

國立交通大學

資訊科學與工程研究所

碩士論文

支援 MPEG 可重組視訊編碼運作模式之

系統單晶片架構設計

SoC architecture for MPEG Reconfigurable

Video Coding Framework

研 究 生 : 蕭哲民

指導教授 : 蔡淳仁 教授

中華民國九十六年六月

2

支援 MPEG 可重組視訊編碼運作模式之系統單晶片架構設計

SoC architecture for MPEG Reconfigurable Video coding Framework

研 究 生 : 蕭哲民 Student : Jer-Min Hsiao

指導教授 : 蔡淳仁 博士 Advisor : Chun-Jen Tsai

國立交通大學

資訊科學與工程研究所

碩士論文

A Thesis
Submitted to Institute of Computer Science and Engineering

College of Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of Master

in

Computer Science
June 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年六月

3

4

5

 6

7

SoC architecture for
MPEG Reconfigurable Video Coding Framework

Abstract

Due to the variety of popular video coding standards, many efforts have been put

into the design of a single video decoder chip that supports multiple formats. In 2004,

ISO/IEC MPEG started a new work item to facilitate multi-format video codec design

and to enable more flexible usage of coding tools. The work item has turned into the

MPEG Reconfigurable Video Coding (RVC) framework. The key concept of the RVC

framework is to allow flexible reconfiguration of coding tools to create different

codec solutions on-the-fly. In this thesis, flexible SoC architecture is proposed to

support the RVC framework. Some analysis has been conducted to show the extra

costs required for this platform compared to hard-wired codec architecture. In

conclusion, the RVC framework can be mapped to an SoC platform to provide

flexibility and scalability for dynamic application environment with reasonable cost in

hardware design.

8

Acknowledge

在研究所兩年學習的時間裡,很感謝我的指導教授蔡淳仁博士,在老師的身上

我學習到作研究英有的嚴謹態度,以及對各種小細節的注意,很感謝老師的耐心指

導,讓我不管是在學術上,生活上都學習到作任何事情都應該全力以赴認真去執

行。也謝謝同實驗室的厚任,雅婷,大家一起努力寫論文的革命感情。實驗室的學

長和學弟妹們大家平時一起吃飯玩樂,讓我們研究生活不至於過於苦悶,最後我想

謝謝我的家人,因為有家人的支持以及鼓勵,我才有辦法無憂地讀書,感謝內湖教

會朋友的鼓勵,以及梅竹團契的學弟妹的加油打氣,當然更要感謝上帝讓我這兩年

來都很順利,最後很高興成為 MMESLAB 的一員,真的很謝謝大家。

9

Content

1. Introduction.. 14

1.1 Introduction to MPEG RVC Framework ...15

2. Previous Works .. 19

2.1 Traditional ASIC design approach...19
2.2 SoC architecture for multimedia system..20
2.3 Reconfigurable video coding ...21

2.3.1 RVC Proposal from Hanyang University.....................................22

3. Proposed RVC Framework... 26

3.1 SoC architecture of the propose RVC framework26
3.2 Propose RVC framwrok ...28

3.2.1 Design of Global Control Unit...29
3.2.2 Memory allocator...32

3.3 Implementation of FUs in the propose RVC framework34

4. Design of hardware functional units 35

4.1 Introduction to H.264/AVC decoding ..35
4.2 Design of inverse transform and inverse quantizer..................................37

4.2.1 Architecture of inverse integer transform....................................38
4.2.2 Architecture of the 4x4 inverse hadamard transform40
4.2.3 Architecture of the inverse quantizer...42

4.3 Design of intra compensation ..43
4.3.1 Intra prediction...43
4.3.2 Proposed architecture of intra compensation...............................45
4.3.3 Eight directions of I4MB mode ...45
4.3.4 DC mode for I4MB mode and I16MB...50

5. Experimental results .. 52

5.1 Emulation platform ..52
5.1.1 Integration board (Arm integrator/AP) ..53
5.1.2 Core module (CM)...53
5.1.3 Logic module (LM)..54

10

5.1.4 memory map for arm integrator...55
5.2 Synthesis report for hardware functional units ..56
5.3 Performance analysis ...57

6. Conclusion and Future work .. 59

7. Reference .. 61

11

Lists of Figures

FIG. 1. CONCEPT OF MPEG RVC FRAMEWORK ...16
FIG. 2. DEFINITION OF A FUNCTIONAL UNIT IN RVC...16
FIG. 3. OVERALL ARCHITECTURE OF RVC ...17
FIG. 4. EXAMPLE OF RVC CONFIGURATION ...17
FIG. 5. ARCHITECTURE OF THE H.264 DECODER IN [5]. ..20
FIG. 6. PROFILING OF JPEG ENCODER ...21
FIG. 7. ARCHITECTURE FOR JPEG ENCODER ...21
FIG. 8. ARCHITECTURE OF RVC PROPOSAL FROM HANYANG UNIVERSITY [10]22
FIG. 9. MECHANISM OF PARSING DECODE DESCRIPTION...23
FIG. 10. DECODING PROCEDURE IN [10] ..24
FIG. 11. PARSING PROCEDURE IN [10]..25
FIG. 12. OUR PROPOSED SOC ARCHITECTURE FOR MPEG RVC ..27
FIG. 13. HARD-WIRED DECODER EXAMPLE..28
FIG. 14. GCU ARCHITECTURE..30
FIG. 15. EXAMPLE OF TABLES IN GCU ...30
FIG. 16. CONSTRUCTION OF VIRTUAL WIRES BASED ON THE NDT ...31
FIG. 17. SCHEDULING MECHANISM OF GCU..32
FIG. 18. NEW SYSTEM MEMORY MAP ...32
FIG. 19. MANAGEMENT OF THE ON-CHIP SCRATCH-PAD MEMORY ..33
FIG. 20. MECHANISM OF HOW MEMORY ALLOCATOR CHOOSE MEMORY BANKS34
FIG. 21. H.264 PROFILES..36
FIG. 22. ARCHITECTURE OF H.264 DECODING..36
FIG. 23. INPUT ORDER OF TRANSMITTING BLOCKS ...37
FIG. 24. ARCHITECTURE OF 1-D INVERSE TRANSFORM..39
FIG. 25. ARCHITECTURE OF 2-D INVERSE TRANSFORM..39
FIG. 26. TRANSPOSED MEMORY OF 2-D INVERSE TRANSFORM...40
FIG. 27. TIMING DIAGRAM OF 2-D INVERSE TRANSFORM...40
FIG. 28. ARCHITECTURE OF 1-D INVERSE HADAMARD...41
FIG. 29. INVERSE INTEGER/HADAMARD TRANSFORM MODULE...42
FIG. 30. ARCHITECTURE OF INVERSE QUANTIZER...43
FIG. 31. SIMULATION OF INVERSE QUANTIZER...43
FIG. 32. IDEA OF INTRA PREDICTION...44
FIG. 33. I4MB PREDICTION MODE BESIDES DC PREDICTION ...44
FIG. 34. I16MB PREDICTIONS MODE AND ONE I4MB DC PREDICTION..45
FIG. 35. THE ARCHITECTURE OF INTRA COMPENSATION...48

12

FIG. 36. ARCHITECTURE OF DC MODE FOR I4MB AND I16MB ...50
FIG. 37. TIMING DIAGRAM FOR I4MB DC MODE...50
FIG. 38. TIMING DIAGRAM FOR I16MB DC MODE...51
FIG. 39. ARCHITECTURE OF ARM INTEGRATOR ...52
FIG. 40. CONNECTION BETWEEN CM AND LM...53
FIG. 41. BLOCK DIAGRAM OF CM..54
FIG. 42. BLOCK DIAGRAM OF LM..55
FIG. 43. MEMORY MAP FOR ARM INTEGRATOR..56
FIG. 44. PARAMETER REGISTER FOR HARDWARE FUNCTIONAL UNIT ..56
FIG. 45. COMMUNICATION BETWEEN CM AND LM..58
FIG. 46. CONSTRUCT A NEW DECODE ON-THE-FLY ...60

13

Lists of Tables
TABLE 1. SEVEN DECODER DESCRIPTION TABLE...23
TABLE 2. TABLE OF INVERSE QUANTIZER...43
TABLE 3. EQUATION OF I4MB EXCEPT FOR VERTICAL AND HORIZONTAL MODES49
TABLE 4. SYNTHESIS REPORT OF HW FUNCTIONAL UNITS..57
TABLE 5. EVALUATION TIME OF FUNCTIONAL UNITS ..58
TABLE 6. PERFORMANCE COMPARISON..58

14

1. Introduction

Most multimedia devices today have to support multiple codec standards. Take

video codecs for example, a portable multimedia player usually supports the playback

of the MPEG-1/2, MPEG-4 SP, WMV, and H.264/MPEG-4 Part 10 video contents. In

order to reduce system cost, a single-chip SoC solution that supports all these

standards is a sensible approach. From IC designers’ point of view this is not a serious

problem since most (if not all) popular video codecs share the same block-based

motion compensated transform coding data flow. In addition, many coding tools have

similar architecture. However, there are some application issues that makes traditional

codec design approaches unsatisfactory [1].

A major problem with existing approach of defining a codec standard is the lack

of flexibility when new applications emerge. A video codec is composed of several

coding tools (e.g. DCT/IDCT, MC, VLC/VLD, etc.). However, for a codec standard,

the conformance point is defined at codec-level, instead of tool-level. Different

profiles/levels are created for each codec to address the need of different classes of

applications. This approach works fine in the past since the application scenarios were

quite simple (e.g. DVD, DTV). However, with the exponential growth of new

multimedia applications, the old approach of defining conformance point at

codec-level becomes awkward. Quite often, a new application designer finds it

impossible to find a reasonable codec profile@level to fit the target application well.

For example, the FMO tool of H.264 is useless for many applications but a decoder

may still need to support it simply because it is included in AVC baseline profile. In

general, application environment is changing faster than an international standard can

catch up that there should be a more efficient way of allowing a codec to adapt to new

15

applications while maintaining interoperability among different solutions.

MPEG has recognized this issue and started a new work item called Video Coding

Tools Repository (VCTR) in 2004. After some investigations, the direction and

benefit of VCTR is becoming clear [2]. Later, this effort becomes the Reconfigurable

Video Coding (RVC) framework in 2006 [3]. This new framework defines the

conformance point at tool-level. Therefore, in principle, an RVC-enabled codec can

negotiate on-the-fly with the video bitstream encoder/sender about which coding tools

is required and how the data path can be wired among these coding tools in order to

decode the video bitstream. After the setup stage, the decoder can decode the

bitstream correctly. With this approach, an SoC can support multiple codec standards

as well as creating customized codecs in real time as long as it contains all the

standard-conforming tools that is necessary to decode bitstreams from different

encoders.

1.1 Introduction to MPEG RVC Framework

The concept of MPEG RVC framework can be illustrated by Fig. 1. The key

difference between RVC and the old MPEG codec standards is that the interface of

each coding tools is defined precisely so that they can be used (like LEGO blocks) to

build various codecs. The decoder configuration describes how input bitstream can be

parsed so that the raw input data to each coding tools can be extracted. A decoder

description language is under development so that the configuration of a specific

codec (such as H.264) can be described using a (small) configuration bitstream. The

decoder configuration bitstream will be processed by an RVC decoder before

decoding of a video bitstream conforming to the described standard. Note that after

processing a configuration bitstream, the RVC decoder will generate a Global Control

Unit (GCU) that governs the operation of the coding tools.

applications

H.264 parser &
video composer

MPEG-4 parser
& video composer

8x8 IDCT 4x4 GBT ¼-pel MC 4x4 intra-
prediction

Old MPEG
conformance point

New RVC
conformance point

Tools in RVC Toolbox

H.264 Virtual
Network of FUs

MPEG-4 Virtual
Network of FUs

MPEG-B

MPEG-C

Fig. 1. Concept of MPEG RVC framework

In principle, the configuration description tells the RVC decoder how to wire the

coding tools to form a data path. In the RVC framework, each coding tools is called a

functional unit (FU) and is specified in Fig. 2 [1]. In Fig. 2, a control signal is a signal

embedded in the video bitstream (for example, the width and height of the video

frame). A context signal is a signal generated from the processing of bitstream data

(for example, the AC prediction direction in the MPEG-4 Part 2 video standard). The

context-control unit reads in the context and control signals generated by previous

FU’s and generates (or passes on) some context and control signals to the next FU’s

based on the result of the processing unit.

Processing
Unit

Input
bitstream

data

Output
bitstream

data

Context & control [in]
e.g. coding parameters,

mode selection signals

Context & control [out]
e.g. derived parameters

from the video data

Context-Control
Unit

Fig. 2. Definition of a functional unit in RVC

The overall architecture of RVC is shown in Fig. 3. There is a syntax paring FU to

parse the bitstream to context and control information and MB-based data. The

content and control information is fed to Global Controller Unit(GCU) and data is fed

to other MB-based FU to processing. The GCU is responsible for controlling the data

16

path between network of functional units and receiving and passing content and

control information to each function units.

Syntax
Parsing FU MB based FU

Content&control info Content&control info

bitstream MB-based data Decoded pixels(MB)

toolbox

Essential
Syntax elements

Control
tables

GCU

Fig. 3. Overall architecture of RVC

A partial example of a configured RVC codec that behaves like an H.264 baseline

decoder is shown in Fig. 4. In Fig. 4, the functional blocks encircled in the dashed

rectangles will be implemented using the proposed architecture in next two sections.

Parser

Networks of HW/SW FUs
Encoded Bitstream

GCU

SE1 SE2 SE3
… SEK

Data
for FU1

Data
for FU2

… Data
for FUn

parsing

Decoder Description

FU Network
Configuration

Inloop
deblocking

filter

TQ-1

+Intra/Inter
Comp

Demux Entropy
(coeff)

YCBCR
Frame

MV/Intra mode
decoding

Ref 1
Ref 2
Ref 3

Ref 1
Ref 2
Ref 3

mode, model

slice info QP

Scan-1

Fig. 4. Example of RVC configuration

Currently, the two parts of RVC is defined in two different MPEG internal

documents. Namely,

 MPEG-B part 4, Codec Configuration Representation.
 MPEG-C part 4, Video Tool Library.

17

18

The MPEG-B is composed of two elements, the first element is the generic video

bitstream description language that can be used to instantiate a parser, and the second

element is the language that can be used to specify the network of functional units of

the decoder data path. The tools in RVC toolbox is defined in MPEG-C. So far, the

RVC framework is still under development in MPEG. Most of the investigations are

done using C models and behavioral model simulators such as Moses [4]. In this

thesis, we propose a HW platform that can support the RVC framework for

construction of a virtual network of FUs (MPEG-B) from a collection of tools

(MPEG-C).

The thesis is organized as follows. Some related works are introduced in chapter 2.

And the proposed SoC architecture for supporting the RVC framework is presented in

chapter 3. Some comparisons of the RVC architecture with a common hard-wired

solution are also given in this chapter. The designs of some HW functional units are

shown in chapter 4. The experimental results and analysis are discussed in chapter 5.

Finally, the conclusions and discussions are given in chapter 6.

19

2. Previous Works

Nowadays, multimedia applications for embedded systems are growing quickly.

Media players or cell phones have to support multi-standard video/audio codecs to

fulfill consumer’s need. There are many papers on the design of video codecs,

multi-standard codecs, or reconfigurable codecs. We will discuss some of these

designs in this chapter.

2.1 Traditional ASIC design approach

In traditional video ASIC design, profiling of computation load and memory

requirements of the coding tools is first performed [11][12]. And the coding tool that

is suitable for hardwired logic is implemented as an IP. Take H.264 for example, many

papers presents the implementation of integer transform/quantizer[6][13], motion

estimation and motion compensation[14][15], deblocking filter[16], and entropy

coding[17][18].

Lin et al. [5] proposed a fully pipelined architecture of an H.264 video decoder.

The architecture is shown in Fig. 5. Two different pipeline processing schemes are

used, including 4x4 block level pipeline processing and hybrid block level pipeline

processing. Since the size of processing block unit for I/T is 4x4, a 4x4 pipeline flow

is used and for other modules, MB size pipeline is adopted.

For traditional ASIC video codec design, they are pursuing designs with smaller

area, less internal memory, and higher clock rate.

Fig. 5. Architecture of the h.264 decoder in [5].

2.2 SoC architecture for multimedia system

It is not cost-effective to implement a complicated system completely in hardware.

Therefore, hardware and software co-design is becoming popular for complex system

design. Yang et al. [8] shows an example of prototyping a system on an SoC platform.

The example is a JPEG codec. First, they profiled the JPEG encoder (Fig. 6) and

found that VLC and DCT cost most computation time. Therefore, DCT and VLC are

partitioned into hardware (FPGA) and other modules are in software. With HW/SW

co-design, the performance of the system is better than a pure software system and

more flexible than a pure hardware approach. The whole architecture is shown in Fig.

7. This paper shows how to prototype a system and how to partition functionality in

hardware or software. Besides, it also illustrates how to design the hardware and

software interface using a bus protocol (AHB) [19].

20

Fig. 6. Profiling of JPEG encoder

Fig. 7. Architecture for JPEG encoder

2.3 Reconfigurable video coding

Zhang and Kittler [9] propose a dynamically reconfigurable video (DRV) codec.

The idea is quite simple; they add a extra DRV head on existing codec head. The DRV

head configure the DRV codec to decode. And there are many coding tools in a DRV

codec. The idea is similar with MPEG RVC. However, the network of functional units

in MPEG RVC can be either in hardware or in software. In this paper, they only allow

software coding tools. Besides, in many multi-standard hardware approaches codec is

implemented by merging coding tools in different codecs since coding tools between

different coding standard are similar [20].

21

2.3.1 RVC Proposal from Hanyang University
Lee and Kim [10] have proposed a draft of RVC framework in MPEG (Fig. 8).

They define a decoder description which is composed of seven tables. The decoder is

configurable by changing the tables. The detail is presented in this section.

RVC framework
Decoder

Description

Tool-box

Connection

Bit-stream

GCU

Video

SYNP

FU#1 FU#2 FU#n…

FL

CSCIT

FU-CSCIT

S-RT

SET

DVT

F-RT

Fig. 8. Architecture of RVC proposal from Hanyang University [10]

2.3.1.1 Decoder description (DD)

The decoder description describes how to configure the decoder. In this proposal,

the description is composed of seven tables, including CSCI, DVT, FL, F-RT,

FU-CSCIT, SET, and S-RT (these acronyms are explained in Table 1). The proposal

uses a DD parser to parse a decoder description bitstream and set up seven tables (Fig.

9). By using different tables, it is able to configure the decoder to support different

specs such as MPEG-4, MPEG-2, H.264…etc.

DD parserDecoder
description

FU-CSCIT

F-RT

CSCIT

FL

DVT

S-RT

SET

Table

FU-CSCIT

F-RT

CSCIT

FL

DVT

S-RT

SET

Table

byte byte byte byte … byte

byte byte byte byte … byte

.…

byte byte byte byte … byte

Binary format

22

Fig. 9. Mechanism of parsing decode description

CSCIT CSCI Table
DVT Default Value Table
FL FU List
F-RT FU Rule Table
FU-CSCIT FU CSCI Table
SET Syntax Element Table
S-RT Syntax Rule Table

Table 1. seven decoder description table

2.3.1.2 Mechanism of decoding the bitstream

The decoding procedure is as follows. First, we start at R0 state in F-RT.

According to the rules in F-RT , we do syntax-parsing job if F0 is found in the table.

Otherwise, we look up the FL table. The table records the corresponding CSCI buffer

with each FU and execute that FU in F-RT. By doing so, we store the output of

other-FU or syntax-parsing FU to the corresponding CSCI buffer. After that, we look

up the F-RT again with the number of CSCI buffer as our index. This way, we are able

to branch to next stare R# according to F-RT. If the state is not end state,we continue

the whole procedure again (Fig. 10).

23

go to S-RT
Read S# of the R#

R# is RT ?
no

yes

Go to SET and read
Corresompding index

And employee SET-PROC

Save CSCI in the buffer fir GCU
As outputs of the SET_PROC

Read R# of F0

Accroding C# and read the
Next R# in S-RT

end
Fig. 10. Decoding procedure in [10]

The detail syntax parsing procedure is described as follows. First, we read the

corresponding index of syntax-parsing FU. According to the index, we go to S-RT

table and lookup another index for SET. Then, we go to SET, execute the specific

SET-PROC by the index. The SET_PROC is kind of program and it retrieves the

syntax element and store them into corresponding CSCI buffer. And by the number of

CSCI buffer, we check S-RT again and branch to the next state in S-RT. If the next

state is RT (end), we continue the whole procedure for syntax parsing. Otherwise,

sytax parsing is completed (Fig. 11).

24

Read the corresponging
Index from F-RT

FU is
Syntax parsing?

Employee the
corresponding FU

Syntax parsing
Execute FU with

input CSCI,input data
and output data

Start at R0 in FR-T

noyes

Read the output CSCI
Info and branch to next

R# in F-RT

R# is the end?

end

yes

no

Fig. 11. Parsing procedure in [10]

25

26

3. Proposed RVC Framework

3.1 SoC architecture of the propose RVC framework

Since the specification of the bitstream syntax description language is still under

development at MPEG, only the operation of composition of a network of functional

units and the specification of functional units are defined at this time. This thesis

proposes a VLSI architecture that supports the RVC framework. The RVC framework

actually fits the platform-based design principle of SoC quite well. For maximal

flexibility, the global control unit (GCU) will be implemented in software and running

on the processor core of an SoC. Each coding tool can be implemented as an IP on the

bus with limited configurability via a private register file. The proposed architecture is

show in Fig. 12.

It is important to note that in the proposed architecture, hardware FUs and

software FUs (stored in SDRAM) can be mixed to compose a network of functional

units for a specific codec. We use multiple banks of SRAM as the “virtual wire” to

connect each functional unit. With this virtual wire approach, the system can be scale

up easily. New functional units (either hardware or software) can be integrated into

the system to support new codec with very little design effort.

It is also important to note that the hardware coding tools are not attached to the

main system bus (AMBA AHB) directly. A local bus, Multi-Media Bus (MMB), is

used to off-load the bandwidth from the main system bus. In our implementation,

MMB is a simplified version of AHB, however, a more flexible bus protocol or the

concept of network-on-chip (NoC) can be used here to increase the throughput of the

bus. A two-way DMA is used to transfer data between external SDRAM and internal

SRAM banks. The DMA can be invoked from either the ARM core or the coding tool

IPs. The reason for multiple SRAM’s on the MMB is to reduce the memory

bandwidth requirement for parallel operations of the coding tools.

SDRAM

AHB

MMB

H.264
ILF

mem1DMAREG REG

H.264
INTRA

MPEG
IDCT

H,264
T-1/Q-1 HW Functional Units

mem2 mem3

H.264
UVLC

H.264
Buf. M.

Host Processor (SW Functional Units)

H.264
CAVLC

Virtual Wires

Fig. 12. Our proposed SoC architecture for MPEG RVC

Although local bus and multiple SRAM banks are used to alleviate the bandwidth

issue, the performance of this architecture still cannot match that of a hard-wired

architecture. For example, a hard-wired H.264 baseline decoder may have a tighter

MB decoding pipeline as shown in Fig. 13. There are two main advantages of the

architecture in Fig. 13. First of all, the decoding pipeline is controlled by a hard-wired

FSM with cycle-based synchronization. On the other hand, for the RVC framework,

the GCU controller will be implemented in software, and hence, cannot guarantee

cycle-based operation of the pipeline. Another advantage of the hard-wired approach

is that it does not require excessive accesses to external memory.

It is important to point out that the purpose of the RVC framework is not to obtain

the most efficient design of a single codec, but to allow a flexible and extensible

design of codec systems. Multi-standard codec support (or even generating

customized codecs on-the-fly) can be achieved by configuring a new GCU via

27

decoder description bitstreams. In the next section, we will study an actual

implementation of the proposed architecture in Fig. 12 to get an idea about the cost

one has to pay for such flexibility.

ARM memory

AHB

Deblocking
filter

INTRA Decode

MCTQ–1

CAVLD

Fig. 13. Hard-wired decoder example

3.2 Propose RVC framwrok

In this section, an implementation of the proposed system architecture (Fig. 12) is

investigated. The implementation is based on an SoC emulation platform, the ARM

Integrator [21]. The platform is composed of a main board, an ARM 9 processor core

module, and a Xilinx VirtexE XCV2000E FPGA logic module. The platform adopts

the AMBA bus protocol. The RVC coding toolbox logic of the proposed system is

implemented in the FPGA. The local bus protocol, MMB, of the toolbox logic is a

reduced version of AHB with much less wires and a minimal implementation of bus

arbiter and decoder. The detail architecture of emulation platform will be presented in

chapter 5.

In the proposed system architecture, the controller that drives the operation of the

network of FUs is implemented in software. As a result, the codec pipeline is not

executed in a lock step fashion but instead driven by the software controller via

signals triggered by read/write of register files. Each coding tool FU (please refer to

28

29

Fig. 2) is implemented so that the input bitstream data is coming from a SRAM bank

on the MMB and the output bitstream data will be stored in another SRAM bank on

the MMB. Block RAMs of the Virtex II FPGA and the ZBT SRAM of the ARM

Integrator are used for this purpose. Note that in the proposed architecture, the

input/output SRAM banks for a FU (either software or hardware) are dynamically

controlled by a memory allocator module (see Fig. 14). It is obvious that such

implementation is not as efficient as a tightly-coupled pipeline [21] where different

pipeline stages are connected via registers or FIFO.

3.2.1 Design of Global Control Unit

3.2.1.1 architecture of GCU

The Global Control Unit of the MPEG RVC framework can be dynamically

implemented as in Fig. 14. In Fig. 14, tool state table is a runtime table that record the

states of each running FUs. The table is used by the controller to synchronize the

operation of the codec pipelines. The network description table is extracted from the

decoder description which is attached to the encoded video bitstream. It basically

describes the input/output connections (i.e. SRAM banks) of the networks of the

functional units. Note that this table can be modified by the memory allocator to allow

optimal use of the available SRAM banks. An example of the tool state table and the

network description table is shown in Fig. 15.

Also note that in Fig. 15, the “Pointer” field of the network description table stores

a pointer to the entry point of software FU and the address of the control register for

hardware FU. For hardware FUs, the implementation of the processing unit and

context-control unit follows traditional hard-wired IP design methodology where the

processing unit is implemented as a data path and the context-control unit is a

hard-wired FSM with register files for memory-mapped I/O configuration and

signaling.

controller

Network
Description

Table

Tool State
Table

Memory
Allocator

H.264
ILF

H.264
INTRA

H.264
T-1/Q-1

H.264
CAVLD

Networks of
HW/SW FUs

mem1 mem2 mem3

IP1 IP2 IPn
…

DMA

SDRAM

mem1 mem2 mem3

IP1 IP2 IPn
…

DMA

SDRAMConfiguration Description

Software FU

Hardware FU

GCU

Fig. 14. GCU architecture

…

runningN1

doneN-12

of MB stateTool id

…

runningN1

doneN-12

of MB stateTool id

Tool State
Table

Network
Description
Table

countout
addr

in
addr

pointerID

0nullnull&MC(…)1

0nullnull0x02

0nullnull0x13

0nullnull&intra(…)4

countout
addr

in
addr

pointerID

0nullnull&MC(…)1

0nullnull0x02

0nullnull0x13

0nullnull&intra(…)4

…

Fig. 15. example of tables in GCU

30

3.2.1.2 Mechanism of GCU

When the system is first initialized, the content of the network description table is

empty. When parsing unit pass data and FU description into GCU, the controller

invokes memory allocator to allocate a piece of free address for this FU and update

the data in the tool box table.

Until every FU described in the network description table is updated, the GCU can

use this table to decide the data path easily according to the configuration description.

It’s illustrated in Fig. 16.

Memory
allocator

request

free address

controller

updating table

Network
Description

Table

mem1 mem2 mem3

IP1 IP2 IPn
…

DMA

SDRAM

countout addrin addrpointerID

440xC20000000x80000000&CAVLD(…)1

750xC20004000xC20000000x32

360xC20008000xC20004000x13

800xC2000C000xC20008000x24

countout addrin addrpointerID

440xC20000000x80000000&CAVLD(…)1

750xC20004000xC20000000x32

360xC20008000xC20004000x13

800xC2000C000xC20008000x24

Fig. 16. Construction of virtual wires based on the NDT

When information in network description table is ready, we can invoke each FU to

decode and control the whole decoding process. Controller use tool state table to

schedule FU performing its job. Since the order of FU is listed sequentially in the tool

state table, we can use handshaking protocol to schedule the whole decoding process.

The scheduling method is illustrated in Fig. 17.

31

H.264
Intra

H.264
T-1/Q-1 H.264

ILF

controller

ack/grant

doneN-23

runningN1*

doneN-12

N-3

of MB

done4

stateTool id

doneN-23

runningN1*

doneN-12

N-3

of MB

done4

stateTool id

H.264
CAVLDack/grant

ack/grant

ack/grant

* Mean the first FU

Fig. 17. Scheduling mechanism of GCU

3.2.2 Memory allocator
In our emulation platform, the arm integrator, there is a 1MB SRAM connected to

the custom logic unit via soft-IP memory controller. However, since we want to use

multiple small memory banks as the virtual wires to connect network of functional

units. Therefore, we use block rams in system FPGA to construct our scratch-pad

memory and size of each memory bank is 20KB. Moreover, we modify the bus

decoder to change the system memory map to replace original SSRAM to our

scratch-pad memory. It’s shown in Fig. 18. And more details in our emulation

platform will be presented in chapter 5.

LM registers

Interrupt controller

SSRAM

0xC0000000

0xC1000000

0xC2000000

0xC20FFFFF

LM registers

Interrupt controller

Block-ram 1

0xC0000000

0xC1000000

0xC2000000

0xC20FFFFF

previous now

Block-ram 2
Block-ram 3

unused

0xC2005000

0xC200A000

0xC200F000

Fig. 18. New system memory map

How we manage scratch-pad memory is illustrated in Fig. 19. In our

32

implementation, we use three memory blocks. Each memory block is further divided

into small pages of 1KB each. Each memory block has an array of flags to tag the

availability of each page within the memory block. We tag the array of corresponding

index with bit ‘1’ if the page is used and vise versa. When the system controller

request memory allocator to allocate one section of memory to him, the memory

allocator search the array linearly to find out which pages are available and report it to

the system controller until each network of functional units are assigned input and

output data addresses.

mem2

mem3

mem1

mem2

mem3

mem1

Memory
allocator

mem1 mem2 mem3

IP1 IP2 IPn
…

DMA

SDRAM

……

……

……

Fig. 19. Management of the on-chip scratch-pad memory

The proposed platform adopts round-robin policy to allocate memory banks. It’s

shown in Fig. 20. For example, for the first operation the memory allocator picks

mem1 and for the next operation the memory allocator picks mem2, and so on. The

round-robin method is easy to implement and it also helps us to reduce the memory

bandwidth for parallel operations of the coding tools.

33

mem1 mem2 mem3

IP1 IP2 IPn

…

DMA

SDRAM

MMB slave MMB slaveMMB slave

AHB

MMB

Memory
allocator

mem1

mem2 mem3

request

Pick mem1

mem2

mem3 mem1

Pick mem2

First time second time
Fig. 20. Mechanism of how memory allocator choose memory banks

3.3 Implementation of FUs in the propose RVC

framework

In software functional unit, we have to extract every function in traditional codec

and modify it. We use function pointers to invoke software FUs. Therefore, we have

to let the parameters of each function to be the same and add with the input/output

data address within parameters. As for hardware FU, we have developed some H.264

and MPEG FUs and it is discussed in the next chapter.

34

35

4. Design of hardware functional units

4.1 Introduction to H.264/AVC decoding

The ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Moving Picture

Experts Group (MPEG) developed a new video coding standard, Advanced Video

Coding (AVC), also known as MPEG4 part 10 or H.264 [24][25]. It provides better

compression efficiency than previous standards such as MPEG2, MPEG4 part2,

H.263…etc. The improvements comes from adopting some new methods in inter and

intra prediction. For example, the motion compensation block sizes for luma samples

are 16x16, 16x8, 8x16, 8x8, 8x4, 4x8 or 4x4. Smaller blocks enable a more accurate

motion model. The intra prediction is enhanced with supporting 13 spatial prediction

modes for luma samples.

 H.264 defines four Profiles, baseline profile, main profile, extended profile and

high profile, each supporting a particular set of coding tools for specific application.

The baseline profile supports intra and inter coding (I-slice and P-slice) and entropy

coding with context-adaptive variable-length codes (CAVLC). The main profile

supports for interlaced video and inter coding with B-slice, inter coding using

weighted prediction and entropy coding using context-based arithmetic

coding(CABAC). The extended Profile doesn’t support interlaced video and CABAC

but adds modes to enable efficient switching between coded bitstreams (SP-slice and

SI-slice) and improve error resilience. The high profile includes not only B-slice and

interlaced video but also 8x8 integer transform, 422, 444 color spaces and Q matrix.

Fig. 21 shows the relationship between the four profiles.

The overall decoding path of h.264 is illustrated in Fig. 22. And we will show

hardware design of inverse integer transform, inverse quantizer, intra compensation of

H.264/AVC in the next sections.

SP and SI
slices

Data
partitioning

B slices

Weighted
prediction

I and P
slices

CAVLC

Slice groups
and ASO

Redundant
slices

Interlace

CABAC

Q-matrix

8x8 integer
transform

422,444
support

Extended profile

main profile

baseline

profile

high profile

Fig. 21. H.264 profiles

Inter/Intra
Comp.

Inverse
QuantizerCAVLD

ref1

Inverse
Transform

Inverse
Hadamard

＋＋
luma, chroma
DC block

AC block
residual’

predictor

Deblocking
filter

ref2

ref3

Fig. 22. Architecture of h.264 decoding

36

4.2 Design of inverse transform and inverse quantizer

In most video coding system, every residual macroblock is transformed, quantized

and then entropy coded. The 8x8 DCT is the most commonly used. However, there

are three transforms depending on the type of residual data in H.264 and every luma

and chroma macro block is organized in 26 sub-blocks to be transmitted to

corresponding transform [Fig2]. The order is the same with the labels of sub blocks. If

a luma macro block is coeded in 16x16 intra mode, a sub block labeled -1 consists of

DC coefficients of each 4x4 luma block is transmitted to a 4x4 hadamard transform

first. Then, sub blocks 0-15 are transmitted to a 4x4 integer transform. Next sub block

16-17 are transmitted to a 2x2 hadamard transform. Finally, sub block 18-25 are also

transmitted to a 4x4 DCT-based integer transform.

Consequently, A 4x4 hadamard transform is applied for DC coefficients of luma

macroblock coded in 16x16 intra mode. A 2x2 hadamard transform is used for DC

coefficients of chroma macroblock. A 4x4 integer transform is used for others. The

decoding process is in the inverse order.

0 321

4 765

8 11109

12 151413

1918

2120

2322

2524

-1
16 17

Y

Cb Cr

Fig. 23. input order of transmitting blocks

37

4.2.1 Architecture of inverse integer transform

The equation of 1-D inverse integer transform is illustrated in Eq.1. We can find

that the coefficients of Eq.1 only contains {1, 1/2, -1/2, -1}. Therefore, we are able to

use several adders and shifters instead of multipliers to implement it. Base on this idea,

our 1-D inverse integer transform is shown in Fig. 24. And the architecture of 2-D

inverse integer transform is illustrated in Fig. 25. We use one 1-D inverse integer

transform and two block-rams in FPGA as transpose memory to construct the 2-D

inverse integer transform. The Finite State Machine (FSM) is used to generate the

corresponding addresses of transpose memory. The reason why we use two block ram

in the design is that the bandwidth of block ram is 32 bits (16 bits dual port) since we

have to feed 4 pixels into our 2-D inverse integer transform. Only one block ram is

not sufficient to fulfill the bandwidth requirement.

The data is transmitted to the 1-D transform unit row-wise in the first pass, and the

output is stored in the transposed memory column-wise (Fig. 26). Then, the logic

fetches the data from the transpose buffer and feed them into the 1-D inverse

transform unit again in the second pass. The output of the 1-D inverse transform unit

is directly passed to the next functional unit in the decoding loop. The whole process

costs 9 cycles and output 16 pixels of data. The timing diagram is showed in Fig. 27.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

•

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

'
'
'
'

2/1111
112/11
112/11
2/1111

'
'
'
'

3

2

1

0

3

2

1

0

y
y
y
y

x
x
x
x

Eq. 1. Equation of 1-D inverse integer transform

38

y(0)
＋

－

－

＋

＋

＋

－
>>1

>>1
－

y(2)

y(0)

y(2)

y(1)

y(3)

y(3)

X(0)

X(1)

X(2)

X(3)
y(1)

y(0)
＋＋

－－

－－

＋＋

＋＋

＋＋

－－
>>1

>>1
－－

y(2)

y(0)

y(2)

y(1)

y(3)

y(3)

X(0)

X(1)

X(2)

X(3)
y(1)

Fig. 24. Architecture of 1-D inverse transform

FSM

address

outputi0

i1

i2

i3

000

1-D Transform-1

000

000

000

input

Transpose
buffer

Transpose
buffer

Fig. 25. Architecture of 2-D inverse transform

39

1-D inverse
transform

Block ram 1 Block ram 2
Fig. 26. Transposed memory of 2-D inverse transform

Fig. 27. Timing diagram of 2-D inverse transform

4.2.2 Architecture of the 4x4 inverse hadamard transform

The equation of 1-D inverse 4x4 hadamard transform is illustrated in Eq. 2. We

can find that the coefficients of Eq.2 only contains {1,-1}. Therefore, the architecture

of 1-D 4x4 inverse hadamard transform is similar with inverse transform and shown

in Fig. 28. The difference between 2-D hadamard and 2-D inverse integer transform is

the 1-D transform matrix. We can add 1-D inverse hadamard into 2-D inverse integer

transform module and add four muxes to choose the corresponding output of both

transforms. The idea is illustrated in Fig. 29. The timing diagram is the same in Fig.

27.

40

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

'
'
'
'

1111
1111
1111

1111

'
'
'
'

3

2

1

0

3

2

1

0

y
y
y
y

x
x
x
x

Eq. 2. Equation of inverse hadamard transform

x(0)
＋＋

＋＋

－－

－－

＋＋

－－

－－

＋＋

x(1)

x(2)

x(3)

x(0)

x(1)

x(2)

x(3)

X(0)

X(1)

X(2)

X(3)

Fig. 28. Architecture of 1-D inverse hadamard

41

FSM

address

outputi0

i1

i2

i3

000

1-D Transform-1

1-D Hardmard-1

000

000

000

input

Transpose
buffer

Transpose
buffer

Fig. 29. inverse integer/hadamard transform module

4.2.3 Architecture of the inverse quantizer

The equation of inverse quantizer is shown in Eq. 3, where Vij is showed in

Table1 and QP is the parameter of quantization. Base on the equation, the architecture

is illustrated in Fig. 30. Instead of using divider, we use block-rom to record the value

of QP/6 . And the information of Vij is also stored in block-rom. Besides, we use

shifter to compute the operation of 2floor(QP/6) . The gate count of multiplier is huge and

it reduces the cost of gate counts effectively. It’s important to notice that there are two

modes in inverse quantizer. When input is DC and it’s transformed in I16MB mode,

the exponent of 2 is (QP/6)-2 instead of QP/6. Therefore, parameters of inverse

quantizer is whether the input is DC and I16MB or not.

The design is a combinational logic. When input is transmitted into inverse

quantizer , it outputs immediately. Fig. 31 is test bench simulation with modelsim.

others ,2'

intra16 and DC if ,2'
)6/(

2)6/(

QPfloor
ijijij

ij
QPfloor

ijijij

VZW

ZVZW

••=

=••= −

42

Eq. 3. Equation of inverse quantizer

Vij values

2329185

2025164

1823143

1620132

1418111

1316100

Other positionPosition
(1,1),(1,3),(3,1),(3,3)

Position
(0,0),(2,0),(2,2),(0,2)

QPstep

Vij values

2329185

2025164

1823143

1620132

1418111

1316100

Other positionPosition
(1,1),(1,3),(3,1),(3,3)

Position
(0,0),(2,0),(2,2),(0,2)

QPstep

Table 2. table of inverse quantizer

X
Zij

Vij

<<coef

bypassComp0

0

bypass

Wij
<<(coef-2)

>>(2-coef)

X,y,mode,coef

XX
Zij

Vij

<<coef

bypassComp0

0

bypass

Wij0

bypass

Wij
<<(coef-2)

>>(2-coef)

X,y,mode,coef

coef = floor(QP/6)

Fig. 30. architecture of inverse quantizer

Fig. 31. Simulation of inverse quantizer

4.3 Design of intra compensation
4.3.1 Intra prediction

In h.264/AVC intra coding (Fig. 32), two types of luma intra macro block is

supported. One is for 4x4 prediction mode ,called I4MB and the other is for 16x16

43

prediction mode, called I16MB. There are nine prediction types in I4MB (Fig. 33) and

four in I16MB (Fig. 34). The nine prediction types in I4MB are dc mode, and eight

direction modes. The four prediction types in I16MB are vertical mode, horizontal

mode, dc mode, plane mode. The plane mode is a bilinear approaching method to

calculate the predictor. The predictor is calculated by 13 reconstructed boundary

pixels.

For every luma intra macro blocks choose I4MB or I16MB type generating

minimal SAD for encoding. The intra prediction of two chroma components is similar

to luma I16MB. The only difference between it is block size. The block size of intra

prediction for chroma components is 8x8. And they also choose one intra prediction

mode from 4 modes.

X A B C D E F G H

I a b c d

J e f g h

K i j k l

L m n o p

0

1

43

57

8

6

M A B C D E F G H

I a b c d

J e f g h

K i j k l

L m n o p

0

1

43

57

8

6

Fig. 32. idea of intra prediction

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

0 (vertical) 1 (horizontal) 3 (diagonal down-left) 4 (diagonal down-right)

5 (vertical-right) 6 (horizontal-down) 7 (vertical-left) 8 (horizontal-up)
Fig. 33. I4MB prediction mode besides dc prediction

44

M A B C D E F G H
I
J
K
L

M A B C D E F G H
I
J
K
L

MEAN

H

V

H

V

H

V

H

V

H

V

H

V

H

V MEAN

H

V

H

V MEAN
H

V

H

V

H

V

2 (DC)

2 (DC)

0 (vertical) 1 (horizontal)

3 (plane)

Fig. 34. I16MB predictions mode and one I4MB dc prediction

4.3.2 Proposed architecture of intra compensation
In the proposed architecture, we have two hardware components to support all

I4MB modes and DC prediction mode in I16MB. The remaining modes, I16MB

vertical mode, I16MB horizontal mode, I16MB plane mode and the chroma

prediction modes are implemented in software. To design a hardware module to

support vertical and horizontal prediction mode is meaningless since it just choose the

top or lest boundary pixels. In addition, designing plane mode in hardware is too

complicated and the cost is huge. Therefore, we have decided to put them in software.

4.3.3 Eight directions of I4MB mode
The equation of I4MB except vertical and horizontal mode is shown from Eq.2 to

equation 9. We can summary up the equation to Table 3. With the observation, the

operation of equations all sum up with at most three digits from neighboring pixels

(upper row of left column) and multiply with 2. Since multiplication with 2 is easy to

implement, we can add 1 bit zero to the data bus and achieve the goal. However, the

critical problem is to choose corresponding boundary pixels according to the address

of predictor in 4x4 array and modes. Therefore, we use one complicated neighbor

pixels selector, three adders and one shifter to calculate the predictor. The task of the

45

selector, which is composed of lots of multiplexers, is to choose the corresponding

boundary pixels with specific address and mode. We use a table to record the state for

each address and mode to implement this complicated selector. A counter is used to

count the x, y coordinate transmited to the selector for input information. The

architecture is illustrated in Fig. 35. Each instance of the module is able to output one

predictor in one clock. Four instances of the module is used to generate 4 outputs in

one clock. It means that we need 4 clocks to generate all 16 predictors for I4MB.

If x==3 && y==3

Pred4x4[3,3] = (p[6,-1] + 3*p[7,-1] +2) >>2

else

Pred4x4[x,y] = (p[x+y,-1] + 2*p[x+y+1,-1] + p[x+y+2,-1]+2) >>2

Eq. 4. equation of mode 3 in I4MB

If x > y

Pred4x4[x,y] = (p[x-y-2,-1] + 2*p[x-y-1,-1] + p[x-y,-1]+2) >>2

else if x < y

Pred4x4[x,y] = (p[-1,y-x-2] + 2*p[-1,y-x-1] + p[-1,y-x]+2) >>2

else

Pred4x4[x,y] = (p[0,-1] + 2*p[-1,-1] + p[-1,0] +2) >>2
Eq. 5. equation of mode 4 in I4MB

46

zVR=2*x-y

If zVR == 0,2,4,6

Pred4x4[x,y] = (p[x-(y>>1),-1] + p[x-y-1,-1] + 1) >>1

else if zVR== 1,3,5

Pred4x4[x,y] = (p[x-(y>>1)-2,-1] + 2*p[x-(y>>1)-1,-1] + p[x-
(y>>1),-1] +2) >>2

Else if zVR == -1

Pred4x4[x,y] = (p[-1,0] + 2*p[-1,-1] + p[0,-1] +2) >>2

Else if zVR == -2 or -3

Pred4x4[x,y] =(p[-1,y-1])+2*p[-1,y-2]+p[-1,y-3]+2)>>2

Eq. 6. equation of mode 5 in I4MB

zHD=2*y-x

If zHD == 0,2,4,6

Pred4x4[x,y] = (p[-1,y-(x>>1)-1] + p[-1,y-(x>>1)] + 1) >>1

else if zHD== 1,3,5

Pred4x4[x,y] = (p[-1,y-(x>>1)-2] + 2*p[-1,y-(x>>1)-1] + p[-
1,y-(x>>1)] +2) >>2

Else if zHD == -1

Pred4x4[x,y] = (p[-1,0] + 2*p[-1,-1] + p[0,-1] +2) >>2

Else if zHD == -2 or -3

Pred4x4[x,y] =(p[x-1,-1])+2*p[x-2,-1]+p[x-3,-1]+2)>>2
Eq. 7. equation of mode 6 in I4MB

If y == 0,2

Pred4x4[x,y] = (p[x+(y>>1),-1] + p[x+(y>>1)+1,-1] + 1) >>1

else

Pred4x4[x,y] = (p[x+(y>>1),-1] + p[x+(y>>1)+1,-1] +
p[x+(y>>1)+2,-1] +2) >>2

Eq. 8. equation of mode 7 in I4MB

47

zHU=x+2*y

If zHU == 0,2,4

Pred4x4[x,y] = (p[-1,y+(x>>1)] + p[-1,y+(x>>1)] +1) >>1

else if zHU== 1,3

Pred4x4[x,y] = (p[-1,y+(x>>1)] + 2*p[-1,y+(x>>1)+1] + p[-
1,y+(x>>1)] +2) >>2

Else if zHD == 5

Pred4x4[x,y] = (p[-1,2] + 3*p[-1,3] +2) >>2

Else if zHD >5

Pred4x4[x,y] =p[-1,3]

Eq. 9. equation of mode 8 in I4MB

B
oundary pixel

selector

＋＋
＋＋

<<1
shifter＋＋

round

shift

counter

Fig. 35. The architecture of intra compensation.

48

mode X Y equation mode X Y equation

3 0 0 A+2*B+C 4 0 0 A+2*M+I

3 0 1 B+2*C+D 4 0 1 M+2*I+J

3 0 2 C+2*D+E 4 0 2 I+2*J+K

3 0 3 D+2*E+F 4 0 3 J+2*K+L

3 1 0 B+2*C+D 4 1 0 M+2*A+B

3 1 1 C+2*D+E 4 1 1 A+2*M+I

3 1 2 D+2*E+F 4 1 2 M+2*I+J

3 1 3 E+2*F+G 4 1 3 I+2*J+K

3 2 0 C+2*D+E 4 2 0 A+2*B+C

3 2 1 D+2*E+F 4 2 1 M+2*A+B

3 2 2 E+2*F+G 4 2 2 A+2*M+I

3 2 3 F+2*G+H 4 2 3 M+2*I+J

3 3 0 D+2*E+F 4 3 0 B+2*C+D

3 3 1 E+2*F+G 4 3 1 A+2*B+C

3 3 2 F+2*G+H 4 3 2 M+2*A+B

3 3 3 G+3H 4 3 3 A+2*M+I

mode X Y equation mode X Y equation

5 0 0 A+M 6 0 0 M+I

5 0 1 A+2*M+I 6 0 1 I+J

5 0 2 J+2*I+M 6 0 2 J+K

5 0 3 K+2*J+I 6 0 3 K+L

5 1 0 A+B 6 1 0 A+2*M+I

5 1 1 M+2*A+B 6 1 1 M+2*I+J

5 1 2 M+A 6 1 2 I+2*J+K

5 1 3 A+2*M+I 6 1 3 J+2*K+L

5 2 0 B+C 6 2 0 B+2*A+M

5 2 1 A+2*B+C 6 2 1 M+I

5 2 2 A+B 6 2 2 I+J

5 2 3 M+2*A+B 6 2 3 J+K

5 3 0 C+D 6 3 0 A+2*B+C

5 3 1 B+2*C+D 6 3 1 A+2*M+I

5 3 2 B+C 6 3 2 M+2*I+J

5 3 3 A+2*B+C 6 3 3 I+2*J+K

mode X Y equation mode X Y equation

7 0 0 A+B 8 0 0 I+J

7 0 1 A+2*B+C 8 0 1 J+K

7 0 2 B+C 8 0 2 K+L

7 0 3 B+2*C+D 8 0 3 L

7 1 0 B+C 8 1 0 I+2*J+K

7 1 1 B+2*C+D 8 1 1 J+2*K+L

7 1 2 C+D 8 1 2 K+3*L

7 1 3 C+2*D+E 8 1 3 L

7 2 0 C+D 8 2 0 J+K

7 2 1 C+2*D+E 8 2 1 K+L

7 2 2 D+E 8 2 2 L

7 2 3 D+2*E+F 8 2 3 L

7 3 0 D+E 8 3 0 J+2*K+L

7 3 1 D+2*E+F 8 3 1 K+3*L

7 3 2 E+F 8 3 2 L

7 3 3 E+2*F+G 8 3 3 L
Table 3. Equation of I4MB except for vertical and horizontal modes

49

4.3.4 DC mode for I4MB mode and I16MB
The dc mode uses the average of boundary pixels as the predictor. Since the

computation of the I4MB dc mode and the I16MB dc mode are the same, we use one

hardware module with six adders and one accumulator to calculate it (Fig. 36). It

takes 4 cycles to finish the computation for I16MB and one cycle for I4MB. Before

outputting the result, rounding and clipping the result is a necessary procedure since

the range of predictor lies within [0,255]. Therefore, for dc mode in I4MB, it cost 1

cycle to output the result and 4 cycles for I16MB. The timing diagram is shown in Fig.

37 and Fig. 38

4 cycles

top0

top1

top2

top3 rounding

left0

left1

left2

left3

ACC

1 cycles

16x16

4x4

＋＋

＋＋

＋＋

＋＋

＋＋

＋＋

Fig. 36. architecture of dc mode for I4MB and I16MB

Fig. 37. timing diagram for I4MB dc mode

50

Fig. 38. timing diagram for I16MB dc mode

51

5. Experimental results

In this section, some experiments are conducted on an SoC emulation platform for

an H.264 intra-only decoder (with both software FUs and hardware FUs). The test

bitstream is the FOREMAN sequence in QCIF resolution coded at 64K bps. This

chapter is organized as follows. First, the emulation platform, ARM integrator, is

introduced. Secondly, the synthesis report of hardware functional units is presented.

Finally, the performance analysis will be discussed.

5.1 Emulation platform

Design of Soc is much complicated than traditional ASIC design. Therefore, a

complete development environment is necessary. We choose ARM INTEGRATOR

[22] for our emulation platform. The architecture of arm integrator is shown in Fig. 39.

and it is composed of three parts. ASIC Platform (AP)[28], Core Module (CM)[27],

and Logic Module (LM)[29]. Each of them will be presented in the followings.

CM
Controller

ARM

SDRAM

FPGA SSRAM

Arbiter
AHB

AHB
AHB

APB
bridge

SSRAM
controller

SSRAM

PCI
bridge

CM

AP

LM

FPGA

Fig. 39. architecture of arm integrator

52

5.1.1 Integration board (Arm integrator/AP)
The AP is responsible for connecting between CM and LM. It’s shown in Fig. 40.

The main component of AP is the system controller FPGA. The system controller

FPGA contains several components as followings

 Connector between CM and LM
 AHB bus arbiter
 AHB bus decoder
 Interrupt controller
 Peripheral controller
 System state and control register

Fig. 40. connection between CM and LM

The AP support the connection between core module and logic module. Our HW

functional units are implemented in LM and our GCU, software functional units are

running on CM contains a ARM9 processor.

5.1.2 Core module (CM)

Our software functional units and GCU are running on core module. It is

composed with followings (Fig. 41).

 ARM9 core

53

 Core FPGA

i. SDRAM controller

ii. System bridge

iii. Reset controller

 256KB SSRAM

 Clock generator

 System bus connector

 Multi-ICE interface

Fig. 41. Block diagram of CM

Core module is a master device in AHB bus and communicates with each master

logic (HW functional unit) in logic module.

5.1.3 Logic module (LM)

The version of our logic module is Xilinx virtex 2000E. The block diagram is

shown in Fig. 42. It is composed with followings.

 Xilinx FPGA virtex 2000E

 1 MB ZBT SSRAM

 LED

 System bus connector

 LA connector

54

 MULTI-ICE interface

Fig. 42. Block diagram of LM

Our hardware functional units are implemented in LM. All HW functional units

are master devices.

5.1.4 memory map for arm integrator

The system memory map on arm integrator is shown in Fig. 43. The original

SSRAM is substituted with our scratch-pad memory in LM (Fig. 18). And we

organize the LM register in Fig. 44. The register file is composed of enabling register

responsible for enabling/disable our hardware functional units, DMA parameters

which are passing source address destination address and size of data transfer, inverse

transform and inverse quantizer register which are setting these modules, such as type

of transform(inverse integer transform or inverse hadamard transform), value of

QP…etc.

55

Core moduel
Memory and
peripherals

PCI

Core module
Alias memory

Logic module 0

Logic module 1

Logic module 2

Logic module 3

Bus error

SSRAM
Interrupt
conroller

LM register

0xC0000000

0xD0000000

0xE0000000

0xF0000000

0xC0000000

0xC1000000

0xC2000000

0xC20FFFFF

0xCFFFFFFF

Fig. 43. memory map for arm integrator

unused QP Quant-1
flag

Trans-1

flag

24 bits 5 bits 1 bits 1 bits

ILF
flag

DMA
flag

1 bits 1 bits 1 bits

Inv-trans
flag

Inv-quan
flag

1 bits

DMA_SADDR

DMA_TADDR

DMA_count

DMA parameter

Other modules

parameter

Enabling register0xC0001314

0xC0001318

0xC000131C

0xC0001320

0xC0001324 luma

1 bits

Fig. 44. Parameter register for hardware functional unit

5.2 Synthesis report for hardware functional units

Our target version of FPGA is Xilinx virtex2000E,FG 680, and the synthesis tool

is Synplify Pro 8.6. Placing and routing are used Xilinx ISE 7.1. The overall report is

shown in Table 4.

56

NA

1/1 output/clk
(I4MB)
1/5 output/clk
(I16MB)

335 LUTS

134 MHZ

Intra comp. 2
(DC mode)

NA

4/2
(output/clk)

868 LUTS

76 MHZ

Deblocking filter

NA

4/1 output/clk

1102 LUTS

185 MHZ

Intra comp. 1
(other modes)

96 words by 14 bits
52 words by 5 bits
52 words by 3 bits

2x16x16 bitBlock ram
usage

16/9
(output/clk)

476 LUTS

90 MHZ

Integer
transform-1/
Hadamard-1

1/1 (output/clk)

274 LUTS(0%)
without
MULT 18x18 blocks

Combinational (N/A)

Inv quantizer

Bandwidth

Gates count

Clock rate

Module name

NA

1/1 output/clk
(I4MB)
1/5 output/clk
(I16MB)

335 LUTS

134 MHZ

Intra comp. 2
(DC mode)

NA

4/2
(output/clk)

868 LUTS

76 MHZ

Deblocking filter

NA

4/1 output/clk

1102 LUTS

185 MHZ

Intra comp. 1
(other modes)

96 words by 14 bits
52 words by 5 bits
52 words by 3 bits

2x16x16 bitBlock ram
usage

16/9
(output/clk)

476 LUTS

90 MHZ

Integer
transform-1/
Hadamard-1

1/1 (output/clk)

274 LUTS(0%)
without
MULT 18x18 blocks

Combinational (N/A)

Inv quantizer

Bandwidth

Gates count

Clock rate

Module name

Table 4. synthesis report of HW functional units

5.3 Performance analysis

MPEG test bitstream FOREMAN is decoded using the proposed RVC framework.

Both ARM 9 in the core module and LM are running at 25 MHZ. However the

communication overhead between the CM and LM is very high. It is illustrated in Fig.

45. Network of functional units are composed of software and hardware functional

units. Therefore, communication between CM and LM ca not be avoided. However,

every data transfer between each other has to go through bus controller in AP which is

implemented in FPGA. Besides, the board-level connections between CM, AP, and

LM also limit the speed of the bus and data transfer. According to our experiments, it

takes 20 to 30 cycles to transfer 32 bits of data. The evaluation time of functional

units are shown in Table 5. Inverse integer transform, inverse hadamard transform,

inverse quantizer, and intra compensation are discussed in chapter4. The deblocking

filter is based on Pens’s design [26]. It is obvious that the computation time of HW

FUs are much faster then the SW FUs. However, the communication overhead is too

high due to the limitation of the ARM Integrator.

57

Processor
Core module

Bus controller
(FPGA)

FPGA for
HW Loigc

Fig. 45. Communication between CM and LM

317 ms972 ms1858 msIntra compensation
65 ms2320 ms7326 msDeblocking filter
435 ms2687 ms4224 msInv-qnantize
247 ms3447 ms6309 msInv-Transform

Computation
time

Communication
Overhead

RVC (with HW FU’s)RVC (SW FU’s only)

317 ms972 ms1858 msIntra compensation
65 ms2320 ms7326 msDeblocking filter
435 ms2687 ms4224 msInv-qnantize
247 ms3447 ms6309 msInv-Transform

Computation
time

Communication
Overhead

RVC (with HW FU’s)RVC (SW FU’s only)

Table 5. evaluation time of functional units

The performance comparison between RVC with pure SW functional units and

optimized H.264 SW decoder is shown in Table 6. The optimized H.264 SW decoder

used in this experiment is not the H.264 JM reference software [30]. It is an H.264

decoder developed in MMES LAB, NCTU and it is much faster than the JM software.

We can see that the overhead of our proposed RVC framework is very small and it

cost 2% more than a traditional SW decoder.

100%Optimized SW decoder

102%RVC (pure SW)

Overall execution time

100%Optimized SW decoder

102%RVC (pure SW)

Overall execution time

Table 6. Performance comparison

58

59

6. Conclusion and Future work

In this thesis, we propose an SoC architecture that supports MPEG Reconfigurable

Video Coding framework. Based on the experimental results, the overhead of the

proposed RVC architecture can be very small with proper bus bandwidth.

It is important to point out that the purpose of the RVC framework is not to obtain

the most efficient design of a single codec, but to allow a flexible and extensible

design of codec systems. Multi-standard codec support (or even generating

customized codecs on-the-fly) can be achieved by configuring a new GCU via a new

decoder description.

An example is shown in Fig. 46. When a new codec is constructed by replacing

the MPEG-4 DC/AC prediction tool with the AVC Intra prediction tool, we only need

to change the data path between FUs. Of course, here we assume both tools are in the

codec toolbox of the chip. In traditional hard-wired HW approach, in order to decode

a bitstream of a new codec, one has to redesign the whole HW. The main advantage of

RVC is flexibility and quick adaptation to new multimedia standards.

Quant

CC

Quant

CC

DCT

CC

DCT

CC

AVC
Intra Pred.

CC

AVC
Intra Pred.

CC

YCbCr
To

MB data

RLC FU
VLC FU
IS FU

DC-1

CC

DC-1

CC

AC-1

CC

AC-1

CC

IScan

CC

IScan

CC

IQuant

CC

IQuant

CC

IDCT

CC

IDCT

CC

AVC
Intra Pred.

CC

AVC
Intra Pred.

CC

VLD FU
RLD FU

MB data
To YCbCr

FU

GCU

New intra-only encoder

Fig. 46. Construct a new decode on-the-fly

There are still quite some improvements that can be made to the proposed RVC

framework. For example, the memory allocator only manages scratch-pad memory in

current implementation. However, in a complicated SoC platform, there are different

kinds of memory, such as flash, SDRAM, and SRAM. One improvement is that

memory allocator can manage several kinds of memory according to their

characteristics. In addition, we can add other video coding tools into the toolbox so

that other codecs such as MPEG1/2/4 and VC-1 can be supported.

60

61

7. Reference

[1] E. S. Jang, K. Asai, and C.-J. Tsai, Study of Video Coding Tool Repository v5.0,
MPEG Meeting Document N7329, Poznan, July 2005.

[2] C.-J. Tsai, Suggestions on the Direction of VCTR, MPEG Input Document
M12074, Busan, April, 2005.

[3] ISO/IEC MPEG Video Group, Final Call for Proposals on Reconfigurable Video
Coding, MPEG Meeting Document N8070, Montreux, April 2006.

[4] J. Janneck et al., Moses Tool Suite, https://sourceforge.net/projects/mosestoolsuite/.
[5] Lin, C.-C. ,Chen, J.-W. ,Chang, H.-C. ,Yang, Y.-C. ,Yang, Y.-H. O. ,Tsai, M.-C.,

Guo, J.-I., Wang, J.-S. ,A 160K Gates/4.5 KB SRAM H.264 Video Decoder for
HDTV Applications, ISSCC 2007

[6] Kuan-Hung Chen ,Jiun-In Guo ,Jinn-Shyan Wang ,A high-performance direct
2-D transform coding IP design for MPEG-4AVC/H.264, IEEE Transactions on
Circuits and Systems for Video Technology 2006

[7] Yu-Wen Huang,Bing-Yu Hsieh,Tung-Chien Chen,Liang-Gee Chen “Analysis,
fast algorithm, and VLSI architecture design for H.264/AVC intra frame coder”,
IEEE Transactions on Circuits and Systems for Video Technology,2005

[8] Chin-Jen Yang, Bin-Da Liu,Jar-Ferr Yang, “Implementation of JPEG Multimedia
system with HW/SW co-design on SoC Development Platform,” NCKU 2002

[9] Kui Zhang and Josef Kittler, “Framework for dynamically reconfigurable video
codec using multiple coding tools,” Broadband European Networks and
Multimedia Services 1998

[10] Sunyoung Lee, Hyungyu Kim, “Proposed Updates of RVC Working Draft 1.0,”
MPEG input document 2006.

[11] Horowitz, M., Joch, A. , Kossentini, F. ,Hallapuro, A. ,”H.264/AVC baseline
profile decoder complexity analysis”, IEEE Transactions on Circuits and
Systems for Video Technology 2003.

[12] Denolf, K., De Vleeschouwer, C., Turney, R., Lafruit, G., Bormans, J. ,”Memory
centric design of an MPEG-4 video encoder”, IEEE Transactions on Circuits and
Systems for Video Technology 2003.

[13] H. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky, “Low-complexity
transform and quantization in H.264/AVC,” IEEE Trans. Circuits Syst. Video
Techno.., vol. 13, no. 7, pp. 598–603, Jul. 2003.

[14] T. Wedi, “Motion Compensation in H. 264/AVC”, IEEE Trans. Circuits System
Video Technology 2003

https://sourceforge.net/projects/mosestoolsuite/

62

[15] Yueh-Yi Wang ,Yan-Tsung Peng ,Chun-Jen Tsai “VLSI architecture design of
motion estimator and in-loop filter for MPEG-4 AVC/H.264 encoders”, ISCAS
2004

[16] Miao Sima, Yuanhua Zhou, Wei Zhang ,“An efficient architecture for adaptive
deblocking filter of H.264/AVC video coding”, IEEE Transactions on Consumer
Electronics,2004

[17] Wu Di, Gao Wen, Hu Mingzeng, Ji Zhenzhou, “A VLSI architecture design of
CAVLC decoder”, ASIC, 2003. Proceedings. 5th International Conference on,
IEEE Transactions on

[18] Yao-Chang Yang, Chien-Chang Lin, Hsui-Cheng Chang, Ching-Lung Su, Jiun-In
Guo, “A High Throughput VLSI Architecture Design for H.264 Context-Based
Adaptive Binary Arithmetic Decoding with Look Ahead Parsing”,IEEE
International Conference on Multimedia and Expo,2006

[19] AMBA Specification 2.0, ARM Limited, 1999.
[20] R. Peset Llopis , R. Sethuraman “A Low-Cost and Low-Power Multi-Standard

Video Encoder”, Proceedings of the 1st IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis,2003

[21] T.-C Chen, Y.-W. Huang, and L.-G. Chen, “Analysis and design of macroblock
pipelining for H.264/AVC VLSI architecture,” Proc. of IEEE ISCAS 2004, Kobe,
2004.

[22] http://www.arm.com/products/DevTools/IntegratorAP.html
[23] S. Lee, E. S. Jang, M. Matavelli, C. –J. Tsai, Working Draft of ISO/IEC 23001-4:

Codec Configuration Representation, MPEG Meting Document N8762,
Marrakech, Jan. 2007.

[24] Joint Video Team, Draft ITU-T Recommendation and Final Draft International
Standard of Joint Video Specification, ITU-T Rec. H.264 and ISO/IEC 14496-10
AVC, April 2005

[25] Wiegand, T. Sullivan, G.J. Bjntegaard, G. Luthra, A., Overview of the
H.264/AVC video coding standard, IEEE Transactions on Circuits and Systems
for Video Technology 2003.

[26] Y-T Peng, VLSI architecture for the in-loop filter of H.264 Video codec, 2004
NCTU

[27] ARM Integrator Core Module/920-T User Guide, ARM Ltd. April 2001
[28] ARM Integrator AP User Guide, ARM Ltd., April 2001
[29] ARM integrator LM-XCV2000E User Guide, ARM Ltd., 2002
[30] JM reference software http://iphome.hhi.de/suehring/tml/

http://www.arm.com/products/DevTools/IntegratorAP.html
http://iphome.hhi.de/suehring/tml/

	1. Introduction
	1.1 Introduction to MPEG RVC Framework

	2. Previous Works
	2.1 Traditional ASIC design approach
	2.2 SoC architecture for multimedia system
	2.3 Reconfigurable video coding
	2.3.1 RVC Proposal from Hanyang University
	2.3.1.1 Decoder description (DD)
	2.3.1.2 Mechanism of decoding the bitstream

	3. Proposed RVC Framework
	3.1 SoC architecture of the propose RVC framework
	3.2 Propose RVC framwrok
	3.2.1 Design of Global Control Unit
	3.2.1.1 architecture of GCU
	3.2.1.2 Mechanism of GCU

	3.2.2 Memory allocator

	3.3 Implementation of FUs in the propose RVC framework

	4. Design of hardware functional units
	4.1 Introduction to H.264/AVC decoding
	4.2 Design of inverse transform and inverse quantizer
	4.2.1 Architecture of inverse integer transform
	4.2.2 Architecture of the 4x4 inverse hadamard transform
	4.2.3 Architecture of the inverse quantizer

	4.3 Design of intra compensation
	4.3.1 Intra prediction
	4.3.2 Proposed architecture of intra compensation
	4.3.3 Eight directions of I4MB mode
	4.3.4 DC mode for I4MB mode and I16MB

	5. Experimental results
	5.1 Emulation platform
	5.1.1 Integration board (Arm integrator/AP)
	5.1.2 Core module (CM)
	5.1.3 Logic module (LM)
	5.1.4 memory map for arm integrator

	5.2 Synthesis report for hardware functional units
	5.3 Performance analysis

	6. Conclusion and Future work
	7. Reference

