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A Double-Issue JAVA Processor Design for Embedded 
Applications 

 

Abstract 
 

Java applications for embedded systems are becoming popular today. 

CLDC/MIDP is the standard application platform for mobile phones while CDC/PBP 

is the emerging application platform for next generation digital TV set-top boxes. 

Although software-based Java Virtual Machines (VM) are prevalent, most of these 

VMs require a host processor running at much higher clock rate than 300MHz to 

reach reasonable performance. This is beyond the recommended specification of 

handsets and set-top boxes. In this thesis, we have proposed a double-issue java 

processor for embedded systems. The design is not tied to any host processors and can 

be used as an efficient binary execution engine for a full Java Runtime Environment 

implementation. When synthesized on a Virtex IV FPGA (4VFX12FF66-10), the RTL 

model can reach over 100MHz and consumes less than 23% resources of the device. 
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I. Introduction 

Java Runtime Environment (JRE) is adopted by many organizations 

as the portable application platform for embedded systems such as mobile 

phones and set-top boxes. In order to support a large variety of devices 

while maintaining interoperability, Sun Microsystems has created the Java 

2 Micro Edition (J2ME) specification and, under this framework, define 

different profiles and configurations for different applications [1]. For mobile 

phones, the Connected Limited Device Configuration (CLDC) with Mobile 

Information Device Profile (MIDP) has become the standard environment 

for Java applications. The virtual machine (VM) underneath CLDC/MIDP is 

a reduced-capability version of Java VM, called KVM. For DTV set-top 

boxes, the Connected Device Configuration (CDC) with Personal Basis 

Profile (PBP) are adopted as the de facto standard application environment 

[2]. The VM underneath CDC/PBP is a full capability VM. However, the 

reference implementation of CDC/PBP from Sun Microsystems is a 

specially engineered VM, called CVM, to facilitate porting to various 

embedded platforms. 

There are many performance issues for adopting Java for embedded 

systems. First of all, object-oriented programs rely a lot on dynamic 

memory allocation/de-allocation which is very inefficient for embedded 

devices. Secondly, the Java VM model is based on a stack machine [3]. 

Excessive access of stack memory to store intermediate computation 

results is very inefficient. Finally, most embedded systems use a RISC CPU 

running at less than 300MHz as the host processor. The RISC architecture 



 

 11

is usually not efficient for the execution of a software interpreter of a 

byte-oriented machine language [4][5]. 

There have been many efforts to improve the performance of a Java 

VM [4]. For embedded devices, software-based approaches such as 

Just-in-Time[18][19] (JIT) compilation are less suitable since JIT compilers 

requires extra memory and the overhead of the on-the-fly compilation 

process is more noticeable and intrusive for embedded systems with slow 

RISC processors. In jHISC[13], the object-oriented related instructions are 

implemented by hardware directly, as a hardware-readable data structure 

is used to represent the object. For hardware-based solution, there are 

co-processor approaches (such as ARM Jazella[16]), hardware translation 

logic[14][17][20][21] and java processor approaches [5][6]. An interesting 

work is the Java processor, JOP, designed by Schoberl [5] since the 

complete RTL model (written in VHDL) is available to general public. JOP 

defines its own Java profile/configuration, which is closer to CLDC than a 

full JVM. The RTL model of JOP has been ported to many devices. 

However, the performance still has a lot of room for improvement. An 

enhancement of JOP is a real-time Java processor executed Java 

bytecode directly provides efficient support in hardware for mechanisms 

specified in the RTSJ (the real-time specification for Java) and offers a 

simpler programming model through ameliorating the scoped memory of 

the RTSJ. The most important characteristic of the processor is that its 

WCET (worst case execution time) of the bytecode execution is predictable. 

It is vital for the real-time systems. 

In this thesis, the design of a double-issue Java processor is proposed. 
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The advantage of designing a stand-alone Java processor instead of a 

co-processor is that the design will not be tied to certain host processor 

interface. However, since a stack machine is not efficient for I/O and control 

tasks, a general purpose host processor is still required to complete the 

system. The key difference between the proposed Java processor and a 

Java co-processor is that it communicates with the host via a common 

memory-mapped interface, instead of a co-processor interface. The thesis 

is organized as follows. Chapter II discusses some related design of Java 

processors. The proposed double-issue Java processor architecture is 

presented in chapter III and the proposed instruction set architecture is 

presented in Chapter IV. Chapter V provides an overview to a full Java 

Runtime Environment design and discusses how a Java processor can be 

integrated into the environment. Finally, section VI describes the target 

FPGA platform and shows the synthesis report and experimental result of 

executing a Java class file using the synthesized model. 
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II. Previous Work 

1. Overview 

In order to provide an efficient JRE for embedded applications, we 

have chosen the Java processor approach to improve the performance. 

There are many existing designs of Java processors. Since JVM is a 

stack-based machine, the main differences among these designs are about 

how the stack frames are implemented.  

We classify the Java processors into three categories, that is, systems 

that include a register file as a stack cache, systems with on chip memory 

as a stack cache, and systems adopting a two-level stack cache. The 

system architecture for each design is described below. In order to make 

fair comparisons of their hardware costs, we assume that each system’s 

data cache has the same size. 

2. Systems Using a Register File as a Stack Cache 

One of these designs is the picoJava [7] from Sun. There are many 

enhancements based on picoJava. In Radhakrishnan et al. [12], 

investigated ILP based on picoJava model. Sun’s picoJava contains 64 

registers for stack cache which are organized as a circular buffer. This 

architecture is shown in Fig.1. It also contains a data cache with automatic 

spill and fill. Other design such as aJile’s JEMCore [8] contains 24 register 

entries. Only six of them cache the top elements of the stack. Ignite [9] 

processor has an operand stack which contains 18 registers entries. 
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Fig.1. Sun’s picoJava 

These designs have four pipelining stages. 

IF : Instruction Fetch 

ID : Instruction Decode 

EX : Read Data from registers and Execute 

WB : Write the result back to registers 

With this architecture, the register file requires three read and two 

write ports. ALU operations can simultaneously read out two operands and 

write back one result. Concurrent background spill and fill operations keep 

the stack cache consistent with the top entries of the stack. The 

architecture for a generic register file approach is shown in Fig.2, and the 

rough gate count for each logic component is shown in Table 1. 
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Fig.2. Generic Register File Approach 
Basic Function Gate counts

D-Flip-Flop 5 
2:1 MUX 3 
4:1 MUX 5 
8:1 MUX 9 
SRAM Bit 1.5 

Table 1. Gate counts for basic functions 

We assume that this processor contains N registers as a circular 

buffer. So it has N+1 2:1 MUXs and 3x32 N:1 MUXs. The formula 

calculating gate counts of N:1 MUX is shown in Fig.3. Let the gate count for 

an N:1 MUX be G. The gate counts of all the MUXs are (N+1)x3 + 3x32xG. 

The other sequential logics such as the registers and the data cache are 

composed of (N+1)x32x5 and 1.5x(number of bits) gates, respectively. The 

approximated result is listed in Table 2. 
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int gates = 0;
for(int i = N; i > 1;){

if (i / 8 != 0){
gates += (i / 8 * 9);
i = ((i / 8) + (i – (i / 8) * 8));

}
else if(i / 4 != 0){

gates += (i / 4 * 5);
i = ((i / 4) + (i – (i / 4) * 4));

}
else{

gates += (i / 2 * 3);
i = ((i / 2) + (i – (i / 2) * 2));

}
}  

Fig.3. N:1 MUX Gate counts 
 

Function block Gate counts 
Registers (N+1)x32x5 
Data Cache 1.5x(spaces) 
MUXs (N+1)x3 + 3x32xG 

Table 2. Gate counts for the Register File Approach 

For example, Sun’s picoJava has 64 register file as a stack cache. 

Assume that it uses a 128x32 bits data cache, the approximated gate 

counts exclude ALU is 24515.  

In JEMCore [8], only six registers are used to cache the top elements 

of the stack. This design decreases gate counts to about 11915 gates 

(assume that the data cache space is the same). Ignite [9] has 18 register 

file as a stack cache and costs about 11449 gates. 

3. Systems Using On-chip Memory as a Stack Cache 

Komodo [10] and FemtoJava [11] use an on-chip memory as a large 

stack cache. You can see in Fig.4 that a three-port memory is required to 
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support the operation. There are five pipelining stages in their design: 

IF : Instruction Fetch 

ID : Instruction Decode 

RD : Memory Read 

EX : Read Data from registers and Execute 

WB : Write the result back to registers 

Stack
RAM

Result buffer

Read Addr 1

Read Addr 2

Write Addr

Write data

Forward 
buffer

 
Fig.4. Using On-chip Memory as a Stack Cache 

We can calculate gate counts in the same way as in the previous 

section. The simplified gate count for basic function is shown in Table 1. It 

has 3x32 2:1 MUXs and 32x4 registers. The approximated result is shown 

in Table 3. We assume that it uses 128x32-bit data cache. Its gate counts 

exclude ALU is about 7072. This approach is much smaller than previous 

approach. However, it uses three-port memory for the design and the 

hardware cost is much higher than the other approach. Although it can use 
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two dual-ports RAM to emulate three-port memory, this solution still double 

the amount of memory required. 

Function block Gate counts 
Registers 640 
Data Cache 1.5x(spaces) 
MUXs 288 

Table 3. Gate counts for a On-chip Memory Approach 

4. Systems with a Two-level Stack Cache 

Schoberl [5] presented the Java Optimized Processor (JOP) adopting 

a two-level stack cache. It uses two registers to store the top two elements 

of the stack, and a dual-port RAM to store the rest of the stack elements. It 

has three pipelining stages: 

IF : Instruction Fetch 

ID : Instruction Decode 

EX : Read Data from registers and Execute 

The architecture of JOP is depicted in Fig.5. 

Stack
RAM

Read Addr

Write Addr

Write data

A

B

 
Fig.5. A Two-level Stack Cache Approach 
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The gate counts of JOP can be estimated as follows. Roughly 

speaking, the architecture can be implemented using 2x32 registers, 3x32 

2:1 MUXs, 128x32 bits data cache, and an ALU. The gate count 

approximations for each type of logic are shown in 0. The total gate count 

excluding ALU is 6752. This approach is much smaller than the register file 

approach and uses only one dual-port RAM for the design. It is more 

suitable for embedded systems. 

Function block Gate counts 
Registers 320 
Data Cache 1.5x(number of bits) 
MUXs 288 

Table 4. Gate count for Two-level Stack Cache Architecture 

5. Other Designs 

LavaCORE [22] uses a 32x32-bit dual-ported RAM to implement a 

register-file. The Lightfoot [23] 32-bit core is a hybrid 8/32-bit processor 

based on the Harvard architecture. Moon’s [24] stack folding is 

implemented in order to reduce five memory cycles to three for instruction 

sequences like push-push-add. Cjip [25][26] is a 16-bit CISC architecture 

with on-chip 36KB ROM and 18KB RAM for fixed and loadable microcode. 

Most of these designs are too complex for embedded systems. 

In this thesis, we propose a two-level stack cache with double-issue 

architecture for Java processor. We use three registers to store three top of 

the stack elements. “A” is top of the stack, “B” is the 2nd top of the stack, 

and “C” is the third stack element from the top. The other stack elements 

are stored in two dual-port RAMs. There are four pipelining stages in our 

design. 
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TR : Bytecode fetch and translate on-the-fly 

IF : Instruction Fetch 

ID : Instruction Decode 

EX : Read Data from registers and Execute 

Stack
RAM

Read Addr1

Write Addr1

Write data1

A

Stack
RAM

Read Addr2

Write Addr2

Write data2

B

C

 
Fig.6. A Two-level Stack Cache with Double Issue 

The design contains 10x32 2:1 MUXs, one 4:1 MUX, and 3x32 

registers. The approximated gate count is shown in 1. We also assume that 

it uses 128x32-bit data cache. The total gate count excluding ALU is 7584. 

The gate count of this design is a little more than the two-level stack cache 

design used in JOP. However, JOP uses single issue architecture while the 

proposed design adopts double-issue architecture. Therefore, the 

computation ability is much higher than that of JOP. 
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Function block Gate counts 
Registers 480 
Data Cache 1.5x (number of bits)
MUXs 965 

Fig.7. Gate counts for a Two-level Stack Cache with Double Issue 
Architecture 
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III.  Proposed Processor Micro-Architecture 

1. Overview 

In this section, the detail design of a double-issue Java Processor is 

presented. For a double-issue processor, two machine instructions are 

executed per cycle. It is important to point out that a Java processor in 

general does not execute bytecodes directly because some bytecodes are 

much more complex than a traditional machine instruction. Therefore, for 

the proposed processor, the native instruction set (referred to as the 

microcodes, following the convention in [5]) is different from the bytecode 

instruction set. A bytecode will be translated into one or more microcodes 

on-the-fly. The proposed processor has a four-stage pipeline which is 

shown in Fig.8. We have four pipelining stages : 

TR : Bytecode fetch and translate on-the-fly 

IF : Instruction Fetch 

ID : Instruction Decode 

EX : Read Data from registers and Execute 
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Translate Fetch Decode Execute

JPC
++

Delay_tmp1

‘1’

branchfetch_one

wait_opd

opd_cnt

control

jpc_sel
Fetch.jpc_offset

translated

bytecodes  

Fig.8. Overall Java Processor Architecture 

2. Translation Stage 

The Java bytecodes are divided into simple bytecodes and complex 

bytecodes. At the translation stage, each simple bytecode is translated into 

a microcode, while a complex bytecode is translated into a pointer that 

points to the address of a microcode sequence stored in ROM of the fetch 

stage. A Java bytecode instruction may be followed by zero, one, or more 

operand bytes. Therefore, it is not trivial to fetch two bytecode instructions 

per cycle (along with the operand bytes) due to this variable length 

instruction nature of Java bytecodes. Obviously, the instruction must be 

decoded to some degree before the fetch stage so that the processor 

knows how many bytes it has to fetch in order to retrieve two complete 

instructions with operands. The translation module is designed to 

classify-and-tag the bytecode streams so that the fetch module can identify 

the number of bytes to fetch. 

As shown in Fig.9, the translation module fetches two bytes at a time 

from the bytecode section of the method area. Each byte is sent to the 
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Translation ROM and the Type Manager logic. These two modules classify 

the bytecode into one of three types, namely, one-to-one mapping, 

one-to-many mapping, and operand. For the first two cases, the translation 

ROM produces instruction data which could be a native microcode (for 

one-to-one mapping) or an address (for one-to-many mapping). If the 

translated instruction data is a microcode, it means that the Java bytecode 

can be mapped to this Java Processor microcode. If the translated 

instruction data is an address, the address will be used in the fetch stage to 

retrieve the corresponding microcodes. At the same time, the Type 

Manager will figure out how many operand bytes followed by this bytecode 

and it will control the multiplexer to bypass the translation because operand 

type is no need to translate. 

Translate ROM

bytecode1 

bytecode2  

bytecode1 

bytecode2 

Type Manage

opd1 type1 

type2 

translated1

translated2

opd2 
one1 
one2 

 
Fig.9. Translation Stage 

3. Fetch Stage 

After the translation stage, the translated instructions and the tags are 

stored in the registers for pipelining stage, the fetch module (see Fig.10) 

retrieves the translated values. At the fetch stage, the Controller module 

determines the type of the two translated instruction/operand data to be 

decoded, and it will control all multiplexers in the fetch stage. 
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First, for every two instructions fetched, the second one is always 

stored in a register first in case the processor could not execute two 

instructions simultaneously. When this happens, the registered instruction 

will be send to the decode unit, alone with the next translated instruction 

fetched from the RAM. 

Secondly, the mode register stores the current status to distinguish 

between “simple bytecode mode” and “one-to-many mapping mode.” In the 

simple bytecode mode, the fetch stage always fetches two translated 

values from the translation module. A translated value could be a 

microcode or an operand value. The translated value is stored to the 

operand buffer of the Operand Manager if they are of operand type. In the 

“one-to-many mapping” mode, the instruction is extracted from the 

one-to-many instruction ROM table, indexed by the corresponding 

translated instruction data, namely, an address. At the same time, this 

address also adds to the offset value to index the next address and stores 

the result to the address register. During one-to-many translation mode, the 

instructions are fetched from the one-to-many instruction ROM. This mode 

is maintained until the next signal is extracted from the one-to-many ROM 

indicating that the microcode sequence of the complex bytecode instruction 

is complete (This design is similar to that in [5]). 

Finally, the last two signals, “decode.opd_cnt” and 

“decode.fetch_one,” are the signals from the decode stage. The signal 

“opd_cnt” indicates the number of bytes of the microcdes the decode stage 

needs. The Type Management module will determine the opd_cnt value 

and update the operand buffers. The other signal “fetch_one” indicates that 
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the microcodes of the decode stage encountered a structure hazard that 

the Java processor can not execute this combination of the two microcodes 

in one cycle. 

translated1

translated2

One to Many 
ROM

Controllertype1[1:0]
type2[1:0]

address++
offset

trans1

Instr1

Instr2

next

decode.opd_cnt decode.fetch_one

trans2
nop

trans1
trans2

nop

next_mode

mode
Operand
Manager

operands
 

Fig.10. Fetch Stage 

4. Decode Stage 

At the fetch stage, two complete microcode instructions and the 

operands that these microcodes need are fetched into the processor. The 

next stage is the decode stage which is shown in Fig.11. The opd_cnt 

signal is the number of bytes of operands that the microcode instructions 

needed. 

There are two immediate value ROMs at the decode stage because 

we must support two immediate load operations. The tmp1 and tmp2 

signals could represent various items: an immediate value, a stack address 

of the RAM and an address of register bank. There is an advantage to 

generate these addresses at the decode stage. Due to RAM read pipelining, 

if the addresses are prepared early, the data will be read from the RAM 
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without any wait cycle. So we do not store tmp1 and tmp2 signal in a 

register. This signal is generated in the decode stage and associated 

directly to the address of the stack RAM in the execution module. In the 

next cycle, the value in the stack RAM is extracted without any read delay. 

Other signals, such as data path control and store control are registered as 

in the traditional pipeline design. 

instr1

instr2
Decode

immROMInstr1[3:0]

Instr2[3:0]

Instr1[2:0]
opd_val ++

immROM

D_tmp1

opd_cnt

tmp1

D_tmp2

tmp2

0
vp

Instr2[2:0]
opd_val ++

0
vp

jpc

D_tmp2
jpc

branch_cal

datapath  
Fig.11. Decode Stage 

5. Execution Stage 

The data path of the execution stage is shown in Fig.12. The top of 

stack is store in the register labeled A. The top-1 and top-2 entries of the 

stack are labeled B and C, respectively. Each operation is performed with 

registers or load values as sources. This data path can handle parallel 

execution of any combinations of two instructions except two ALU 

operations because of the structure hazard. The load values could be from 

the local variables or the stack data. When the stack pointer decreases, the 

registers should update the values and the stack value needs to load from 

the memory for more top values. On the other hand, when the stack point 
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increase, the new value store to the top registers and the value that spill 

from the register should be write back to the memory. 

C

load_val2

ALU
A

B
ALU

RAMs load_val1

load_val2

SD1

SD2

A
C

load_val1

load_val2

ALUopd2
C

load_val1

ALU
B

ALU
ALUopd1

A
load_val1

B

AorC

ALUopd2
C
A

AorC

load_val2
B

 
Fig.12. Data Path of Execution Engine 

6. Memory Architecture 

In order to execute two instructions per cycle, the memory bandwidth 

requirement would also increases. In the proposed design, two RAM 

devices are used to serve this purpose (Fig.13). One of the RAM handles 

memory requests for addresses with LSB 0, and the other one handles 

requests for addresses with LSB 1. The read address or the stack pointer is 

generated at the decode stage without any delay. There is a condition that 

causes conflict between these two RAM devices. When two read and write 

addresses have the same LSB value, it would try to access the same RAM 

devices. Fortunately, the only condition for this case to happen is when two 

operations try to load or store the local variables with the same LSB. The 

probability of this scenario is relatively low, so we do not add extra logics to 

support it. We simply avoid this condition at the decode stage, and it will not 

happen at the execution stage. 
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rdaddr1

wraddr1
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WE2
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SP[?:1]
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Fig.13. Memory Architecture 

7. Branch Behavior 

To implement the branch instruction, some sophisticated logic must be 

used to control the Java program counter properly. When the fetch stage 

encounters a branch instruction, it will store the address where the branch 

operation occurs. The behavior is shown in Fig.14. Since two translated 

native codes are fetched for decoding and execution each cycle, we have 

to determine where the branch operation occurs. First, we know that during 

the pipeline stage of translation, the JPC (Java Program Counter) is 

delayed by two byte addresses than the current instruction. So we have to 

decrease the JPC by two and determine whether the branch operation 

happens at the first or the second instruction and record the address of the 

branch operation. 
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…. ….
instr1 goto
0x00 0x09
XXXX XXXX

XXXX

XXXX

Fetch

XXXX

XXXX

instrsopds

JPC
36

…. ….
instr3 instr4

instr1
goto

trigger
X

(36 – 2) + 1

Fetch stage encounter branch operation
Store the triggered JPC in trigger reg

LSB(JPC) of branch instr = 0
{(JPC >> 1 - ‘1’) , ‘0’}

LSB(JPC) of branch instr = 1
{(JPC >> 1 - ‘1’) , ‘1’}

34

 

Fig.14. Store branch triggered address 

In the next cycle, like Fig.15, the branch instruction can not complete 

its execution in one cycle because of the structure hazard, it will raise the 

“fetch_one” signal. Due to the fact that the branch operation is not executed 

right away, the current address must be store in a register.  

…. ….
instr1 goto

instr1

goto

Fetch

XXXX

XXXX

instrsopds

JPC
38

…. ….
instr3 instr4

0x00
0x09

0x00 0x09
XXXX XXXX

X

Decode

tmp2

Decode
instr1 & nop

Fetch_one = 1trigger
35

34

 
Fig.15. Fetch_one occur 
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One condition is shown in Fig.16. The branch operation is decoded in 

the decode stage during which time the target address is calculated from 

the operands and current program counter. The target address is stored in 

the tmp2 register. 

…. ….
instr1 goto
0x00 0x09
XXXX XXXX

goto

nop

Fetch

0x00

0x09

instrsopds

X

Decode

tmp2

Decode
goto & nop

Execute

Execute
instr1 & nop

JPC
3A

0x0009

…. ….
instr3 instr4

XXXX
XXXX

trigger
35

35+9

34

 
Fig.16. The decode stage start to decode the branch operation 

Finally, as shown in Fig.17, when the branch operation is executed 

and the execution stage determines that the branch occurs, the processor 

clears all the registers of the fetch sage and the decode stage with the nop 

operations and restore the destination address to the JPC so that the first 

instruction at the target address will be fetched for execution. There is one 

more thing that has to be taken care of. The LSB of the target address 

should be zero due to the double-issue architecture used. If the LSB is one, 

a “nop” instruction must be inserted (on-the-fly) to properly align the 

succeeding instruction sequence. 
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…. ….
instr1 goto
0x00 0x09
XXXX XXXX

XXXX

XXXX

Fetch

XXXX

XXXX

instrsopds

3E

Decode

tmp2

Decode
XXX & XXX

Execute

Execute
goto & nop

JPC
3C

…. ….
instr3 instr4
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XXXX
XXXX

clearnop

trigger
35

34

 

Fig.17. The branch operation occurs 
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IV. Peoposed Instruction Set Architecture 

1. Overview 

We use eight bits to represent an instruction. There are four 

categories of instructions, including load, store, ALU, and nop-or-special 

types. The first two bits of instruction encoding patterns determine the 

categories of the instructions as illustrated in Fig.18. 

00 XXXXXXload type

01store type

10ALU type

11nop or special

XXXXXX

XXXXXX

XXXXXX  
Fig.18. Encoding patterns of different types of instructions 

With double-issue architecture, the processor tries to issue two 

instructions at each cycle. However, some instruction combinations will 

cause structure hazard and should be avoided. First of all, the load-load 

and store-store combinations which access the same RAM bank cannot be 

executed simultaneously. Next, the ALU-ALU and load-ALU combinations 

should be avoided in order to reduce the depth of the critical path. Finally, 

some instructions will use all data paths cannot be combined with any other 

instructions for execution. We refer to this type of instructions as the special 

type. For example, if a small instruction sequence is composed of a load 

instruction, a special type instruction, and an ALU operation, the processor 

will handle the sequence as follows. In the first cycle, the load instruction 

will be combined with the special type instruction and sent to the decode 

stage simultaneously. The instruction decoder will find that the load-special 
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combination cannot be executed concurrently. The decoder will insert a 

nop (no-operation) instruction between the load and special type 

instructions so that a load-nop combination, instead of a load-special 

combination, is decoded for execution. The decoder will also raise the 

fetch_one signal to the fetch stage (see the chapter of the Hardware 

Architecture for more detail) to notify that the special type instruction is not 

decoded so for next cycle, only one new instruction has to be fetched. In 

the second cycle, the ALU instruction will be fetched and combined with the 

previous special type instruction. The special-ALU combination will then be 

sent to the decode stage for processing. Again, the decoder finds that the 

special-ALU combination cannot be processed together. A special-nop 

combination will be decoded and executed while the ALU instruction will be 

retained for decoding next cycle. 

Fig.19 shows the instruction fields for the operand count of each 

instruction. The operands are retrieved from the instruction bytecode 

sequence. Depending on the pipeline stages when the operands are 

needed, they could be fetched from the operand buffer in the fetch stage or 

from the untranslated bytecode sequence in the translate stage. Although 

the Java processor adopts double-issue architecture, at each cycle, only 

one of two issued instructions can fetch operands. If both instructions want 

to fetch operands simultaneously, the second one will be suspended due to 

structure hazard. 
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1000X XXX1 operand

1010X XXX2 operand

011 XXXXX2 operand

1010 XXXX2 operand

110011 XX1 operand
 

Fig.19. Instruction fields that signals operand count 

2. Data Path 

The data path of the execution stage is shown in Fig.20. The top of 

stack is store in the register labeled A. The top-1 and top-2 entries of the 

stack are labeled B and C, respectively. The load_val is the result of the 

load instructions or the old value read from the stack RAM for stack fill. The 

SD_val is the value store to the stack or the registers for the store 

instructions or stack spill. The stack fill and spill operations are described 

as follows: 

(1) SP increase (spill): 

When the stack pointer (SP) increases by two, the stack spill 

operation happens and the values from B and C registers 

have to be written back to the stack RAMs. This will happen, 

for example, in the load-load instruction combination in 

Fig.20. 

When the SP increases by one, it only needs to store C for 

stack spill. 

(2) SP decrease (fill): 

When the SP decrease by two, both B and C registers must 

be filled with the old values from the stack RAMs 
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automatically. For example, the store-store and store-ALU 

combinations will cause this stack fill operation. 

When the SP decreases by one, only C is filled with the stack 

data automatically. 

stack data2

stack data1
B

C

A
load_val1 load_val2

SD_val1

SD_val2

Load-Load

load_val1

SD_val2

Load-Store

load_val1

A

Load-ALU

 

stack data1
B

C

A

load_val2

SD_val1

nop-Load, Load-nop,
Load-special

stack data1

stack data2
B

C

A
SD_val2

SD_val1

load_val2

load_val1

Store-Store

load_val2
SD_val1

A

Store-Load

 

stack data1

stack data2
B

C

A

SD_val1

load_val2

load_val1

Store-ALU

stack data1
B

C

A

SD_val1

load_val1

nop-Store, Store-nop, 
Store-special

load_val2

A

B

ALU-Load

 

stack data1

stack data2
B

C

A

SD_val2
load_val2

load_val1

ALU-store

stack data1
B

C

A

load_val1

nop-ALU, ALU-nop,
ALU-special special-X

special 
data path

 
Fig.20. Data Path 
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3. Load Type Instruction 

Load instructions start with two bits of “00”. All load instructions and 

their behaviors are described in this section. 

00 0nnn00  ldimm_<n> 

     {29’b, 3’bnnn} → load_val 

This load operation loads the immediate value from the instruction 

directly. For example, ldimm_0 instruction load 0 to load_val signal. 

00 1nnn00  ldimm_<n+8> 

     immROM[3’bnnn] → load_val 

This load operation loads the value from immROM which contains 

some immediate value. The values of immROM are shown below: 

00111111100000000000000000000000
01000000000000000000000000000000
00111111111100000000000000000000
00000000000000001111111111111111
11111111111111111111111111111111
00000000000000000000000000011111

reserve
reserve

00111111100000000000000000000000
01000000000000000000000000000000
00111111111100000000000000000000
00000000000000001111111111111111
11111111111111111111111111111111
00000000000000000000000000011111

reserve
reserve  

Fig.21. Values of immROM 

00 1nnn01  ldval_<n> 

     stack[vp + 3’bnnn] → load_val 

This load operation loads local variable from the stack indexed by the 

ldval_<n> operation. For example, ldval_3 means that it loads the 

value from stack[vp + 3]. 
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00 10 0100  ldval_opd 

     stack[vp + opd[7 : 0]] → load_val 

This load operation loads local variable from the stack indexed by the 

operand. 

00 10 0000  ldopd 

     {24’b(opd[7]) , opd[7 : 0]} → load_val 

This load operation loads the operand value with 24 bit sign extension. 

00 10 1000  ldopd2 

     {16’b(opd[15]), opd[15 : 0]} → load_val 

This load operation loads two operands. These two operands are 

assembled into a value with 16 bits sign extension. 

00 11 0000  ldjpc 

     jpc → load_val 

This load operation loads Java program counter to load_val. 

00 11 0001  ldvp 

     vp → load_val 

This load operation loads variable pointer to load_val. 

00 11 0010  ldsp 

     sp → load_val 

This load operation loads stack pointer to load_val. 
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00 11 0011  ldbc 

     bytecode → load_val 

This load operation loads bytecode directly to load_val. 

00 100011  dup 

     A or ALU → load_val 

This operation categorizes into load type because dup operation 

increases the stack pointer by one. It is similar as the load operations. 

This operation will duplicate the value of A or ALU. It depends on 

different combinations with dup operation. You can see more detail in 

the section of Execution Engine. 

4. Store Type Instruction 

Store instructions start with two bits of “01”. All store instructions and 

their behaviors are described in this section. 

01 01 1nnn  stval_<n> 

     SD_val → stack[vp + 3’bnnn] 

This store operation stores the value to the local variable indexed by 

the stval_<n> operation. For example, stval_3 means that it stores the 

value to stack[vp + 3]. 

01 10 0001  stval_opd 

     SD_val → stack[vp + opd[7:0]] 

This store operation stores the value to the local variable indexed by 

the operand. 
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01 11 0001  stvp 

     SD_val → vp 

This store operation stores the value to local variable pointer. 

01 11 0010  stsp 

     SD_val → sp 

This store operation stores the value to stack pointer. 

01 11 1000  pop 

     SD_val → 

This operation categorizes into store type because pop operation 

decreases the stack pointer by one. It is similar as the store operations. 

This operation will pop the value out of stack. 

5. ALU Type Instruction 

ALU instructions start with two bits of “10”. All ALU instructions and 

their behaviors are described in this section. We assume that ALU type is 

combined with nop operation for more explicit statement because two ALU 

operands of ALU operation will be decided by what other type are 

combined with that ALU operation. We only describe the behavior of single 

ALU . 

10 00 0001  or 

     A or B → A 
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10 00 0010  xor 

     A xor B → A 

10 00 0011  and 

     A and B → A 

10 00 0100  add 

     A + B → A 

10 00 0101  sub 

     -A + B → A 

10 00 1001  mul 

     A * B → A 

Since our processor uses a two-cycle multiplier, it will automatically 

stall one cycle for the execution of a multiplication operation. 

10 00 1100  ushr 

     B << A[4 : 0] → A 

10 00 1101  shl 

     B >> A[4 : 0] → A 

10 00 1110  shl 

     B <<< A[4 : 0] → A 
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6. Nop or Special Type Instruction 

Nop or special instructions start with two bits of “11”. Because a nop 

operation does nothing, it can be combined with any operation. 

11 111 111  nop 

     do nothing 

All special type instructions and their behaviors are described in this 

section. As mentioned before, a special type instruction will occupy most 

data paths and cannot be combined with other operations. The special type 

instructions can be classified by their usage of the data paths (Fig.22). 

11 001 XXX

11 000 XXX

11 010 XXX

11 011 XXX

11 101 XXX

11 100 XXX

11 110 XXX

11 111 XXX

If_cmp<cond>

If<cond>

sp = sp

sp = sp - 1

sp = sp - 2

sp = sp + 2

others

 

Fig.22. Special type operations 

6.1. If_cmp<cond> 

If the comparison between A and B succeeds, the branch destination 

calculated during the decode stage will update jpc (Java program counter). 

11 000 000  if_cmpeq 

         If B = A, branch_destination → jpc 
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11 000 001  if_cmpne 

         If B ≠ A, branch_destination → jpc 

11 000 010  if_cmplt 

         If B < A, branch_destination → jpc 

11 000 011  if_cmpge 

         If B ≧ A, branch_destination → jpc 

11 000 100  if_cmpgt 

         If B > A, branch_destination → jpc 

11 000 101  if_cmple 

         If B ≦ A, branch_destination → jpc 

6.2. if<cond> 

If the comparison between A and zero succeeds, the branch 

destination calculated at the decode stage will update jpc(Java program 

counter). 

11 001 000  ifeq 

         If A = 0, branch_destination → jpc 

11 001 001  ifne 

         If A ≠ 0, branch_destination → jpc 
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11 001 010  iflt 

         If A < 0, branch_destination → jpc 

11 001 011  ifge 

         If A ≧ 0, branch_destination → jpc 

11 001 100  ifgt 

         If A > 0, branch_destination → jpc 

11 001 101  ifle 

         If A ≦ 0, branch_destination → jpc 

6.3. interrupt 

This category of special type instructions will trigger the interrupt 

generator to signal for a service from the host processor. The host 

processor interrupt handling routine should perform the requested function 

and writes the result back to the top elements of the stack. Since the stack 

pointer will be automatically decreased by one at the completion of the 

execution of the instruction, the result should be store to B instead of A. 

After the decrement of the stack pointer, the top of the stack (A) element 

will be replaced with the element in register B. 

11 101 000  idiv 

     B / A → B 
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11 101 001  newarray 

     if(A == 10) { 

             p = (int *)malloc(sizeof(int)*B); 

             memset(p, 0, sizeof(int)*B); 

      p → B 

     } 

An example of how an “int newarray” java code is executed is shown 

in this section. Atype is stored in A and it is a code that indicates the 

type of array to create. It must take one of the following values: 

Array Type atype 
T_BOOLEAN 4 
T_CHAR 5 
T_FLOAT 6 
T_DOUBLE 7 
T_BYTE 8 
T_SHORT 9 
T_INT 10 
T_LONG 11 

Table 5. The type ID (atype) of elementary arrays 

The number of elements is stored in B. After memory allocation and 

initialization, the array reference restores to B for further execution. 

11 101 010  iastore 

         p = (int *)C; 

         *(p + B) = A; 

A represents the value we want to store. 

B represents the index of the array reference 

C represents the array reference 
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11 101 011  iaload 

             p = (int *)B; 

     B = *(p + A); 

A represents the index of the array reference 

B represents the array reference 

11 101 100  irem 

      B = B % A 

11 011 110  goto 

         If A = 0, branch_destination → jpc 

6.4. Miscellaneous instructions of the special type 

11 010 000  iinc1 

     opd[7 : 0] → A 

     stack[vp + opd[15 : 8]] → B 

11 100 000  iinc2 

     A + B → stack[tmp2] 

iinc1 and iinc2 implement iinc of the bytecode instruction. First, iinc1 

will load the operand value and the local variable to A and B, 

respectively. The local variable address will be stored automatically in 

tmp2 register. In the next cycle, the result of ALU directly store to the 

stack addressed by tmp2. 
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11 110 000  swap 

     A → B 

     B → A 

11 110 001  return 

The return operation will check whether the whole procedure has been 

finished. If it finishes the execution, the java processor will send an 

interrupt to the host processor and enters a wait state. 

11 111 000  invoke 

11 111 001  getstatic 

Both invoke and getstatic instructions will trigger an FSM to parse the 

class runtime image. During this period of time, a small microcode 

program in the One2ManyROM will be executed and fetching data 

from the class runtime image stored in the on-chip memory is 

controlled by the FSM. Note that the FSM for the invoke instruction 

and that for the getstatic instruction are different. 

11 111 010  stjpc 

     A → jpc 

This store operation stores register A to java program counter. It is 

considered as a special type instruction because the behavior of this 

operation is similar to the branch operation. It cannot be combined 

with other operations. 
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V. Runtime Environment 

1. Overview 

A complete JRE is a sophisticated software system. The key 

components of a JRE include a bytecode execution engine (BEE), a 

dynamic class loader, a garbage collector, and standard class libraries 

(Fig.23). Among these components, only the BEE can be reasonably 

implemented in hardware. For software-based VM, the BEE is 

implemented as an interpreter. The integration of this “virtual hardware” 

with the rest of the software components is simpler since everything is 

implemented in software. However, for a hardware-assisted JRE, the BEE 

will be replaced by a Java processor. In this case, the JRE becomes a 

highly integrated hardware/software system. The link between a Java 

processor and the rest of the JRE is the dynamic class loader. 

When the JRE is assigned to run a Java program, the initial class file 

will be loaded and parsed. All the static content of the classes inside the 

class file (e.g. method codes and data field information) will be registered in 

the method area. An object will be allocated on the heap to instantiate the 

root class. The object will contain a copy of the private data fields of the 

root class. At this point, the program counter of the Java processor will be 

set to point to the initial method in the method area. During execution, the 

Java processor will fetch bytecodes from the method area and access data 

fields of the object in the heap and in the method area. 

In general, the class loader is responsible for locating/loading the 

class files and setting up the method area for the Java processor. 
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Therefore, it is more suitable to execute the class loader on the host 

processor. We use the host processor to handle the class loader, heap 

memory management, and providing I/O services. The initialization and 

dynamic resolutions of symbols are handled by the java processor. These 

two processors are communicated via special JNI. Therefore, our “native 

code” is not native code of our Java processor, but native code of the host 

processor. Some of the modules of a full JRE are still under development. 

However, we have already implemented a simple class loader so that the 

Java Processor can be tested.  

Support Code :
Exceptions
Threads
Security
…

Garbage
Collector

Heap

Byte Code
Execution Engine

Class
and

Method
Area

Native
Method

Area

Dynamic
Class

Loader
And

Verifier

Native
Method

Link-Loader 

Operating System

The Java Runtime System

application
class files

Standard
Java API
Classes

Network

Native Methods
(.dll or .so files) 

 
Fig.23. A standard Java Runtime System 
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Fig.24. Proposed Java Runtime System 
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2. Simple Class Loader 

The class loader running at host processor load classes and convert 

them to our java runtime image. In Fig.25, The Java runtime image 

structure contains a table of content that points to runtime information of 

each class. The runtime information of a class has four parts, including 

class table of content, constant pool, field, and method information. 

*.class

single class info.

field info
method info

constant pool
class TOC

Classes TOC

…

…

Class loader
(written in C)

 
Fig.25. Runtime Class/Method Area 

3. Java Runtime Image 

3.1. Global Format 

The detail structure of the runtime information of a single class is 

shown in Fig.26. The offset address of the field information can be indexed 

by “Field info Addr” of the TOC, and the method information can be indexed 

by “Method info Addr” of the TOC. The constant pool entry is directly 

referenced by the offset of the base address. 
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reserve

addr 1

addr n

…

Constant Pool Info

Base Address

Constant Pool Data
(Same as that in the class file)

name index 0 descriptor index 0access flag heap offset 0

name index k–1 descriptor idx k–1access flag heap offset k–1

…

Constant Pool TOC

Field Info

name index 0
…

Method Code Area (described later)

Method Info

*All values are in big-endian format.

Field Info Addr Method Info Addr

16 bits

addr 0

name index m–1

data space (8 bytes) 

data space (8 bytes) 

addr 0

addr m–1

 
Fig.26. Java Runtime Class Definition 

3.2. Constant Pool Info 

Each entry in the Constant Pool TOC is the address (relative to the 

base address) to the TAG of the constant pool info. 

addr 1

addr n

…

Constant Pool Data

Constant Pool TOC

addr 0 n

 
Fig.27. Constant Pool Info 

Some indirect references will be resolved by the class loader in 

advance so that dynamic resolution during runtime will be faster and 

simpler. For example, we use pi_demo.class as our test program (the 

complete program will be listed in the chapter of “Experimental Result”). An 

example of dynamic resolution is shown in Fig.28. The instruction 

“invokestatic 1D” refers to the constant pool entry 1D and “Methodref_info” 

represents a symbolic reference to a method declared in a class. A typically 

Java Virtual Machine resolves this symbolic reference at runtime. Our class 
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loader will do some resolutions during loading to speed up runtime 

operations. Due to the symbolic references in the constant pool refer to the 

elements of this inner class, we can only record a direct reference for quick 

resolution. As in Fig.28, the class loader discovers that this method 

reference refers to the “pi_demo.class.” It can record the direct address in 

one of the method information entry, and the processor does not need to 

resolve “Methodref_info” at runtime. 

invokestatic 1D

Methodref_info(0A)
Tag = 0A
class_index=02
name&type_index=1C 

Methodref_info(0A)
Tag = 0A
class_index=02
name&type_index=1C 

Class(7)
Tag = 07 
name_index=01 

Class(7)
Tag = 07 
name_index=01 

Utf8(1)
Tag = 01
length=7 

pi_demo

Utf8(1)
Tag = 01
length=7 

pi_demo

Name&type_info(0C)

Tag = 0C 
name_index=15
descriptor_index=16

Name&type_info(0C)

Tag = 0C 
name_index=15
descriptor_index=16

Utf8(1)
Tag = 01
length = 07

pi_init

Utf8(1)
Tag = 01
length = 07

pi_init

Utf8(1)
Tag = 01
length = 06

([II)V

Utf8(1)
Tag = 01
length = 06

([II)V  

Fig.28. Dynamic Resolution 

Fig.29 shows our mechanism for fast resolution. The simple class 

allocates a memory space followed by the entry of “Methodref_info” to store 

a direct address. During runtime, the instruction “invokestatic 1D” refers to 

the constant pool entry 1D of the constant pool TOC, and read the data of 

that entry. Then, the java processor will discover that there is a direct 

address points to the method entry. With this mechanism, dynamic 

resolution will be faster during runtime. Other symbolic references of the 

constant pool, such as interface and filed, are implemented in the same 

way. 
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invokestatic 0x001D

Constant Pool

Constant Pool Data
(Same as that in the class file)

0x001D<<1+0x8+base_addr

Methodref_info(0A)
Tag = 0A
class_index=02
name&type_index=1C 

addr 0
addr 1

…

addr n
…

0x0156

direct address 

access flag arg_cnt max stack max locals

000A 0004 0003

033DA700……………….

Method Code
Area

0002

 

Fig.29. Fast Resolution 

3.3. Field Info 

Each entry in the Field info is of 16-byte long, including access flag, 

name index, descriptor index, heap offset, and data space. The first three 

elements are defined in the class file, and heap offset and data space is 

used for our reservation. Heap offset means where this filed stores in the 

heap. The data space is reserved for static field to store static value. It will 

ensure that the static value will not be duplicate in the heap space for each 

instance of a class. 

3.4. Method Info 

The Method TOC has depicted in Fig.27. It is used for dynamic 

resolution in different classes. The java processor will compare the value of 

the name index. After that, it has direct reference to the address of Method 

Code Area. The structure of Method Code Area is depicted in Fig.30, 

including access flag, descriptor index, max stack, max locals, and 

bytecodes. This information is required for the execution of a method. 
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. . .

Method 0 byte codes

Method Code
Area

max stack max localsaccess flag 0 descriptor index 0

max stack max localsaccess flag m–1 descriptor idx m–1

Method m–1 byte codes
 

Fig.30. Method Code Area 

4. Initialization of a Java Application for Execution 

The procedure of how a Java program is executed is shown in Fig.31. 

First, the host processor loads class files and converts them to class file 

runtime images by the class loader. Then the Java runtime images are sent 

to the on-chip RAM. After that the host processor will initialize the state of 

the Java processor, including JPC, VP, and SP, so that the processor is 

ready to execute the main method. Finally, the Java processor will be 

triggered and start to execute the bytecodes of the main method. 

Host processor

class loader

On-chip
RAM

Java ProcessorJava 
runtime
image

1

2

3 set jpc, vp, and sp

4

 
Fig.31. Initialization of a Java Application 
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VI. Verification of the System 

1. Synthesis and Co-design Tools 

1.1. Synplify Pro 

In this thesis, Synplify Pro 8.6.1 (shown in Fig.32) is used as the 

synthesis tool. The synthesis report shows that our design uses 2880 LUTs 

(23% of the Virtex-4 FPGA resource) and the timing of the critical path is 

119.4MHz (8.372ns). 

 

Fig.32. Synplify Pro IDE 

1.2. EDK – Embedded Development Kit 

We use EDK for our develop tool. It contains all configurations and 

combines the netlist file generated by Synplify Pro. The overall architecture 
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is shown in Fig.34, including PowerPC, DRAM, SRAM and our Java 

Processor on the PLB bus. The other slow devices are on the OPB bus.  

 

Fig.33. Embedded Development Kit 

PLB bus

OPB bus

PLB2OPB
Bridge

PPC405 DRAM SRAM Java 
Processor

UARTOther
Slow Device

 
Fig.34. Overall Architecture 



 

 57

2. Emulation Platform: The Xilinx ML403 Board 

Our verification environment is the Xilinx ML403 board which contains 

a Virtex-4 device. It has a hardwired PowerPC and an FPGA block. Both 

PowerPC and our Java processor synthesized in the FPGA block are 

running at 100MHz. Our Java Processor and the PowerPC communicate 

via interrupt service routines.  

Simple
Java

Program

Java Class
Filejavac

Bytecode Loader
and

I/O Handler

Virtex-4 FPGA

PowerPC
405

(100 MHz)

Java
Processor
(100 MHz)

Java 
Runtime
Image

interrupt

interrupt handler

 

Fig.35. System Emulation with FPGA 

3. The Test Program 

Our test program is shown in Fig.36. It computes PI value to 32 

decimal points. 
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Source File
1. public class pi_demo
2. {
3. static int a = 10000;
4. int [] f;
5.
6. private static void pi_init(int frac[], int c)
7. {
8. int idx = 0;
9.
10. while ((idx-c) != 0)
11. {
12. frac[idx++] = a/5;
13. }
14. }
15.

16. public static void main(String[] args)
17. {
18. int idx = 0, c = 112, e = 0;
19. int [] f;
20. int d, g;
21.
22. f = new int [113];
23.
24. pi_init(f, c);
25.
26. while ((g = c*2) != 0)
27. {
28. d = 0;
29.
30. for (idx = c; idx > 0; idx--)
31. {
32. d += f[idx]*a;
33. f[idx] = d%--g;
34. d /= g--;
35. if (idx > 1) d *= (idx-1);
36. }
37.
38. c -= 14;
39. System.out.print((e+d/a)); 
40. e = d % a;
41. }
42. }
43. }  

Fig.36. Compute Pi to 32 decimal points 

4. Experimental Results 

Fig.37 is the execution results of the test program. One can see that 

most bytecodes (92.3%) are executed by the java processor while some 

complex bytecode (7.7%) are executed by the host processor. For the few 

bytecodes that runs on the PowerPC, the communication overhead is 

extremely high. This is partly due to that the Java service routines running 

on the Power PC has not been optimized and the fact that cache is 

disabled for the PowerPC processor due to resource limitation (the on-chip 

block RAM is too small to fit both the host processor cache and the Java 

processor stack and class runtime images). This table shows you the 

bytecodes that the Power PC handles. Division and remainder operations 

account for 50% of the load of the host processor (mostly due to 
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communication overhead). These logics could have been implemented in 

the java processor to reduce communication overhead. 

As one can see, the bytecode per cycle on the Java processor is 

almost one. Finally, we have used Sun’s CVM to run the same program on 

ML-403 and it takes about 5ms. Note that in this case, the PowerPC is 

running at 300MHz, instead of 100MHz. Therefore, at 100 MHz, it will take 

about 15 ms to execute the program. 

bytecodes
Java Processor

Power PC

Cycles
28748
2265

30729
628790

milli-sec
0.3073
6.2879

100MHz

Sun’s CVM (300MHz) 5ms
idiv 27.6%

newarray 0.1%

irem 22.6%

iastore 27.2%
iaload 22.2%

Java Processor’s CPB 1.0689

 

Fig.37. Experimental Result 



 

 60

VII. Discussions 

In this thesis, we have presented the design of a double-issue Java 

processor. It can execute Java bytecodes more efficiently. The further 

works are to support full Java bytecodes and implement Java Virtual 

machine including class loader, linker, garbage collector and so on. Of 

course that the communication overhead between the PowerPC and our 

Java processor must be reduced. The end of the goal is to support full Java 

Virtual Machine. 
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