a priori a humanoid kinematic structure.

The sequence of feature vectors extracted from the above methods is regarded as the

temporal properties of an action, and is typically handled using PCA-based classification [3,



10, 11] or statistical Hidden Markov Model (HMM) and extensions [4, 5, 8, 12, 13, 15, 16].
PCA is applied for dimensionality reduction and each action is then represented by a manifold
in eigenspace (PCA space). To recognize the probe action, we compare the probe and the
gallery trajectories in eigenspace by first applying appropriate time warping. A HMM is
constructed and trained to model the dynamics of individual action. During the recognition
phase, the HMM with the largest probability identifies the individual.

[10] interprets each action as a self-similarity plot computed via correlation of each pair
of silhouette images extracted from the video sequence. [11] describes each action as a set of
blurred edge images. The feature sequences are transformed to successive points in
eigenspace and formed a motion line. The action is recognized by a k-nearest neighbor (kNN)
classifier in eigenspace. The kNN classification procedure is simple, but computationally
expensive, due to picking up the k nearest neighbors from all. In addition, the recognition rate
of the PCA-based methods is :sensitive to the number of eigenspace dimensions, which
decides the discriminability of the projection-space. The normalization of the PCA manifolds
is also an issue.

The use of HMMs is ubiquitous in signal processing, particularly in speech recognition
[12] because it can deal with time-sequential data and provide time-scale invariability as well
as learning capability for recognition. The work in [13] is the first to apply the HMM
technique to action recognition. More complex models, including Coupled-HMMs,
Parameterized-HMMs, Entropic-HMMs, and Variable-length HMMs (see [14] for a recent
review of models), have been used to recognize more complex activities such as the
interaction between people. Although basic HMM appears to be robust to temporally
correlated sequential data, it is challenged by an excess of parameters and the risk of an
over-fitting of data with insufficient training samples. The extension, Layered-HMMs

(LHMMs) [15], can successfully overcome the problems. We can describe LHMMs as a



representation for learning different stacked classifiers and using them to do the classification
of temporal concepts. Rather than training the models at all the levels at the same time, the
parameters of the HMMs at each level can be trained independently in a bottom-up fashion.
[15, 16] infer typical human activities in meetings from multiple sensory channels in a

hierarchical manner.



Chapter 3

Preliminary

A hidden Markov model (HMM)) is a statistical tool for modeling a system as a Markov
process with unknown parameters generating an observable sequence. The challenge is to
determine the unknown parameters from the observable sequences. The extracted model
parameters can then be used to perform further analysis.

HMMs have been applied with great success to problems with temporal patterns, such as
speech, handwriting, and action recognition. Take action recognition for example. Since an
action is composed of time-sequential poses, it can be viewed as a signal sequence by
mapping a pose to a vector. One HMM.uiss created for each action to be recognized.
Recognition is done by choosing-the model which best'matches the observed sequence.

The organization of this chapter-is as follows: In Section 3.1, we review the theory of
Markov chains with a simple example. In Section 3.2, we show how to extend a Markov
model to a more complex system, where the concept of hidden states is introduced. The
parameters of a HMM are determined during the training procedure described in Section 3.3.

Section 3.4 explains the recognition procedure.

3.1 Markov Process

Figure 3-1 depicts an example of a Markov process. The model describes a system for a
stock market index. The model can be viewed as a probabilistic finite state machine with three
states, Bull, Bear, and Even, and three index observations, up, down, and unchanged. Given a

sequence of observations, for example: up-up-down, we can easily verify the traced state


http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Observable
http://en.wikipedia.org/wiki/Time

sequence, Bull-Bull-Bear, generating the observations, and the probability of the system

generating the observation sequence, in this case 0.6 x 0.6 x 0.2.

The above state transitions cover the idea known as a first-order Markov assumption
(usually called Markov assumption in brief). The assumption indicates that the probability of
a certain observation at time t only depends on the observation at time t -1. In other words, the

probability of a certain state at time t only depends on the state at time t-1.

Figure;3-1 Markov-process.example [17]

3.2 Hidden Markov Model

Figure 3-2 shows an example of extending the previous model into a HMM. The new
model allows all observation symbols to be emitted from each state with a probability
distribution. This change makes the model more expressive to complex real-world system. In
this case, a bull market may both have good days (up) and bad days (down or unchanged)
while good days stand a good chance (larger probability). The key difference of this model
from the previous model is that the state sequence generating the given observation sequence
(up-up-down) is hidden. However, we can still evaluate the probability of the system

generating the observation sequence.



orF 0.2 01
oz * 05 .
Fanged
unchang Vo 04 o4 o ged
03
.03

04 2 ]

0.5 .

Figure 3- 2 Hidden Markov model example [17]

In the next two sections, we will desernibe.the method of evaluation and the procedure to
train a model to the desired system. Now, we formally define the elements of a HMM
following the notation in [12]. A HMM is characterized by the following:

(1) N, the number of states in the model.

We denote the state set as S = {S;, Sy, ..., Sx}, and the state at time t as Q.

(2) M, the number of distinct observation symbols per state.

We denote the symbol set as V = {vi, Va, ..., V,, }.
(3) A= {ajj}, the state transition probability distribution where
a; =P(Qu1=S; |t =S;)

(4) B = {bj(k)}, the observation symbol probability distribution in state j, where

bj(k) =P(v, attimet|q.=Sj)

(5) m={ i}, the initial state distribution, where

mi=P(1=S)

Therefore, a HMM is specified by two model parameters (N and M) and three

10



probability distributions (A, B, and 7). The compact notion to represent a HMM is A = (A,
B, 7). Given values of N, M, A, B, and 7, the HMM can be used as a generator to give an
observation sequence O = O;0,--- O, where each observation O+ is one of the symbols from V,

and T is the number of observations in the sequence.

3.3 Recognition Procedure of HMM
The problem of evaluating how well a model A predicts a given observation
sequence,O = O103,:--Or, can be solved by computing P(O|A). The evaluation result

allows us to choose the most appropriate model from a set.

The most straightforward way,of computing P(O| 1) is through enumerating every

possible state sequence of length | T (the' number of observations in sequence). The

computation of P(O| A) has the lattice-(or trellis) structure as Figure 3-3, where all paths

from time 1 to time T represent a possible state sequence. The structure leads the computation

to an efficient implementation known as Forward Procedure.

The Forward Procedure: Consider the forward variable « (i) defined as
a,(i)=P(0,0,...0,,q, =S, | 4).
a (1) is the probability of the partial observation sequence O ; O,--- Ot, and state S; at time t.
So if we work through the lattice filling in the values of « (i), the sum of the final column of
the lattice will equal the probability of the whole observation sequence OO+ O1. We can

solve for a (1) inductively, as follows:

1) Initialization:

11



(i) = 7b(0,), 1<i<N.

2) Induction:

IN
N
IN
P

a,(]) = {Zat(i)aij}bj(oul)’ 1
1<t <T-1.

3) Termination:
N -
P(O]A) = ) a (i)
i=1

The induction step, which is the key to the forward calculation, is illustrated in Figure 3-4.
The figure shows how state S; can be reached at time t+1 from the N possible states, S;, 1 < i

< N, at time t. Since @ (1) is the probability of arriving in state S; having observed the
observation sequence up until time t, the product a (1) aj; is the probability of the event that

010,--- Ot are observed, and state Sjis reached:at time t +1 via state S; at time t.

STATE
I

vy N

OBSERVATION,

Figure 3-3 Computation of P(O| 1) based on the forward variable « (i)

in terms of a lattice of observations t, and states i [12]

12
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Figure 3-4 The induction step of the forward procedure [12]

3.4 Training Procedure of HMM

One HMM is created for each action to be.recognized. Since there is no known way to
analytically solve for the HMM parameters, we need to collect observation sequences
representing actions for training. The training procedure optimizes the HMM parameters so as
to best describe how a given observation sequence comes about. In other words, we adjust the

parameters A = (A, B, 7 ) to maximize the probability of generating the training sequence
given the HMM model, P(O| A).

Before discussing the training method, we define a backward variable 5 (i) in analogy to
the forward variable « «(i):

p.()=P©O,0,,,...0;,9, =S, | 1).

B (i) is the probability of the partial observation sequence O Owa -+ O, given state S; at
time t and the model A . In a similar manner, we can solve for 5 (i) inductively, as follows:

1) Initialization:

g =1 1<i<N.

13



2) Induction:

ﬂtﬂ(i) = |:iaijbj(ot+l):|ﬁt+l(j)a 1<i< N7 t=T-1 > T_Z"“’l'
=

The initialization step 1) arbitrarily defines 5 1(i) to be 1 for all i. Step 2) is illustrated in

Figure 3-5, showing that the state S; at time t accounts for the all the possible transitions from

time t to time t+1. /3(i) stores the probability of starting from S; having observed the partial

observation sequence from time t to the end.

t

B, ti)

b+

By o ti)

Figure 3-5 The induction step of the backward procedure [12]

The training procedure adjusts the model parameters (A, B, 7 ) to maximize the
probability of generating the training sequence O given the HMM model A . We solve this

problem with an iterative procedure, known as Baum-Welch method. We begin by defining a

variable £ 1(i,j), the probability of being in state S; at time t, and state S; at time t+1 given the

model and the observation sequence:

é:t(ia J): P(qt :Siaqt+1 :Sj ‘Oaﬂ')

14



Figure 3-6 illustrates the conditions required by the variable. Clearly, & (i,j) can be

rewritten involving the forward and backward variables in the form

P(Q, =S5,,9,, = Sj9O | 4)
P(O]A)

ANE

_ at (i)aijbj (Ot+1 )ﬁt+1 ( J)
- P(O|4)

__ &% (Ha;b;(O,)f. (1)
Z Z o (i)aij bj (Ot+1 )ﬂm ( J)
j=1

i=l j=

|

|

|

| S}

_—

ai]bj{ut""li R

|

|

I .

| By 4al))

l t+1 t+2

|

Figure 3-6 Illustration of sequence of operations required for the computation of the joint

event that the system is in state S; at time t and state S; at time t+1 [12]

Then, we define the variable 7 (i), which represents the probability of being in state S; at
time t, given the observation sequence O and the model A :
7 () =P(@ =5;10,4).

7 tcan also be expressed in terms of the forward-backward variables,

Ca @A) @B
r ()= I .
D WACYXO
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In addition, we can relate 7 (1) to £ «(i,j) by summing over j, giving
- N - -
7t(|) = Zé:t(la D-
=1

Therefore, the sum of 7 (i) over time may be interpreted as the expected number of times

that state S; is visited, or equivalently, the expected number of transitions made from state S;.

That is

T-1

Z 7,(1) = expected number of transitions from S, .
t=1

Similarly, the sum of £(i,j) over time may be interpreted as the expected number of

transitions from state S; to S;. That is

T-1

Z &.(1,)) = expected number of transitions fromS; toS;.
t=1

Using the above formulas, we can iteratively. reestimate the model parameters of a HMM

by simply “counting events.” The reestimation formulas for 7 ,A, B are

ol
I

i expected number of timesin state S_attime(t=1) =y, (i)
T-1

—  expected number of transitions from S, to S, ; s (.J)
a. = = —

! expected number of transitions from S, IS v i)

t=1 t
.
2.7:0)

m expected number of times in state S; and observingsymbolv, &,

j = =

expected number of times in state S,

Z%(j)

The reestimated model is denoted as A = (K,E,;), and it has been proven that the

reestimation procedure increases the likelihood of the model generating the observation

sequence, i.e., P(O|1)>P(O]A4).
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3.5 Layered HMM

A layered HMM (LHMM) is the extension of standard HMM [15], developed to
decompose the parameter space in a way that could enhance the robustness of the system by
reducing training and tuning requirements. A problem is hierarchically divided into
sub-problems with smaller scope, and the final solution is obtained by merging the results of
the sub-problems.

In LHMMs, each layer is connected to the next layer via its inferential results. The
representation segments a problem into distinct layers that operate at different temporal
granularities, which correspond to the window sizes or vector lengths of the observation
sequences in the HMMs. The structure of a three-layer LHMM is illustrated in Fig. 3-7(b)

compared to a standard HMM with single layer in'Fig. 3-7(a).

(b) Layer 3

o)

2 @ %_»[021,022’...,0”]
:) :

e 2 @ ém»[O”,Olz,“',OlT]
: :

Figure 3-7 Graphical representation of (a) a standard HMM
(b) an architecture of three-layer LHMM
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There are two approaches to performing inference with LHMMs [15]: maxbelief and
distributional approach. In the maxbelief approach, the model with the highest likelihood is
selected and provided as an input to the HMMs at the next level. In the distributional
approach, the full probability distribution over the HMMs in the lower level is passed to the
next-level HMMs.

Since the training and learning of each layer of LHMM is performed individually,
LHMM successfully avoids the drawback of standard HMM — an excess of parameters and
over-fitting of limited training data. At the same time, it preserves the advantage of HMM
being robust to changes in the segmentation of observations. In addition, it suits the type of

problems with layered structures.
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Chapter 4

Proposed Action Recognition Scheme

In this chapter, we present our action recognition mechanism that aims to detect actions
of an upper human body. Section 4.1 first introduces the system framework. The following
sections detail the procedures of the system. Section 4.2 defines the features we employ and
the algorithm of feature extraction. In Section 4.3, features are transformed to pose symbols.

Section 4.3 depicts the actions to be recognized and the recognition scheme.

4.1 System Overview

The system framework consists—of" feature extraction, pose estimation, and action
recognition as shown in Figure 4-1. First, we segment the human as foreground object from
an image and then extract local and global features from the segmentation result. Second, the
human pose is estimated by two separate arm pose estimators using extracted features. After
processing each frame, the human action is recognized by using sequences of arm poses and
the global feature based on layered hidden Markov models (LHMMs).

In this thesis, a human is modeled as a collection of body parts [8] as Figure 4-2,
including head, torso, upper arms, and lower arms. Human segmentation is regarded as a
part-based searching procedure. The local feature is composed of location information of each
body part, and the global feature is made up of location relation of body parts. After obtaining
the feature vectors in each frame, the high-level knowledge of human action can be inferred

subsequently.
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In most cases, two arms’ interaction determines the action of an upper human body, so
the recognition procedure focuses on arms without considering other parts. Furthermore, our
strategy is to recognize two arms separately. The fundamental idea is that, by defining an
adequate set of arm actions, we can decompose the human action recognition problem into
two levels. In the first level, actions of two arms are recognized individually. In the second
level, the combination of two arms is recognized as the human action. However, so far what
we have is a large amount of feature vectors containing numerical location information of
body parts which can not be directly perceived through the senses. Before starting the
recognition procedure, we should translate confusing local feature vectors to simple but
expressive symbols representing two arm poses.

After revealing the location of body parts, the joints between body parts are inferred. An
arm pose is represented as a type ofiinterrelationship of arm joints, including the shoulder, the
elbow, and the wrist. For example, if one’s hand is raised, the wrist is above the shoulder and
so is the elbow. The elbow is below:the wrist-at the same time. The method we adopt to
estimate the arm pose is efficient and effective. All the defined pose symbols are listed in
section 4.3.

Our recognition framework is based on the extension of hidden Markov models (HMMs).
The HMM is a popular statistical tool for modeling time series data, and has been successfully
used for numerous sequence recognition tasks, such as speech recognition. Modeling human
actions to HMMs involves two procedures: training and recognition. The training procedure
optimizes the parameters of HMMs. Each HMM s trained to represents a specific pattern.
The recognition is achieved by finding the HMM with the maximum probability of generating
the tested observation sequence. The difference of layered HMM (LHMM) from traditional
HMM is the Markov models are structured as various layers for patterns with distinct scopes

and the recognition results from the lower layer provide the input of the higher layer.
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We present a two-layer HMM framework for human action recognition to meet the
demand of our strategy of decomposing the human action recognition problem into two levels,
arm movements and human actions. The goal of the lower layer is to recognize the actions of
two arms individually using extracted features. The recognition result is regarded as the input
of higher layer, which models the interaction of two arms. The local HMM and the global
HMM in Figure 4-1 are in the lower layer, and the interaction HMM is in the higher layer.

Compared with a single-layer HMM structure, the layered approach has the following
benefits, some of which were previously pointed out by [16].

1) A single-layer HMM is designed to train models on a large observation space, which
might face the problem of over-fitting with limited training data. In contrast, the
dimensions of the features we adopt in the layered HMM are smaller, resulting in
more stable performance.

2) The models of the Local-HMM are reusable: In some cases, there is only one arm
(right or left) dominating thesaction.—-traising one’s hand for example, so that the
trained model for right arm ¢an be transformed as left arm’s model in view of
symmetry of human structures, and vice versa.

3) The Interaction-HMMs are less sensitive to slight changes in the low-level features
because their observations are the output of the previous action recognizers, which are
well trained to tolerate human segmentation flaws.

4) The two layers are trained independently so that it is easier to interpret and to enhance
each layer. There are various types of HMMs, such as ergodic and left-right model. We
can choose the most suitable type for each model in each layer individually instead of
remaining a consistent type for all models.

5) The framework is general and extensible to recognize new human actions defined in

the future.
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4.2 Feature Extraction

4.2.1 Local Feature Definition

A human body can be modeled as a collection of body parts linked in a kinematic
structure. It is natural to express such a model as an undirected graph with vertices
representing parts and edges representing connections between parts. Since every part is
connected and the connections between parts is acyclic, a human model fits the tree structure
more specifically. The center part of body, head-torso, can be viewed as the root followed by
children parts. Then, breadth first search order can be applied to our part detection scheme to
find the locations of all parts hierarchically. The location information, which specifies a
position, orientation and an amount of foreshortening of each part, forms the local feature. We
record the scale of the length of the extracted'arm and. the standard model, since the length of
an arm can vary due to foreshorteéning:

As shown in Figure 4-2, our model for a front-facing upper body has five “parts” or
“combination of parts”: (a) head and torso, (b) two parts for upper arms, and (c) two parts for
lower arms and palms. Two parts are linked by joints, shoulder joints and elbow joints. The
wrist joints are the linkers of lower arms and palms. The head-torso part is defined as the
“salient part” since it dominates the human body and it is easy to detect. On the other hand,
the remains are categorized as “rest parts”. In this thesis, we assume users’ lower arms are
exposed to simplify the human model. The assumption is fairly valid whether the users wear
short sleeve shirts or roll up long sleeves. Consequently, the skin model for head and lower

arms are the same and the clothing model for torso and upper arms are identical.

The local feature is given by a location vector L = {l ;1 ,1zya>l uaslriasliiat = {l;}, where
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each vector comoponent |, specifies the location information of the part specified by the

suffix. The posterior probability of a location vector L given an image I is formulated as,

p(l—| I) — p(IHT)p(IRUA | IHT)p(ILUA |IHT )FE)((II;LA | IRUA)p(ILLA | ILUA)p(I |{I|})

oc H p(ll | Iparent(i))H p(l | I|) .

The above formulation, proved in [8], is a standard approximation adopted by many

researches in the past. Generally, the prior probability p(l; |1 ey ,) i uniform distribution

over all possible locations as long as the kinematic restriction is retained, which says that the
head can be any position of the image and the left lower arm can be left-bottom or right-top of
the left upper arm only if they are linked: Since.detection in each frame is performed without
prior knowledge from previous frames, it-is.reasonable to assume that all poses are equally
possible. Furthermore, the deteCtion of individual body parts through template matching is
independent of each other. Hence, the likelihood of seeing an image given that the human is at

some location can be modeled as the product of individual part likelihoods,

p(H [l o [T pCH(T).

The individual part likelihood is approximated as the ratio of foreground pixels inside a

part to total pixels inside a part,

_ foreground pixels inside I,
total pixels inside I,

p(rI1)

Intuitively, the individual part likelihood closest to one indicates the best part location.
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4.2.2 Local Feature Extraction

The algorithm of local feature extraction consists of two stages, foreground extraction
and hierarchical part detection. The first stage extracts foreground area and skin area of an
input image and meantime estimates the bounding box of foreground pixels. The second stage
detects the location of each body part hierarchically from the salient part to rest parts. The

algorithm is displayed in Figure 4-3.

Video clips
' | ™
L] L
Background Inpiie
Imge Image E
= .
Y
. Bounding box }
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‘ area restriction | detection )\
\ Foreground extraction /
Y
: x no
Is salient part found ?
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r ™)
. Is
ves . 1o
upper arm location
reliable ?
Search lower arm Search lower arm
in neighborhood inside bounding box

L Rest parts detection y

Figure 4-3 The algorithm of local feature extraction.
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First, the input image and background image are transformed to YUV color space.
Background subtraction is performed on the Y component of the color values of the
transformed pixels. The bounding box of the foreground area is then estimated to speed the
detection of skin areas and body parts. Skin areas are detected by comparing the transformed
color values to a human skin model [19]. We employ the chrominance components of YCbCr
color model to eliminate the influence of luminance. By the end of this stage, we attain
foreground plane and skin plane, where we further apply morphological operations to filter
noise and enhance the completion of extracted foreground objects. The following parts
detection procedure is searched on these planes.

The matching of body parts to prior models is searched at coarse grid locations instead of
at pixel level. Although head and torso is viewed as a combination part, we have two detectors
for head and torso doing different follow-up procedures. To start from the torso, the template
of the torso is moved on the foreground plane to find the location with the highest probability.
Since it is assumed that the color distributions-of the-torso and upper arms are the same, we
learn the appearance model of clothing by building the YCbCr color histograms for rest parts
detection. Head is searched on the skin plane in the area adjacent to torso. If head is found, we
continue searching the rest parts, or else we simply drop the input video frame based on the
assumption that human face must be seen to insure the existence of human being in the
current image.

As the location of torso and the appearance model of clothing are collected, upper arms
are detected and the reliability of the arm location is evaluated by the probability of the
template matching. The higher probability implies the higher reliability of the arm location. If
the location of upper arm is assured, lower arm is searched in the neighborhood. Otherwise, it

is searched inside the bounding box.
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4.2.3 Global Feature

In opposition to local feature specifying the information about parts themselves, the
global feature defines the relation between parts. In our method, we record the distance
relation between right and left palms. The distance relation is simply determined as near or far,
instead of retaining measured numerical values. The classification is based on an adaptive
threshold, which is proportional to the width of torso model. Hence, after detecting the
locations of lower-arm-and-palm parts from local feature extraction algorithm, we can

calculate the Euler distance of two palms and judge their distance relation without extra effort.

4.3 Pose Estimation

So far we obtain the abstract-features of a human pose revealing where the body parts are,
but the pose understanding remains: snsolved.-In‘this section, we propose an efficient and
effective method to interpret a pose in a naive way. Instead of building a representative
codebook from training data and matching extracted features to all the pose exemplars in the
codebook as adopted in the exemplar-based methods [4, 5, 7, 8], our proposed rule-based
method estimates a pose according to the relation of joints.

All the defined patterns for either right arm or left arm poses are listed in Figure 4-4. The
circles represent joints, including the shoulder, the elbow, and the wrist labeled from one to
three respectively. We can organize them in terms of the following taxonomy. Patterns are
first grouped into four categories according to the relative position of joint 2 (elbow) and joint
1 (shoulder). The category one stands for the cases that joint 2 is on bottom left of joint 1. The

category two stands for the cases that joint 2 is on bottom right of joint 1, and the category
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three and four similarly stand for the cases that joint 2 is on top left and top right of joint 1

respectively.
Category 1 /.I Category 2 I
2 on bottom left of 1 2 2 on bottom right of 1 2
. 1 ] ] i 1 1 1
) -/ { <~ ) e}\‘. 2 .}2 .\‘~2\.
(1) (2) (3) (D) (2 (3)
P .
Y: <2}f 2 \
<]=
Category 3 2 Category 4 o>
2 on top left of 1 \., 2 on top right of 1 ]./
X: X ®
N, o
1 1 1 I | i
(D) (2) 3) (D (2) 3)
v: - ’r:" 1 I 1 Vi 1 i
<]= ¥

Figure 4-4 Pose estimation from joints relation. The circles represent joints, including the
shoulder, the elbow, and the wrist labeled from one to three respectively.

Each of the categories is then divided into smaller groups based on the x and y
coordinate. Take x coordinate into consideration first. All the patterns in the same category are

split into three partitions depending on whether the x coordinate of joint 3 (wrist) is left to,

28



between, or right to the coordinates of joint 1 and joint 2. Then, each partition is further split
into three sub-partitions depending on whether the y coordinate of joint 3 is below, between,
or above the coordinates of joint 1 and joint 2.

Consequently, each time the location information of parts is achieved, the coordinates of
joints are used to estimate the pose by deciding which category, partition, and sub-partition
the pose belongs to. Each pattern of pose is assigned a three digit codeword. The first digit
indicates the category the pattern belongs to, and the second and third digits specify the
partition and the sub-partition.

There is one point deserved mentioning that the patterns on the left side of Figure 4-4 are
symmetric to those on the right side. Due to this symmetric property, the advantage of
reusability of trained HMMs, showed in section 4.1, is easy to implement. All we need to do
is to transform the trained HMMs of one arm to symmetric HMMs, which are sufficient to

represent the other arm’s trained imodels.
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4.4 Action Recognition

4.4.1 Framework overview

We present a two-layer HMM framework for human action recognition to meet the
demand of our strategy to decompose the human action recognition problem into two levels,
arm actions and human actions. As the Figure 4-5 shows, the local HMMs and the global
HMM are in the lower layer, responsible for the recognition of arm actions using sequences of
estimated arm poses and extracted global features. The two local HMM recognizers represent
right and left arm respectively. The recognition results of all recognizers are transformed into
feature vectors and regarded as the input of higher layer, which models the interaction of two
arms and output the final recognition’result of the human action.

The HMM recognizers take charge of'the evaluation process. Given a model and a
sequence of observations, we need to compute the probability that the observed sequence was
produced by the model. We can also view the evaluation process as one of scoring how well a
given model matches a given observation sequence. In other words, if we try to choose among
several competing models, the solution to the evaluation process allows us to choose the
model which best matches the observations.

There are two approaches to performing inference with LHMMs: maxbelief and
distributional approach. In the maxbelief approach, the model with the highest likelihood is
selected and provided as an input to the HMMs at the next level. In the distributional
approach, the full probability distribution over the models is passed to the next-level HMM:s.
In this thesis, we propagate the maxbelief of the lower layer as the observation of the higher
layer. However, we also pass the probability distribution to provide detailed recognition

results.
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Figure 4-5 The two=layer HMM framework.

There are two approaches to performing inference with LHMMs: maxbelief and
distributional approach. In the maxbelief approach, the model with the highest likelihood is
selected and provided as an input to the HMMs at the next level. In the distributional
approach, the full probability distribution over the models is passed to the next-level HMM:s.
In this thesis, we propagate the maxbelief of the lower layer as the observation of the higher
layer. However, we also pass the probability distribution to provide detailed recognition

results.
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4.4.2 Action Definition

The list of local and global actions for one arm is defined in Table 1. There are four types
of local actions to describe one’s arm, including raising, waving, clapping, and still. Generally
speaking, one man’s arms are hung down naturally toward the ground while standing doing
nothing. The status of one arm is named “still”. The action of the “raising” is initialized from
the pose of “still”. The participant raises his arm gradually until the hand is overhead. The
“waving” action is to swing one’s arm overhead left and right alternately. While one man
clapping his hands in front of his chest, his arms appear to strike the air continuously, and

such movement is the means to perceive the action “clapping”.

Local action description

Raising one armraised overhead

Waving one arm swinging overhead left and right alternately

Clapping | one arntcontinueusly-striking the air in front of the chest

Still one arm hung down naturally

Global action description

Near-Far the distance of two hands being near and far alternately

Far the distance of two hands remaining far all the time

Table 1 Description of local and global actions

Since a human being has two hands, it is reasonable for one man to raise any of his
hands while he receives the instruction to raise his hand. Therefore, the “raising” action is
further divided into “raising one’s right hand” and “raising one’s left hand”. In a similar way,
the “waving” action and the “still” action are divided into actions for left and right hands.
Consequently, the number of local action types we can recognize is seven instead of four.

On the other hand, the global actions used to describe the distance relation of two hands

are simply defined as two types of “Near-Far” and “Far” because all the human actions we
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can recognize fall into these two categories. The “Near-Far” action stands for the case that the
distance of two hands is near and far alternately. The “Far” action stands for the case that two
hands are always far from each other.

The logical relations between human actions, local actions, and global actions are
summarized in Table 2. The human actions can been seen as combinations of local actions of
two arms and global actions of two hands. Note that we define a new action “stretching” of
human actions different from those of local actions pointed out in Table 1. The “stretching”
action is an ensemble of two arms raised and the global action labeled as far. The only
difference between “raising” and “stretching” is the number of raised arms, which is one and
two respectively. The “raising” action covers the cases whether one raises his right arm or left
arm as long as the other arm remains still. In a similar way, the “waving” action is an
ensemble of one arm waving, the other arm being still, and the global action being far. Since
the “clapping” action stands for-one.clapping his both hands, it is reasonable that the global

action is Near-Far with one’s hands joining-together and separating alternately.

Human actions Local actions Global actions
Raising One arm is raised, and the other arm is still. Far
Stretching Two arms are raised. Far
Waving One arm is waving, and the other arm is still. Far
Clapping Two arms are doing clapping. Near-Far

Table 2 Definition of human actions as a combination of local and global patterns
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4.4.3 Lower-Level HMM

The fundamental idea of the HMM recognizer is to construct a model for each of the
actions to be recognized. The elements of a HMM model are states and three probability
distributions, including state transition distribution, observation emission distribution, and
state initial distribution. The common notation for a model is A, and the symbol for the

probability of an observation sequence O given the model isP(O | 1) .

There are numerous types of HMMs, varying in state transition constraints. In this thesis,
we adopt two distinct structures — the ergodic model and the left-right model as shown in
Figure 4-6. An ergodic model, or fully connected HMMs, has the property that every state of
the model can be reached from every other state. A left-right model [12], also called Bakis
model, has the property that as time'increases the state index increases (or stay the same), i.e.,
the states proceed from left to right. Clearly, the left=right type of HMM can better models
signals whose properties change over time-—e:g:; speech, than the ergodic model. In the same
manner, the left-right model can be“used-for non-cyclic motions such as arm-raising, while

ergodic model can be used for periodic motions such as hand-clapping.

, P e r ' -'"-n_“\ .:.,_ — II sy ; I ™y
v'l""—t{ PR ()w(2)—»(3)
@ (b)

Figure 4-6 Illustration of distinct types of HMMS. (a) A 3-state ergodic model.
(b) A 3-state left-right model.
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To summarize, each of the four cases of local actions and two cases of global actions has
a corresponding model, well-trained to represent the movement. For cyclic motions —
“Waving”, “Clapping”, “Near-Far”, we select the structure of ergodic model. On the contrary,
we use left-right model for the rest.

After constructing and training each action model of HMM recognizers, the probability
of each model generating the observation sequence to be recognized is evaluated. We combine
the maxbelief output of all recognizers as an observation to the higher layer. The new

observation is propagated to the next layer along with the detailed probability distribution

over all models.

4.4.4 Higher-Level HMM

In this layer, the recognition proeess-of the human action is based on the combinational
patterns of the three lower-level HMM. recognizers, namely the observation sequence. The
new observation symbol is a high-dimensional feature vector, i.e., also a Boolean vector,
which very likely results in over-fitting to limited training data. Briefly, the training of the
observation emission probability distribution of a HMM is to count the appearing times of
each observation in training data. In the case of high-dimensional discrete observations, a
large proportion of observations do not occur in the training data. Thus, the emission
probabilities of these unseen observations are equally low for all action models. Therefore,
recognizing an unseen observation sequence may lead to failure even the unseen observation
sequence is similar to some observation sequence which has appeared before.

To solve the problem, we propose a modified method of generating the observation

emission probability distribution. The emission probability of each observation symbol is
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applied a weighting. The weighting favors two types of defined observation symbols. The first
type is the observation with smaller hamming distance to the input symbol. We compute the
distance between the input symbol and the considering defined symbol, and the smaller
distance implies the higher weighting applied to the considering defined symbol. The second
type is the observation with higher max belief. We summation the probabilities, propagated
along with the observation, of the models with maxbelief, and the higher summation implies
the higher weighting. To formulate the weighting, the following notations are first defined.

D = the number of HMMs in the Lower-Level

N = the number of HMMs in the Higher-Level

= (0'1 ey 0b ) :input observation vector

= {S,,.., Sy} :defined observationset of all HMMs in the Higher-Level

0’
P = (p,s,., Pp ) :inputprobability distribution over all HMMs in the Lower-Level
S
S, = (S, Syp ) :definedobservation vector.of HMMs in the Higher-Level

The weighting is formulated as

W, = IO—HammingDistance(Sn, 0) % normalized Z 0,

Snd :1

The normalization adjusts the probability summations of all action models to values between
0 and 1.

We demonstrate the influence of applying the weighting by an example. Assume an
observation sequence containing only one observation is propagated from the lower layer
along with the probability distribution. The input observation is denoted as O’ in the following
Table 3. There are three trained action models: Waving, Raising, and Stretching. Any of these
three models has only one observation appearing in training data, denoted as S1, S2, and S3

individually. Hence, other “unseen” symbols for the model have equally low emission
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probabilities. The input observation O’ happens to be an “unseen” symbol for the three
models. Thus, the likelihood of the three models generating O’ is equally low based on the
traditional observation emission probability distribution, and the recognition result might fail.
However, if we apply the weighting to the emission probability distribution, as we can see, the
weighting favors the “Waving” action. The input observation sequence is recognized as

“Waving”, which is the correct result. The probability P(O’ | A) differs among the three

models, meaning the discriminability of the modified LHMM improves.

Input P | -62-15-221-221-45-221-126-71 -41 0 |Hamming
Sum P | Normalized P| Weight
Observation Distance
Oflot1 o 0 10 0 00 1
Waving (-15)H-71)+0 )
S1 01 0 0 0 0 L T 0 1 2 0.74 10°x0.74
Symbol =-86
Raising (-62)+(-71)+0 4
S2 10 0 0 0.0 0 1 071 4 0.59 107 x 0.59
Symbol =-133
Stretching (-62)+(-45)+0 )
S3 10 0 0 1 0 040 0 L 2 0.67 107 x 0.67
Symbol =-107

Table 3 Example of weighting generating
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Chapter 5

Experimental Results and Discussion

We have implemented the human action recognition system based on our proposed
method and have tested the system performance on real human action videos. The system is
capable of recognizing six distinct actions, including “Raising the right arm”, “Raising the left
arm”, “Stretching”, “Waving the right arm”, “Waving the left arm”, and “Clapping”. The
video content was captured by a digital camera (NTSC, 30 frames / second) with the pixel
resolution of 320x240. For simplicity, the background of each video clip is assumed static and
uniform in order to facilitate human segmentation. Each video clip is sampled every three
frames to reduce temporal redundancy. The.duration of the sampled clips is from 14 to 62
frames, in which an action can be recognized whether the movements are fast or slow.

All data is separated into two sets, the'training data set and the testing data set. Training

set contains 1 person wearing different clothes repeatedly doing four types of actions —

99 13

“Raising the right arm”, “Stretching”, “Waving the right arm”, and “Clapping”. Figure 5-1
shows some example video clips of the training data. Note that the training set excludes on
purpose the training samples of the two actions of “Raising the left arm” and “Waving the left
arm” because the trained models of the symmetric actions of the two actions can be reused
and transformed into the desired models directly.

Testing set contains 7 persons doing all the defined actions. Each action is repeated
three times in average. Recognizing this testing set successfully reveals that the action models
trained from a restricted data set provide sufficient discrimination to recognize movements

with slight difference from the defined actions.
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Figure 5-1 Example cli

The action recognition task is started by human segmentation. The three human parts of
(a) head and torso, (b) two parts for upper arms, and (c) two parts for lower arms and palms
are segmented out, and the amounts of translation, rotation, and scaling of each body part are
assembled to local and global features. The extracted local features are further used for arm
pose estimation. Figure 5-2 shows the examples of human segmentation results of training
video clips. Colored rectangles represent human body parts. Shoulder joints and elbow joints
are connected in red color; elbow joints and wrist joints are connected in yellow. The relation

of the three joints is encoded to a pose symbol according to Figure 4-4.
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After processing feature extraction and pose estimation of every frame of a video clip,
each HMM recognizer in the lower level collects the sequence of observations and all the
trained action models inside the recognizer compute the probability of generating the
corresponding observation sequence O;. Then, the model with the highest likelihood inside
each recognizer is selected, and the selection results of all recognizers is combined to a
feature vector as an input to the HMMs in the higher level along with the original probability
distribution. We regard the input sequence for the HMMs in the higher level as a new
observation sequence O’ in contrast to the input sequence for the HMMSs in the lower level
O;. In the same manner, the trained action models compute the probability of generating the
new observation sequence O’. The video clip is recognized as the action with the max

probability. The example of complete recognition process is shown in Figure 5-3.

@@ﬂﬂ*ﬂﬂ&ﬂ‘ﬂﬂ‘ﬂﬂ ‘ﬂ@@ﬁﬁhh h\h\

(&) Raising (right arm)

O D0 0 0 O Dy O SOOI
/_*Nﬂﬂ UF‘L—'}\"L—)\ \“\'—’ﬂ\\'—'ﬂ\ g 7 . #
i rToTTTrT Y YY Y Y Y

(b) Stretching
pohhbbbhbhhbhbbhb
ppDDODOhHDHDD
(c) Waving (right arm)
aXakaxayavaysy=yavays¥s
(d) Clapping

Figure 5-2 Examples of human segmentation results of training video clips
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Log( P( O, | Raise) ) =-135.93
Log( P( O, | Wave) ) =-127.55
Log( P( O, | Clap) )=-407.45

Log( P( O, | Raise) ) =-107.49
Log( P(O, | Wave) ) =-151.24
Log( P( O, | Clap) )=-359.20

Log( P( Oy | Near-Far) )
=-80.39

Log( P( Og | Far))

Log( P(O, | Still) )=-339.85 | |Log(P(Oy|Still) )=-319.40

~0.00

O =«< 0100 1000 01 >
P(O' |Raising-right) =0.00008  P(O’ | Raising-left) = 0.00847 Interaction
P(O’ | Waving-right ) = 0.00848 P(O’ | Waving-left ) = 0.00008

P(O' |Stretching) =0.00917 P(O' |Clapping) =0.00000 HMM

e

Recognition result: Stretching

Figure 5-3 Example of complete recognition process of stretching action
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We compare the recognition results of 1-layered HMM (traditional HMM), 2-layered

HMM with trained emission distribution, and our proposed 2-layered HMM with weighted

emission distribution. The results are summarized in the following tables. Table 4

demonstrates the correct recognition numbers and rates of the three distinct systems. Table 5

shows the confusion matrix.

raise stretch wave clap sum | precision
number of testing clips right left right left
@4 | 6 | @) | @4 | 9 | 1) | (111)
1-layered HMM 21 1 27 21 3 21 94 84.68%
2-layered HMM
_ _ S 24 6 27 20 6 21 104 | 93.69%
with trained emission distribution
2-layered HMM
_ _ S 24 6 27 21 6 21 105 | 94.59%
with weighted emission distribution

Table 4 Precision of the three distinct systems

Overall, the more complex system implies the higher precision. Our proposed system

presents the best result and reaches the precision of 94.59%. However, the confusions

between waving and raising are caused by the abnormal movements of the acting person. The

standard movement of the waving action is to swing one’s arm overhead left and right

alternately as shown in Fig. 5-4(a), and the movement of the failed clip obviously disobeys

the rule from the segmentation result shown in Fig. 5-4(b). As it happens, the sequence of the

abnormal waving poses is part of the raising action. Therefore, the abnormal waving clips are

recognized as the raising action.
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Confusion matrix for 1-layered HMM

Raising Raising ; Waving Waving :
(right hand) | (left hand) L (right hand) | (left hand) S
Raising (right hand) 21 3
Raising (left hand) 2 1 3
Stretching 27
Waving (right hand) 3 21
Waving (left hand) 6 3
Clapping 21
Confusion matrix for 2-layered HMM with trained emission distribution
Raising Raising : Waving Waving :
(right hand) | (left hand) S (right hand) | (left hand) SEEEG
Raising (right hand) 24
Raising (left hand) 6
Stretching 27
Waving (right hand) 4 20
Waving (left hand) 3 6
Clapping 21
Confusion matrix for 2-layered HMM with weighted emission distribution
Raising Raising ; Waving Waving :
(right hand) | (left hand) L (right hand) | (left hand) S
Raising (right hand) 24
Raising (left hand) 6
Stretching 27
Waving (right hand) 3 21
Waving (left hand) 3 6
Clapping 21

Table 5 Confusion matrix of the three distinct systems, 1-layered HMM, 2-layered HMM with

trained emission distribution, and 2-layered HMM with weighted emission distribution.
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(a) Human segmentation result of a standard waving clip
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(b) Human segmentation result of an abnormal waving clip

Figure 5- 4 Human segmentation result

The performance improvement of our system compared to 2-layered HMM with trained
emission distribution can be clarified by the example of the failed waving clip. We refer to
2-layered HMM with trained emission distribution as generic LHMM and our system as
weighted LHMM. The confusion of this failed clip.lies in the biased recognition result of the
left arm. The biased pattern of the.maxbelief-vector-of the left arm does not match to any
pattern generated from the training data.—Fhe-biased observation symbol of the higher-level
HMMs consisting of the maxbelief vectors of the left arm, the right arm and the global
recognizers does not match to any observation symbol generated from the training data in the
same manner. Therefore, the emission probability of the biased observation symbol, also the
observation sequence, is equally low for all human action models. Since all models output the
same likelihood, the clip is recognized as any action randomly. The recognition result of the
generic LHMM happens to fail. In the other hand, we applied a weighting to the emission
probability of higher-level HMMs in the weighted LHMM system. The smaller of the distance
of the trained observation symbol and the biased observation symbol implies the larger
weighting. Also, for each human action type, we sum the probabilities generated from the
lower-level models which has the max belief in each recognizer while training. The larger

summation implies the larger weighting. After applying the weighting, the recognition process
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of the weighted LHMM comes to a correct result, which indicates our proposed system

achieves better performance with a small training data set.

Avg. Probability Dsitribution of Action Models
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Figure 5-5 Average probability distribution of action models
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Figure 5-5 shows the normalized form of the average probability distribution of all
action models on testing both generic HMM and weighted LHMM with different action clips.
For each action clip, the likelihoods of matching this clip to all trained action models are
normalized to values bounded between 0 and 1. Obviously, in the case of weighted LHMM,
each distribution has a conspicuous peak. On the other hand, the curves either change
smoothly or rapidly in the case of generic HMM. The peak denotes the discrimination of the
trained action models. The smooth curve with low probability denotes the ambiguous action
representing the clips is not similar to any defined model. The ambiguity is possibly due to
insufficient training on the action models. Consequently, we can say our system provides
powerful discrimination with limited training data, which is an important strength of the

LHMM structure we have mentioned constantly.

46



Chapter 6

Conclusions and Future Work

In this thesis, a two-layer HMM framework is proposed to decompose the human action
recognition problem into two layers. The first layer maps low-level features into arm actions.
The second layer uses results from the first layer as input to recognize the human action,
which is interpreted as an interaction of two arms. The observation emission probability is
modified by multiplying a weighting to improve the discriminability of HMM. The low-level
features are obtained through two procedures: feature extraction and pose estimation. The
feature extraction step promises the configuration of human body parts, approximated based
on the hierarchically model-based segmentation approach. The poses of two arms are
efficiently estimated according to the relation of arm joints, resulting in patterns of the right
arm symmetric to those of the left arm. On account of the symmetric property of the pose
estimation procedure and the structure of'the layered recognition framework, the action model
for one arm can be reused as the action model for the other arm after symmetric reflection.
Experiments on a data set with limited training data demonstrates the effectiveness of the
proposed framework to recognize six types of human actions, compared to a baseline,
single-layer HMM, and a basic two-layer HMM.

Although we have achieved human action recognition with high recognition rate, our
proposed system has some restrictions to avoid some issues which remain open for future
research. One limitation is that the uniform background is assumed through the whole video
clip to facilitate the foreground segmentation. To build a robust system, a strong and efficient
mechanism of background update which can handle illumination variations must be

developed. On the other hand, a fully automatic initialization of human model is a
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requirement. The shapes of the body parts should be learned from the first couple of frames of
a video clip. Last, we can extend our system to recognize a series of actions and analyze video

sequences for a long period of time.
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