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Combine Stereo Positions and Reflectance Properties for 3D

Surface Optimization

Student: Wen-Xing Zhang Advisor: Dr. I-Chen Lin

Institute of Computer Science & Engineering

National Chiao Tung University

ABSTRACT

This thesis presents an optimization algorithm to simultaneously estimate both the 3D
shape and parameters of a surface reflectance model from real objects. We use stereo
structured light system to obtain initial stereo positions. And the Phong and the BSSRDF
reflectance model are used to approximate the surface reflectance. After optimizing both of
the shape geometry and reflectance properties, a more accurate surface can be acquired.
Unlike most previous work in shape reconstruction, the proposed method deals with the
troublesome problem of scanning Non-Lambertian and subsurface-scattering objects. In
additional to a more accurate surface, the reflectance parameters can also be used for
advanced rendering.

Keyword: structured light, stereo reconstruction, Phong model, BSSRDF, conjugate gradient.
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Chapter 1. Introduction

1.1 Background

Recently, the requirement of digitizing 3D models and estimating surface parameters from
real objects is increased dramatically. They are extensively used in computer graphics,
computer vision, and other analysis applications. 3D acquisition can be categorized into
several principal approaches: passive stereo, active stereo, shape from shading, photometric

stereo, etc. Each of them has its advantages and disadvantages.

Passive stereo methods use multiple images captured from difference viewpoints. Then,
they estimate the correspondences between. images and calculate 3D positions by intersecting
corresponding pairs. The major benefit.of passive stereo is easy to implement and it requires
only two or more cameras. But, estimating the exact correspondence between images is

difficult, and therefore the accuracy of the data may be unreliable.

Active stereo utilizes additional light sources or laser projectors for scanning, and thus the
correspondences between two images are easier to be acquired. The accuracy of active stereo
approaches is therefore relatively high. On the other hand, the active stereo systems usually
require additional projection devices which are usually heavy and costly. However, the
surface details of non-lamertian material objects are usually difficult to be acquired by active
stereo or passive stereo since correspondences on details are usually ambiguous and the

reflection properties are not taken into account.



Shape from shading and photometric stereo methods make use of shading information to
recover the 3D shape. Most works on photometric stereo are based on the lambertian model.
They usually use a single view direction, but various lighting directions. The normal
estimation then become a simple linear least-square problem. But the accuracy may be not
reliable because the objects are not always with lambertian reflection properties and
reconstructing surface from normal variations is ill-condition. Shape from shading (SFS) uses
intensity variation of a single image and known lighting conditions to recovery 3D shape. The
problem of finding correspondences can be avoided in shape from shading, but the solution of
shape from shading relies on image quality and accurate reflectance models. Shapes recovered

by shape from shading are usually tainted due to input noise or simplified reflectance models.

1.2 Motivation

For accurate reconstruction-of 3D~“models, combining both positions and reflectance
properties (shading information) is“a practical-method. Diego (2005) et al. [1] proposed an
impressive approach to combine 3D positions and normals for precise 3D geometry. They
measured the positions and normals by a structured light system and a photometric stereo
method respectively. In order to efficiently combine the positions and normals by linear cross
products, they assume the objects are with lambertian properties and only use lambertian

reflectance model to acquire normals.

However, non-lambertian and sub-surface scattering materials are commonly found in the
natured world. The lambertian reflectance model is insufficient to represent the greater part of
objects. A simpler non-lambertian model for shape recovery is purposed by Tianli (2004) et al
[2]. They apply the Phong reflectance model to model the surface reflectance and then used
visual hull to find the initial shape. Then, an optimization approach, conjugate gradient, is
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purposed to find the shape and reflectance parameters that fit multiple views images.
Although, the specular reflection is taken into account and visual hull is used for initial
positions. The sub-surface scattering material objects are still not easy to be reconstructed by
their method. This problem is still a bottleneck of the reconstruction. In general, to scan these
objects, operators usually apply powders or paints on the surface to avoid dealing with
non-lambertian properties. The painting process is inconvenient and not applicable for

valuable objects.

1.3 Purpose

To tackle the above mentioned problems, in this thesis, we present the use of the stereo
structured light to acquire the initial positions.”And then, Phong model and Bidirectional
Scattering Surface Reflectance Distribution Function-model (BSSRDF) are used to optimize
the positions of scanned 3D geometry-and-also acquire the reflectance properties. For the
BSSRDF model, Jensen et al. (2001)/[3] introduced a dipole diffusion approximation for light

scattering. This approximation uses an extension to diffusion theory.

We make use of these models to compensate scanned 3D geometry of the non-lambertian
or sub-surface scattering objects. Our method is performed in three steps: First, a projective
stereo structured light system is used to acquire the initial positions and normals. Second,
assume the light and camera locations are known, we simplify the Phong model and Jensen’s
model. Then, we use the simplify models to acquire the optimize reflectance parameters. The
optimization method we apply is conjugate gradient. It minimizes the difference between
synthesized images and the real images. Last, using the estimated reflectance parameters, we
can further optimize the position with conjugate gradient. In order to get a more precise shape
and reflectance properties, we can repeat the step 2 and step 3. Finally, we can reconstruct a

3



most accurate 3D model and reflectance properties.

1.4 Contribution

In the thesis, we propose an approach to combine 3D scanned data and reflectance

properties for precise 3D surface. The primary research goals and features are addressed as

follows:

(a) Improving the scanning accuracy of non-lambertian and sub-surface scattering objects.

(b) Utilizing only inexpensive devices.
(¢) The method is not only reconstructing the shape but also estimating the reflectance
properties. We can use them ,to render the object from different views and lighting

conditions.

1.5 System Overview

Our goal is to recover a high quality 3D geometry from images. We combined the
positions measured by structured light system and Phong or BSSRDF reflectance model to
optimize the reconstructed result. We separate our method into three steps, and the system

overview is as follows:



Structured light reflection

reconstruction parameters

Optimization
Input Images,
Camera & Lighting

Info.

1.6 Organization

This thesis is organized as fol is about related work, we will review the
literature on structured light systems, BS‘SRD‘F reflectance model, and combining techniques.
Chapter 3, 4 propose our method of surface detail optimization. Various issues such as
initialization, reflectance model, and stereo structured light system will also be discussed.

Chapter 5 shows the experiment results on real and synthetic objects. Chapter 6 presents the

conclusion and future work.



Chapter 2. Related work

In this chapter, we review the literature on 3D recovery, light diffusion reflectance model,
and combining techniques. First, we will survey the previous works about 3D recovery
techniques and introduce the Du Q.’s et al. [4] calibration method. Then, the difference among
BSSRDF reflectance models are described respectively. Finally, we introduce the combining

algorithm for precise 3D surface.

2.1 Acquisition of 3D geometry

3D reconstruction can be diyided intortwo. basic categories: one is stereo triangulation
approach, and another is shape from lighting or shading variations. In these decades, range
scanning technologies based on stereo triangulation have become the main stream, since they
are flexible, inexpensive, and accurate. Chen and Kak (1987) [5] proved that image
coordinates can be directly transformed to the world coordinate via a transformation matrix in
active triangulation systems. They incorporated the laser range finder and a robot arm. World
lines could be generated by moving the robot arm and the scanner to different known
positions. Zhang (2003) et al. [6] extends the traditional binocular stereo problem into the
spacetime domain, where a pair of video streams is matched simultaneously instead of
matching pairs of images frame by frame. The spacetime stereo framework has proved

effective for reconstructing shape from changes in appearance (Fig.2).



it

o o

(a) (b) (©)

Fig.2 (a), (b) Two images taken from one of the cameras. (¢) Shaded rendering of

the reconstructed model by window spacetime analysis.[6]

Photometric stereo and shape from shading recover the shape using lighting information.
Aaron (2005) et al. [7] presents a technique for computing the geometry of objects with
general reflectance properties from images. They assume the camera viewpoint is fixed, but
the illumination varies over the input sequence. They put the target object and example
objects with the same materials undet the same illumination conditions. Since the geometry of
the example object are known, they use the: orientation-consistency to measure the real

object’s normals (Fig.3).

(a) (b)
Fig.3 Reconstruction by examples. (a) Input data (one of 13 sets). (b) Views of the
reconstructed model.[7]

Fang (2004) [8] et al. use shape from shading techniques to recover a height field from

images and combine them with a texture synthesis method to create a new texture editing tool.



(a) a (b (c) (d (e)
Fig.4 (a) An ordinary photo. (b) Shape-from-shading applied to an object in the image to
estimate its normals. (c) Pixel patches formed by clustering normals. (d) Texture synthesized
on these patches and aligned with neighboring patches. (e) Final result with texture

orientation distortion, displacement mapping and environment mapping.[8]

G. Vogiatzis et al. [13] provide a novel approach, volumetric graph-cuts. Their algorithm

proposed uses the visual hull of the scene to,infer occlusions and as a constraint on the

topology of the scene. A photo -onsi 5 d surface cost function is defined and

discretised with a weighted grap --:J v

Fig5. Clay horse. Left column: Images of the clay horse sequence. Right column: Simular

view-points of the reconstructed model using graph-cuts.[14]



Because our structured light system is modified from a projective calibration method by
Du Q. and Huynh (1997) [4], we will briefly their method here. They presented a novel
calibration method that based on cross ratio invariant theorem. They used 4 known
non-coplanar sets of world point for calibration. The direct 4x3 image-to-world
transformation matrix for each light stripe plane can also be recovered from plane-to-plane

homography (Fig.6).

X3
&5

L

Fig6. (a) input image data. (b) result model.[4]

2.2 Light diffusion reflection model

Most reflectance models are derived from surface scattering, without any subsurface
scattering. They assume the light entering a material and leave the material at the same
position. However, reflection contributed by sub-surface scattering is ignored by these

assumptions.

Therefore, Nicodnmus (1977) et al. [9] proposed the Bidirectional Scattering Surface
Reflectance Distribution Function (BSSRDF) to describe a scattering of light in translucent

materials.



S(Xi, @, Xy, @) :M (1
dd(x;, ;)

Here L is outgoing radiance, @ is incident flux, X, and @, the incidence position and
direction, and X, and @, the exiting position and direction. The BSSRDF can describe
light transport between any two rays that hit a surface and the translucent materials can be
captured. Jensen (2001) et al. [3] introduces a BSSRDF model that combines a dipole
diffusion approximation with an single scattering computation. They also showed how the
model can be used to measure the scattering properties of translucent materials, and how the
measured values can be used to reproduce the results of the measurements as well as synthetic

rendering (Fig.7).

(b)

Fig.7 A simulation of subsurface scattering in a marble bust. The marble bust is
illuminated from the back and rendered with: (a) the BRDF approximation (b) the
BSSRDF approximation, and (c)a full Monte Carlo simulation. [3]

Based on Jensen’s approach, Craig (2005) et al. [10] presented a new efficient technique
with multiple dipoles to account for diffusion in thin slabs. They also extended this multipole
theory to account for both surface roughness and layers with varying indices of refraction, and
then they combined it with a novel frequency space application of Kubelka-Munk theory in
order to simulate light diffusion in multi-layered translucent materials. Their approach is more

10



general and can be used for arbitrary numbers of layers, and it enables the composition of

arbitrary multi-layered materials with different optical parameters at each layer (Fig.8).

Fig.8 A multi-layered model of
human skin using measured
parameters for the individual

skin layers[10]

2.3 Combining algorithms

In order to obtain high-quality 3D geometry, combing positions and shading information
can be a considerable solution. Diego (2005) et al. [1] purposed a two-phase hybrid
reconstruction algorithm for precise 3D geometry. In the first phase, they used positions to
improve normals. LetN™and NP’ be the normal field indirectly obtained from measured
positions and the directly measured normal field respectively. They planed to replace the
low-frequency component of N™ with data from N °. They used a structured light system for
original positions, and they used photometric stereo method for directly measured normals.
The second phase was using measured normals to improve positions. They minimized the

errors by a linear least square method. It is an efficient approach but they can only deal with

11



lambertian objects (Fig.9).

Fig.9 least square optimization. (Left) Several range scans were aligned and merged. (Right)
The result was later optimized with mapped normals coming from several independent

photometric stereo scans.|[1]

Tianli (2004) et al. [2] presénted ah!-‘_d}lgdriihm to simultaneously estimate both the 3D

shape and parameters of a surfa'c.le'._ reﬂqq_@qﬁ:(:é model f;'rom multiple views of an object with a
single material. First, the rough 1n1tlal shape :i-g"ac.qifiﬁnred by visual hull. Then, they chose the
Phong reflectance model as the parametﬁé refllie'ct”ance model and they used the initial shape to
minimize the cost function to find the better reflectance properties. The cost function is the
sum of the difference between synthesis images and real images. Finally, they fixed
reflectance properties and refined 3D shape similar to above-mentioned steps. The whole
process continues until the cost function no longer decreases or progress of decrease is small.
They also handle self-occlusion and self-shadowing problem by checking the triangle’s
visibility based on the current estimate of the shape at each steps of the minimization process.
However, in their experiments they only apply their work on synthetic images and a real

object with near-spherical surface (Fig.10).

12



Fig. 10 1™ row input images of a real mouse, down: 2™ row. Optimized reflectance model
with the initial shape. 3™ row. Optimized results at the 1 step. Optimized results at 2
step.[2]

13



Chapter 3. Acquisition of positions

In this chapter, we use a projective calibration method proposed by Du Q. and Huynh
1997 [4] to construct a structured light system. Our structured light system can be performed
in three phases: (1) projector calibration, (2) coded structured light, (3) image-to-world

transform.

3.1 Projector calibration

The goal of our projector calibration stage is to estimate the plane equation of each light

stripe. The unknown coefficients.a, b, ic;and.d represent a plane:

axX, +bX,+cX,+d =0. (2)

In order to find the coefficients in (2), at least 3 non-collinear world points that fall onto the
stripe plane must be known. It is difficult to recover all of them onto all of stripe planes.
Therefore we make use of cross ratio properties. As showing in Fig 7, given 4 non-coplanar
sets {P1,Q1,R1} {P2,Q2,R2} {P3.Q3R3} {P3Q3R3}, we can use the cross-ratio properties to
estimate the intersection M1, M2, M3, M4. The 4 points will then be used to evaluate the plane

equations (Fig.11).

14



Fig.11 Projective calibration using 3 known non-coplanar sets of 3 collinear world points
(dark circles{P,,Q;,R, |i =1...4}. Open circles M,'sare unknown world points lying on z, ;

C and C’ are the perspective center of the camera and projector.

3.1.1 Cross ratio

Give 4 collinear points p, q,'r, m lying on a line |, we can express points on | in the

following form:

(Q-p)&+p, 3)

where @is the parameter that defines points on the line. This parameterization gives ,=0,

0,=1, 6,andg, any real numbers depending on their positions relative to p on the line. The

cross ratio {p, q; r, m} of these points are defined as:

(4)

(pgsromy= (2 =% [ (Go=n,
i - 0,-6,"/ "o,-0,

Since the cross ratio is invariant under perspective projection if 4 world points P, Q, R, M are

15



collinear, then their image projections p, g, r, m are also collinear and the same cross ratio.

3.1.2 Calibration box

(a) (b)
Fig.12 (a) The Calibration box, have six calibration lines and eighteen known world

positions. (b) 32 strip plane patterns.

In order to obtain the accurate stripe’plane equations and a camera model, we use a
calibration box (Fig.12). When we fix the camera and projector, the camera model and stripe
plan equations will not change. We can obtain world positions easily and a more accurate

data.

3.1.3 Computing the stripe plane

Since the 4 world points M, 1 =1...4 lying on the stripe plane have been determined, we

use these four world points to find the coefficients on equation (2).

Equations:

aX, +aY,+a,Z,+a,=0,i=1..4 3)

16



We solve them by the pseudo-inverse method. Unfortunately, this equation has a
degenerate solution when all the coefficients are zero. To avoid the situation, we can

reformulate them by dividing across by a, and letting:

a
Sop
a3
% _p, 4)
a3
a
Si o,
a3
Thus:
b, X, +bY,+Z,+b, =0 (5)
, and hence:
b X, +b,Y;+b;, =7, (6)
A least-square-error solution to this set of equations can be written in matrix form as:
X, 1 -Z,
1
X, Y, 1y, b, | -Z, 7)
X, Y, 1 -Z,
X, Y, 1| -3 |-z,

By using the pseudo-inverse method, the equation of the stripe is then found.

17



3.1.4 Adjust the normal on stripe plane

Because not all of the 4 world points M, 1 =1...4 lying on the stripe plane can be found,
the estimated plane normal may not be reliable. We use all of the stripe plane’s normals,
perspective projection, and collinear property to adjust each other and then the more accurate

normals can be evaluated.

3.2 Coded structured light

THE PROPOSED CLASSIFICATION Flgl3 Pattern proj ection

Maruyama and Abe TTv 7 classified. [11]
Durdle et al. Y W J
Non-formal codification | Tto and Ishii ol y J
Boyer and Kak W -.' |
Chen et al, o d i
- - — - T T T
g De Bruijn sequences Hilgli and Maftre o v v
= Monks et al. W ] )
= Vuylsieke and Costerlinek S J
< Salvi et al, A 'l J
g Lavaie et al. Y { J
= Zhang et al, W u |
- Morita et al, 3 N ]
= M-arrays Petriv et al. WS |
Y & Kiyasu et al, A 'ul
"I LT ) e Spoelder et al. A Bl |
® Griffin and Yee K i y)
L L ® ® Davies and Nixon Y { J
| | Morano et al. W A o J
Bi - cod Posdamer ef al, ] 8 J
mmary coces Inokuchi et al. . {
Minou et al, | A y]
A | o
?‘ Valkenburg and Mclvar ) 3 y)
-,; |:l|:.:||:|:l| Skocaj and Leonardis N v J
B Rocchini et al. Y o u'
= Caspi et al, | [ i
= n-ary codes r _— ! M
E . Horn and Kiryati W W W
= Bergmann | g v
[= . . Sansoni et al. W A J
Gray code + Phase shifting | . J J J
(Gilhring, N v |
3 Kosuke Sato y VoW J
| | Hyhrid methods Hall-Holt and Rusinkiewicz 4]+ J
Carrihill and Hummel 3 3 ]
& Grey levels Chazan and Kiryati W W J
-;': :'m'r':g d Twak - T
Z ] ajima and Twakawa ] i v
k- Colour Smutny and Pajdla ! d J
E Geng A { J
- Wust and Capson Y J [
| | Tatsuo Sato ) A A
R Staric
Scene applicability TTovine
EBinary
Pixel depth Gray levels
Colour
_ . Pariadical
Coding strategy T
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3.2.1 Binary coded and phase shifting

In order to find the correspondence easier, we use a coded structured light approach.
Coded structured light system consists of cameras and a projector that projects light patterns
onto the surface. Fig.13 shows the survey of pattern projection techniques, and they are
classified according to their codification strategy. We encoded each point in binary codes
(Fig.14a) and shift phases (Fig.14b) that will help us identify its coordinates. These binary
codes are easy to implement and we use the additional shift images to reduce the coded length

and coded errors.

Fig.14
(a) A sequence of binary patterns (b) An additional periodical
are projected in order to divide pattern is projected

in the object in regions

In this experiment, we constructed a test bed (as shown in Fig.15) that consists of a camera
and a projector. We encode the white stripe as 1 and the black one as 0. With careful design of

codes, the projection coordinated can be estimated much easier.
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ver time
Pattern 3
Pattern 2
Pattern 1
Codeword of this pixel: 101XX-> identifies -
the corresponding pattern stripe =

=

Fig.15 coded structured system

3.2.2 Single-stripe sequence

For obtaining more accuracy date,.we.can also use the traditional single pattern to

define the stripe plane.

Fig.16 single pattern frame sequences. (table tennis bag)




3.3 Computing the image-to-world transformation

After projective calibration and finding correspondence, we can recover the 3D position
from 2D image. First we make use of 12 known feature points to estimate the camera

parameters and then the image-to-world transformation matrix will be defined.

3.3.1 Estimate camera model

Let the points in the image coordinate

which in homogeneous coordinate, is written

Thus:

u=Y (8)
t

, and:

)

—~ | <

Let the desired camera model, a transformation which mapping the three-dimensional
world point to the corresponding two-dimensional image point, be C. Thus:
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u
=V (10)
t

— N < X

Hence C must be a 3 x 4 homogeneous transformation:

C=]Cy Cyp Cy Cy (11)

Expanding this matrix equation, we get:

O, X=aia-F OLE W6, = U (12)
£, NERELEEsT” e, =V
Cy X' eyY el +C,, =t

and:
=Ut —-Ut =
u :>u ut=0 (13)
v=Vt v-Vt=0
SO:
c,X +c,Y +¢;Z+¢c, -Uc,; X -Uc,,Y -Uc,;;Z -Uc,, =0 (14)

Cy X +CpY +CpyZ +Cyp —VCy X —VE,Y —Ve,Z —Ve,, =0

Because the overall scaling of C is irrelevant due to the homogeneous system and, thus,

without the value of c,, can be set arbitrarily to 1 and we can rewrite (14) as follows:
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¢, X+c,Y +c,;Z+c,+¢C,0+C,0+C)0+c¢,,0-Uc,; X -Uc,,Y -Uc,,Z=U (15)
¢,0+c¢,0+c¢,0+¢c,0+c, X +c¢,Y +c,Z+c,, —Uc, X -Uc,,Y -Uc,,Z=V

This reduces the number of unknowns to eleven. For six observations, we now have twelve
equations and eleven unknowns. Reformulating the twelve equations in matrix form, we can
obtain a least-square-error solution to the system using the pseudo-inverse method.

Let:

'x' y' 21 0 0 0 0 -U'Xx -uU'y" -uU'z]
0 0 0 o0 x' y' z' 1 -vix' -~v'y' v
x> y> 221 0 0 0 -U’x* -U?’y* -U®7°
0 0 0 0 x> y* z2 1 -V* -V vz’
x y> 22 1 0 0 0 0 -U’X U’y -U’’
X = 0 0 0 x>y 2 1 -VvX vy v/
x* ytzr 1 0 o0 0.,+Ux* —-U*y* —U*z*
0 0 0 0 x* y* zt 1 -vi*x* =aviy* v
Xy 221 0 0 0l -Uxw U’y -U’7’
0 0 0 0 x> y=zo 1 —Vvx =V -Vv°7
x* y* z 1 0 o0 0 =U°%® -U%° -U°z°
[0 0 0 0 x® y"uz® el =MExED 2VOye -V Oz° |
U
¢, ] V!
CIZ U2
Cs V2
C, UE
C, V3 (16)
C=|c, y= U*
023 V4
C24 US
C5 V&
Cy ue
| C33 Ve

C=(X"X)"'XTy
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3.3.2 Estimate 3D positions

Once the camera model C has been determined, we can estimate a 3D position in the

world coordinate from its projected image position. Recalling equations (12) and (13):

c,X+cC,Y +¢3Z+c, =u=Ut
C,, X +C,Y +C,;Z +C,, =v=Vt
Cy X +C,Y +C,,Z +Cy, =t (17)

Substituting the expression for t into the first two equations gives:

u(c, X +c¢,,Y +c,Z+¢,)=c¢c, X +cC,Y +C;Z+¢C,,

(18)
V(Cy X +C;,Y +Cy34it1C55) = C, X +C,,Y +Cp5Z +Cy,
Hence:
(C;; —UC; ) X + (€, =UCs, )Y +(ci5 =Ucy;)Z +(c,, —Ucy,) =0 (19)
(C;; =VCy )X +(Cp, =VC,)Y +1(Cp5 —VEy;)Z + (¢, —VCy,) = Oe:
We have:
aX+aY+a,Z=-a, (20)
¢, X+cY+c,Z=-cC,
Where
a, =¢,, —Uc,, ¢, =¢, —V¢y,
a, =¢, -Uc,, ¢, =C, —Ve,, 21)

a; =C; —Ucy, ¢y =Cp3 —VCy
a, =¢, —Ucy, C, =Cyy —VCyy
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, and the stripe plane equation:

b, X +b,Y +Z =—b, (22)

We can obtain a least-square-error solution to the system using the pseudo-inverse method.

a'1 a'2 a3
A= c, C, C
bl 2 3
X -a,
x=|Y b=|-c, (23)
Z ~b,
x =(A"A) A b
= =

1

This is the image-to-world transformation: for"t*naﬁon that maps any given image point lying

on the k-th light stripe directly to projective coordinates in world coordinates.

(a) (b) (c)

Fig.17 (a) original real image, (b) our scanning result, (¢) polygonal result
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Chapter 4. Reconstruction and Optimization

After acquiring the stereo positions, we utilize the shape from shading algorithm to
optimize the shape surface according to shaded surface intensity. We represent the object

surface in terms of a point set. If 7:R’> — R” denotes the projection transform from 3D

world coordinate to image plane, then the projected point of P, on the synthesized image in

terms of Phong or BSSRDF is:

T'=<p;, p,.R'(Kd,Ks,a,e,L) > 24)

T' =< ploPisRia,, 00,77, L) > (25)

where p' = 7(P'), P (world position), p (image point), and R'denotes the reflectance value

of the point in the synthesized image, computed according to the:

Phong reflectance parameters:
® Kd is the diffuse coefficient
® Ksis the specular coefficient

® o is the shineness coefficient

BSSRDF reflectance parameters:
® o is the scattering coefficient.
® (, is the absorption coefficient.

o nis the relative index of refraction.
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Joint parameters:

® L is the light source that can illuminate the point p'

® e is the viewing direction.

The observed point corresponding to P, in the image O' can be expressed as:

O' =< p,, py. 1" > (26)

,where |' is the intensity value of P, on input image.
We define the error between T' and O"‘asithe difference of R’ (Synthesis reflectance

value) and I (image intensity):

error(M0=(R' - 1" (27)

When optimizing the positions, we also define a smooth term to restrict the change of the

variable between P, and his neighborhood P; :

smooth(i, j) = (B —P/)* + (P, =P))* +(P, - P)’ (28)

Finally, we define a cost function C to represent the difference between synthetic and
observed images and also the smooth term to represent the reasonableness of estimated
surface. Last, the cost function is formed by sum of the squared error and sum of the smooth

term between all of the neighborhoods in over all visible points.
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When reconstructing the reflectance properties, we define C as follow:

C =Y (error(T',0")* + > smooth(i, j)) (29)
i-1 =1
where N is visible point number, and m is neighborhood number.

Through minimizing the cost function, we can evaluate the most appropriate surface and

reflectance parameters.

4.1 Reflectance model

Our goal is to reconstruct non-lambertian and sub-surface scattering materials objects.
We choose the Phong model for.bi-directional reflectance distribution function (BRDF) and a
diffusion scattering model for bidirectional scattering surface reflectance distribution function

(BSSRDF) as the parametric reflectance.model{3]:

4.1.1 Phong model

A BRDF can be written as:

BRDF = f (0,404 )= F(LV) (30)

In this thesis, we apply a commonly-used BRDF model, Phong model (Phong 1975), to

optimization the specular reflectance. The equation is written as:

R=kd*N-L+ks*(R-V) €2))
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4.1.2 BSSRDF model

In general, the BSSRDF can be approximated by diffusion theory, which accounts for

most of the scattered light in natural materials.

S, (X, @13 X1 ) =%Ft(xi,a3i)Pd (1% = %X, 1) Fu (X ) (32)

where F, is the Fresnel transmittance at the entry and exit points X, and X,, and the

diffuse reflectance profile, P,, is approximated by a diffusion dipole.

The dipole approximation was derived for the case of a semi-infinite medium. It assumes
that any light entering the material will either be absorbed or return to the surface. Therefore
we assume thin slabs break down_as light 1s.transmitted through the slab and reduces the

amount of light diffusing back to.the surface (Fig.18).

Fig.18 Dipole configuration for semi-infinite geometry.
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The reflectance is simply the sum of their individual contributions

Ol'Zr(l-i- O-trdr,i)e_gtrdr Ol'ZV (1+ O-trdv,i)e_alrdv (33)
47d’ 47d]

R(r) =

where o, =+/30,0, is the effective transport coefficient, o, =, +o, is the reduced

extinction coefficient, ¢ =o,/0, is the reduced albedo, o,and o, are the absorption and

reduced scattering coefficients, andr =||x, =X, ||, d, =/r*+2z;, d, =+r"+z; are the
dipole sources from a given point on the surface of the object. The positive real light source,

is located at the distance Z, =1/, and the other, the negative virtual light source, is located

1

above the surface at a distance < Z |=Z,+4AD where P = 30, 1s the diffusion constant

and A is defined as:

K=(+ F )1 -F, ) (34)

, and it represents the change in fluence due to internal reflection at the surface. The diffuse

Fresnel reflectance F,, can be approximated by the following polynomial expansions (Egan et

al. 1973).

0.7099 0.33219 N 0.06336 <l (35)

n n 7
_14399 07099 | 6 6681+0.06367,7 > 1

2

n n

—0.4399 +

Fy

[

,where 7 is the ratio of indices refraction.
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4.2 Optimization

In order to acquire a more accurate results, we use the three- layers approach for reliable
optimization. First, we only use lambertian diffuse reflectance to optimize the greater part of
the normals and the positions. Second, the Phong reflectance model is used to recover the
specular part. Last, the sub-surface scattering parameters are obtained and the partial detail of

the surface is optimized by BSSRDF.

Our cost function (Equation 29.) has two set of parameters, reflectance parameters and
position parameters. We assume a single set of reflectance parameters for all facets, and the
positions affect only local. The initial parameters need to avoid poor-conditioning and
reflectance-dominance situation, we'separated it into two stages in every layers (Fig.19): First,
we use structured light positions-to.improve reflectance parameters. And then, we use above

reflectance parameters to improve positions.

4.2.1 Using positions to improve reflectance

We start with structured light positions of the object and minimize the cost function (Eq.
32) to find a better set of reflectance parameters. In each phase, first, we fix positions and
approximate R until the cost function no longer decrease or the progress of decrease is small.
We treat the minimization of cost function as a non-linear problem and obtain a solution by
Broydon-Fletcger-Goldfarb-Shanno (BFGS) method. It is a quasi-Newton method and is one
of the most popular of variable metric methods. The former converges to the inverse of the
Hessian, while the latter converges to the Hessian itself. If we take the derivative of cost
function with respect to R parameters, we get:
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. Zn:error(T‘,O‘)z (36)

SR R

= 2Zerror(Ti,O‘)*—5ermrd(;r .9)
i=1

4.2.2 Using reflectance to optimize the positions
After finding a better set of reflectance parameters, we fix R, and refine positions. It is

similar to the above steps and we can continue the process until the cost function variation is

small or then a threshold.
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4.2.3 Optimization Flow Chart

Initial positions
(Structured light system)
+

Light and Camera location

Lamberti Reflectance
rt
ambertian (kd, normal)
Optimization
Phasel Positions
(pos 2)
Phase2
Phase2
| Sub-Surface Scattrering
Specular Optimization
Optimization

Reflectance
(kd,ks,alpha)

Positions

(pos z)

Reflectance
(05047)

Positions

(pos z)

Fig.19 Optimization flow chart
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Chapter 5. Experiment and Result

In this chapter, we describe our experiment and results. There are two kinds of
experiments. The first one is a synthesis experiment. We use a bunny from Standford PLY file.
We rendered the bunny with reflectance model and add noise to z values of each point as
initial position guesses. Then, we perform our algorithm to evaluate the benefit of shading
information. Second, we scanned a real data, a marble statue, and optimized it with our
algorithm. The framework is implemented in C++, OpenGL and WIN 32 library with a

Pentium4 3.20GHz CPU and 1.5 G RAM. The proposed system is show in Fig 20:

MyRender Window
File {oded FeaturePoint Calibration  ObjTool  Optimization

EdtCorrtal

Fidsizs |10 facemal rangs [1 == Coetet Birary 150 Cnera 000000 [0.000000 [200. 000t
Meighbor Siza [10 Sirface range ) =] Tines o Light |200.00CC |100.000% |-200.000C

Light Parameter.

L 00000 Leoooon  shmess (15260000
kd F ks F
Bta 1500000 sigma_s F.DOZIOO F.OOHOU F.OUTIOD <igma_s_prime (2. 190000 |2.62000C |3.000000

InFormation by e Check
ck the D martlaimarbled 8. jpg coded imane P .
ck the D irnarble irmartle 090 jpg coded image Puints. I Light
ect the D imarbleimartlens3.ipo ooded imaoe  Felygon

© WireFrams
Ot Made

(Codeclict
Ly arcieynarcield) jpg ~ @ phong
D hoarbiainarlalds ji

| || Bssich

Fig.20 The proposal System
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5.1 A Bunny
Tablel.

data information

Vertex number

Polygon number

Original data

(b)

Fig. 21 Bunny original image (a) frontal view, (b) rear view
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Noise Model

(b)

Fig.22 Bunny with position noise (random noise per vertex)
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Synthesis Reflectance

Phong Model: kd=0.8,ks=0.2,alpha=0.5 Camera(0,0,1000) Light(0,0,1000)

(b)

Fig.23 Synthetic bunny images
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Optimization with — Phong Model
Phase 1-Diffuse Optimization

Cost Error Initial: 9.000712 per pixel Current: 0.019035 per pixel
Reflectance parameters: kd=1.236784

(a) Reflectance

initial position cost error=42.584771 per pixel

last position cost error=38.288401 per pixel
smooth weight = 0.1

(b)Positions

Fig.24 Phase 1 Optimization
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Phase 2 — Specular Optimization

Cost Error Initial: 0.019035 per pixel Current: 0.003346 per pixel
Reflectance parameters: kd=0.779817:;ks=0.177215,shiness=0.598451

(a)Reflectance

initial position cost error=3.5548330 per pixel

last position cost error=3.4629534 per pixel

(b) Positions

Fig.25 Round 2 reflectance optimized data
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Optimization with - BSSRDF Model
Synthesis Reflectanc

(b)

BSSRDF Model 0 =(2.19,2.62,3.0), 0 :=(0.0021,0.0041,0.0071), n =1.5

reference by Jensen 2001 [3] Marble Material

Camera(0,0,2900) Light(-45,-20,2730)

Fig.26 Synthetic bunny image (by BSSRDF model)
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Optimize Synthesis-BSSRDF model

cost error = 0.32 per point

(= 5 k% ]
(a) Phasel

final cost error = 0.29 per point

(b)Phase 2

Fig.27 Result position optimized data
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5.2 A marble statue

5.2.1 Stereo positions

Fig:g"S Inping structured light images.

Table2

data information

Vertex number
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Reconstruction Result

(@ (b)

Fig.29 (a)an input reflectance image (b) scanned data
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5.2.2 Optimized Result

Optimization with Phong reflection model

Reflectance parameters:
Initial: ~ kd=0.8, ks=0.2, alpha=0.5, error= 0.127580 per-point

Optimize: kd=0.6428, ks=-0.164, alpha=4.41, error= 0.006225 per-point

Fig.30 The left image shows real reflectance color, and the right image shows optimized

reflectance color
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Phong Position Optimization

Position error:
Initial: 0.261 per point

Optimizing: 0.258 per point

Fig.31 The result of Phong optimized position
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Chapter 6. Conclusion and Future work

6.1 Conclusion

This thesis proposes a reconstruction approach that makes use of the reflectance
properties to optimize both the stereo positions and the reflectance parameters. The Phong and
the BSSRDF model are used as our reflectance model. Therefore, the details of
non-lambertian and the sub-surface scattering objects can be reconstructed by our approach.
There are three stages in our approach: First, we utilize the projective calibration to
reconstruct a 3D stereo position. Then, the Phong and the BSSRDF reflectance model are
used to estimate the reflectance parameters., Last, the estimated reflectance parameters are
further utilized to optimize the stereo positions-©Our contributions are as follows:

(d) Improving the scanning accuracy of non-lambertian and sub-surface scattering objects.
(e) Utilizing only inexpensive devices.
(f) The reflectance parameters are also estimated. We can use them to render the object from

different views and lighting conditions.

6.2 Future work

Our system can be further improved from the following aspects. Our stereo
structured light system is not accurate enough but easy to implement. The accurate 3D
scanner can be applied for more accurate initial guesses. The BSSRDF reflectance model that
we utilize requires heavy computation. Therefore, we only use it for partial detail
improvement. Recently, many simplified BSSRDF models are proposed, these reflectance

models may also be integrated in to our approach.
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