

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

嵌 入 式 系 統 雙 指 令 J A V A 處 理 器 設 計

A Double-Issue JAVA Processor Design for Embedded Applications

研 究 生：柯厚任

指導教授：蔡淳仁 教授

中 華 民 國 九 十 六 年 六 月

 1

嵌入式系統雙指令 JAVA 處理器設計

A Double-Issue JAVA Processor Design for Embedded Applications

研 究 生：柯厚任 Student：Hou-Jen Ko

指導教授：蔡淳仁 Advisor：Chun-Jen Tsai

國 立 交 通 大 學

資 訊 科 學 系

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年六月

 2

A Double-Issue JAVA Processor Design for Embedded
Applications

Abstract

Java applications for embedded systems are becoming popular today.

CLDC/MIDP is the standard application platform for mobile phones while CDC/PBP

is the emerging application platform for next generation digital TV set-top boxes.

Although software-based Java Virtual Machines (VM) are prevalent, most of these

VMs require a host processor running at much higher clock rate than 300MHz to

reach reasonable performance. This is beyond the recommended specification of

handsets and set-top boxes. In this thesis, we have proposed a double-issue java

processor for embedded systems. The design is not tied to any host processors and can

be used as an efficient binary execution engine for a full Java Runtime Environment

implementation. When synthesized on a Virtex IV FPGA (4VFX12FF66-10), the RTL

model can reach over 100MHz and consumes less than 23% resources of the device.

 3

Acknowledgement

I would like to express my gratitude to all those who gave me the possibility to

complete this thesis. First, I would especially like to thank my advisor, Professor

Chun-Jen Tsai. He gives me a lot of motivation and suggestions. Also, he encourages

me to think in various viewpoints to analyze the issue and create new ideas. Then, I

appreciate the great help and comments from my seniors, juniors, and classmates.

During these days at National Chiao-Tung University, I enjoy the moments studying

with all MMES Lab members. Finally, I would like to thank my family for their

supports and encouragement.

 4

Content
I. Introduction..10

II. Previous Work ..13

1. Overview...13
2. Systems Using a Register File as a Stack Cache ..13
3. Systems Using On-chip Memory as a Stack Cache......................................16
4. Systems with a Two-level Stack Cache ..18
5. Other Designs..19

III. Proposed Processor Micro-Architecture..............22

1. Overview...22
2. Translation Stage...23
3. Fetch Stage..24
4. Decode Stage ..26
5. Execution Stage ..27
6. Memory Architecture ..28
7. Branch Behavior ...29

IV. Peoposed Instruction Set Architecture.................33

1. Overview...33
2. Data Path...35
3. Load Type Instruction ...37
4. Store Type Instruction...39
5. ALU Type Instruction ...40
6. Nop or Special Type Instruction ...42

6.1. If_cmp<cond>...42
6.2. if<cond>..43
6.3. interrupt...44
6.4. Miscellaneous instructions of the special type..................................46

V. Runtime Environment ...48

1. Overview...48
2. Simple Class Loader ...50
3. Java Runtime Image..50

 5

3.1. Global Format ...50
3.2. Constant Pool Info ..51
3.3. Field Info...53
3.4. Method Info ..53

4. Initialization of a Java Application for Execution ..54

VI. Verification of the System......................................55

1. Synthesis and Co-design Tools ...55
1.1. Synplify Pro ..55
1.2. EDK – Embedded Development Kit...55

2. Emulation Platform: The Xilinx ML403 Board..57
3. The Test Program..57
4. Experimental Results ..58

VII. Discussions ...60

VIII. Reference ..61

 6

List of Figures

Fig.1. Sun’s picoJava..14
Fig.2. Generic Register File Approach...15
Fig.3. N:1 MUX Gate counts ...16
Fig.4. Using On-chip Memory as a Stack Cache ...17
Fig.5. A Two-level Stack Cache Approach ..18
Fig.6. A Two-level Stack Cache with Double Issue...20
Fig.7. Gate counts for a Two-level Stack Cache with Double Issue Architecture21
Fig.8. Overall Java Processor Architecture ..23
Fig.9. Translation Stage..24
Fig.10. Fetch Stage...26
Fig.11. Decode Stage ...27
Fig.12. Data Path of Execution Engine ..28
Fig.13. Memory Architecture ...29
Fig.14. Store branch triggered address...30
Fig.15. Fetch_one occur ...30
Fig.16. The decode stage start to decode the branch operation..............................31
Fig.17. The branch operation occurs..32
Fig.18. Encoding patterns of different types of instructions33
Fig.19. Instruction fields that signals operand count ...35
Fig.20. Data Path..36
Fig.21. Values of immROM ...37
Fig.22. Special type operations ..42
Fig.23. A standard Java Runtime System...49
Fig.24. Proposed Java Runtime System...49
Fig.25. Runtime Class/Method Area ..50
Fig.26. Java Runtime Class Definition...51
Fig.27. Constant Pool Info ...51
Fig.28. Dynamic Resolution...52
Fig.29. Fast Resolution...53
Fig.30. Method Code Area ...54
Fig.31. Initialization of a Java Application ..54
Fig.32. Synplify Pro IDE..55
Fig.33. Embedded Development Kit..56
Fig.34. Overall Architecture...56
Fig.35. System Emulation with FPGA...57

 7

Fig.36. Compute Pi to 32 decimal points ...58
Fig.37. Experimental Result...59

 8

List of Tables

Table 1. Gate counts for basic functions..15
Table 2. Gate counts for the Register File Approach...16
Table 3. Gate counts for a On-chip Memory Approach...18
Table 4. Gate count for Two-level Stack Cache Architecture..................................19
Table 5. The type ID (atype) of elementary arrays ..45

 9

 10

I. Introduction

Java Runtime Environment (JRE) is adopted by many organizations

as the portable application platform for embedded systems such as mobile

phones and set-top boxes. In order to support a large variety of devices

while maintaining interoperability, Sun Microsystems has created the Java

2 Micro Edition (J2ME) specification and, under this framework, define

different profiles and configurations for different applications [1]. For mobile

phones, the Connected Limited Device Configuration (CLDC) with Mobile

Information Device Profile (MIDP) has become the standard environment

for Java applications. The virtual machine (VM) underneath CLDC/MIDP is

a reduced-capability version of Java VM, called KVM. For DTV set-top

boxes, the Connected Device Configuration (CDC) with Personal Basis

Profile (PBP) are adopted as the de facto standard application environment

[2]. The VM underneath CDC/PBP is a full capability VM. However, the

reference implementation of CDC/PBP from Sun Microsystems is a

specially engineered VM, called CVM, to facilitate porting to various

embedded platforms.

There are many performance issues for adopting Java for embedded

systems. First of all, object-oriented programs rely a lot on dynamic

memory allocation/de-allocation which is very inefficient for embedded

devices. Secondly, the Java VM model is based on a stack machine [3].

Excessive access of stack memory to store intermediate computation

results is very inefficient. Finally, most embedded systems use a RISC CPU

running at less than 300MHz as the host processor. The RISC architecture

 11

is usually not efficient for the execution of a software interpreter of a

byte-oriented machine language [4][5].

There have been many efforts to improve the performance of a Java

VM [4]. For embedded devices, software-based approaches such as

Just-in-Time[18][19] (JIT) compilation are less suitable since JIT compilers

requires extra memory and the overhead of the on-the-fly compilation

process is more noticeable and intrusive for embedded systems with slow

RISC processors. In jHISC[13], the object-oriented related instructions are

implemented by hardware directly, as a hardware-readable data structure

is used to represent the object. For hardware-based solution, there are

co-processor approaches (such as ARM Jazella[16]), hardware translation

logic[14][17][20][21] and java processor approaches [5][6]. An interesting

work is the Java processor, JOP, designed by Schoberl [5] since the

complete RTL model (written in VHDL) is available to general public. JOP

defines its own Java profile/configuration, which is closer to CLDC than a

full JVM. The RTL model of JOP has been ported to many devices.

However, the performance still has a lot of room for improvement. An

enhancement of JOP is a real-time Java processor executed Java

bytecode directly provides efficient support in hardware for mechanisms

specified in the RTSJ (the real-time specification for Java) and offers a

simpler programming model through ameliorating the scoped memory of

the RTSJ. The most important characteristic of the processor is that its

WCET (worst case execution time) of the bytecode execution is predictable.

It is vital for the real-time systems.

In this thesis, the design of a double-issue Java processor is proposed.

 12

The advantage of designing a stand-alone Java processor instead of a

co-processor is that the design will not be tied to certain host processor

interface. However, since a stack machine is not efficient for I/O and control

tasks, a general purpose host processor is still required to complete the

system. The key difference between the proposed Java processor and a

Java co-processor is that it communicates with the host via a common

memory-mapped interface, instead of a co-processor interface. The thesis

is organized as follows. Chapter II discusses some related design of Java

processors. The proposed double-issue Java processor architecture is

presented in chapter III and the proposed instruction set architecture is

presented in Chapter IV. Chapter V provides an overview to a full Java

Runtime Environment design and discusses how a Java processor can be

integrated into the environment. Finally, section VI describes the target

FPGA platform and shows the synthesis report and experimental result of

executing a Java class file using the synthesized model.

 13

II. Previous Work

1. Overview

In order to provide an efficient JRE for embedded applications, we

have chosen the Java processor approach to improve the performance.

There are many existing designs of Java processors. Since JVM is a

stack-based machine, the main differences among these designs are about

how the stack frames are implemented.

We classify the Java processors into three categories, that is, systems

that include a register file as a stack cache, systems with on chip memory

as a stack cache, and systems adopting a two-level stack cache. The

system architecture for each design is described below. In order to make

fair comparisons of their hardware costs, we assume that each system’s

data cache has the same size.

2. Systems Using a Register File as a Stack Cache

One of these designs is the picoJava [7] from Sun. There are many

enhancements based on picoJava. In Radhakrishnan et al. [12],

investigated ILP based on picoJava model. Sun’s picoJava contains 64

registers for stack cache which are organized as a circular buffer. This

architecture is shown in Fig.1. It also contains a data cache with automatic

spill and fill. Other design such as aJile’s JEMCore [8] contains 24 register

entries. Only six of them cache the top elements of the stack. Ignite [9]

processor has an operand stack which contains 18 registers entries.

 14

1 2 3 4 5
6

7
8

9
10

11

12

13

14

15

16

17

18

19

20

21

22
23

24
25

26
27

28
29

303132333435
36

37
38

39
40

41
42

43

44

45

46

47

48

49

50

51

52

53

54
55

56
57

58
59

60
61

62 63 64

Growing Shrinking

Execution U
nit

D
ata cache

Spill

Fill

Fig.1. Sun’s picoJava

These designs have four pipelining stages.

IF : Instruction Fetch

ID : Instruction Decode

EX : Read Data from registers and Execute

WB : Write the result back to registers

With this architecture, the register file requires three read and two

write ports. ALU operations can simultaneously read out two operands and

write back one result. Concurrent background spill and fill operations keep

the stack cache consistent with the top entries of the stack. The

architecture for a generic register file approach is shown in Fig.2, and the

rough gate count for each logic component is shown in Table 1.

 15

Reg1

Reg2

…
…

…
…

…
…

RegN

Reg3

…
…

… Data Cache

Result buffer

Fig.2. Generic Register File Approach
Basic Function Gate counts

D-Flip-Flop 5
2:1 MUX 3
4:1 MUX 5
8:1 MUX 9
SRAM Bit 1.5

Table 1. Gate counts for basic functions

We assume that this processor contains N registers as a circular

buffer. So it has N+1 2:1 MUXs and 3x32 N:1 MUXs. The formula

calculating gate counts of N:1 MUX is shown in Fig.3. Let the gate count for

an N:1 MUX be G. The gate counts of all the MUXs are (N+1)x3 + 3x32xG.

The other sequential logics such as the registers and the data cache are

composed of (N+1)x32x5 and 1.5x(number of bits) gates, respectively. The

approximated result is listed in Table 2.

 16

int gates = 0;
for(int i = N; i > 1;){

if (i / 8 != 0){
gates += (i / 8 * 9);
i = ((i / 8) + (i – (i / 8) * 8));

}
else if(i / 4 != 0){

gates += (i / 4 * 5);
i = ((i / 4) + (i – (i / 4) * 4));

}
else{

gates += (i / 2 * 3);
i = ((i / 2) + (i – (i / 2) * 2));

}
}

Fig.3. N:1 MUX Gate counts

Function block Gate counts
Registers (N+1)x32x5
Data Cache 1.5x(spaces)
MUXs (N+1)x3 + 3x32xG

Table 2. Gate counts for the Register File Approach

For example, Sun’s picoJava has 64 register file as a stack cache.

Assume that it uses a 128x32 bits data cache, the approximated gate

counts exclude ALU is 24515.

In JEMCore [8], only six registers are used to cache the top elements

of the stack. This design decreases gate counts to about 11915 gates

(assume that the data cache space is the same). Ignite [9] has 18 register

file as a stack cache and costs about 11449 gates.

3. Systems Using On-chip Memory as a Stack Cache

Komodo [10] and FemtoJava [11] use an on-chip memory as a large

stack cache. You can see in Fig.4 that a three-port memory is required to

 17

support the operation. There are five pipelining stages in their design:

IF : Instruction Fetch

ID : Instruction Decode

RD : Memory Read

EX : Read Data from registers and Execute

WB : Write the result back to registers

Stack
RAM

Result buffer

Read Addr 1

Read Addr 2

Write Addr

Write data

Forward
buffer

Fig.4. Using On-chip Memory as a Stack Cache

We can calculate gate counts in the same way as in the previous

section. The simplified gate count for basic function is shown in Table 1. It

has 3x32 2:1 MUXs and 32x4 registers. The approximated result is shown

in Table 3. We assume that it uses 128x32-bit data cache. Its gate counts

exclude ALU is about 7072. This approach is much smaller than previous

approach. However, it uses three-port memory for the design and the

hardware cost is much higher than the other approach. Although it can use

 18

two dual-ports RAM to emulate three-port memory, this solution still double

the amount of memory required.

Function block Gate counts
Registers 640
Data Cache 1.5x(spaces)
MUXs 288

Table 3. Gate counts for a On-chip Memory Approach

4. Systems with a Two-level Stack Cache

Schoberl [5] presented the Java Optimized Processor (JOP) adopting

a two-level stack cache. It uses two registers to store the top two elements

of the stack, and a dual-port RAM to store the rest of the stack elements. It

has three pipelining stages:

IF : Instruction Fetch

ID : Instruction Decode

EX : Read Data from registers and Execute

The architecture of JOP is depicted in Fig.5.

Stack
RAM

Read Addr

Write Addr

Write data

A

B

Fig.5. A Two-level Stack Cache Approach

 19

The gate counts of JOP can be estimated as follows. Roughly

speaking, the architecture can be implemented using 2x32 registers, 3x32

2:1 MUXs, 128x32 bits data cache, and an ALU. The gate count

approximations for each type of logic are shown in 0. The total gate count

excluding ALU is 6752. This approach is much smaller than the register file

approach and uses only one dual-port RAM for the design. It is more

suitable for embedded systems.

Function block Gate counts
Registers 320
Data Cache 1.5x(number of bits)
MUXs 288

Table 4. Gate count for Two-level Stack Cache Architecture

5. Other Designs

LavaCORE [22] uses a 32x32-bit dual-ported RAM to implement a

register-file. The Lightfoot [23] 32-bit core is a hybrid 8/32-bit processor

based on the Harvard architecture. Moon’s [24] stack folding is

implemented in order to reduce five memory cycles to three for instruction

sequences like push-push-add. Cjip [25][26] is a 16-bit CISC architecture

with on-chip 36KB ROM and 18KB RAM for fixed and loadable microcode.

Most of these designs are too complex for embedded systems.

In this thesis, we propose a two-level stack cache with double-issue

architecture for Java processor. We use three registers to store three top of

the stack elements. “A” is top of the stack, “B” is the 2nd top of the stack,

and “C” is the third stack element from the top. The other stack elements

are stored in two dual-port RAMs. There are four pipelining stages in our

design.

 20

TR : Bytecode fetch and translate on-the-fly

IF : Instruction Fetch

ID : Instruction Decode

EX : Read Data from registers and Execute

Stack
RAM

Read Addr1

Write Addr1

Write data1

A

Stack
RAM

Read Addr2

Write Addr2

Write data2

B

C

Fig.6. A Two-level Stack Cache with Double Issue

The design contains 10x32 2:1 MUXs, one 4:1 MUX, and 3x32

registers. The approximated gate count is shown in 1. We also assume that

it uses 128x32-bit data cache. The total gate count excluding ALU is 7584.

The gate count of this design is a little more than the two-level stack cache

design used in JOP. However, JOP uses single issue architecture while the

proposed design adopts double-issue architecture. Therefore, the

computation ability is much higher than that of JOP.

 21

Function block Gate counts
Registers 480
Data Cache 1.5x (number of bits)
MUXs 965

Fig.7. Gate counts for a Two-level Stack Cache with Double Issue
Architecture

 22

III. Proposed Processor Micro-Architecture

1. Overview

In this section, the detail design of a double-issue Java Processor is

presented. For a double-issue processor, two machine instructions are

executed per cycle. It is important to point out that a Java processor in

general does not execute bytecodes directly because some bytecodes are

much more complex than a traditional machine instruction. Therefore, for

the proposed processor, the native instruction set (referred to as the

microcodes, following the convention in [5]) is different from the bytecode

instruction set. A bytecode will be translated into one or more microcodes

on-the-fly. The proposed processor has a four-stage pipeline which is

shown in Fig.8. We have four pipelining stages :

TR : Bytecode fetch and translate on-the-fly

IF : Instruction Fetch

ID : Instruction Decode

EX : Read Data from registers and Execute

 23

Translate Fetch Decode Execute

JPC
++

Delay_tmp1

‘1’

branchfetch_one

wait_opd

opd_cnt

control

jpc_sel
Fetch.jpc_offset

translated

bytecodes

Fig.8. Overall Java Processor Architecture

2. Translation Stage

The Java bytecodes are divided into simple bytecodes and complex

bytecodes. At the translation stage, each simple bytecode is translated into

a microcode, while a complex bytecode is translated into a pointer that

points to the address of a microcode sequence stored in ROM of the fetch

stage. A Java bytecode instruction may be followed by zero, one, or more

operand bytes. Therefore, it is not trivial to fetch two bytecode instructions

per cycle (along with the operand bytes) due to this variable length

instruction nature of Java bytecodes. Obviously, the instruction must be

decoded to some degree before the fetch stage so that the processor

knows how many bytes it has to fetch in order to retrieve two complete

instructions with operands. The translation module is designed to

classify-and-tag the bytecode streams so that the fetch module can identify

the number of bytes to fetch.

As shown in Fig.9, the translation module fetches two bytes at a time

from the bytecode section of the method area. Each byte is sent to the

 24

Translation ROM and the Type Manager logic. These two modules classify

the bytecode into one of three types, namely, one-to-one mapping,

one-to-many mapping, and operand. For the first two cases, the translation

ROM produces instruction data which could be a native microcode (for

one-to-one mapping) or an address (for one-to-many mapping). If the

translated instruction data is a microcode, it means that the Java bytecode

can be mapped to this Java Processor microcode. If the translated

instruction data is an address, the address will be used in the fetch stage to

retrieve the corresponding microcodes. At the same time, the Type

Manager will figure out how many operand bytes followed by this bytecode

and it will control the multiplexer to bypass the translation because operand

type is no need to translate.

Translate ROM

bytecode1

bytecode2

bytecode1

bytecode2

Type Manage

opd1 type1

type2

translated1

translated2

opd2
one1
one2

Fig.9. Translation Stage

3. Fetch Stage

After the translation stage, the translated instructions and the tags are

stored in the registers for pipelining stage, the fetch module (see Fig.10)

retrieves the translated values. At the fetch stage, the Controller module

determines the type of the two translated instruction/operand data to be

decoded, and it will control all multiplexers in the fetch stage.

 25

First, for every two instructions fetched, the second one is always

stored in a register first in case the processor could not execute two

instructions simultaneously. When this happens, the registered instruction

will be send to the decode unit, alone with the next translated instruction

fetched from the RAM.

Secondly, the mode register stores the current status to distinguish

between “simple bytecode mode” and “one-to-many mapping mode.” In the

simple bytecode mode, the fetch stage always fetches two translated

values from the translation module. A translated value could be a

microcode or an operand value. The translated value is stored to the

operand buffer of the Operand Manager if they are of operand type. In the

“one-to-many mapping” mode, the instruction is extracted from the

one-to-many instruction ROM table, indexed by the corresponding

translated instruction data, namely, an address. At the same time, this

address also adds to the offset value to index the next address and stores

the result to the address register. During one-to-many translation mode, the

instructions are fetched from the one-to-many instruction ROM. This mode

is maintained until the next signal is extracted from the one-to-many ROM

indicating that the microcode sequence of the complex bytecode instruction

is complete (This design is similar to that in [5]).

Finally, the last two signals, “decode.opd_cnt” and

“decode.fetch_one,” are the signals from the decode stage. The signal

“opd_cnt” indicates the number of bytes of the microcdes the decode stage

needs. The Type Management module will determine the opd_cnt value

and update the operand buffers. The other signal “fetch_one” indicates that

 26

the microcodes of the decode stage encountered a structure hazard that

the Java processor can not execute this combination of the two microcodes

in one cycle.

translated1

translated2

One to Many
ROM

Controllertype1[1:0]
type2[1:0]

address++
offset

trans1

Instr1

Instr2

next

decode.opd_cnt decode.fetch_one

trans2
nop

trans1
trans2

nop

next_mode

mode
Operand
Manager

operands

Fig.10. Fetch Stage

4. Decode Stage

At the fetch stage, two complete microcode instructions and the

operands that these microcodes need are fetched into the processor. The

next stage is the decode stage which is shown in Fig.11. The opd_cnt

signal is the number of bytes of operands that the microcode instructions

needed.

There are two immediate value ROMs at the decode stage because

we must support two immediate load operations. The tmp1 and tmp2

signals could represent various items: an immediate value, a stack address

of the RAM and an address of register bank. There is an advantage to

generate these addresses at the decode stage. Due to RAM read pipelining,

if the addresses are prepared early, the data will be read from the RAM

 27

without any wait cycle. So we do not store tmp1 and tmp2 signal in a

register. This signal is generated in the decode stage and associated

directly to the address of the stack RAM in the execution module. In the

next cycle, the value in the stack RAM is extracted without any read delay.

Other signals, such as data path control and store control are registered as

in the traditional pipeline design.

instr1

instr2
Decode

immROMInstr1[3:0]

Instr2[3:0]

Instr1[2:0]
opd_val ++

immROM

D_tmp1

opd_cnt

tmp1

D_tmp2

tmp2

0
vp

Instr2[2:0]
opd_val ++

0
vp

jpc

D_tmp2
jpc

branch_cal

datapath
Fig.11. Decode Stage

5. Execution Stage

The data path of the execution stage is shown in Fig.12. The top of

stack is store in the register labeled A. The top-1 and top-2 entries of the

stack are labeled B and C, respectively. Each operation is performed with

registers or load values as sources. This data path can handle parallel

execution of any combinations of two instructions except two ALU

operations because of the structure hazard. The load values could be from

the local variables or the stack data. When the stack pointer decreases, the

registers should update the values and the stack value needs to load from

the memory for more top values. On the other hand, when the stack point

 28

increase, the new value store to the top registers and the value that spill

from the register should be write back to the memory.

C

load_val2

ALU
A

B
ALU

RAMs load_val1

load_val2

SD1

SD2

A
C

load_val1

load_val2

ALUopd2
C

load_val1

ALU
B

ALU
ALUopd1

A
load_val1

B

AorC

ALUopd2
C
A

AorC

load_val2
B

Fig.12. Data Path of Execution Engine

6. Memory Architecture

In order to execute two instructions per cycle, the memory bandwidth

requirement would also increases. In the proposed design, two RAM

devices are used to serve this purpose (Fig.13). One of the RAM handles

memory requests for addresses with LSB 0, and the other one handles

requests for addresses with LSB 1. The read address or the stack pointer is

generated at the decode stage without any delay. There is a condition that

causes conflict between these two RAM devices. When two read and write

addresses have the same LSB value, it would try to access the same RAM

devices. Fortunately, the only condition for this case to happen is when two

operations try to load or store the local variables with the same LSB. The

probability of this scenario is relatively low, so we do not add extra logics to

support it. We simply avoid this condition at the decode stage, and it will not

happen at the execution stage.

 29

LSB0

rdaddr1

wraddr1

wrdata1

rddata1

LSB1

rdaddr2

wraddr2

wrdata2

rddata2

WE

WE

SD1
SD2

SD2
SD1

D_tmp1

load_val1

load_val2

tmp1[?:1]
tmp2[?:1]

D_tmp1[?:1]
D_tmp2[?:1]

tmp2[?:1]
tmp1[?:1]

D_tmp2[?:1]
D_tmp1[?:1]

SP

SP

WE1
WE2

WE2
WE1

SP[?:1]
1 ±±

D_tmp2

Fig.13. Memory Architecture

7. Branch Behavior

To implement the branch instruction, some sophisticated logic must be

used to control the Java program counter properly. When the fetch stage

encounters a branch instruction, it will store the address where the branch

operation occurs. The behavior is shown in Fig.14. Since two translated

native codes are fetched for decoding and execution each cycle, we have

to determine where the branch operation occurs. First, we know that during

the pipeline stage of translation, the JPC (Java Program Counter) is

delayed by two byte addresses than the current instruction. So we have to

decrease the JPC by two and determine whether the branch operation

happens at the first or the second instruction and record the address of the

branch operation.

 30

…. ….
instr1 goto
0x00 0x09
XXXX XXXX

XXXX

XXXX

Fetch

XXXX

XXXX

instrsopds

JPC
36

…. ….
instr3 instr4

instr1
goto

trigger
X

(36 – 2) + 1

Fetch stage encounter branch operation
Store the triggered JPC in trigger reg

LSB(JPC) of branch instr = 0
{(JPC >> 1 - ‘1’) , ‘0’}

LSB(JPC) of branch instr = 1
{(JPC >> 1 - ‘1’) , ‘1’}

34

Fig.14. Store branch triggered address

In the next cycle, like Fig.15, the branch instruction can not complete

its execution in one cycle because of the structure hazard, it will raise the

“fetch_one” signal. Due to the fact that the branch operation is not executed

right away, the current address must be store in a register.

…. ….
instr1 goto

instr1

goto

Fetch

XXXX

XXXX

instrsopds

JPC
38

…. ….
instr3 instr4

0x00
0x09

0x00 0x09
XXXX XXXX

X

Decode

tmp2

Decode
instr1 & nop

Fetch_one = 1trigger
35

34

Fig.15. Fetch_one occur

 31

One condition is shown in Fig.16. The branch operation is decoded in

the decode stage during which time the target address is calculated from

the operands and current program counter. The target address is stored in

the tmp2 register.

…. ….
instr1 goto
0x00 0x09
XXXX XXXX

goto

nop

Fetch

0x00

0x09

instrsopds

X

Decode

tmp2

Decode
goto & nop

Execute

Execute
instr1 & nop

JPC
3A

0x0009

…. ….
instr3 instr4

XXXX
XXXX

trigger
35

35+9

34

Fig.16. The decode stage start to decode the branch operation

Finally, as shown in Fig.17, when the branch operation is executed

and the execution stage determines that the branch occurs, the processor

clears all the registers of the fetch sage and the decode stage with the nop

operations and restore the destination address to the JPC so that the first

instruction at the target address will be fetched for execution. There is one

more thing that has to be taken care of. The LSB of the target address

should be zero due to the double-issue architecture used. If the LSB is one,

a “nop” instruction must be inserted (on-the-fly) to properly align the

succeeding instruction sequence.

 32

…. ….
instr1 goto
0x00 0x09
XXXX XXXX

XXXX

XXXX

Fetch

XXXX

XXXX

instrsopds

3E

Decode

tmp2

Decode
XXX & XXX

Execute

Execute
goto & nop

JPC
3C

…. ….
instr3 instr4

branch = 1

XXXX
XXXX

clearnop

trigger
35

34

Fig.17. The branch operation occurs

 33

IV. Peoposed Instruction Set Architecture

1. Overview

We use eight bits to represent an instruction. There are four

categories of instructions, including load, store, ALU, and nop-or-special

types. The first two bits of instruction encoding patterns determine the

categories of the instructions as illustrated in Fig.18.

00 XXXXXXload type

01store type

10ALU type

11nop or special

XXXXXX

XXXXXX

XXXXXX
Fig.18. Encoding patterns of different types of instructions

With double-issue architecture, the processor tries to issue two

instructions at each cycle. However, some instruction combinations will

cause structure hazard and should be avoided. First of all, the load-load

and store-store combinations which access the same RAM bank cannot be

executed simultaneously. Next, the ALU-ALU and load-ALU combinations

should be avoided in order to reduce the depth of the critical path. Finally,

some instructions will use all data paths cannot be combined with any other

instructions for execution. We refer to this type of instructions as the special

type. For example, if a small instruction sequence is composed of a load

instruction, a special type instruction, and an ALU operation, the processor

will handle the sequence as follows. In the first cycle, the load instruction

will be combined with the special type instruction and sent to the decode

stage simultaneously. The instruction decoder will find that the load-special

 34

combination cannot be executed concurrently. The decoder will insert a

nop (no-operation) instruction between the load and special type

instructions so that a load-nop combination, instead of a load-special

combination, is decoded for execution. The decoder will also raise the

fetch_one signal to the fetch stage (see the chapter of the Hardware

Architecture for more detail) to notify that the special type instruction is not

decoded so for next cycle, only one new instruction has to be fetched. In

the second cycle, the ALU instruction will be fetched and combined with the

previous special type instruction. The special-ALU combination will then be

sent to the decode stage for processing. Again, the decoder finds that the

special-ALU combination cannot be processed together. A special-nop

combination will be decoded and executed while the ALU instruction will be

retained for decoding next cycle.

Fig.19 shows the instruction fields for the operand count of each

instruction. The operands are retrieved from the instruction bytecode

sequence. Depending on the pipeline stages when the operands are

needed, they could be fetched from the operand buffer in the fetch stage or

from the untranslated bytecode sequence in the translate stage. Although

the Java processor adopts double-issue architecture, at each cycle, only

one of two issued instructions can fetch operands. If both instructions want

to fetch operands simultaneously, the second one will be suspended due to

structure hazard.

 35

1000X XXX1 operand

1010X XXX2 operand

011 XXXXX2 operand

1010 XXXX2 operand

110011 XX1 operand

Fig.19. Instruction fields that signals operand count

2. Data Path

The data path of the execution stage is shown in Fig.20. The top of

stack is store in the register labeled A. The top-1 and top-2 entries of the

stack are labeled B and C, respectively. The load_val is the result of the

load instructions or the old value read from the stack RAM for stack fill. The

SD_val is the value store to the stack or the registers for the store

instructions or stack spill. The stack fill and spill operations are described

as follows:

(1) SP increase (spill):

When the stack pointer (SP) increases by two, the stack spill

operation happens and the values from B and C registers

have to be written back to the stack RAMs. This will happen,

for example, in the load-load instruction combination in

Fig.20.

When the SP increases by one, it only needs to store C for

stack spill.

(2) SP decrease (fill):

When the SP decrease by two, both B and C registers must

be filled with the old values from the stack RAMs

 36

automatically. For example, the store-store and store-ALU

combinations will cause this stack fill operation.

When the SP decreases by one, only C is filled with the stack

data automatically.

stack data2

stack data1
B

C

A
load_val1 load_val2

SD_val1

SD_val2

Load-Load

load_val1

SD_val2

Load-Store

load_val1

A

Load-ALU

stack data1
B

C

A

load_val2

SD_val1

nop-Load, Load-nop,
Load-special

stack data1

stack data2
B

C

A
SD_val2

SD_val1

load_val2

load_val1

Store-Store

load_val2
SD_val1

A

Store-Load

stack data1

stack data2
B

C

A

SD_val1

load_val2

load_val1

Store-ALU

stack data1
B

C

A

SD_val1

load_val1

nop-Store, Store-nop,
Store-special

load_val2

A

B

ALU-Load

stack data1

stack data2
B

C

A

SD_val2
load_val2

load_val1

ALU-store

stack data1
B

C

A

load_val1

nop-ALU, ALU-nop,
ALU-special special-X

special
data path

Fig.20. Data Path

 37

3. Load Type Instruction

Load instructions start with two bits of “00”. All load instructions and

their behaviors are described in this section.

00 0nnn00 ldimm_<n>

 {29’b, 3’bnnn} → load_val

This load operation loads the immediate value from the instruction

directly. For example, ldimm_0 instruction load 0 to load_val signal.

00 1nnn00 ldimm_<n+8>

 immROM[3’bnnn] → load_val

This load operation loads the value from immROM which contains

some immediate value. The values of immROM are shown below:

00111111100000000000000000000000
01000000000000000000000000000000
00111111111100000000000000000000
00000000000000001111111111111111
11111111111111111111111111111111
00000000000000000000000000011111

reserve
reserve

00111111100000000000000000000000
01000000000000000000000000000000
00111111111100000000000000000000
00000000000000001111111111111111
11111111111111111111111111111111
00000000000000000000000000011111

reserve
reserve

Fig.21. Values of immROM

00 1nnn01 ldval_<n>

 stack[vp + 3’bnnn] → load_val

This load operation loads local variable from the stack indexed by the

ldval_<n> operation. For example, ldval_3 means that it loads the

value from stack[vp + 3].

 38

00 10 0100 ldval_opd

 stack[vp + opd[7 : 0]] → load_val

This load operation loads local variable from the stack indexed by the

operand.

00 10 0000 ldopd

 {24’b(opd[7]) , opd[7 : 0]} → load_val

This load operation loads the operand value with 24 bit sign extension.

00 10 1000 ldopd2

 {16’b(opd[15]), opd[15 : 0]} → load_val

This load operation loads two operands. These two operands are

assembled into a value with 16 bits sign extension.

00 11 0000 ldjpc

 jpc → load_val

This load operation loads Java program counter to load_val.

00 11 0001 ldvp

 vp → load_val

This load operation loads variable pointer to load_val.

00 11 0010 ldsp

 sp → load_val

This load operation loads stack pointer to load_val.

 39

00 11 0011 ldbc

 bytecode → load_val

This load operation loads bytecode directly to load_val.

00 100011 dup

 A or ALU → load_val

This operation categorizes into load type because dup operation

increases the stack pointer by one. It is similar as the load operations.

This operation will duplicate the value of A or ALU. It depends on

different combinations with dup operation. You can see more detail in

the section of Execution Engine.

4. Store Type Instruction

Store instructions start with two bits of “01”. All store instructions and

their behaviors are described in this section.

01 01 1nnn stval_<n>

 SD_val → stack[vp + 3’bnnn]

This store operation stores the value to the local variable indexed by

the stval_<n> operation. For example, stval_3 means that it stores the

value to stack[vp + 3].

01 10 0001 stval_opd

 SD_val → stack[vp + opd[7:0]]

This store operation stores the value to the local variable indexed by

the operand.

 40

01 11 0001 stvp

 SD_val → vp

This store operation stores the value to local variable pointer.

01 11 0010 stsp

 SD_val → sp

This store operation stores the value to stack pointer.

01 11 1000 pop

 SD_val →

This operation categorizes into store type because pop operation

decreases the stack pointer by one. It is similar as the store operations.

This operation will pop the value out of stack.

5. ALU Type Instruction

ALU instructions start with two bits of “10”. All ALU instructions and

their behaviors are described in this section. We assume that ALU type is

combined with nop operation for more explicit statement because two ALU

operands of ALU operation will be decided by what other type are

combined with that ALU operation. We only describe the behavior of single

ALU .

10 00 0001 or

 A or B → A

 41

10 00 0010 xor

 A xor B → A

10 00 0011 and

 A and B → A

10 00 0100 add

 A + B → A

10 00 0101 sub

 -A + B → A

10 00 1001 mul

 A * B → A

Since our processor uses a two-cycle multiplier, it will automatically

stall one cycle for the execution of a multiplication operation.

10 00 1100 ushr

 B << A[4 : 0] → A

10 00 1101 shl

 B >> A[4 : 0] → A

10 00 1110 shl

 B <<< A[4 : 0] → A

 42

6. Nop or Special Type Instruction

Nop or special instructions start with two bits of “11”. Because a nop

operation does nothing, it can be combined with any operation.

11 111 111 nop

 do nothing

All special type instructions and their behaviors are described in this

section. As mentioned before, a special type instruction will occupy most

data paths and cannot be combined with other operations. The special type

instructions can be classified by their usage of the data paths (Fig.22).

11 001 XXX

11 000 XXX

11 010 XXX

11 011 XXX

11 101 XXX

11 100 XXX

11 110 XXX

11 111 XXX

If_cmp<cond>

If<cond>

sp = sp

sp = sp - 1

sp = sp - 2

sp = sp + 2

others

Fig.22. Special type operations

6.1. If_cmp<cond>

If the comparison between A and B succeeds, the branch destination

calculated during the decode stage will update jpc (Java program counter).

11 000 000 if_cmpeq

 If B = A, branch_destination → jpc

 43

11 000 001 if_cmpne

 If B ≠ A, branch_destination → jpc

11 000 010 if_cmplt

 If B < A, branch_destination → jpc

11 000 011 if_cmpge

 If B ≧ A, branch_destination → jpc

11 000 100 if_cmpgt

 If B > A, branch_destination → jpc

11 000 101 if_cmple

 If B ≦ A, branch_destination → jpc

6.2. if<cond>

If the comparison between A and zero succeeds, the branch

destination calculated at the decode stage will update jpc(Java program

counter).

11 001 000 ifeq

 If A = 0, branch_destination → jpc

11 001 001 ifne

 If A ≠ 0, branch_destination → jpc

 44

11 001 010 iflt

 If A < 0, branch_destination → jpc

11 001 011 ifge

 If A ≧ 0, branch_destination → jpc

11 001 100 ifgt

 If A > 0, branch_destination → jpc

11 001 101 ifle

 If A ≦ 0, branch_destination → jpc

6.3. interrupt

This category of special type instructions will trigger the interrupt

generator to signal for a service from the host processor. The host

processor interrupt handling routine should perform the requested function

and writes the result back to the top elements of the stack. Since the stack

pointer will be automatically decreased by one at the completion of the

execution of the instruction, the result should be store to B instead of A.

After the decrement of the stack pointer, the top of the stack (A) element

will be replaced with the element in register B.

11 101 000 idiv

 B / A → B

 45

11 101 001 newarray

 if(A == 10) {

 p = (int *)malloc(sizeof(int)*B);

 memset(p, 0, sizeof(int)*B);

 p → B

 }

An example of how an “int newarray” java code is executed is shown

in this section. Atype is stored in A and it is a code that indicates the

type of array to create. It must take one of the following values:

Array Type atype
T_BOOLEAN 4
T_CHAR 5
T_FLOAT 6
T_DOUBLE 7
T_BYTE 8
T_SHORT 9
T_INT 10
T_LONG 11

Table 5. The type ID (atype) of elementary arrays

The number of elements is stored in B. After memory allocation and

initialization, the array reference restores to B for further execution.

11 101 010 iastore

 p = (int *)C;

 *(p + B) = A;

A represents the value we want to store.

B represents the index of the array reference

C represents the array reference

 46

11 101 011 iaload

 p = (int *)B;

 B = *(p + A);

A represents the index of the array reference

B represents the array reference

11 101 100 irem

 B = B % A

11 011 110 goto

 If A = 0, branch_destination → jpc

6.4. Miscellaneous instructions of the special type

11 010 000 iinc1

 opd[7 : 0] → A

 stack[vp + opd[15 : 8]] → B

11 100 000 iinc2

 A + B → stack[tmp2]

iinc1 and iinc2 implement iinc of the bytecode instruction. First, iinc1

will load the operand value and the local variable to A and B,

respectively. The local variable address will be stored automatically in

tmp2 register. In the next cycle, the result of ALU directly store to the

stack addressed by tmp2.

 47

11 110 000 swap

 A → B

 B → A

11 110 001 return

The return operation will check whether the whole procedure has been

finished. If it finishes the execution, the java processor will send an

interrupt to the host processor and enters a wait state.

11 111 000 invoke

11 111 001 getstatic

Both invoke and getstatic instructions will trigger an FSM to parse the

class runtime image. During this period of time, a small microcode

program in the One2ManyROM will be executed and fetching data

from the class runtime image stored in the on-chip memory is

controlled by the FSM. Note that the FSM for the invoke instruction

and that for the getstatic instruction are different.

11 111 010 stjpc

 A → jpc

This store operation stores register A to java program counter. It is

considered as a special type instruction because the behavior of this

operation is similar to the branch operation. It cannot be combined

with other operations.

 48

V. Runtime Environment

1. Overview

A complete JRE is a sophisticated software system. The key

components of a JRE include a bytecode execution engine (BEE), a

dynamic class loader, a garbage collector, and standard class libraries

(Fig.23). Among these components, only the BEE can be reasonably

implemented in hardware. For software-based VM, the BEE is

implemented as an interpreter. The integration of this “virtual hardware”

with the rest of the software components is simpler since everything is

implemented in software. However, for a hardware-assisted JRE, the BEE

will be replaced by a Java processor. In this case, the JRE becomes a

highly integrated hardware/software system. The link between a Java

processor and the rest of the JRE is the dynamic class loader.

When the JRE is assigned to run a Java program, the initial class file

will be loaded and parsed. All the static content of the classes inside the

class file (e.g. method codes and data field information) will be registered in

the method area. An object will be allocated on the heap to instantiate the

root class. The object will contain a copy of the private data fields of the

root class. At this point, the program counter of the Java processor will be

set to point to the initial method in the method area. During execution, the

Java processor will fetch bytecodes from the method area and access data

fields of the object in the heap and in the method area.

In general, the class loader is responsible for locating/loading the

class files and setting up the method area for the Java processor.

 49

Therefore, it is more suitable to execute the class loader on the host

processor. We use the host processor to handle the class loader, heap

memory management, and providing I/O services. The initialization and

dynamic resolutions of symbols are handled by the java processor. These

two processors are communicated via special JNI. Therefore, our “native

code” is not native code of our Java processor, but native code of the host

processor. Some of the modules of a full JRE are still under development.

However, we have already implemented a simple class loader so that the

Java Processor can be tested.

Support Code :
Exceptions
Threads
Security
…

Garbage
Collector

Heap

Byte Code
Execution Engine

Class
and

Method
Area

Native
Method

Area

Dynamic
Class

Loader
And

Verifier

Native
Method

Link-Loader

Operating System

The Java Runtime System

application
class files

Standard
Java API
Classes

Network

Native Methods
(.dll or .so files)

Fig.23. A standard Java Runtime System

Proposed Java Runtime System

Operating Systems

Garbage
Collector

Java Processor

Class/
Method

Area
&

Heap Area

Dynamic
Class Loader
and Verifier

Standard
CVM

Classes

Host Processor JNI

application
class files

Misc.
Routines

Fig.24. Proposed Java Runtime System

 50

2. Simple Class Loader

The class loader running at host processor load classes and convert

them to our java runtime image. In Fig.25, The Java runtime image

structure contains a table of content that points to runtime information of

each class. The runtime information of a class has four parts, including

class table of content, constant pool, field, and method information.

*.class

single class info.

field info
method info

constant pool
class TOC

Classes TOC

…

…

Class loader
(written in C)

Fig.25. Runtime Class/Method Area

3. Java Runtime Image

3.1. Global Format

The detail structure of the runtime information of a single class is

shown in Fig.26. The offset address of the field information can be indexed

by “Field info Addr” of the TOC, and the method information can be indexed

by “Method info Addr” of the TOC. The constant pool entry is directly

referenced by the offset of the base address.

 51

reserve

addr 1

addr n

…

Constant Pool Info

Base Address

Constant Pool Data
(Same as that in the class file)

name index 0 descriptor index 0access flag heap offset 0

name index k–1 descriptor idx k–1access flag heap offset k–1

…

Constant Pool TOC

Field Info

name index 0
…

Method Code Area (described later)

Method Info

*All values are in big-endian format.

Field Info Addr Method Info Addr

16 bits

addr 0

name index m–1

data space (8 bytes)

data space (8 bytes)

addr 0

addr m–1

Fig.26. Java Runtime Class Definition

3.2. Constant Pool Info

Each entry in the Constant Pool TOC is the address (relative to the

base address) to the TAG of the constant pool info.

addr 1

addr n

…

Constant Pool Data

Constant Pool TOC

addr 0 n

Fig.27. Constant Pool Info

Some indirect references will be resolved by the class loader in

advance so that dynamic resolution during runtime will be faster and

simpler. For example, we use pi_demo.class as our test program (the

complete program will be listed in the chapter of “Experimental Result”). An

example of dynamic resolution is shown in Fig.28. The instruction

“invokestatic 1D” refers to the constant pool entry 1D and “Methodref_info”

represents a symbolic reference to a method declared in a class. A typically

Java Virtual Machine resolves this symbolic reference at runtime. Our class

 52

loader will do some resolutions during loading to speed up runtime

operations. Due to the symbolic references in the constant pool refer to the

elements of this inner class, we can only record a direct reference for quick

resolution. As in Fig.28, the class loader discovers that this method

reference refers to the “pi_demo.class.” It can record the direct address in

one of the method information entry, and the processor does not need to

resolve “Methodref_info” at runtime.

invokestatic 1D

Methodref_info(0A)
Tag = 0A
class_index=02
name&type_index=1C

Methodref_info(0A)
Tag = 0A
class_index=02
name&type_index=1C

Class(7)
Tag = 07
name_index=01

Class(7)
Tag = 07
name_index=01

Utf8(1)
Tag = 01
length=7

pi_demo

Utf8(1)
Tag = 01
length=7

pi_demo

Name&type_info(0C)

Tag = 0C
name_index=15
descriptor_index=16

Name&type_info(0C)

Tag = 0C
name_index=15
descriptor_index=16

Utf8(1)
Tag = 01
length = 07

pi_init

Utf8(1)
Tag = 01
length = 07

pi_init

Utf8(1)
Tag = 01
length = 06

([II)V

Utf8(1)
Tag = 01
length = 06

([II)V

Fig.28. Dynamic Resolution

Fig.29 shows our mechanism for fast resolution. The simple class

allocates a memory space followed by the entry of “Methodref_info” to store

a direct address. During runtime, the instruction “invokestatic 1D” refers to

the constant pool entry 1D of the constant pool TOC, and read the data of

that entry. Then, the java processor will discover that there is a direct

address points to the method entry. With this mechanism, dynamic

resolution will be faster during runtime. Other symbolic references of the

constant pool, such as interface and filed, are implemented in the same

way.

 53

invokestatic 0x001D

Constant Pool

Constant Pool Data
(Same as that in the class file)

0x001D<<1+0x8+base_addr

Methodref_info(0A)
Tag = 0A
class_index=02
name&type_index=1C

addr 0
addr 1

…

addr n
…

0x0156

direct address

access flag arg_cnt max stack max locals

000A 0004 0003

033DA700……………….

Method Code
Area

0002

Fig.29. Fast Resolution

3.3. Field Info

Each entry in the Field info is of 16-byte long, including access flag,

name index, descriptor index, heap offset, and data space. The first three

elements are defined in the class file, and heap offset and data space is

used for our reservation. Heap offset means where this filed stores in the

heap. The data space is reserved for static field to store static value. It will

ensure that the static value will not be duplicate in the heap space for each

instance of a class.

3.4. Method Info

The Method TOC has depicted in Fig.27. It is used for dynamic

resolution in different classes. The java processor will compare the value of

the name index. After that, it has direct reference to the address of Method

Code Area. The structure of Method Code Area is depicted in Fig.30,

including access flag, descriptor index, max stack, max locals, and

bytecodes. This information is required for the execution of a method.

 54

. . .

Method 0 byte codes

Method Code
Area

max stack max localsaccess flag 0 descriptor index 0

max stack max localsaccess flag m–1 descriptor idx m–1

Method m–1 byte codes

Fig.30. Method Code Area

4. Initialization of a Java Application for Execution

The procedure of how a Java program is executed is shown in Fig.31.

First, the host processor loads class files and converts them to class file

runtime images by the class loader. Then the Java runtime images are sent

to the on-chip RAM. After that the host processor will initialize the state of

the Java processor, including JPC, VP, and SP, so that the processor is

ready to execute the main method. Finally, the Java processor will be

triggered and start to execute the bytecodes of the main method.

Host processor

class loader

On-chip
RAM

Java ProcessorJava
runtime
image

1

2

3 set jpc, vp, and sp

4

Fig.31. Initialization of a Java Application

 55

VI. Verification of the System

1. Synthesis and Co-design Tools

1.1. Synplify Pro

In this thesis, Synplify Pro 8.6.1 (shown in Fig.32) is used as the

synthesis tool. The synthesis report shows that our design uses 2880 LUTs

(23% of the Virtex-4 FPGA resource) and the timing of the critical path is

119.4MHz (8.372ns).

Fig.32. Synplify Pro IDE

1.2. EDK – Embedded Development Kit

We use EDK for our develop tool. It contains all configurations and

combines the netlist file generated by Synplify Pro. The overall architecture

 56

is shown in Fig.34, including PowerPC, DRAM, SRAM and our Java

Processor on the PLB bus. The other slow devices are on the OPB bus.

Fig.33. Embedded Development Kit

PLB bus

OPB bus

PLB2OPB
Bridge

PPC405 DRAM SRAM Java
Processor

UARTOther
Slow Device

Fig.34. Overall Architecture

 57

2. Emulation Platform: The Xilinx ML403 Board

Our verification environment is the Xilinx ML403 board which contains

a Virtex-4 device. It has a hardwired PowerPC and an FPGA block. Both

PowerPC and our Java processor synthesized in the FPGA block are

running at 100MHz. Our Java Processor and the PowerPC communicate

via interrupt service routines.

Simple
Java

Program

Java Class
Filejavac

Bytecode Loader
and

I/O Handler

Virtex-4 FPGA

PowerPC
405

(100 MHz)

Java
Processor
(100 MHz)

Java
Runtime
Image

interrupt

interrupt handler

Fig.35. System Emulation with FPGA

3. The Test Program

Our test program is shown in Fig.36. It computes PI value to 32

decimal points.

 58

Source File
1. public class pi_demo
2. {
3. static int a = 10000;
4. int [] f;
5.
6. private static void pi_init(int frac[], int c)
7. {
8. int idx = 0;
9.
10. while ((idx-c) != 0)
11. {
12. frac[idx++] = a/5;
13. }
14. }
15.

16. public static void main(String[] args)
17. {
18. int idx = 0, c = 112, e = 0;
19. int [] f;
20. int d, g;
21.
22. f = new int [113];
23.
24. pi_init(f, c);
25.
26. while ((g = c*2) != 0)
27. {
28. d = 0;
29.
30. for (idx = c; idx > 0; idx--)
31. {
32. d += f[idx]*a;
33. f[idx] = d%--g;
34. d /= g--;
35. if (idx > 1) d *= (idx-1);
36. }
37.
38. c -= 14;
39. System.out.print((e+d/a));
40. e = d % a;
41. }
42. }
43. }

Fig.36. Compute Pi to 32 decimal points

4. Experimental Results

Fig.37 is the execution results of the test program. One can see that

most bytecodes (92.3%) are executed by the java processor while some

complex bytecode (7.7%) are executed by the host processor. For the few

bytecodes that runs on the PowerPC, the communication overhead is

extremely high. This is partly due to that the Java service routines running

on the Power PC has not been optimized and the fact that cache is

disabled for the PowerPC processor due to resource limitation (the on-chip

block RAM is too small to fit both the host processor cache and the Java

processor stack and class runtime images). This table shows you the

bytecodes that the Power PC handles. Division and remainder operations

account for 50% of the load of the host processor (mostly due to

 59

communication overhead). These logics could have been implemented in

the java processor to reduce communication overhead.

As one can see, the bytecode per cycle on the Java processor is

almost one. Finally, we have used Sun’s CVM to run the same program on

ML-403 and it takes about 5ms. Note that in this case, the PowerPC is

running at 300MHz, instead of 100MHz. Therefore, at 100 MHz, it will take

about 15 ms to execute the program.

bytecodes
Java Processor

Power PC

Cycles
28748
2265

30729
628790

milli-sec
0.3073
6.2879

100MHz

Sun’s CVM (300MHz) 5ms
idiv 27.6%

newarray 0.1%

irem 22.6%

iastore 27.2%
iaload 22.2%

Java Processor’s CPB 1.0689

Fig.37. Experimental Result

 60

VII. Discussions

In this thesis, we have presented the design of a double-issue Java

processor. It can execute Java bytecodes more efficiently. The further

works are to support full Java bytecodes and implement Java Virtual

machine including class loader, linker, garbage collector and so on. Of

course that the communication overhead between the PowerPC and our

Java processor must be reduced. The end of the goal is to support full Java

Virtual Machine.

 61

VIII. Reference

[1] Q. H. Mahmoud, J2ME for Home Appliances and Consumer Electronics Devices,

Sun Microsystems White Paper, Jan. 2003.

[2] Digital Video Broadcasting (DVB), Multimedia Home Platform (MHP)

Specification 1.0.2, ETSI TS 101 812, June, 2002.

[3] T. Lindholm and F. Yelling, The Java Virtual Machine Specification,

Addison-Wesley, 1996.

[4] A. Krall, K. Ertl, and M. Gschwind, Java VM Implementation: Compilers versus

Hardware, John Morris (ed.), Computer Architecture (ACAC ’98), Perth, pp.

101-110, 1998.

[5] Martin Schoberl, JOP: A Java Optimized Processor for Embedded Real-Time

Systems, Ph.D. Thesis, Tech. Universitaet Wien, Jan 2005.

[6] A. Kim and M. Chang, “Designing a Java Microprocessor Core Using FPGA

Technology,” Computing & Control Engineering Journal, June 2000, pp.135-141.

[7] Sun. picoJava-II Microarchitecture Guide. Sun Microsystems, March 1999.

[8] D.S. Hardin. Real-Time Objects on the Bare Metal: An Efficient Hardware

Realization of the JavaTM Virtual Machine. In Proceedings of the Fourth

International Symposium on Object-Oriented Real-Time Distributed Computing,

page 53. IEEE Computer Society, 2001.

[9] PTSC. IGNITE Processor Brochure, Rev 1.0. Available at http://www.ptsc.com.

[10] R. Zulauf. Entwurf eines Java-Mikrocontrollers und prototypische

Implementierung auf einem FPGA. Master’s thesis, University of Karlsruhe,

2000.

[11] S.A. Ito, L. Carro, and R.P. Jacobi. Making Java Work for Microcontroller

Applications. IEEE Design & Test of Computers, 18(5):100–110, 2001.

 62

[12] Ramesh Radhakrishnan, Deependra Talla and Lizy Kurian John, “Allowing for

ILP in an Embedded Java Processor,” ACM SIGARCH Computer Architecture

News, pp. 294-305, 2000.

[13] Tan, Y.Y. Yau, C.H. Lo, K.M. Yu, W.S. Mok, P.L. Fong, A.S. Design and

implementation of a Java processor. IEE Proceedings, Volume: 153 , On page(s):

20 – 30, 2006

[14] Ramesh Radhakrishnan, Ravi Bhargava, Lizy K. John. Improving Java

performance using hardware translation. ACM Press. June 2001 Pages: 427 –

439

[15] Zhilei Chai, Wenke Zhao, Wenbo Xu. System on chip design and software

supports (SODSS): Real-time Java processor optimized for RTSJ. ACM Press.

March 2007

[16] ARM. Jazelle – ARM Architecture Extensions for Java Applications. White

paper.

[17] R. Radhakrishnan. Microarchitectural Techniques to Enable Efficient Java

Execution. PhD thesis, University of Texas at Austin, 2000.

[18] Andreas Krall. Efficient JavaVM Just-in-Time Compilation. In Proceedings of the

1998 International Conference on Parallel Architectures and Compilation

Techniques (PACT ’98), pages 205–212, Paris, October 12–18, 1998. IEEE

Computer Society Press.

[19] Georg Acher. JIFFY — Ein FPGA-basierter Java Just-in-Time Compiler für

eingebettete Anwendungen. PhD thesis, Technische Universität at München,

2003.

[20] Nazomi Communications. JA 108 Product Brief. Available at

http://www.nazomi.com.

[21] C. J. Glossner. The DEFLT-JAVA Engine. PhD thesis, Delft University of

 63

Technology, 2001.

[22] Derivation Systems Inc. LavaCORE Configurable Java Processor Core. data sheet,

April 2001.

[23] Digital Communication Technologies Ltd. Lightfoot 32-bit Java Processor Core.

data sheet, September 2001.

[24] Vulcan ASIC Ltd. Moon v1.0. data sheet, January 2000

[25] Tom R. Halfhill. Imsys Hedges Bets on Java. Microprocessor Report, August

2000.

[26] Imsys AB. the Cjip Technical Reference Manual / V0.24, 2003.

