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結合三維定位與反光特性之表面最佳化技術 

 

 

        研究生:張文星            指導教授:  林奕成 博士 

 

國立交通大學 

資訊科學與工程研究所 

 

 

摘要 

 本論文提出一個表面最佳化的演算法，當對真實的物體做重建動作且最佳化表面的

同時亦可以取得其反射特性。我們使用結構光三維定位的系統去獲得一組較精確的起始

三維模型。接著使用 Phong 和一個雙向次表面散射反射分配函數的模組來逼近真實場景

的光反射特性。最後，在最佳化三維位置和光反射特性後，一組較精確的三維表面就可

以被取得。不像大部份之前對於三維重建的方法，重建一些非只有散射特性或具次表面

散射的材質物體是一個麻煩的問題。而且當我們重建了一組更精確的三維表面之餘，此

物體的光反射特性我們亦取得，可以使用在描繪於虛擬場景時更真實且多變。 

關鍵字: 結構光，三維定位重建，Phong 模型，雙向次表面散射反射函數，共軛梯度法。 

 

 



 ii

Combine Stereo Positions and Reflectance Properties for 3D 

Surface Optimization 

 

 

Student: Wen-Xing Zhang                Advisor: Dr. I-Chen Lin 

 

 

Institute of Computer Science & Engineering 

National Chiao Tung University 

 

 

ABSTRACT 

 

This thesis presents an optimization algorithm to simultaneously estimate both the 3D 

shape and parameters of a surface reflectance model from real objects. We use stereo 

structured light system to obtain initial stereo positions. And the Phong and the BSSRDF 

reflectance model are used to approximate the surface reflectance. After optimizing both of 

the shape geometry and reflectance properties, a more accurate surface can be acquired. 

Unlike most previous work in shape reconstruction, the proposed method deals with the 

troublesome problem of scanning Non-Lambertian and subsurface-scattering objects. In 

additional to a more accurate surface, the reflectance parameters can also be used for 

advanced rendering. 

Keyword: structured light, stereo reconstruction, Phong model, BSSRDF, conjugate gradient.  
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Chapter 1. Introduction 

 

 

1.1  Background 

 

Recently, the requirement of digitizing 3D models and estimating surface parameters from 

real objects is increased dramatically. They are extensively used in computer graphics, 

computer vision, and other analysis applications. 3D acquisition can be categorized into 

several principal approaches: passive stereo, active stereo, shape from shading, photometric 

stereo, etc. Each of them has its advantages and disadvantages. 

 

Passive stereo methods use multiple images captured from difference viewpoints. Then, 

they estimate the correspondences between images and calculate 3D positions by intersecting 

corresponding pairs. The major benefit of passive stereo is easy to implement and it requires 

only two or more cameras. But, estimating the exact correspondence between images is 

difficult, and therefore the accuracy of the data may be unreliable. 

 

Active stereo utilizes additional light sources or laser projectors for scanning, and thus the 

correspondences between two images are easier to be acquired. The accuracy of active stereo 

approaches is therefore relatively high. On the other hand, the active stereo systems usually 

require additional projection devices which are usually heavy and costly. However, the 

surface details of non-lamertian material objects are usually difficult to be acquired by active 

stereo or passive stereo since correspondences on details are usually ambiguous and the 

reflection properties are not taken into account.  
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Shape from shading and photometric stereo methods make use of shading information to 

recover the 3D shape. Most works on photometric stereo are based on the lambertian model. 

They usually use a single view direction, but various lighting directions. The normal 

estimation then become a simple linear least-square problem. But the accuracy may be not 

reliable because the objects are not always with lambertian reflection properties and 

reconstructing surface from normal variations is ill-condition. Shape from shading (SFS) uses 

intensity variation of a single image and known lighting conditions to recovery 3D shape. The 

problem of finding correspondences can be avoided in shape from shading, but the solution of 

shape from shading relies on image quality and accurate reflectance models. Shapes recovered 

by shape from shading are usually tainted due to input noise or simplified reflectance models.  

 

1.2  Motivation 

 

For accurate reconstruction of 3D models, combining both positions and reflectance 

properties (shading information) is a practical method. Diego (2005) et al. [1] proposed an 

impressive approach to combine 3D positions and normals for precise 3D geometry. They 

measured the positions and normals by a structured light system and a photometric stereo 

method respectively. In order to efficiently combine the positions and normals by linear cross 

products, they assume the objects are with lambertian properties and only use lambertian 

reflectance model to acquire normals. 

 

However, non-lambertian and sub-surface scattering materials are commonly found in the 

natured world. The lambertian reflectance model is insufficient to represent the greater part of 

objects. A simpler non-lambertian model for shape recovery is purposed by Tianli (2004) et al 

[2]. They apply the Phong reflectance model to model the surface reflectance and then used 

visual hull to find the initial shape. Then, an optimization approach, conjugate gradient, is 
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purposed to find the shape and reflectance parameters that fit multiple views images. 

Although, the specular reflection is taken into account and visual hull is used for initial 

positions. The sub-surface scattering material objects are still not easy to be reconstructed by 

their method. This problem is still a bottleneck of the reconstruction. In general, to scan these 

objects, operators usually apply powders or paints on the surface to avoid dealing with 

non-lambertian properties. The painting process is inconvenient and not applicable for 

valuable objects. 

 

1.3  Purpose 

 

To tackle the above mentioned problems, in this thesis, we present the use of the stereo 

structured light to acquire the initial positions. And then, Phong model and Bidirectional 

Scattering Surface Reflectance Distribution Function model (BSSRDF) are used to optimize 

the positions of scanned 3D geometry and also acquire the reflectance properties. For the 

BSSRDF model, Jensen et al. (2001) [3] introduced a dipole diffusion approximation for light 

scattering. This approximation uses an extension to diffusion theory. 

 

We make use of these models to compensate scanned 3D geometry of the non-lambertian 

or sub-surface scattering objects. Our method is performed in three steps: First, a projective 

stereo structured light system is used to acquire the initial positions and normals. Second, 

assume the light and camera locations are known, we simplify the Phong model and Jensen’s 

model. Then, we use the simplify models to acquire the optimize reflectance parameters. The 

optimization method we apply is conjugate gradient. It minimizes the difference between 

synthesized images and the real images. Last, using the estimated reflectance parameters, we 

can further optimize the position with conjugate gradient. In order to get a more precise shape 

and reflectance properties, we can repeat the step 2 and step 3. Finally, we can reconstruct a 
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most accurate 3D model and reflectance properties. 

 

1.4  Contribution 

 

In the thesis, we propose an approach to combine 3D scanned data and reflectance 

properties for precise 3D surface. The primary research goals and features are addressed as 

follows: 

 

(a) Improving the scanning accuracy of non-lambertian and sub-surface scattering objects. 

(b) Utilizing only inexpensive devices. 

(c) The method is not only reconstructing the shape but also estimating the reflectance 

properties. We can use them to render the object from different views and lighting 

conditions. 

 

1.5 System Overview 

 

Our goal is to recover a high quality 3D geometry from images. We combined the 

positions measured by structured light system and Phong or BSSRDF reflectance model to 

optimize the reconstructed result. We separate our method into three steps, and the system 

overview is as follows: 
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1.6 Organization 

 

This thesis is organized as follows. Chapter 2 is about related work, we will review the 

literature on structured light systems, BSSRDF reflectance model, and combining techniques. 

Chapter 3, 4 propose our method of surface detail optimization. Various issues such as 

initialization, reflectance model, and stereo structured light system will also be discussed. 

Chapter 5 shows the experiment results on real and synthetic objects. Chapter 6 presents the 

conclusion and future work.      

 

 

 

 

 

 

Fig.1 System overview. 
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Chapter 2. Related work 

 

 

In this chapter, we review the literature on 3D recovery, light diffusion reflectance model, 

and combining techniques. First, we will survey the previous works about 3D recovery 

techniques and introduce the Du Q.’s et al. [4] calibration method. Then, the difference among 

BSSRDF reflectance models are described respectively. Finally, we introduce the combining 

algorithm for precise 3D surface.    

 

2.1 Acquisition of 3D geometry 

 

3D reconstruction can be divided into two basic categories: one is stereo triangulation 

approach, and another is shape from lighting or shading variations. In these decades, range 

scanning technologies based on stereo triangulation have become the main stream, since they 

are flexible, inexpensive, and accurate. Chen and Kak (1987) [5] proved that image 

coordinates can be directly transformed to the world coordinate via a transformation matrix in 

active triangulation systems. They incorporated the laser range finder and a robot arm. World 

lines could be generated by moving the robot arm and the scanner to different known 

positions. Zhang (2003) et al. [6] extends the traditional binocular stereo problem into the 

spacetime domain, where a pair of video streams is matched simultaneously instead of 

matching pairs of images frame by frame. The spacetime stereo framework has proved 

effective for reconstructing shape from changes in appearance (Fig.2).  
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Fig.2 (a), (b) Two images taken from one of the cameras. (c) Shaded rendering of 
the reconstructed model by window spacetime analysis.[6] 

 

Photometric stereo and shape from shading recover the shape using lighting information. 

Aaron (2005) et al. [7] presents a technique for computing the geometry of objects with 

general reflectance properties from images. They assume the camera viewpoint is fixed, but 

the illumination varies over the input sequence. They put the target object and example 

objects with the same materials under the same illumination conditions. Since the geometry of 

the example object are known, they use the orientation-consistency to measure the real 

object’s normals (Fig.3).  

 

Fig.3 Reconstruction by examples. (a) Input data (one of 13 sets). (b) Views of the 
reconstructed model.[7] 

 

Fang (2004) [8] et al. use shape from shading techniques to recover a height field from 

images and combine them with a texture synthesis method to create a new texture editing tool. 

 

 

(a) (b) (c) 
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Fig.4 (a) An ordinary photo. (b) Shape-from-shading applied to an object in the image to 
estimate its normals. (c) Pixel patches formed by clustering normals. (d) Texture synthesized 
on these patches and aligned with neighboring patches. (e) Final result with texture 
orientation distortion, displacement mapping and environment mapping.[8] 

G. Vogiatzis et al. [13] provide a novel approach, volumetric graph-cuts. Their algorithm 

proposed uses the visual hull of the scene to infer occlusions and as a constraint on the 

topology of the scene. A photo consistency-based surface cost function is defined and 

discretised with a weighted graph. A viewpoint independent surface is reconstruction.(Fig.5) 

 

 

Fig5. Clay horse. Left column: Images of the clay horse sequence. Right column: Simular 

view-points of the reconstructed model using graph-cuts.[14] 
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Because our structured light system is modified from a projective calibration method by 

Du Q. and Huynh (1997) [4], we will briefly their method here. They presented a novel 

calibration method that based on cross ratio invariant theorem. They used 4 known 

non-coplanar sets of world point for calibration. The direct 4x3 image-to-world 

transformation matrix for each light stripe plane can also be recovered from plane-to-plane 

homography (Fig.6). 

 

 
Fig6. (a) input image data. (b) result model.[4] 

 

2.2 Light diffusion reflection model 

 

Most reflectance models are derived from surface scattering, without any subsurface 

scattering. They assume the light entering a material and leave the material at the same 

position.  However, reflection contributed by sub-surface scattering is ignored by these 

assumptions.  

 

Therefore, Nicodnmus (1977) et al. [9] proposed the Bidirectional Scattering Surface 

Reflectance Distribution Function (BSSRDF) to describe a scattering of light in translucent 

materials. 



 10

 

 (1) 

 

Here L is outgoing radiance, Φ is incident flux, ix  and iω
r  the incidence position and 

direction, and ox  and oω
r  the exiting position and direction. The BSSRDF can describe 

light transport between any two rays that hit a surface and the translucent materials can be 

captured. Jensen (2001) et al. [3] introduces a BSSRDF model that combines a dipole 

diffusion approximation with an single scattering computation. They also showed how the 

model can be used to measure the scattering properties of translucent materials, and how the 

measured values can be used to reproduce the results of the measurements as well as synthetic 

rendering (Fig.7). 

 

Fig.7 A simulation of subsurface scattering in a marble bust. The marble bust is 
illuminated from the back and rendered with: (a) the BRDF approximation (b) the 
BSSRDF approximation, and (c)a full Monte Carlo simulation. [3] 

 

Based on Jensen’s approach, Craig (2005) et al. [10] presented a new efficient technique 

with multiple dipoles to account for diffusion in thin slabs. They also extended this multipole 

theory to account for both surface roughness and layers with varying indices of refraction, and 

then they combined it with a novel frequency space application of Kubelka-Munk theory in 

order to simulate light diffusion in multi-layered translucent materials. Their approach is more 

),(
),(),,,(
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ooii xd
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ω
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general and can be used for arbitrary numbers of layers, and it enables the composition of 

arbitrary multi-layered materials with different optical parameters at each layer (Fig.8). 

 

 Fig.8 A multi-layered model of 
human skin using measured 
parameters for the individual 
skin layers[10] 

 

2.3 Combining algorithms 

 

In order to obtain high-quality 3D geometry, combing positions and shading information 

can be a considerable solution. Diego (2005) et al. [1] purposed a two-phase hybrid 

reconstruction algorithm for precise 3D geometry. In the first phase, they used positions to 

improve normals. Let mN and pN  be the normal field indirectly obtained from measured 

positions and the directly measured normal field respectively. They planed to replace the 

low-frequency component of mN with data from pN . They used a structured light system for 

original positions, and they used photometric stereo method for directly measured normals. 

The second phase was using measured normals to improve positions. They minimized the 

errors by a linear least square method. It is an efficient approach but they can only deal with 
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lambertian objects (Fig.9).  

 

  
Fig.9 least square optimization. (Left) Several range scans were aligned and merged. (Right) 
The result was later optimized with mapped normals coming from several independent 
photometric stereo scans.[1] 

 

Tianli (2004) et al. [2] presented an algorithm to simultaneously estimate both the 3D 

shape and parameters of a surface reflectance model from multiple views of an object with a 

single material. First, the rough initial shape is acquired by visual hull. Then, they chose the 

Phong reflectance model as the parametric reflectance model and they used the initial shape to 

minimize the cost function to find the better reflectance properties. The cost function is the 

sum of the difference between synthesis images and real images. Finally, they fixed 

reflectance properties and refined 3D shape similar to above-mentioned steps. The whole 

process continues until the cost function no longer decreases or progress of decrease is small. 

They also handle self-occlusion and self-shadowing problem by checking the triangle’s 

visibility based on the current estimate of the shape at each steps of the minimization process. 

However, in their experiments they only apply their work on synthetic images and a real 

object with near-spherical surface (Fig.10). 
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Fig. 10 1nd row input images of a real mouse, down: 2nd row. Optimized reflectance model 
with the initial shape. 3nd row. Optimized results at the 1st step. Optimized results at 2st 
step.[2] 

 

 

 

. 
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Chapter 3.  Acquisition of positions 

 

 

In this chapter, we use a projective calibration method proposed by Du Q. and Huynh 

1997 [4] to construct a structured light system. Our structured light system can be performed 

in three phases: (1) projector calibration, (2) coded structured light, (3) image-to-world 

transform. 

 

3.1 Projector calibration 

 

The goal of our projector calibration stage is to estimate the plane equation of each light 

stripe. The unknown coefficients a, b, c, and d represent a plane: 

 

 (2) 

 

In order to find the coefficients in (2), at least 3 non-collinear world points that fall onto the 

stripe plane must be known. It is difficult to recover all of them onto all of stripe planes. 

Therefore we make use of cross ratio properties. As showing in Fig 7, given 4 non-coplanar 

sets {P1,Q1,R1} {P2,Q2,R2} {P3,Q3,R3} {P3,Q3,R3}, we can use the cross-ratio properties to 

estimate the intersection M1, M2, M3, M4. The 4 points will then be used to evaluate the plane 

equations (Fig.11). 

.0321 =+++ dcXbXaX
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Fig.11 Projective calibration using 3 known non-coplanar sets of 3 collinear world points 
(dark circles }4...1|,,{ =iRQP iii . Open circles sM i ' are unknown world points lying on kπ ; 
C and C’ are the perspective center of the camera and projector.  

    

3.1.1 Cross ratio 

 

Give 4 collinear points p, q, r, m lying on a line l, we can express points on l in the 

following form: 

 

 (3) 

 

whereθ is the parameter that defines points on the line. This parameterization gives pθ =0, 

qθ =1, rθ and mθ  any real numbers depending on their positions relative to p on the line. The 

cross ratio {p, q; r, m} of these points are defined as: 

 

 (4) 

 

 

Since the cross ratio is invariant under perspective projection if 4 world points P, Q, R, M are 
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4...1,.04321 ==+++ iaZaYaXa iii

collinear, then their image projections p, q, r, m are also collinear and the same cross ratio. 

 

3.1.2 Calibration box 

 

Fig.12 (a) The Calibration box, have six calibration lines and eighteen known world 
positions. (b) 32 strip plane patterns. 

 

In order to obtain the accurate stripe plane equations and a camera model, we use a 

calibration box (Fig.12). When we fix the camera and projector, the camera model and stripe 

plan equations will not change. We can obtain world positions easily and a more accurate 

data.  

 

3.1.3 Computing the stripe plane 

 

Since the 4 world points iM , i =1…4 lying on the stripe plane have been determined, we 

use these four world points to find the coefficients on equation (2). 

 

Equations: 

 (3) 

 

(a) (b) 
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We solve them by the pseudo-inverse method. Unfortunately, this equation has a 

degenerate solution when all the coefficients are zero. To avoid the situation, we can 

reformulate them by dividing across by 3a  and letting: 

 

 

  (4) 

 

 

Thus: 

 

 (5) 

 

, and hence: 

 

 (6) 

 

A least-square-error solution to this set of equations can be written in matrix form as: 

 

  

(7) 

 

 

By using the pseudo-inverse method, the equation of the stripe is then found. 

 

 

 

2
3

2 b
a
a

=
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3.1.4 Adjust the normal on stripe plane  

 

Because not all of the 4 world points iM , i =1…4 lying on the stripe plane can be found, 

the estimated plane normal may not be reliable. We use all of the stripe plane’s normals, 

perspective projection, and collinear property to adjust each other and then the more accurate 

normals can be evaluated.     

 

3.2 Coded structured light 

 
Fig.13 Pattern projection 
classified. [11] 
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3.2.1 Binary coded and phase shifting 

 

In order to find the correspondence easier, we use a coded structured light approach. 

Coded structured light system consists of cameras and a projector that projects light patterns 

onto the surface. Fig.13 shows the survey of pattern projection techniques, and they are 

classified according to their codification strategy. We encoded each point in binary codes 

(Fig.14a) and shift phases (Fig.14b) that will help us identify its coordinates. These binary 

codes are easy to implement and we use the additional shift images to reduce the coded length 

and coded errors. 

 

 

 

In this experiment, we constructed a test bed (as shown in Fig.15) that consists of a camera 

and a projector. We encode the white stripe as 1 and the black one as 0. With careful design of 

codes, the projection coordinated can be estimated much easier. 

  

(b) An additional periodical 
pattern is projected 

Fig.14  
(a) A sequence of binary patterns  

are projected in order to divide 
in the object in regions 



 20

 

 

 

 

 

 

 

 

 

 

 

3.2.2 Single-stripe sequence 

 

  For obtaining more accuracy date, we can also use the traditional single pattern to 

define the stripe plane. 

 

  

  

  

Fig.16 single pattern frame sequences. (table tennis bag) 

 

Pattern 1 

Pattern 2 

Pattern 3 

Projected 

over time

… 

Codeword of this píxel: 101XX  identifies
the corresponding pattern stripe 

Fig.15 coded structured system  
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3.3 Computing the image-to-world transformation 

 

After projective calibration and finding correspondence, we can recover the 3D position 

from 2D image. First we make use of 12 known feature points to estimate the camera 

parameters and then the image-to-world transformation matrix will be defined.  

 

3.3.1 Estimate camera model  

 

Let the points in the image coordinate 

 

                     

 

which in homogeneous coordinate, is written 

 

                     

 

Thus: 

 

               (8) 

 

, and: 

 

                   (9) 

 

Let the desired camera model, a transformation which mapping the three-dimensional 

world point to the corresponding two-dimensional image point, be C. Thus: 
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(10) 

 

Hence C must be a 3 x 4 homogeneous transformation:  

 

            

(11) 

 

 

Expanding this matrix equation, we get: 

 

          (12) 

 

and: 

 

Vtv
Utu

=
= =>

0
0

=−
=−

Vtv
Utu                       (13) 

so:  

 

     (14) 

 

 

Because the overall scaling of C is irrelevant due to the homogeneous system and, thus, 

without the value of 34c  can be set arbitrarily to 1 and we can rewrite (14) as follows: 
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This reduces the number of unknowns to eleven. For six observations, we now have twelve 

equations and eleven unknowns. Reformulating the twelve equations in matrix form, we can 

obtain a least-square-error solution to the system using the pseudo-inverse method. 

Let: 
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3.3.2 Estimate 3D positions  

 

Once the camera model C has been determined, we can estimate a 3D position in the 

world coordinate from its projected image position. Recalling equations (12) and (13): 

 

  

(17) 

 

Substituting the expression for t into the first two equations gives: 

 

 (18) 

 

Hence: 

 

 (19) 

 

We have: 

 

 (20) 

 

Where 
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, and the stripe plane equation: 

 

 (22) 

 

We can obtain a least-square-error solution to the system using the pseudo-inverse method. 
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bAAA TT 1)(x −=  

 

This is the image-to-world transformation formation that maps any given image point lying 

on the k-th light stripe directly to projective coordinates in world coordinates. 

 

           (a)          (b) (c) 

Fig.17 (a) original real image, (b) our scanning result, (c) polygonal result 

 

 

 



 26

>=< ),,,,(,, LeKsKdRppT i
ii

y
i
x

i α

>=< ),,,,(,, LeRppT isa
ii

y
i
x

i ησσ

Chapter 4. Reconstruction and Optimization 

 

 

After acquiring the stereo positions, we utilize the shape from shading algorithm to 

optimize the shape surface according to shaded surface intensity. We represent the object 

surface in terms of a point set. If 23: RR →π  denotes the projection transform from 3D 

world coordinate to image plane, then the projected point of iP  on the synthesized image in 

terms of Phong or BSSRDF is: 

 

   (24) 

   (25) 

 

where )( ii Pp π= , P (world position), p (image point), and iR denotes the reflectance value 

of the point in the synthesized image, computed according to the: 

 

Phong reflectance parameters: 

 Kd is the diffuse coefficient  

 Ks is the specular coefficient  

 α  is the shineness coefficient 

 

BSSRDF reflectance parameters: 

 sσ is the scattering coefficient. 

 aσ is the absorption coefficient. 

  η is the relative index of refraction. 
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Joint parameters: 

 L is the light source that can illuminate the point pi 

 ie  is the viewing direction. 

 

The observed point corresponding to iP  in the image iO  can be expressed as: 

 

 (26) 

 

,where iI  is the intensity value of iP  on input image. 

We define the error between iT  and iO  as the difference of iR (Synthesis reflectance 

value) and iI  (image intensity): 

 

  (27) 

 

When optimizing the positions, we also define a smooth term to restrict the change of the 

variable between iP  and his neighborhood jP : 

 

    (28) 

 

Finally, we define a cost function C to represent the difference between synthetic and 

observed images and also the smooth term to represent the reasonableness of estimated 

surface. Last, the cost function is formed by sum of the squared error and sum of the smooth 

term between all of the neighborhoods in over all visible points.   
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When reconstructing the reflectance properties, we define C as follow: 

 

  (29) 

 

where N is visible point number, and m is neighborhood number. 

 

Through minimizing the cost function, we can evaluate the most appropriate surface and 

reflectance parameters. 

 

4.1 Reflectance model 

 

Our goal is to reconstruct non-lambertian and sub-surface scattering materials objects. 

We choose the Phong model for bi-directional reflectance distribution function (BRDF) and a 

diffusion scattering model for bidirectional scattering surface reflectance distribution function 

(BSSRDF) as the parametric reflectance model [3].  

 

4.1.1 Phong model 

 

A BRDF can be written as: 

 

 (30) 

 

In this thesis, we apply a commonly-used BRDF model, Phong model (Phong 1975), to 

optimization the specular reflectance. The equation is written as: 

 

 (31) 
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4.1.2 BSSRDF model 

 

 In general, the BSSRDF can be approximated by diffusion theory, which accounts for 

most of the scattered light in natural materials. 

 

 (32) 

 

where tF  is the Fresnel transmittance at the entry and exit points ix  and ox , and the 

diffuse reflectance profile, dP , is approximated by a diffusion dipole. 

 

The dipole approximation was derived for the case of a semi-infinite medium. It assumes 

that any light entering the material will either be absorbed or return to the surface. Therefore 

we assume thin slabs break down as light is transmitted through the slab and reduces the 

amount of light diffusing back to the surface (Fig.18).   

 

 

 

 

 

 

 

 

 

 

 

 Fig.18 Dipole configuration for semi-infinite geometry. 
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The reflectance is simply the sum of their individual contributions 

 

 (33) 

 

 

where '3 tatr σσσ =  is the effective transport coefficient, ''
sat σσσ +=  is the reduced 

extinction coefficient, ''' / ts σσα =  is the reduced albedo, aσ and '
sσ  are the absorption and 

reduced scattering coefficients, and |||| io xxr −= , 22
rr zrd += , 22

vv zrd +=  are the 

dipole sources from a given point on the surface of the object. The positive real light source, 

is located at the distance '/1 trZ σ= , and the other, the negative virtual light source, is located 

above the surface at a distance  ADZZ rv 4+= where '3
1

t
D

σ
=  is the diffusion constant 

and A is defined as: 

 (34) 

 

, and it represents the change in fluence due to internal reflection at the surface. The diffuse 

Fresnel reflectance drF can be approximated by the following polynomial expansions (Egan et 

al. 1973). 

 

 (35) 

 

 

 

,where η  is the ratio of indices refraction. 
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4.2 Optimization  

 

In order to acquire a more accurate results, we use the three- layers approach for reliable 

optimization.  First, we only use lambertian diffuse reflectance to optimize the greater part of 

the normals and the positions. Second, the Phong reflectance model is used to recover the 

specular part. Last, the sub-surface scattering parameters are obtained and the partial detail of 

the surface is optimized by BSSRDF.  

 

Our cost function (Equation 29.) has two set of parameters, reflectance parameters and 

position parameters. We assume a single set of reflectance parameters for all facets, and the 

positions affect only local. The initial parameters need to avoid poor-conditioning and 

reflectance-dominance situation, we separated it into two stages in every layers (Fig.19): First, 

we use structured light positions to improve reflectance parameters. And then, we use above 

reflectance parameters to improve positions.  

 

 

4.2.1 Using positions to improve reflectance 

 

We start with structured light positions of the object and minimize the cost function (Eq. 

32) to find a better set of reflectance parameters. In each phase, first, we fix positions and 

approximate R until the cost function no longer decrease or the progress of decrease is small. 

We treat the minimization of cost function as a non-linear problem and obtain a solution by 

Broydon-Fletcger-Goldfarb-Shanno (BFGS) method. It is a quasi-Newton method and is one 

of the most popular of variable metric methods. The former converges to the inverse of the 

Hessian, while the latter converges to the Hessian itself. If we take the derivative of cost 

function with respect to R parameters, we get:  
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 (36) 

 

 

 

 

4.2.2 Using reflectance to optimize the positions 

 

After finding a better set of reflectance parameters, we fix R, and refine positions. It is 

similar to the above steps and we can continue the process until the cost function variation is 

small or then a threshold. 
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4.2.3 Optimization Flow Chart 

Fig.19 Optimization flow chart 

 

 

Reflectance 
(kd, normal)

Initial positions 
(Structured light system) 

+ 
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Reflectance 
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(pos z) 

Reflectance 
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Optimization 

Specular 
Optimization 

Sub-Surface Scattrering 
Optimization 

Phase1  

Phase2  
Phase2  
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Chapter 5. Experiment and Result 

 

 

 In this chapter, we describe our experiment and results. There are two kinds of 

experiments. The first one is a synthesis experiment. We use a bunny from Standford PLY file. 

We rendered the bunny with reflectance model and add noise to z values of each point as 

initial position guesses.  Then, we perform our algorithm to evaluate the benefit of shading 

information. Second, we scanned a real data, a marble statue, and optimized it with our 

algorithm. The framework is implemented in C++, OpenGL and WIN 32 library with a 

Pentium4 3.20GHz CPU and 1.5 G RAM. The proposed system is show in Fig 20:   

 

 

Fig.20 The proposal System 
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5.1 A Bunny   

Table1. 

data information 

Vertex number 35,947 

Polygon number 69,451 

 

Original data  

 

(a) 

(b) 

Fig. 21 Bunny original image (a) frontal view, (b) rear view 
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Noise Model  

 

(a) 

 

(b) 

Fig.22 Bunny with position noise (random noise per vertex) 
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Synthesis Reflectance   

 

(a) 

 

Phong Model: kd=0.8,ks=0.2,alpha=0.5 Camera(0,0,1000) Light(0,0,1000) 

(b) 

Fig.23 Synthetic bunny images   
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Optimization with – Phong Model 

Phase 1-Diffuse Optimization  

Cost Error Initial: 9.000712 per pixel Current: 0.019035 per pixel 
Reflectance parameters: kd=1.236784 

(a) Reflectance 

 
initial position cost error=42.584771 per pixel 
last position cost error=38.288401 per pixel 

smooth weight = 0.1 

(b)Positions 

Fig.24 Phase 1 Optimization 
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Phase 2 – Specular Optimization 

 
Cost Error Initial: 0.019035 per pixel Current: 0.003346 per pixel 

Reflectance parameters: kd=0.779817,ks=0.177215,shiness=0.598451 

(a)Reflectance 

 
initial position cost error=3.5548330 per pixel 
last position cost error=3.4629534 per pixel 

(b) Positions 

Fig.25 Round 2 reflectance optimized data  
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Optimization with – BSSRDF Model 
Synthesis Reflectanc 

 

(a) 

 
(b) 

BSSRDF Model σs=(2.19,2.62,3.0),σz=(0.0021,0.0041,0.0071),η=1.5 

 reference by Jensen 2001 [3] Marble Material  

Camera(0,0,2900) Light(-45,-20,2730) 

Fig.26 Synthetic bunny image (by BSSRDF model) 
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Optimize Synthesis-BSSRDF model  

 

 cost error = 0.32 per point 

(a) Phase1 

 
final cost error = 0.29 per point 

(b)Phase 2 

Fig.27 Result position optimized data 
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5.2 A marble statue 

 

5.2.1 Stereo positions  

 

 

  

  

  

Fig.28 Input structured light images. 

 

Table2 

 

data information 

Vertex number 81,027 
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Reconstruction Result 

 

(a)                                      (b) 

Fig.29 (a)an input reflectance image (b) scanned data 
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5.2.2 Optimized Result 

Optimization with Phong reflection model 

 
 

Reflectance parameters:  

Initial:   kd=0.8, ks=0.2, alpha=0.5, error= 0.127580 per-point 

Optimize:  kd=0.6428, ks=-0.164, alpha=4.41, error= 0.006225 per-point  

Fig.30 The left image shows real reflectance color, and the right image shows optimized 

reflectance color  
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Phong Position Optimization 

 

Position error: 

Initial:      0.261 per point 

Optimizing:  0.258 per point 

Fig.31 The result of Phong optimized position   
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Chapter 6. Conclusion and Future work 

 

6.1 Conclusion 

 

 This thesis proposes a reconstruction approach that makes use of the reflectance 

properties to optimize both the stereo positions and the reflectance parameters. The Phong and 

the BSSRDF model are used as our reflectance model. Therefore, the details of 

non-lambertian and the sub-surface scattering objects can be reconstructed by our approach. 

There are three stages in our approach: First, we utilize the projective calibration to 

reconstruct a 3D stereo position. Then, the Phong and the BSSRDF reflectance model are 

used to estimate the reflectance parameters. Last, the estimated reflectance parameters are 

further utilized to optimize the stereo positions. Our contributions are as follows:  

(d) Improving the scanning accuracy of non-lambertian and sub-surface scattering objects. 

(e) Utilizing only inexpensive devices. 

(f) The reflectance parameters are also estimated. We can use them to render the object from 

different views and lighting conditions. 

 

6.2 Future work 

 

 Our system can be further improved from the following aspects. Our stereo 

structured light system is not accurate enough but easy to implement. The accurate 3D 

scanner can be applied for more accurate initial guesses. The BSSRDF reflectance model that 

we utilize requires heavy computation. Therefore, we only use it for partial detail 

improvement. Recently, many simplified BSSRDF models are proposed, these reflectance 

models may also be integrated in to our approach. 
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