[gjzl j "E-a[_l\ B
YR BT %ﬁﬁ?}[‘a Fir

i i

+ 2 MPEG 1" EIam i it (g
AR A e

SoC architecturesfor MPEG -Reconfigurable

Video Coding Framework

Hﬁ:f_{'- f_\][gjzl—}u{ - = -]

4% MPEG i EIREI G AR AL 1 o B S 2wt

SoC architecture for MPEG Reconfigurable Video coding Framework

?FTK P/ if‘i&ﬁ,ﬁl Student : Jer-Min Hsiao

?‘F’,ﬁj”ﬁ“; D ERE T TﬁH Advisor : Chun-Jen Tsai

B 2 52

PP S F

e

A Thesis
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of Master
in

Computer Science
June 2007
Hsinchu, Taiwan, Republic of China

FlE Sl o A 5 A F]
2

MMXOAEZEESETE S

AR HAAHEHRIE HAAA _ B ¥ R B
P 4% 3 X
£ MPEG T § @ AAABEMBAL 4 KT8 A Rt
SoC architecture for MPEG

Reconfigurable Video Coding Framework

SRALFHAL FBAERFRERT -

SHELE %éiﬁé_j% L (fh—
, 2
|

> =
7~

=k x
A

8 Rell AF5 & 5 Bl #

#IH H4H
X E A B
BATAXLXEFHEHLHES

(REZEALTREABXELALRAR)

MR LA AAARB LR GRS T AMERLRAL A
a9 REEE > FMRARLEMLAX -

WA L LRWPICT SRR NABHERBAL AR SR Bl
CRE G R TE

HAg

ANUHAESE QSRR BERERALIRREASEBAOAEALEE

WA ESEEE TERLI CELEAE, 2BA HEBRERSERTZ
B MEREREREEMAORLLGE ZHAER MR SRR UK
A ABEHMCFEE T RN ELAMA RNERELARERRER
REREARLIERE NE TR -

HXAXLRALNHZ G EREH
AARLSEBLRELKEREY | IR
R apnEn | A

B 2R ARRER
£ 0 A BUR
'}4 :
.
wiss: 30 A

S8ER Qi %) A JooB

4

BIH L4 H

B X % & K #
BELHARXEEHREE

(REREARTR2XTTHRATZRAR)

ABBEZRERZSMA AAANRLTIBAL T AASELRH KA
o 05 BEES > BMREELEMIAEX -

A8 R HIPECT SRR EA A ST A RS
Bt e

| ek

KALMAEE LR BALEALTEARS ANBHELRE "HRL
I EAAE, 2BA ROBREASHATZEN BLIXBALEIHA
MUK EHAAA REEEEAREREEAN FHRLETHERT]
Bp o

AAXAAAGERNE SRR ELAH (AP EELARRERTHG)OMEZ
- PEXRA ERGNEE £ B BA

NGE

kA A EER
wans: g 1A

PERE 4 %] A » @

5

HIH 4 H

~
JARESE
HELRXErHELEiRES
(REBBAETREARXARBREEZR)
[D: 6009455585
AEHEMBRZAXARBALRLRBALEAHERIEMER O 24
BEH 2 SNBEARLEMZHEN o

BXME FHEPECT AR AAEEAE AL AKER R BHER:
R Rtk

LR EBBEARA ERHEZ AR (AHE) KR BARERR
B2 RIS - BRI AR WA AR R LSRR R L TR
XEY BABRAILZ EARXRAXEFHALREBT K REFEAR
BAEBAHNLG 2 EiE ~ BE THREFIG -

SR ARERARE 2R LR ME TRAFG LIS - BREH HMATH
Ho

BEA ETER
“
aigs: FUA

RE 0%) Ao

SoC architecture for
MPEG Reconfigurable Video Coding Framework

Abstract

Due to the variety of popular video coding standards, many efforts have been put
into the design of a single video decoder chip that supports multiple formats. In 2004,
ISO/IEC MPEG started a new work item to facilitate multi-format video codec design
and to enable more flexible usage of coding tools. The work item has turned into the
MPEG Reconfigurable Video Coding (RVC) framework. The key concept of the RvC
framework is to allow flexible reconfiguration of coding tools to create different
codec solutions on-the-fly. In this thesis, flexible SoC architecture is proposed to
support the RVC framework. Some analysis has.been conducted to show the extra
costs required for this platform,.compared.to -hard-wired codec architecture. In
conclusion, the RVC framework can be-mapped to an SoC platform to provide
flexibility and scalability for dynamic application-environment with reasonable cost in

hardware design.

Acknowledge

A SO R, (UGBS PR R)
EIEACE B R E L brff‘ﬁ'J A AR A LR TR
ISR S iflffﬁ’g”*urﬂ— AR IET 2 TSRS
= *”J%ﬁgfﬂﬁ@fﬁéﬁ’ﬁf@f{ T, R O R o R s
AU S F - SRS G PP 0 = e, TR e
BIBESIOF N R S 0L S R, f»w—‘ %Qiﬁ"?'»%i‘ﬂ%',ﬁ‘%ﬂj e

F' FJFJ* Fﬁﬁi’f“ﬁ O TR A SR G LR PO T 5, FJ SRR FT hH[n
e L ek 5 S £ MMESLAB io— 3,30 8% -

S

Content

INtrodUCTION........oeii e 14
1.1 Introduction to MPEG RVC Frameworkcccccevevineneneninesesnnnens 15
Previous WOVKKSoooiiiieiiee e 19
2.1 Traditional ASIC design approach.........ccccecceeiereeiesieeseeresieesesieseennens 19
2.2 SoC architecture for multimedia SYSteM.........cccccveveiieeireie e 20
2.3 Reconfigurable video COAINGcccoviiieiieiiiiese e 21
2.3.1 RVC Proposal from Hanyang University........c.cccoocvvveniveneceene. 22
Proposed RVC FrameworK.........cccccocveviiiineniiee i, 26
3.1 SoC architecture of the propose RVC frameworkcccocvevveiveinennnns 26
3.2 Propose RVC framWIOK .l il eeeereeeieeseeieseesieeseeseeseesneesnaesaes 28
3.2.1 Design of Glabal Control Unitia........cccoeveveveeieeic e 29
3.2.2 Memory alloCator . .. i e et e 32

3.3 Implementation of FUS in the propose RVC framework.............cccccveuene 34
Design of hardware-functional unitscc.......... 35
4.1 Introduction to H.264/AVC deCOUINGccvevverieiieieeie e 35
4.2 Design of inverse transform and inverse quantizer.........c...cccccevvvevveeenne. 37
4.2.1 Architecture of inverse integer transform..........cccccoeeviviieiienns 38
4.2.2 Architecture of the 4x4 inverse hadamard transform 40
4.2.3 Architecture of the inverse quantizer...........cccoocveveviveviesiesieennnns 42

4.3 Design of intra COMPENSALIONccccevveiieieeieieese e 43
4.3.1 INEra PrediCtion........cceeieecece e 43
4.3.2 Proposed architecture of intra compensation.............cccccvevveeenee. 45
4.3.3 Eight directions of I4MB modecccccccveviviieveeie e 45
434 DC mode for 14MB mode and 116MB..........cccccevvviiiienininnn 50
Experimental reSultS..........cccovvviiiiiiie i 52
51 Emulation platform ... 52
51.1 Integration board (Arm integrator/AP)ccceeveveiiveneeiesieinns 53
51.2 Core Module (CIM)cocuviiciece et 53
5.1.3 Logic MOdule (LIM)......coieiiiececeee e 54

514 memory map for arm integrator...........cccccevvevevieerecce e 55

5.2 Synthesis report for hardware functional units..........ccccceeeevieviecienienne 56
5.3 Performance analysisSccocviierieieiiieii e 57
6. Conclusion and FUture Workcccccovvveniineininesninnn, 59
7. RETEIENCE ... 61

10

Fic. 1.
Fic. 2.
Fic. 3.
FiG. 4.
FiG. 5.
FiG. 6.
FiG. 7.
Fic. 8.
Fic. 9.

Fic. 10.
Fic. 11.
Fic. 12.
Fic. 13.
FiG. 14.
FiG. 15.
FiG. 16.
FiG. 17.
Fic. 18.
Fic. 19.
Fic. 20.
Fic. 21.
Fic. 22.
Fic. 23.
FiG. 24.
FiG. 25.
FiG. 26.
Fic. 27.
Fic. 28.
Fic. 29.
Fic. 30.
Fic. 31.
Fic. 32.
Fic. 33.
Fic. 34.
FiG. 35.

Lists of Figures

CONCEPT OF MPEG RV C FRAMEWORKeitveiteeieeitraseesseesseesssesssesseessesssessassseessesssnsssesneesnes 16
DEFINITION OF AFUNCTIONAL UNIT IN RV C....oiiiiciice e 16
OVERALL ARCHITECTURE OF RVCoiiiiiic ettt ettt 17
EXAMPLE OF RV C CONFIGURATION ...uviiuviitretresieesiesseesseesseeseeesensnssssesssessssessesssessssssesssesssnes 17
ARCHITECTURE OF THE H.264 DECODER IN [5]. c.vivviveieiiie st 20
PROFILING OF JPEG ENCODERvviuttiieeiteesttesteeieestesseesseesseesseesenasasssessssssseessesssesssessesssesssees 21
ARCHITECTURE FOR JPEG ENCODERc.uieiietiisiiesiee e siee e esee e sseesneesseense e ensessaesseesseessens 21
ARCHITECTURE OF RVC PROPOSAL FROM HANYANG UNIVERSITY [10] ...covvvviviveicicens 22
MECHANISM OF PARSING DECODE DESCRIPTION......ccuviittertreieesiesseesseesseesenesessseesessssesseensenns 23
DECODING PROCEDURE IN [L0] 11vvevveiiieiiesiesiesieereeeeie st e st stesaenae st e e sne st snnenesneeneennens 24
PARSING PROCEDURE IN [L0] ..1veitverieiiiesiesiesiesieetee e eie e te sttt a st sre e ereenanneennens 25
OUR PROPOSED SOC ARCHITECTURE FOR MPEG RVCcccoiiiiiei e 27
HARD-WIRED DECODER EXAMPLEccuvtiutiittestreieesteaseessessseesseesesanasasesssessseesssessesssessesssesssees 28
GCU ARCHITECTURE......vviveeeeese et Bt 30
EXAMPLE OF TABLES IN G UL i 0 ... sy semss s e washeii e eneeeneesneesssessnensesssessssssesssnessesssnsnsesnessnes 30
CONSTRUCTION OF VIRTUAL WIRES BASED ONTHE NDToovviviiiier e 31
SCHEDULING MECHANISMIOF GCU ... ittt e ste et e e et nte e nns 32
NEW SYSTEM MEMORY MAR 4.t saaeans boadesde ant e odarthesesseesseesenssensnssssesssessssenseessesssessessesssees 32
MANAGEMENT OF THE ON-CHIP SCRATCH-PAD:MEMORYcccceiuierieriiesinesenesenaeessesseeseessnens 33
MECHANISM OF HOW MEMORY ALLOCATOR CHOOSE MEMORY BANKScccvvvirrereeierieneens 34
L I T T =SSR 36
ARCHITECTURE OF H.264 DECODINGcttetietiesreesteesseesseesenaeessessessssesssesseessessessssssesssesssees 36
INPUT ORDER OF TRANSMITTING BLOCKS ...vvevvitiitestratesseestessessestessssseseessessessessesssssesssssseseens 37
ARCHITECTURE OF 1-D INVERSE TRANSFORMceitieitieiteeitraeesseeaseesseesssesseesseessesseessesssesssees 39
ARCHITECTURE OF 2-D INVERSE TRANSFORMutitieitieiteeieraersseeaseesseesssesseesseessessesssesssesssnes 39
TRANSPOSED MEMORY OF 2-D INVERSE TRANSFORMceuviitiesiiesieesieeseeesensseessessssesseesseensenns 40
TIMING DIAGRAM OF 2-D INVERSE TRANSFORMceittetiesiresiesseesieesieesseesenssesesssessesseensenns 40
ARCHITECTURE OF 1-D INVERSE HADAMARD.....cctttitieniieiieesnieesieesineessneessneesnneessnesssneessns 41
INVERSE INTEGER/HADAMARD TRANSFORM MODULEc.veitiieieitesreseeieseessessessessessesseeseens 42
ARCHITECTURE OF INVERSE QUANTIZER.....c.0eitisteiteateereeeeeeseessesssssessessessessessessessesesssesseseens 43
SIMULATION OF INVERSE QUANTIZER ..vveeiivtieeieteieeeteeeesetteeessntesessseesssessessssssesssssenssssssesesns 43
IDEA OF INTRA PREDICTION ...ttt iuttesuttessteessteessteessteessteessseessseessbeessseesssesssseesssesssneesssessnneessnes 44
14MB PREDICTION MODE BESIDES DC PREDICTIONieiuvtiiiieieeesireestessieessesaneeessessnseesnees 44
116MB PREDICTIONS MODE AND ONE [4MB DC PREDICTIONciveiteerireeraeeaneesseesseesseenenens 45
THE ARCHITECTURE OF INTRA COMPENSATION. 1. vvvtittetieeeieseesressesseeseeeessessessessesssssessesssenes 48

11

Fic. 36.
Fic. 37.
Fic. 38.
Fic. 39.
FiG. 40.
FiG. 41.
Fic. 42.
Fic. 43.
FIG. 44.
FIG. 45.
FiG. 46.

ARCHITECTURE OF DC MODE FOR I4AMB AND [16MBccooiiiiiiececeee e 50
TIMING DIAGRAM FOR [4MB DC MODEcciiiiiiiiiieniieesiitesiteesibeesiteesibeesinee i snnee e s ssneenenes 50
TIMING DIAGRAM FOR 116MB DC MODEccuvtiiiitiesiieieesieeiesiaesieesieeseneseeseessessnnesssesseessnnns 51
ARCHITECTURE OF ARM INTEGRATOR .. vviuviutetestestesseeseeseesessessesssssessessssssessessessessesesssesseseens 52
CONNECTION BETWEEN CM AND LM ..ot 53
BLOCK DIAGRAM OF CIM.....iiiiiieiieeie ettt et e sttt snaesneenneesaenaeensennaennaennees 54
BLOCK DIAGRAM OF LIM ..ottt ettt ettt nnee e 55
MEMORY MAP FOR ARM INTEGRATORcutittrteiteareereesieseessessessessesssassessessessessessessessessesssessens 56
PARAMETER REGISTER FOR HARDWARE FUNCTIONAL UNIT ..vvivviiviueerieseesieseeseesresseeseeseeseeseens 56
COMMUNICATION BETWEEN CM AND LMooiiiiiiece st 58
CONSTRUCT A NEW DECODE ON-THE=FLY ...eitteiteeiteertreeesseesseesseesseesseessesssessassseessesssesnsssneesnes 60

12

TABLE 1.
TABLE 2.
TABLE 3.
TABLE 4.
TABLE 5.

TABLE 6.

Lists of Tables

SEVEN DECODER DESCRIPTION TABLE ... ceiuttitteiteesttesteeteesiesseesseesseesaeesseassnssssssessssesseenseensenns 23
TABLE OF INVERSE QUANTIZER ...vettsteiteesietetestessessesseeseessessessessessesssassessensessessessessessessensenes 43
EQUATION OF 14MB EXCEPT FOR VERTICAL AND HORIZONTAL MODESvvvveeeiiiiiiireeeeeennns 49
SYNTHESIS REPORT OF HW FUNCTIONAL UNITS .. uvteitiieiirienineesiiiesieeesireesineesineesinee e e snneesenes 57
EVALUATION TIME OF FUNCTIONAL UNITS ..euveitiiteiueereeseeseeseessessesseesesseeseesaessessssssssesssesseseenees 58
PERFORMANCE COMPARISONeeitttsittasieessireassesestreessessstseesseesstsesssessstseessessssneessessssneensensnes 58

13

1. Introduction

Most multimedia devices today have to support multiple codec standards. Take
video codecs for example, a portable multimedia player usually supports the playback
of the MPEG-1/2, MPEG-4 SP, WMV, and H.264/MPEG-4 Part 10 video contents. In
order to reduce system cost, a single-chip SoC solution that supports all these
standards is a sensible approach. From IC designers’ point of view this is not a serious
problem since most (if not all) popular video codecs share the same block-based
motion compensated transform coding data flow. In addition, many coding tools have
similar architecture. However, there are some application issues that makes traditional
codec design approaches unsatisfactory, [1].

A major problem with existing approach of defining a codec standard is the lack
of flexibility when new applications emerge. A video codec is composed of several
coding tools (e.g. DCT/IDCT, MC, VLCALD; etc.). However, for a codec standard,
the conformance point is defined at’codec-level, instead of tool-level. Different
profiles/levels are created for each codec to address the need of different classes of
applications. This approach works fine in the past since the application scenarios were
quite simple (e.g. DVD, DTV). However, with the exponential growth of new
multimedia applications, the old approach of defining conformance point at
codec-level becomes awkward. Quite often, a new application designer finds it
impossible to find a reasonable codec profile@Ilevel to fit the target application well.
For example, the FMO tool of H.264 is useless for many applications but a decoder
may still need to support it simply because it is included in AVC baseline profile. In
general, application environment is changing faster than an international standard can

catch up that there should be a more efficient way of allowing a codec to adapt to new

14

applications while maintaining interoperability among different solutions.

MPEG has recognized this issue and started a new work item called Video Coding
Tools Repository (VCTR) in 2004. After some investigations, the direction and
benefit of VCTR is becoming clear [2]. Later, this effort becomes the Reconfigurable
Video Coding (RVC) framework in 2006 [3]. This new framework defines the
conformance point at tool-level. Therefore, in principle, an RVC-enabled codec can
negotiate on-the-fly with the video bitstream encoder/sender about which coding tools
is required and how the data path can be wired among these coding tools in order to
decode the video bitstream. After the setup stage, the decoder can decode the
bitstream correctly. With this approach, an SoC can support multiple codec standards
as well as creating customized codecs in real time as long as it contains all the
standard-conforming tools that is- necessary t0'.decode bitstreams from different

encoders.

1.1 Introduction to MPEG RVCFramework

The concept of MPEG RVC framework“can be illustrated by Fig. 1. The key
difference between RVC and the old MPEG codec standards is that the interface of
each coding tools is defined precisely so that they can be used (like LEGO blocks) to
build various codecs. The decoder configuration describes how input bitstream can be
parsed so that the raw input data to each coding tools can be extracted. A decoder
description language is under development so that the configuration of a specific
codec (such as H.264) can be described using a (small) configuration bitstream. The
decoder configuration bitstream will be processed by an RVC decoder before
decoding of a video bitstream conforming to the described standard. Note that after
processing a configuration bitstream, the RVC decoder will generate a Global Control

Unit (GCU) that governs the operation of the coding tools.

15

applications

Old MPEG

conformance point E

3

H.264 parser &
video composer

MPEG-4 parser
& video composer

MPEG-B
H.264 Virtual MPEG-4 Virtual
New RVC Network of FUs == Network of FUs
conformance point = = = = = = = — | F=—=====-
Tools in RVC Toolbox { 8x8 IDCT|| 4x4 GBT H%-pel MC S?(:fdligtirgﬁ } MPEG-C

Fig. 1. Concept of MPEG RVC framework

In principle, the configuration description tells the RVC decoder how to wire the
coding tools to form a data path. In the RVC framework, each coding tools is called a
functional unit (FU) and is specified in Fig. 2 [1]. In Fig. 2, a control signal is a signal
embedded in the video bitstream (for example, the width and height of the video
frame). A context signal is a signal, generated from the processing of bitstream data
(for example, the AC prediction:direction:in the-MPEG-4 Part 2 video standard). The
context-control unit reads in the context and contral signals generated by previous
FU’s and generates (or passes ort) some context-and control signals to the next FU’s

based on the result of the processing unit.

Output
$ bitstream
data

Processing
Unit

Input
bitstream »
data

|

Context-Control
Unit

[

l Context & control [out]

e.g. derived parameters
from the video data

T

Context & control [in |
e.g. coding parameters,
mode selection signals

Fig. 2. Definition of a functional unitin RvVC

The overall architecture of RVC is shown in Fig. 3. There is a syntax paring FU to
parse the bitstream to context and control information and MB-based data. The
content and control information is fed to Global Controller Unit(GCU) and data is fed

to other MB-based FU to processing. The GCU is responsible for controlling the data
16

path between network of functional units and receiving and passing content and

control information to each function units.

toolbox
bitstream Syntax MB-based data Decoded pixels(MB)
. MB based FU
Parsing FU
Content&control info Content&control info
Essential Control GCU
Syntax elements tables

Fig. 3. Overall architecture of RvVC

A partial example of a configured RVC codec that behaves like an H.264 baseline
decoder is shown in Fig. 4. In Fig. 4, the functional blocks encircled in the dashed

rectangles will be implemented using.the‘proposed architecture in next two sections.

s e = 1
1 1
— Networks of HW/SW FUs I
’ Encoded Bitstream ‘ ’Decoder DESCI’IptIOH. : slice info QP 1
|= T T T T T I 1
FU Network : * !
Ent .
Configuration DA (coelt) » Scan* Q! :
T |
I
Parser 1 I__,] MV/Intra mode 1
1 decoding 1
| SE, | SE, | SE, | S : mode, odel {1t . |
| Comp N 1
Data || Data Data ! i Inloo
1 p YCgC
for FU, || for FU, for FU_ X CRetL —deblocking Frame
| Ref2 [
! _Rets !
N 1
I l T I
1 1
: . ecu | :
L e e e e o e o o e e e e e e e e e e e e = 4

parsing

Fig. 4. Example of RVC configuration

Currently, the two parts of RVC is defined in two different MPEG internal

documents. Namely,

® MPEG-B part 4, Codec Configuration Representation.
® MPEG-C part 4, Video Tool Library.

17

The MPEG-B is composed of two elements, the first element is the generic video
bitstream description language that can be used to instantiate a parser, and the second
element is the language that can be used to specify the network of functional units of
the decoder data path. The tools in RVC toolbox is defined in MPEG-C. So far, the
RVC framework is still under development in MPEG. Most of the investigations are
done using C models and behavioral model simulators such as Moses [4]. In this
thesis, we propose a HW platform that can support the RVC framework for
construction of a virtual network of FUs (MPEG-B) from a collection of tools
(MPEG-C).

The thesis is organized as follows. Some related works are introduced in chapter 2.
And the proposed SoC architecture for supporting the RVC framework is presented in
chapter 3. Some comparisons of :the RVC architecture with a common hard-wired
solution are also given in this chapter. The designs ef some HW functional units are
shown in chapter 4. The experimental results-and analysis are discussed in chapter 5.

Finally, the conclusions and discussions.are given in chapter 6.

18

2. Previous Works

Nowadays, multimedia applications for embedded systems are growing quickly.
Media players or cell phones have to support multi-standard video/audio codecs to
fulfill consumer’s need. There are many papers on the design of video codecs,
multi-standard codecs, or reconfigurable codecs. We will discuss some of these

designs in this chapter.

2.1 Traditional ASIC design approach

In traditional video ASIC design, profiling of computation load and memory
requirements of the coding tools is first performed [11][12]. And the coding tool that
is suitable for hardwired logic is implemented as an IP. Take H.264 for example, many
papers presents the implementation of integer transform/quantizer[6][13], motion
estimation and motion compensationf14}[15]); deblocking filter[16], and entropy
coding[17][18].

Lin et al. [5] proposed a fully pipelined architecture of an H.264 video decoder.
The architecture is shown in Fig. 5. Two different pipeline processing schemes are
used, including 4x4 block level pipeline processing and hybrid block level pipeline
processing. Since the size of processing block unit for I/T is 4x4, a 4x4 pipeline flow
is used and for other modules, MB size pipeline is adopted.

For traditional ASIC video codec design, they are pursuing designs with smaller

area, less internal memory, and higher clock rate.

19

. Memory . Memory
RISC Display IF Controller 1 Multi-Layer AHB Controller 2
AHB1 b v v AHB2 i
System [Memory IF1 | [Memory I'FZ‘“ |
Controller AHB
Bus Interface MC/Display/FrameBuffer AG
Decoding Info. | I4x4Mode/MV
Reg Decoder MB Pel.
'y N SRAM qs\
| Internal Bus Interface |
LN \
Bitstream MV/Idx4Mode Y In-loop
Sw SRAM \ SRAM S Filter [
NJBSD N \ S = (ILF)
Parser = Prediction Pixel Compensator (PPC) 5
(Intra_pred, Inter pred, and =
e Rec. Pel \
CAVLD compensation) SRAM N\
S| 14T [o i] K
CABAD SRAM y _ i Y
PDSB Controller
N, N,
] Diﬂg,ﬂ):Bﬁ’ Intra Upper ILF Upper
SRAM PelsSRAM | Pels SRAM
Proposed H.264 Video Decoder

4x4 block level pipeline

Fig. 5.

= Hybrid block level pipeline

Architecture of the h:264 decoder in [5].

2.2 SoC architecture for. multimedia system

It is not cost-effective to implement.a.complicated system completely in hardware.

Therefore, hardware and software co-design is becoming popular for complex system

design. Yang et al. [8] shows an example of prototyping a system on an SoC platform.

The example is a JPEG codec. First, they profiled the JPEG encoder (Fig. 6) and
found that VLC and DCT cost most computation time. Therefore, DCT and VLC are
partitioned into hardware (FPGA) and other modules are in software. With HW/SW

co-design, the performance of the system is better than a pure software system and

more flexible than a pure hardware approach. The whole architecture is shown in Fig.

7. This paper shows how to prototype a system and how to partition functionality in

hardware or software. Besides, it also illustrates how to design the hardware and

software interface using a bus protocol (AHB) [19].

20

Fig. 6. Profiling of JPEG encoder
System clk
l_
h 2
RAM
ReagWiite Read/Write LK)
Addless bus Address bus ‘ 3
Data| bus d [y
Data bus t
ARM 7 TDMI Wrapper
Core module
_ Application IC L
Enpble i Enable
FPGA
Fig. 7. Architecture for JPEG encoder

2.3 Reconfigurable video coding

Zhang and Kittler [9] propose a dynamically reconfigurable video (DRV) codec.
The idea is quite simple; they add a extra DRV head on existing codec head. The DRV
head configure the DRV codec to decode. And there are many coding tools in a DRV
codec. The idea is similar with MPEG RVC. However, the network of functional units
in MPEG RVC can be either in hardware or in software. In this paper, they only allow
software coding tools. Besides, in many multi-standard hardware approaches codec is

implemented by merging coding tools in different codecs since coding tools between

different coding standard are similar [20].

21

2.3.1 RVC Proposal from Hanyang University
Lee and Kim [10] have proposed a draft of RVC framework in MPEG (Fig. 8).

They define a decoder description which is composed of seven tables. The decoder is

configurable by changing the tables. The detail is presented in this section.

Decoder
RVC framework Description
Tool-box SET
Bit—stream SYNP _
Riilgheelil 1S < S-RT
FU#1 HFU#2F——IFU#n| ovT
— i i i W csciT
Video
— \/ FL
GCU <:> Connection F-RT
FU-CSCIT
Fig. 8. Architecture of RVC proposal from Hanyang University [10]

2.3.1.1 Decoder description (DD)

The decoder description describes how to configure the decoder. In this proposal,

the description is composed of seven tables, including CSCI, DVT, FL, F-RT,

FU-CSCIT, SET, and S-RT (these acronyms are explained in Table 1). The proposal

uses a DD parser to parse a decoder description bitstream and set up seven tables (Fig.

9). By using different tables, it is able to configure the decoder to support different

specs such as MPEG-4, MPEG-2, H.264...etc.

Decoder

description

Binary format

A

DD parser——>

Table

SET

—>| byte | byte | byte | byte |

| byte |

S-RT

—>| byte | byte | byte | byte |

| byte |

CSCIT

FL

F-RT

FU-CSCIT

DVT

—>| byte | byte | byte | byte |

| byte |

22

Fig. 9. Mechanism of parsing decode description

CSCIT CSCI Table

DVT Default Value Table
FL FU List

F-RT FU Rule Table
FU-CSCIT | FU CSCI Table

SET Syntax Element Table
S-RT Syntax Rule Table

Table 1. seven decoder description table

2.3.1.2 Mechanism of decoding the bitstream

The decoding procedure is as, follows. First, we start at RO state in F-RT.
According to the rules in F-RT ;-we do syntax-parsing job if FO is found in the table.
Otherwise, we look up the FL table. The table records the corresponding CSCI buffer
with each FU and execute that FU.in F-RT. By-doing so, we store the output of
other-FU or syntax-parsing FU to the corresponding CSCI buffer. After that, we look
up the F-RT again with the number of CSCI buffer as our index. This way, we are able
to branch to next stare R# according to F-RT. If the state is not end state,we continue

the whole procedure again (Fig. 10).

23

Read R# of FO

)

go to S-RT
Read S# of the R#

!

Go to SET and read
Corresompding index
And employee SET-PROC

\/

Save CSCI in the buffer fir GCU
As outputs of the SET_PROC

!

Accroding C# and read the
Next R# in S-RT

"< >

yes

end

Fig. 10. Decoding procedure in [10]

The detail syntax parsing procedure‘is described as follows. First, we read the
corresponding index of syntax-parsing FU. According to the index, we go to S-RT
table and lookup another index for SET. Then, we go to SET, execute the specific
SET-PROC by the index. The SET._PROC is kind of program and it retrieves the
syntax element and store them into corresponding CSCI buffer. And by the number of
CSCI buffer, we check S-RT again and branch to the next state in S-RT. If the next
state is RT (end), we continue the whole procedure for syntax parsing. Otherwise,

sytax parsing is completed (Fig. 11).

24

Start at RO in FR-T

_| Read the corresponging

Index from F-RT

Employee the
corresponding FU

yes

FU is
ntax parsin

y N

Execute FU with
Syntax parsing input CSCl,input data
and output data

I I
v

Read the output CSCI
Info and branch to next
R# in F-RT

no

R# is the end?

yes

Fig. 11. Parsing procedure in [10]

25

3. Proposed RVC Framework

3.1 SoC architecture of the propose RVC framework

Since the specification of the bitstream syntax description language is still under
development at MPEG, only the operation of composition of a network of functional
units and the specification of functional units are defined at this time. This thesis
proposes a VLSI architecture that supports the RVC framework. The RVC framework
actually fits the platform-based design principle of SoC quite well. For maximal
flexibility, the global control unit (GCU) will be implemented in software and running
on the processor core of an SoC. Each coding tool can be implemented as an IP on the
bus with limited configurability viaa private register file. The proposed architecture is
show in Fig. 12.

It is important to note that inithe—proposed architecture, hardware FUs and
software FUs (stored in SDRAM) ‘ean:-be mixed to compose a network of functional
units for a specific codec. We use multiple banks of SRAM as the “virtual wire” to
connect each functional unit. With this virtual wire approach, the system can be scale
up easily. New functional units (either hardware or software) can be integrated into
the system to support new codec with very little design effort.

It is also important to note that the hardware coding tools are not attached to the
main system bus (AMBA AHB) directly. A local bus, Multi-Media Bus (MMB), is
used to off-load the bandwidth from the main system bus. In our implementation,
MMB is a simplified version of AHB, however, a more flexible bus protocol or the
concept of network-on-chip (NoC) can be used here to increase the throughput of the

bus. A two-way DMA is used to transfer data between external SDRAM and internal

26

SRAM banks. The DMA can be invoked from either the ARM core or the coding tool
IPs. The reason for multiple SRAM’s on the MMB is to reduce the memory
bandwidth requirement for parallel operations of the coding tools.

Host Processor (SW Functional Units)

1 |
| | H.264 H.264 H.264 |, SDRAM
1 | CAVLC UVLC Buf. M. | |
I___I____ _ ___+__1 I
AHB R
- Virtual Wires
REG —* DMA [« REG mem1 mem2 mem3 4
7'y Y SN y k- 1T
MMB I -
Ir - -7 ____________ - _V _____ VV- T _:
I | MPEG H.264 H.264 H.264 | _ _
1 IDCT INTRA ILF TyQ+t | 1 HW Functional Units
! I
|

Fig. 12. Our proposed SoC architecture for MPEG RVC

Although local bus and multiple SRAM banks. are used to alleviate the bandwidth
issue, the performance of this-architecture-still cannot match that of a hard-wired
architecture. For example, a hard-wired.H.264 baseline decoder may have a tighter
MB decoding pipeline as shown in Fig. 13. There are two main advantages of the
architecture in Fig. 13. First of all, the decoding pipeline is controlled by a hard-wired
FSM with cycle-based synchronization. On the other hand, for the RVC framework,
the GCU controller will be implemented in software, and hence, cannot guarantee
cycle-based operation of the pipeline. Another advantage of the hard-wired approach
is that it does not require excessive accesses to external memory.

It is important to point out that the purpose of the RVC framework is not to obtain
the most efficient design of a single codec, but to allow a flexible and extensible
design of codec systems. Multi-standard codec support (or even generating

customized codecs on-the-fly) can be achieved by configuring a new GCU via

27

decoder description bitstreams. In the next section, we will study an actual
implementation of the proposed architecture in Fig. 12 to get an idea about the cost

one has to pay for such flexibility.

1 1
: TQ! —>» MC :
i 1
cano Debeckng| |
: INTRA Decode 1
1

1

Fig. 13. Hard-wired decoder example

3.2 Propose RVC framwrok

In this section, an implementation of the proposed system architecture (Fig. 12) is
investigated. The implementation is ‘based-on-an SoC emulation platform, the ARM
Integrator [21]. The platform is composed of:a main board, an ARM 9 processor core
module, and a Xilinx VirtexE XCV2000E FPGA logic module. The platform adopts
the AMBA bus protocol. The RVC coding toolbox logic of the proposed system is
implemented in the FPGA. The local bus protocol, MMB, of the toolbox logic is a
reduced version of AHB with much less wires and a minimal implementation of bus
arbiter and decoder. The detail architecture of emulation platform will be presented in
chapter 5.

In the proposed system architecture, the controller that drives the operation of the
network of FUs is implemented in software. As a result, the codec pipeline is not
executed in a lock step fashion but instead driven by the software controller via

signals triggered by read/write of register files. Each coding tool FU (please refer to

28

Fig. 2) is implemented so that the input bitstream data is coming from a SRAM bank
on the MMB and the output bitstream data will be stored in another SRAM bank on
the MMB. Block RAMs of the Virtex Il FPGA and the ZBT SRAM of the ARM
Integrator are used for this purpose. Note that in the proposed architecture, the
input/output SRAM banks for a FU (either software or hardware) are dynamically
controlled by a memory allocator module (see Fig. 14). It is obvious that such
implementation is not as efficient as a tightly-coupled pipeline [21] where different

pipeline stages are connected via registers or FIFO.

3.2.1 Design of Global Control Unit

3.2.1.1 architecture of GCU

The Global Control Unit of the MPEG RVC. framework can be dynamically
implemented as in Fig. 14. In Fig. 14, tool state table‘is a runtime table that record the
states of each running FUs. The table ‘is-used by the controller to synchronize the
operation of the codec pipelines. The network ‘description table is extracted from the
decoder description which is attached to the encoded video bitstream. It basically
describes the input/output connections (i.e. SRAM banks) of the networks of the
functional units. Note that this table can be modified by the memory allocator to allow
optimal use of the available SRAM banks. An example of the tool state table and the
network description table is shown in Fig. 15.

Also note that in Fig. 15, the “Pointer” field of the network description table stores
a pointer to the entry point of software FU and the address of the control register for
hardware FU. For hardware FUs, the implementation of the processing unit and
context-control unit follows traditional hard-wired IP design methodology where the

processing unit is implemented as a data path and the context-control unit is a

29

hard-wired FSM with register files for memory-mapped 1/O configuration and

signaling.

Configuration Description

GCU

Tool State
Table

A 4

controller |,

A

» Memory

> IDMAI |mem1

mem,

mem,

Allocator [

Network
Description
Table

A

| 1P

| 1P,

P,

A

H.264 Networks of
CAVLD HW/SW FUs
H.264 H.264 H.264
INTRA ILF T1Q1

|:| Software FU
|:| Hardware FU

Tool State
Table

Network
Description
Table

Fig: 14. GCUarchitecture

30

| Tootid [#ofmB | state
1 N running
2 N-1 done
|p pointer in out count
addr | addr
1 &MC(...) null null 0
2 0x0 null | null 0
3 0x1 null | null 0
4 &intra(...) | null null 0
Fig. 15. example of tables in GCU

3.2.1.2 Mechanism of GCU

When the system is first initialized, the content of the network description table is
empty. When parsing unit pass data and FU description into GCU, the controller
invokes memory allocator to allocate a piece of free address for this FU and update
the data in the tool box table.

Until every FU described in the network description table is updated, the GCU can

use this table to decide the data path easily according to the configuration description.

SDRAM

It’s illustrated in Fig. 16.

free address | DMA | |mem1 mem, | | mem,
-—
controller WUSITeIR | |
- allocator | |
request | P, | 1P, | P,
updating table
1D pointer in addr out addr count
1 &CAVLD(::.)-|-0x80000000 | OxC2000000 | 44
Network
Description 2 0x3 0xC2000000 | 0xC2000400 | 75
ekl 3 ox1 0xC2000400 | 0xC2000800 | 36
4 0x2 0xC2000800 | 0xC2000C00 | 80

Fig. 16. Construction of virtual wires based on the NDT

When information in network description table is ready, we can invoke each FU to

decode and control the whole decoding process. Controller use tool state table to
schedule FU performing its job. Since the order of FU is listed sequentially in the tool
state table, we can use handshaking protocol to schedule the whole decoding process.

The scheduling method is illustrated in Fig. 17.

31

Tool id #of MB | state
1* N running
2 N-1 done
3 N-2 done
4 N-3 done

* Mean the first FU

Fig. 17. Scheduling mechanism of GCU
3.2.2 Memory allocator

In our emulation platform, the arm integrator, there is a IMB SRAM connected to

the custom logic unit via soft-IP memory controller. However, since we want to use

multiple small memory banks as thevirtual-wites to connect network of functional

units. Therefore, we use block:rams in system. FPGA to construct our scratch-pad

memory and size of each memory bank is 20KB.: Moreover, we modify the bus

decoder to change the system ‘memory map t0-replace original SSRAM to our

scratch-pad memory. It’s shown in Fig. 18. And more details in our emulation

platform will be presented in chapter 5.

0xC20FFFFF
SSRAM
0xC2000000
Interrupt controller -
0xC1000000
LM registers
0xC0000000

previous

Fig. 18. New system memory map

OXC20FFFFF
unused
0xC200F000
Block-ram 3
0xC200A000
Block-ram 2
0xC2005000
Block-ram 1
0xC2000000
Interrupt controller
0xC1000000
LM registers
0xC0000000

now

How we manage scratch-pad memory is illustrated in Fig. 19. In our

32

implementation, we use three memory blocks. Each memory block is further divided
into small pages of 1KB each. Each memory block has an array of flags to tag the
availability of each page within the memory block. We tag the array of corresponding
index with bit ‘1’ if the page is used and vise versa. When the system controller
request memory allocator to allocate one section of memory to him, the memory
allocator search the array linearly to find out which pages are available and report it to

the system controller until each network of functional units are assigned input and

| mem,

output data addresses.

| DMA | |mem1 |mem3

Memory | ———

I I I I
allocator
] -

T T [
22 T 1 1]
_>|

Fig. 19. Management of the on-chip scratch-pad memory

mem1l = L=

mem3 =]

The proposed platform adopts round-robin policy to allocate memory banks. It’s
shown in Fig. 20. For example, for the first operation the memory allocator picks
mem1 and for the next operation the memory allocator picks mem2, and so on. The
round-robin method is easy to implement and it also helps us to reduce the memory

bandwidth for parallel operations of the coding tools.

33

request

\, SDRAM
Memory AHB
allocator g
) mem, mem, mem,
Pick mem, Pick mem DMA
2 MMB slave| [MMB slave| |MMB slave

First time

second time

Fig. 20. Mechanism of how memory allocator choose memory banks

3.3 Implementation of FUs in the propose RVC

framework

In software functional unit, we have to extract every function in traditional codec

and modify it. We use function pointers to invoke software FUs. Therefore, we have

to let the parameters of each function to‘be the same and add with the input/output

data address within parameters. As for hardware FU, we have developed some H.264

and MPEG FUs and it is discussed in the next chapter.

34

4. Design of hardware functional units

4.1 Introduction to H.264/AVC decoding

The ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Moving Picture
Experts Group (MPEG) developed a new video coding standard, Advanced Video
Coding (AVC), also known as MPEG4 part 10 or H.264 [24][25]. It provides better
compression efficiency than previous standards such as MPEG2, MPEG4 part2,
H.263...etc. The improvements comes from adopting some new methods in inter and
intra prediction. For example, the motion compensation block sizes for luma samples
are 16x16, 16x8, 8x16, 8x8, 8x4, 4x8 or 4x4. Smaller blocks enable a more accurate
motion model. The intra prediction-is enhanced with supporting 13 spatial prediction

modes for luma samples.

H.264 defines four Profiles,"baseline profile,smain profile, extended profile and
high profile, each supporting a particular set of coding tools for specific application.
The baseline profile supports intra and inter coding (I-slice and P-slice) and entropy
coding with context-adaptive variable-length codes (CAVLC). The main profile
supports for interlaced video and inter coding with B-slice, inter coding using
weighted prediction and entropy coding using context-based arithmetic
coding(CABAC). The extended Profile doesn’t support interlaced video and CABAC
but adds modes to enable efficient switching between coded bitstreams (SP-slice and
Sl-slice) and improve error resilience. The high profile includes not only B-slice and

interlaced video but also 8x8 integer transform, 422, 444 color spaces and Q matrix.

Fig. 21 shows the relationship between the four profiles.

35

The overall decoding path of h.264 is illustrated in Fig. 22. And we will show

hardware design of inverse integer transform, inverse quantizer, intra compensation of

H.264/AVC in the next sections.

- - = ~
-~ N
- \
_____ e Interlace \
Extended profile . - ~ PAEEN - \
7 7 ~ \
s 7/ Se \
e / D CABAC 1
4 ’ N
/7 4 B slices \ I
’ / AN] . IN
I/ // \ main profile 1 N
\ 1
/| baa / Weighted . RN
/ partitioning | / prediction \ ’ AN
1 1 \ / \
] 1 \ / N
1 SPandSI| | “ ’ \
1 sles ! land P ! it
I ! slices Ve
: a7 Q-matrix
1 P 71
\ CAVLC .7 ,' high profile
\ Sk _ = I 8x8 integer
\ baseline — = \ ! transform
\ - Redundant \ /
\ profile slices !
\ g 422,444
N 7 support
\ Slice groups " .
\ and ASO N L7
\ ,' 5 ’
N N\ s
A N P
S ~ ' ~ - -7
N -
Fig. 21.7 H.264 praofiles
AC block Inverse Inverse
CAVLD > - > idual
Quantizer Transform residual
A a
Deblocking
luma, chrom predictor filter
DC block Inverse
Hadamard Inter/Intra
Comp.
F
refl
ref2
ref3

Fig. 22. Architecture of h.264 decoding

36

4.2 Design of inverse transform and inverse quantizer

In most video coding system, every residual macroblock is transformed, quantized
and then entropy coded. The 8x8 DCT is the most commonly used. However, there
are three transforms depending on the type of residual data in H.264 and every luma
and chroma macro block is organized in 26 sub-blocks to be transmitted to
corresponding transform [Fig2]. The order is the same with the labels of sub blocks. If
a luma macro block is coeded in 16x16 intra mode, a sub block labeled -1 consists of
DC coefficients of each 4x4 luma block is transmitted to a 4x4 hadamard transform
first. Then, sub blocks 0-15 are transmitted to a 4x4 integer transform. Next sub block
16-17 are transmitted to a 2x2 hadamard transform. Finally, sub block 18-25 are also

transmitted to a 4x4 DCT-based integer transform.

Consequently, A 4x4 hadamard.transform:is applied for DC coefficients of luma
macroblock coded in 16x16 intra mede.-A-2x2 hadamard transform is used for DC
coefficients of chroma macroblock: A-4x4 integer transform is used for others. The

decoding process is in the inverse order.

1
%QQ:S 16 17
My \\\ |
. N e
R NN N
MY N MY
0 1 2 3 18 19 22 23
Y N Ny NN =Y
4 5 6 7 20 21 24 25
NN N
8 9 10 11 Cb Cr
Ny
12 13 14 15

Y
Fig. 23. input order of transmitting blocks

37

4.2.1 Architecture of inverse integer transform

The equation of 1-D inverse integer transform is illustrated in Eg.1. We can find
that the coefficients of Eq.1 only contains {1, 1/2, -1/2, -1}. Therefore, we are able to
use several adders and shifters instead of multipliers to implement it. Base on this idea,
our 1-D inverse integer transform is shown in Fig. 24. And the architecture of 2-D
inverse integer transform is illustrated in Fig. 25. We use one 1-D inverse integer
transform and two block-rams in FPGA as transpose memory to construct the 2-D
inverse integer transform. The Finite State Machine (FSM) is used to generate the
corresponding addresses of transpose memory. The reason why we use two block ram
in the design is that the bandwidth of block ram is 32 bits (16 bits dual port) since we
have to feed 4 pixels into our 2-D inverse.integer transform. Only one block ram is
not sufficient to fulfill the bandwidth requirement.

The data is transmitted to the 1-D transfarm unit row-wise in the first pass, and the
output is stored in the transposed memory-column-wise (Fig. 26). Then, the logic
fetches the data from the transpose ‘buffer‘and feed them into the 1-D inverse
transform unit again in the second pass. The output of the 1-D inverse transform unit
is directly passed to the next functional unit in the decoding loop. The whole process

costs 9 cycles and output 16 pixels of data. The timing diagram is showed in Fig. 27.

] 1 y2] [y
x'| |1 w2 -1 -1]|y
' |1 —12 -1 1 |y,
x| |1 -1 1 -w2| |y,

Eq. 1.Equation of 1-D inverse integer transform

38

input

y(0)
y(2)

y(0)

y2)
y(®) 4-——}
¥ -

y(1) >

e #

X(3)

Fig. 24. Architecture of 1-D inverse transform

1-D Transform

Transpose
buffer
Transpose
buffer

Fig. 25. Architecture of 2-D inverse transform

39

output

| 1-D inverse
transform

Block ram 1 Block ram 2

Fig. 26. Transposed memory of 2-D inverse transform

|

5 Ao idel2D_v/coun. 13 e e NI (i LI (RS LIRS 8

ide S0

Fig. 27. Timing diagram of 2-D inverse transform

4.2.2 Architecture of the 4x4 inverse hadamard transform

The equation of 1-D inverse 4x4 hadamard transform is illustrated in Eq. 2. We
can find that the coefficients of Eq.2 only contains {1,-1}. Therefore, the architecture
of 1-D 4x4 inverse hadamard transform is similar with inverse transform and shown
in Fig. 28. The difference between 2-D hadamard and 2-D inverse integer transform is
the 1-D transform matrix. We can add 1-D inverse hadamard into 2-D inverse integer
transform module and add four muxes to choose the corresponding output of both
transforms. The idea is illustrated in Fig. 29. The timing diagram is the same in Fig.

27.

40

x,"| [1
| |1
X, |1
X; | (1

1
1
-1
-1

1 1] |y
-1 -1 Y,
-1 1|y,
1 -1] |y,'|

Eq. 2. Equation of inverse hadamard transform

x(0) —*
x(1) —»
X2 —*
x(3) —»
x(0) —
x(1) —»

X2 —*

/

>4

A 4

N\

X(3) —

‘V/ Y

A\ 4

>
>+ — X(0)
|
>
>— — X(1)
|
>— X(2)
} ©

Fig. 28. Architecture of 1-D inverse hadamard

41

output

|
input 7 . :_'_> I O_= —
p i HeVe
i1—] 1 h . 0
o —> | 1-D Transform| 5> ! J)
— 1 ! '
1
2| 1 |: 1 o0
N el N e e
' ! | 1-D Hardmard| /|
i3 —] i :_:_> 1 o [,
, . I
“ : ___________ r:-> 1 T
T- 'Y
Transpose | [|«
buffer B
Transpose L
buffer <
T address
FSM

Fig. 29. inverse integer/hadamard transform module

4.2.3 Architecture of the inverse.quantizer

The equation of inverse quantizer is 'shown.in-Eq. 3, where Vij is showed in
Tablel and QP is the parameter-of quantization..Base on the equation, the architecture
is illustrated in Fig. 30. Instead of Using.divider, we use block-rom to record the value
of QP/6 . And the information of Vij is also stored in block-rom. Besides, we use
shifter to compute the operation of 2" The gate count of multiplier is huge and
it reduces the cost of gate counts effectively. It’s important to notice that there are two
modes in inverse quantizer. When input is DC and it’s transformed in 116MB mode,
the exponent of 2 is (QP/6)-2 instead of QP/6. Therefore, parameters of inverse
quantizer is whether the input is DC and 116MB or not.

The design is a combinational logic. When input is transmitted into inverse

quantizer , it outputs immediately. Fig. 31 is test bench simulation with modelsim.

W' =2 oV, 27072 if 7. = DC and intral6
Wlij _ Zij .Vij ° 2floor(QP/6)’ OtherS

42

Eq. 3. Equation of inverse quantizer

V; values
QPgtep Position Position Other position
(0,0),(2,0),(2,2),(0,2) (1,1),(1,3),(3,1),(3.3)
0 10 16 13
1 11 18 14
2 13 20 16
3 14 23 18
4 16 25 20
5 18 29 23
Table 2. table of inverse quantizer
bypass
-) l coef = floor(QP/6)
: =>x
» EE—
v, > <<(coef-2) W,
00—
>>(2-coef) —» {
X;ysmode,coef

0 —» Comp — bypass

Fig. 30. architecture of inverse quantizer

ﬁ waye - defanlt

File Edit View [nsrt Foomat Took Window

T000m
o (O O R A 1 A 11 A K R 11
0 N S S N N 1

0
10100 o]
0 (T (T IS 2 N I A “ N A T N R R rA N

Fig. 31. Simulation of inverse quantizer

4.3 Design of intra compensation

4.3.1 Intra prediction
In h.264/AVC intra coding (Fig. 32), two types of luma intra macro block is

supported. One is for 4x4 prediction mode ,called 14MB and the other is for 16x16

43

prediction mode, called I16MB. There are nine prediction types in 14MB (Fig. 33) and

four in 116MB (Fig. 34). The nine prediction types in 14MB are dc mode, and eight

direction modes. The four prediction types in 116MB are vertical mode, horizontal

mode, dc mode, plane mode. The plane mode is a bilinear approaching method to

calculate the predictor. The predictor is calculated by 13 reconstructed boundary

pixels.

For every luma intra macro blocks choose 14MB or 116MB type generating

minimal SAD for encoding. The intra prediction of two chroma components is similar

to luma 116MB. The only difference between it is block size. The block size of intra

prediction for chroma components is 8x8. And they also choose one intra prediction

mode from 4 modes.

o]

o

7 5

Fig. 32. idea of intra prediction

M[A|B|C|D|E|F[G|H| [M]a]B|[C|D|E|F|G]H| [M|A]B]|C|D|E|F|G]H] [M]A]B]C|D]E[F]|G|H]

[[[I
1J] M > 1J] 1J]

K] | K —— K] 1K]
L] L] L] L]

0 (vertical) 1 (horizontal) 3 (diagonal down-left) 4 (diagonal down-right)
MJA[B]C|D|IE[F|[G[H] [Mm][A]B|C|ID|E|[F|G]IH]| [Mm][A]B]C|ID|E|F|G|H]| [M|A[B]C|DIE|F]G][H]
1] DTN L/ e
5] 5] 5] i/
1K] 1K 1K] K|
L] LN L] [L]

5 (vertical-right)

Fig. 33.

6 (horizontal-down)

7 (vertical-left) 8 (horizontal-up)

14MB prediction mode besides dc prediction

44

2 (DC) 0 (vertical) 1 (horizontal)

M|A|B|C|D|E|F|G]|H] H H
[
J | MEAN >
K]
N v v .
2(DC) v v
H 3 (plane)
H
v MEAN b4
v/ /

Fig. 34. 116MB predictions mode and one 14MB dc prediction
4.3.2 Proposed architecture of intra compensation

In the proposed architecture, we have two hardware components to support all
I4AMB modes and DC prediction;mode in 116MB. The remaining modes, 116MB
vertical mode, 116MB horizontal. mode, J16MB-plane mode and the chroma
prediction modes are implemented tin software. To design a hardware module to
support vertical and horizontal prediction. mode IS meaningless since it just choose the
top or lest boundary pixels. In addition, designing plane mode in hardware is too

complicated and the cost is huge. Therefore, we have decided to put them in software.
4.3.3 Eight directions of 14MB mode

The equation of 14MB except vertical and horizontal mode is shown from Eq.2 to
equation 9. We can summary up the equation to Table 3. With the observation, the
operation of equations all sum up with at most three digits from neighboring pixels
(upper row of left column) and multiply with 2. Since multiplication with 2 is easy to
implement, we can add 1 bit zero to the data bus and achieve the goal. However, the
critical problem is to choose corresponding boundary pixels according to the address
of predictor in 4x4 array and modes. Therefore, we use one complicated neighbor

pixels selector, three adders and one shifter to calculate the predictor. The task of the
45

selector, which is composed of lots of multiplexers, is to choose the corresponding
boundary pixels with specific address and mode. We use a table to record the state for
each address and mode to implement this complicated selector. A counter is used to
count the X, y coordinate transmited to the selector for input information. The
architecture is illustrated in Fig. 35. Each instance of the module is able to output one
predictor in one clock. Four instances of the module is used to generate 4 outputs in
one clock. It means that we need 4 clocks to generate all 16 predictors for 14MB.

If x==3 && y==3

Pred4x4[3,3] = (p[6,-1] + 3*p[7,-1] +2) >>2

else

Pred4x4[x,y] = (p[x+y,-1] + 2*p[x+y+1,-1] + p[x+y+2,-1]+2) >>2

Eq. 4. eguation of made 3 in 14MB

If x>y

Pred4x4[x,y] = (p[x-y=2,-1] #2*p[x-y-1,-1] + p[Xx-y,-1]+2) >>2
elseifx<y

Pred4x4[x,y] = (p[-1,y-x-2] + 2*p[-1,y-x-1] + p[-1,y-X]+2) >>2
else

Pred4x4[x,y] = (p[0,-1] + 2*p[-1,-1] + p[-1,0] +2) >>2

Eq. 5. equation of mode 4 in 14MB

46

ZVR=2*X-y

If zZVR == 0,2,4,6

Pred4x4[x,y] = (p[x-(y>>1),-1] + p[x-y-1,-1] + 1) >>1
else if zVR==1,3,5

Pred4x4[x,y] = (p[x-(y>>1)-2,-1] + 2*p[x-(y>>1)-1,-1] + p[x-
(y>>1),-1] +2) >>2

Else if zZVR == -
Pred4x4[x,y] = (p[-1,0] + 2*p[-1,-1] + p[O,-1] +2) >>2
Else if zZVR == -2 or -3
Pred4x4[x,y] =(p[-1,y-1])+2*p[-1,y-2]+p[-1,y-3]+2)>>2
Eq. 6. equation of mode 5 in 14MB
ZHD=2*y-X
If zHD == 0,2,4,6
Pred4x4[x,y] = (p[-1,y=(x>>1)-1] #p[-1,y-(x>>1)] + 1) >>1
else if zHD==1,3,5

Pred4x4[x,y] = (p[-1,y=(x>>1)=2]+2*p[-1,y-(x>>1)-1] + p[-
1,y-(x>>1)] +2) >>2

Else if zHD == -
Pred4x4[x,y] = (p[-1,0] + 2*p[-1,-1] + p[0,-1] +2) >>2
Else if zHD == -2 or -3
Pred4x4[x,y] =(p[x-1,-1])+2*p[x-2,-1]+p[x-3,-1]+2)>>2
Eq. 7. equation of mode 6 in 14MB
Ify==0,2
Pred4x4[x,y] = (p[x+(y>>1),-1] + p[x+(y>>1)+1,-1] + 1) >>1

else

Pred4x4[x,y] = (p[x+(y>>1),-1] + p[x+(y>>1)+1,-1] +
px+(y>>1)+2,-1] +2) >>2

Eq. 8. equation of mode 7 in 14MB

47

[oxid Arepunog

ZHU=x+2*y
If zHU == 0,2,4

Pred4x4[x,y] = (p[-Ly+(x>>1)] + p[-1,y+(x>>1)] +1) >>1

else if zHU==1,3

Pred4x4[x,y] = (p[-1,y+(x>>1)] + 2*p[-1,y+(x>>1)+1] + p[-
1y+(x>>1)] +2) >>2

Else if zHD ==

Pred4x4[x,y] = (p[-1,2] + 3*p[-1,3] +2) >>2

Else if zHD >5

Pred4x4[x,y] =p[-1,3]

Eq. 9. equation of mode 8 in 14MB

—>
—> 6 >
— o
—_— 8’
— -
» <<1
A
counter

shift

A 4

shifter

Fig. 35. The architecture of intra compensation.

48

mode X Y equation mode X Y equation
3 0] (] A+2*B+C 4 0 0 A+2FM+1
3 (] 1 B+2*C+D 4 6] 1 M+2*I+]
3 0 2 C+2*D+E 4 0 2 T+2#J+K
3 0 3 D+2*E+F 4 0 3 J+2#K+L
3 1 0 B+2*C+D 4 1 0 M+2*A+B
3 1 1 C+2*D+E 4 1 1 A+2*M+1
3 1 2 D+2*E+F 4 1 2 NMA2F11]
3 1 3 E+2*F+G 4 1 3 1+2*J+K
3 2 0 C+2*D+E 4 2 0 A+2*B+C
3 2 1 D-+2*E+F 4 2 1 M12*ALB
3 2 2 E+2*F+G 4 2 2 A+2FM+1
3 2 3 F+2*G+H 4 2 3 M+2*I+]
3 3] D+2*E+F 4 3 0 B+2*C+D
3 3 1 E+2¥F+G 4 3 1 At2*BrC
3 3 2 F+2*G+H 4 3 2 M+2*A+B
3 3 3 G+3H 4 3 3 A+2FM+I1
mode X Y equation mode X Y equation
5 0] (o] A+M 6 6] 0 M+1
5 (] 1 A+2FM+1 6 0 1 1+J
5 (o] 2 J+2*[+M 6 0 2 T+K
5 0 3 K+2%T+1 6 0 3 KL
5 1 0 A+B 6 1 0 A+2*M+1
5 1 1 M+25A+B 6 1 1 Mt 2117
> L 2 M+A 6 1 2 27 11K
5 1 3 A+2*M+I 6 1 3 J+2#K+L
s 2 0 B+C 6 2 0 B+2*A+M
5 2 1 A+2¥B+C 6 2 1 MT
5 2 2 A+B 6 2 2 I+J
5 2 3 M#+2*A+B 6 2 3 J+K
> 3 0 C+D) 6 3 0 A2 BIC
5 3 1 B+2*C+D 6 3 1 A+2*FM+1
5 3 2 B+C 6 3 2 MA+2*I+]
5 3 3 A+2*B+C 6 3 3 [+2*J+K
mode X Y equation mode X Y equation
7 0] (] A+B 8 0 0 I+J
7 (] 1 A+2*B+C 8 0 1 J+K
7 0 2 B+C 8 0 2 K+L
7 0 3 B+2*C+D 8 0 3 L
! 1 0 B+C 8 1 0 T+ 27+ K
7 1 1 B+2*C+D 8 1 1 T KL,
7 1 2 C+D 8 1 2 K+3*L
7 1 3 C+2*D+E 8 1 3 L
7 2 0 C+D 8 2 0 J+K
7 2 1 C+2*D+E 8 2 1 K+L
7 2 2 D+E 8 2 2 L
7 2 3 D+2*E+F 8 2 3 L
7 3 0 D+E 8 3 0 T+2%K+1
7 3 1 D+2*E+F 8 3 1 K43*L,
7 3 2 E+F 8 3 2 L
7 3 3 E+2*F+G 8 3 3 L

Table 3. Equation of 14MB except for vertical and horizontal modes

49

4.3.4 DC mode for 14MB mode and 116 MB

The dc mode uses the average of boundary pixels as the predictor. Since the
computation of the I4MB dc mode and the 116MB dc mode are the same, we use one
hardware module with six adders and one accumulator to calculate it (Fig. 36). It
takes 4 cycles to finish the computation for 116MB and one cycle for 14MB. Before
outputting the result, rounding and clipping the result is a necessary procedure since
the range of predictor lies within [0,255]. Therefore, for dc mode in 14MB, it cost 1
cycle to output the result and 4 cycles for IL6MB. The timing diagram is shown in Fig.

37 and Fig. 38

topO
topl

top2

top3

| Acc E_
lefto d

leftl

left2

left3

16x16 | 4 cycles |

a4x4 | 1 cycles |

Fig. 36. architecture of dc mode for 14MB and 116MB

Fig. 37. timing diagram for 14MB dc mode

50

SREN (0 (150 {15 I (150

Aest_DC_v/sum 3010 0 G R |

Fig. 38. timing diagram for 116MB dc mode

51

5. Experimental results

In this section, some experiments are conducted on an SoC emulation platform for
an H.264 intra-only decoder (with both software FUs and hardware FUs). The test
bitstream is the FOREMAN sequence in QCIF resolution coded at 64K bps. This
chapter is organized as follows. First, the emulation platform, ARM integrator, is

introduced. Secondly, the synthesis report of hardware functional units is presented.

Finally, the performance analysis will be discussed.

5.1 Emulation platform

Design of Soc is much complicated than traditional ASIC design. Therefore, a
complete development environment-is necessary. We choose ARM INTEGRATOR
[22] for our emulation platform. The architecture of arm integrator is shown in Fig. 39.

and it is composed of three parts. ASIC.Platform (AP)[28], Core Module (CM)[27],

and Logic Module (LM)[29]. Each of them will be presented in the followings.

CM
FT--T--- T oo o mm-- 1 I
l 1 I
: SSRAM SDRAM : I
i
! ‘ : AP | FPGA &
: - : coT T T o T T T T I :
i AHB CMm B FPGA 1
: Controller : i : : AHB
i
: Ly AHB) |
1 .
I] Arbiter |!
1| SSRAM 1 ! 1
t| controller|| ARM 1 :
I :l 1
i
i| P :
: bridge || !
‘ !
: APB l
i bridge :

Fig. 39. architecture of arm integrator

52

SSRAM

5.1.1 Integration board (Arm integrator/AP)
The AP is responsible for connecting between CM and LM. It’s shown in Fig. 40.

The main component of AP is the system controller FPGA. The system controller

FPGA contains several components as followings

® Connector between CM and LM
® AHB bus arbiter
® AHB bus decoder
® Interrupt controller
® Peripheral controller
® System state and control register
Core module Logic module
FFPGA FPGA
F 3 F 3 F 3 F 3 F 3 F 3 F 3 Fy
Y v Y Y Y Y Y v
System bus connectors System bus connectors
HDRAMDRB EXPA/EXFB
F 3 rF 3 F 3 F 3 A[31'0] f F 3 F 3 F 9
B[31:0]
C[31:0]
D[31:0]

v v ;

System controller
FPGA

Integrator/AP

Fig. 40. connection between CM and LM

The AP support the connection between core module and logic module. Our HW
functional units are implemented in LM and our GCU, software functional units are

running on CM contains a ARM9 processor.

5.1.2 Core module (CM)

Our software functional units and GCU are running on core module. It is
composed with followings (Fig. 41).

[] ARM9 core

53

® Core FPGA

i. SDRAM controller
ii. System bridge
iii. Reset controller
® 256KB SSRAM
® Clock generator
® System bus connector
® Multi-ICE interface
Reset
Clock control
generator
T ’ SDRAM
Trace +
e controller
v
PLD
v 4 {946 and -
966 only)
System bus
ARM core v l bridge
B FPGA
1 SSRAM
v w
Multi-ICE | System bus connectors |

Fig. 41. Block diagram of CM

Core module is a master device in AHB bus and communicates with each master

logic (HW functional unit) in logic module.

5.1.3 Logic module (LM)

The version of our logic module is Xilinx virtex 2000E. The block diagram is

shown in Fig. 42. It is composed with followings.

® Xilinx FPGA virtex 2000E

® 1MBZBTSSRAM
® |ED
® System bus connector

() LA connector

54

v

SDRAM

® MULTI-ICE interface

Multi-ICE Trace
ZBT 0SC1 0sc2
SSRAM
i 2
: — 5
8 L]
: o
o o
g =
_§ FPGA E
: g
E s
£ 5
=
B
=
Prototyping
grid
Push Swiches LEDs
LA connector button

Fig. 42. Block diagram:of LM

Our hardware functional units‘are implemented in LM. All HW functional units

are master devices.

5.1.4 memory map for arm integrator

The system memory map on arm integrator is shown in Fig. 43. The original
SSRAM is substituted with our scratch-pad memory in LM (Fig. 18). And we
organize the LM register in Fig. 44. The register file is composed of enabling register
responsible for enabling/disable our hardware functional units, DMA parameters
which are passing source address destination address and size of data transfer, inverse
transform and inverse quantizer register which are setting these modules, such as type
of transform(inverse integer transform or inverse hadamard transform), value of

QP...etc.

55

Logic module 3 p
0xF0000000 7
Logic module 2 .
0XE0000000 |3 . Bus error
OxD0000000 Logic module 1| -
X
Logic module 0 SSRAM
0xC0000000 . Interrupt
R conroller
Core module .. .
Alias memory ~ | LMregister
PCI
Core moduel
Memory and
peripherals

0xC0001324

0xC0001320

0xC000131C

0xC0001318

0xC0001314

OXCFFFFFFF

O0xC20FFFFF
0xC2000000

0xC1000000
0xC0000000

Fig. 43. memory map for arm integrator

24 bits 1 bits 5 bits 1 bits 1 bits
-1 -1
unused luma| QP QUENLS | VS
flag flag
\
DMA_count
DMA_TADDR
DMA_SADDR
J
Inv-quaniinv-trans| ILF DMA
flag flag flag flag

1 bits 1 bits 1 bits

1 bits

Fig. 44. Parameter register for hardware functional unit

5.2 Synthesis report for hardware functional units

Our target version of FPGA is Xilinx virtex2000E,FG 680, and the synthesis tool
is Synplify Pro 8.6. Placing and routing are used Xilinx ISE 7.1. The overall report is

shown in Table 4.

56

Other modules

parameter

’ DMA parameter

Enabling register

Module name | Integer Inv quantizer Intra comp. 1 Intra comp. 2 Deblocking filter

transform/ (other modes) (DC mode)
Hadamard?!
Clock rate 90 MHZ Combinational (N/A) | 185 MHZ 134 MHZ 76 MHZ
Gates count 476 LUTS 274 LUTS(0%) 1102 LUTS 335 LUTS 868 LUTS
without

MULT 18x18 blocks

Bandwidth 16/9 1/1 (output/clk) 4/1 output/clk 1/1 output/clk 412
(output/clk) (14MB) (output/clk)
1/5 output/clk
(116MB)
Block ram 2x16x16 bit | 96 words by 14 bits | NA NA NA
usage 52 words by 5 bits
52 words by 3 bits

Table 4. synthesis report of HW functional units

5.3 Performance analysis

MPEG test bitstream FOREMAN.is decoded,using the proposed RVC framework.
Both ARM 9 in the core module and LM are running at 25 MHZ. However the
communication overhead between the CM and LM is:very high. It is illustrated in Fig.
45. Network of functional units ‘are.composed of-software and hardware functional
units. Therefore, communication between CM and LM ca not be avoided. However,
every data transfer between each other has to go through bus controller in AP which is
implemented in FPGA. Besides, the board-level connections between CM, AP, and
LM also limit the speed of the bus and data transfer. According to our experiments, it
takes 20 to 30 cycles to transfer 32 bits of data. The evaluation time of functional
units are shown in Table 5. Inverse integer transform, inverse hadamard transform,
inverse quantizer, and intra compensation are discussed in chapter4. The deblocking
filter is based on Pens’s design [26]. It is obvious that the computation time of HW
FUs are much faster then the SW FUs. However, the communication overhead is too

high due to the limitation of the ARM Integrator.

57

Processor
Core module

(FPGA)

Fig. 45. Communication between CM and LM

Bus controller

FPGA for
HW Loigc

RVC (SW FU’s only) RVC (with HW FU’s)
Communication Computation
Overhead time
Inv-Transform 6309 ms 3447 ms 247 ms
Inv-gnantize 4224 ms 2687 ms 435 ms
Deblocking filter 7326 ms 2320 ms 65 ms
Intra compensation 1858 ms 972 ms 317 ms

Table 5. evaluation.time.of functional units

The performance comparisen between RVC with pure SW functional units and

optimized H.264 SW decoder is'shown’in-Table 6. The optimized H.264 SW decoder

used in this experiment is not the 'H.264 JM reference software [30]. It is an H.264

decoder developed in MMES LAB, NCTU and it is much faster than the JM software.

We can see that the overhead of our proposed RVC framework is very small and it

cost 2% more than a traditional SW decoder.

Overall execution time

RVC (pure SW)

102%

Optimized SW decoder

100%

Table 6. Performance comparison

58

6. Conclusion and Future work

In this thesis, we propose an SoC architecture that supports MPEG Reconfigurable
Video Coding framework. Based on the experimental results, the overhead of the
proposed RVC architecture can be very small with proper bus bandwidth.

It is important to point out that the purpose of the RVC framework is not to obtain
the most efficient design of a single codec, but to allow a flexible and extensible
design of codec systems. Multi-standard codec support (or even generating
customized codecs on-the-fly) can be achieved by configuring a new GCU via a new
decoder description.

An example is shown in Fig. 46. \When a new codec is constructed by replacing
the MPEG-4 DC/AC prediction tool withithe AVC Intra prediction tool, we only need
to change the data path between FUs. Of course, here we assume both tools are in the
codec toolbox of the chip. In traditional hard-wired-HW approach, in order to decode
a bitstream of a new codec, one has to redesign the whole HW. The main advantage of

RVC is flexibility and quick adaptation to new multimedia standards.

59

ycber | tA‘f . DCT Quant H—| RLCFU
To ntra Fred. VLC FU

|
|
|
|
|| MB data | | IS FU
|
|
|
|

CcC | CcC | CcC —

New intra-only encoder

e o e o o Em e e e e e e e o e o = = e [)

b |

DCt y Iscan | AC1 ¥ 1Quant 44 1IDCT M AVC VB data

Intra Pred. To YCbCH

y cc t cc fp occ fy U

VLD FU
RLD FU

@)

0O ¢

—v—

@)

(@]

——

O
E

Fig. 46. Construct a new decode on-the-fly

There are still quite some improvements that can be made to the proposed RVC
framework. For example, the memory allocator enly: manages scratch-pad memory in
current implementation. However, in a complicated SoC platform, there are different
kinds of memory, such as flash,, SDRAM, and SRAM. One improvement is that
memory allocator can manage several kinds of memory according to their
characteristics. In addition, we can add other video coding tools into the toolbox so

that other codecs such as MPEG1/2/4 and VC-1 can be supported.

60

7. Reference

[1] E.S.Jang, K. Asai, and C.-J. Tsai, Study of Video Coding Tool Repository v5.0,
MPEG Meeting Document N7329, Poznan, July 2005.

[2] C.-J. Tsai, Suggestions on the Direction of VCTR, MPEG Input Document
M12074, Busan, April, 2005.

[3] ISO/IEC MPEG Video Group, Final Call for Proposals on Reconfigurable Video
Coding, MPEG Meeting Document N8070, Montreux, April 2006.

[4] J.Janneck et al., Moses Tool Suite, https://sourceforge.net/projects/mosestoolsuite/.

[5] Lin, C.-C. ,Chen, J.-W. ,Chang, H.-C. ,Yang, Y.-C. ,Yang, Y.-H. O. ,Tsai, M.-C.,
Guo, J.-1., Wang, J.-S. ,A 160K Gates/4.5 KB SRAM H.264 Video Decoder for
HDTYV Applications, ISSCC 2007

[6] Kuan-Hung Chen Jiun-In Guo ,Jinn-Shyan Wang ,A high-performance direct
2-D transform coding IP design for MPEG-4AVC/H.264, IEEE Transactions on
Circuits and Systems for Video Technology 2006

[7] Yu-Wen Huang,Bing-Yu Hsieh,Tung-Chien Chen,Liang-Gee Chen “Analysis,
fast algorithm, and VVLSI architecture design.for-H.264/AVC intra frame coder”,
IEEE Transactions on Circuits and Systems for Video Technology,2005

[8] Chin-Jen Yang, Bin-Da LiuJar-FerrYang;“Implementation of JPEG Multimedia
system with HW/SW co-design en SoC Development Platform,” NCKU 2002

[9] Kui Zhang and Josef Kittler, “Framework for dynamically reconfigurable video
codec using multiple coding tools,” Broadband European Networks and
Multimedia Services 1998

[10] Sunyoung Lee, Hyungyu Kim, “Proposed Updates of RvVC Working Draft 1.0,”
MPEG input document 2006.

[11] Horowitz, M., Joch, A. , Kossentini, F. ,Hallapuro, A. ,”H.264/AVC baseline
profile decoder complexity analysis”, IEEE Transactions on Circuits and
Systems for Video Technology 2003.

[12] Denolf, K., De Vleeschouwer, C., Turney, R., Lafruit, G., Bormans, J. ,”"Memory
centric design of an MPEG-4 video encoder”, IEEE Transactions on Circuits and
Systems for Video Technology 2003.

[13] H. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky, “Low-complexity
transform and quantization in H.264/AVC,” IEEE Trans. Circuits Syst. Video
Techno.., vol. 13, no. 7, pp. 598-603, Jul. 2003.

[14] T. Wedi, “Motion Compensation in H. 264/AVC”, IEEE Trans. Circuits System
Video Technology 2003

61

https://sourceforge.net/projects/mosestoolsuite/

[15] Yueh-Yi Wang ,Yan-Tsung Peng ,Chun-Jen Tsai “VLSI architecture design of
motion estimator and in-loop filter for MPEG-4 AVC/H.264 encoders”, ISCAS
2004

[16] Miao Sima, Yuanhua Zhou, Wei Zhang ,*“An efficient architecture for adaptive
deblocking filter of H.264/AVC video coding”, IEEE Transactions on Consumer
Electronics,2004

[17] Wu Di, Gao Wen, Hu Mingzeng, Ji Zhenzhou, “AVLSI architecture design of
CAVLC decoder”, ASIC, 2003. Proceedings. 5th International Conference on,
IEEE Transactions on

[18] Yao-Chang Yang, Chien-Chang Lin, Hsui-Cheng Chang, Ching-Lung Su, Jiun-In
Guo, “A High Throughput VLSI Architecture Design for H.264 Context-Based
Adaptive Binary Arithmetic Decoding with Look Ahead Parsing”,IEEE
International Conference on Multimedia and Expo,2006

[19] AMBA Specification 2.0, ARM Limited, 1999.

[20] R. Peset Llopis , R. Sethuraman “A Low-Cost and Low-Power Multi-Standard
Video Encoder”, Proceedings of the 1st IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis,2003

[21] T.-C Chen, Y.-W. Huang, and’L..-G. Chen,“Analysis and design of macroblock
pipelining for H.264/AVC VLS| architecture,” Proc. of IEEE ISCAS 2004, Kobe,
2004,

[22] http://www.arm.com/products/DevTools/integratorAP.html

[23] S. Lee, E. S. Jang, M. Matavelli;.C. —J. Tsai; Working Draft of ISO/IEC 23001-4:
Codec Configuration Representation, MPEG Meting Document N8762,
Marrakech, Jan. 2007.

[24] Joint Video Team, Draft ITU-T Recommendation and Final Draft International
Standard of Joint Video Specification, ITU-T Rec. H.264 and ISO/IEC 14496-10
AVC, April 2005

[25] Wiegand, T. Sullivan, GJ. Bjntegaard, G. Luthra, A., Overview of the
H.264/AVC video coding standard, IEEE Transactions on Circuits and Systems
for Video Technology 2003.

[26] Y-T Peng, VLSI architecture for the in-loop filter of H.264 Video codec, 2004
NCTU

[27] ARM Integrator Core Module/920-T User Guide, ARM Ltd. April 2001

[28] ARM Integrator AP User Guide, ARM Ltd., April 2001

[29] ARM integrator LM-XCV2000E User Guide, ARM Ltd., 2002

[30] JM reference software http://iphome.hhi.de/suehring/tml/

62

http://www.arm.com/products/DevTools/IntegratorAP.html
http://iphome.hhi.de/suehring/tml/

	1. Introduction
	1.1 Introduction to MPEG RVC Framework

	2. Previous Works
	2.1 Traditional ASIC design approach
	2.2 SoC architecture for multimedia system
	2.3 Reconfigurable video coding
	2.3.1 RVC Proposal from Hanyang University
	2.3.1.1 Decoder description (DD)
	2.3.1.2 Mechanism of decoding the bitstream

	3. Proposed RVC Framework
	3.1 SoC architecture of the propose RVC framework
	3.2 Propose RVC framwrok
	3.2.1 Design of Global Control Unit
	3.2.1.1 architecture of GCU
	3.2.1.2 Mechanism of GCU

	3.2.2 Memory allocator

	3.3 Implementation of FUs in the propose RVC framework

	4. Design of hardware functional units
	4.1 Introduction to H.264/AVC decoding
	4.2 Design of inverse transform and inverse quantizer
	4.2.1 Architecture of inverse integer transform
	4.2.2 Architecture of the 4x4 inverse hadamard transform
	4.2.3 Architecture of the inverse quantizer

	4.3 Design of intra compensation
	4.3.1 Intra prediction
	4.3.2 Proposed architecture of intra compensation
	4.3.3 Eight directions of I4MB mode
	4.3.4 DC mode for I4MB mode and I16MB

	5. Experimental results
	5.1 Emulation platform
	5.1.1 Integration board (Arm integrator/AP)
	5.1.2 Core module (CM)
	5.1.3 Logic module (LM)
	5.1.4 memory map for arm integrator

	5.2 Synthesis report for hardware functional units
	5.3 Performance analysis

	6. Conclusion and Future work
	7. Reference

