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Abstract

This paper proposes a video bit allocation scheme based on Curvelet domain analysis.
The proposed algorithm analyzes the  structural®.characteristics of the intensity and
motion-compensated residual images of ‘a video'sequence in curvelet domain to determine a
bit-allocation policy so that visually important regions' will be allocated with more bits.
Curvelet transform is adopted in this ‘thesis for such analysis because it performs sub-band
decomposition in various directions so that more structure information is revealed in curvelet
domain than in DCT or other wavelet domains based on separable transforms. The proposed
bit-allocation policy tries to save bits in unstructured regions and increase quality in structured
regions. Experiments using standard test sequences coded with an MPEG-4 simple profile
video encoder show that the proposed bit allocation method has better performance (achieves

higher PSNR’s) in the regions most human observers care about in all test cases.
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1. Introduction

Digital distribution of video is becoming popular today due to the applications such as
digital television, digital camcorder, DVD player, etc. For the decades, video compression is
an important technology in multimedia applications. A great number of digital video codec
standards have been published; including MPEG-2, MPEG-4, and H.264, etc. Many research
efforts have been put into the design of encoders that can achieves the best overall quality

based on these standard codecs.

In video codec, the coding scheme can be divided into several processes: predictive
coding, transform coding, quantization (e.g. rate-distortion coding), and entropy coding.
Transform coding tries to decorrelate the’¢omponents of video data and to centralize the
energy of video data in order to facilitate rate-distortion coding and entropy coding. In recent
years, many different transforms have been published to improve compression efficiency.
Among these transforms, the most popular‘transforms are Fourier Transform, Discrete Cosine

Transform (DCT) and Wavelet Transform.

Discrete Cosine Transform is more widely used for image and video coding than Fourier
Transform since the performances of these two transforms are similar but the operation of
DCT is simpler: DCT involves only real number operations instead of complex number
operations. Wavelet Transform becomes more popular in recent years since it captures both
frequency domain and spatial domain information in one compact representation. The wavelet
transform performs very well on one dimensional signal since it can represent signal
discontinuity in a more compact form than DCT does, but not as good as expected on
two-dimensional data.. The main reason is that to reduce computational complexity, most
practical wavelet transform implementation uses separable 1-D transform. The contours in a

two-dimensional image can be oriented in any directions. However, the separable wavelet



transform only captures signal discontinuities in horizontal and vertical directions.

Recently, a new sub-band decomposition method called curvelet transform has been
proposed. Unlike the wavelet transform, curvelet transform decomposes data components into
multi-directional data sets and it also maintains the multi-scale spatial information similar to
that of a wavelet transform. However, it is not easy to find a critically-sampled curvelet
domain representation of an image, therefore, curvelet transform are not used for general
image or video compression applications. It is more often used to separate high frequency
components due to noises and high frequency components due to signal discontinuities of the

image data.

In a video codec, the module that controls the size of the bitstreams for different coding
units is called the rate control module. Finding a good trade off between video data rate and
visual quality (distortion) is one of theikey issues of a‘high performance rate control scheme.
Most encoder tries to estimate the tate-distortion function of a video sequence during
encoding. However, the distortion measures are usually"MSE or MAD-based so that it does
not precisely reflect the visual importance of the video data. In general, the importance of a
coding unit is related to the sub-band data in the frequency domain. For example, the
components of high-band frequency data are less visually important than the low-band

frequency data at the same spatial resolution scale.

It has been shown [19][35] that a structured-region in image has more visual importance
than an unstructured-region in image. A region full of random textures (or
motion-compensated residuals in residual images) is usually hard to encode and not easy for
human eyes to discern the degree of distortions. This kind of image component is referred to
as unstructured regions. On the other hand, a region whose textures are simple, with
discontinuities in only few directions is referred to as structured region, and any distortion in

such regions can be picked up easily by human eyes.



In general, it is not easy to classify between structured and unstructured regions in an
image, especially when the definition of “structureness” is dependent on human observers. In

this thesis, the curvelet domain analysis is proposed to achieve this goal.

The major advantage of curvelet transform is to decompose input data into frequency
coefficients of several directions at each spatial resolution scale. Therefore, in this thesis, we
try to analyze video data in curvelet transform domain by its directional presentation in order
to classify image regions into structured and unstructured regions and to achieve better bit
allocation for video compression. The goal of the proposed technique is to save bits in
unstructured regions since human eyes can not discern the distortion. The saved bit budget

will be allocated to structured regions to improve its visual quality.

The organization of the thesis is as follows. Chapter 2 introduces some related work of
rate control schemes and the perceptual medels of human visual systems. Chapter 3
introduces the curvelet transform, including the matheématical definition and its architecture.
In chapter 4, the proposed method will be describédiin detail. The experimental results will be

shown in chapter 5. Finally, the conclusions and discussions will be given in chapter 6.



2. Previous Work

As mentioned in chapter one, the main purposes of the transform coding process are to
find a more compact data representation and to facilitate video data analysis for rate-distortion
coding. For several decades, a great number of different transforms has been studied. Among
these transforms, the most popular transforms used for transform coding are the Discrete
Cosine Transform (DCT) and the Wavelet Transform. However, since these transforms do not
decompose the frequency sub-bands alone image edges, existing transform domain
representations are not compact at signal discontinuities. A new transform, curvelet transform,
tries to provide multi-resolution and multi-directional signal decomposition, is introduced by
Cand’es et al.[22] [23][24]. What is more, Human Visual System (HVS) is researched to
classify the regions in image whether the distortion of'the region human eyes are sensitive to
or not. These studies are of use in compression technique during the bit-allocation selection

scheme.

The organization of this chapter is as follows. In section 2.1, we will first introduce
popular transforms used in transform coding systems. And then we will analyze the pros and
cons of existing transforms and briefly describe the reasons why a new transform, curvelet
transform, is adopted in this thesis. In section 2.2, existing work on modeling the relation
between human vision systems and the characteristics of images are discussed. Furthermore,
the reason why we use curvelet analysis to distinguish between unstructured-texture regions

and structured-texture regions are discussed.

2.1. Transform Analysis

For a long time, Discrete Cosine Transform (DCT) [1][2] is one of the most popular
transforms which is used in transform coding systems. It is because DCT keeps a good

balance between compactness of data representation and computational complexity [3][6].
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The DCT is defined as follows [3][4]:

F(u.v) = CSI%V) iNZ:COS (21 + l)u7r (i ; I:)V” 0. ) @

V2o
=15 Te=0, 2.2)

1  otherwise.

In equation 2.1, f(i, j) represents an entry of coefficients on the location of (i, j) and M
and N mean the size in the horizontal and vertical direction separately. The two-dimensional
DCT transforms it into a new function F(u,v), with integer u and v running over the same
range as i and j. Equation 2.2 defines the value of multiplicator C(&) according to whether the

DCT coefficient is the direct current (DC) component of the signal or not.

Compared to DFT, DCT can: minimize the blocking artifact when coefficients are
truncated or quantized. For example, as shown-mn-Figure 2.1, the implicit n-point periodicity
of the DFT can be replaced by the implicit.2n-point periodicity of the DCT. Therefore, the
boundaries between adjacent sub-images become invisible because implicit 2n-point

periodicity of DCT does not inherently produce boundary discontinuities.

2n

kLl

n

O

v

v

I I
Figure 2.1. Reduction of blocking artifacts using DCT
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In 1987, Mallat constructed a structure of wavelet function and the analysis and synthesis
progress of signal decomposition. More importantly, Mallat first showed that wavelets are the
foundation of a powerful approach to signal processing and analysis called multi-resolution
theory [7]. In the next year, Daubechies proposed orthonormal and compactly supported

wavelet and the theory of wavelet analysis was constructed [8].

The main advantages of wavelet transform are listed as follows. First of all, wavelet
transform is computationally efficient and inherently local; therefore, it is not necessary to
subdivide the original image into sub-images before applying the transform. As a result, the
method eliminates the side effect of blocking artifact which is usually produced by the
DCT-based compression scheme. Even more importantly, signals decomposed into wavelet
domain have good resolution in both timhe and frequency domain. These characteristics work
nicely for one-dimensional signals. Signals:'such. as. audio data using wavelet-based
compression scheme perform better than, those using the-traditional DCT-based compression
scheme. Finally, wavelet transform can decompose signals into coefficients with different
levels of resolution, and the characteristic is called multi-resolution [9]. For analyzing the
signal data, multi-resolution representation is very effective since the decomposed coefficients
are scale-invariant interpretations. These kinds of decomposition provide a hierarchical

framework to interpret the signal data.

However, for two-dimensional image or video compression, traditional wavelet
transforms which use 1-D separable transforms to decompose the sub-bands has significant
drawbacks. Such transforms only capture signal discontinuity efficiently in either horizontal
or vertical directions. Nevertheless, the direction of signal discontinuities in two dimensional
signals can vary along 360 degree of angles. Traditional separable wavelet transform fails to
capture the geometry of image and edges due to the fact that the directions of contours in

two-dimensional images can take arbitrary angles [10][11].

6



To remedy this shortcoming, another method of sub-band decomposition called curvelet
transform has been published. Unlike the wavelet transform, curvelet transform not only
decomposes data components into multi-direction data sets but also maintains the
characteristic of multi-scale spatial resolution of wavelet transforms [12][13]. In this thesis,
curvelet transform is used as a tool to help analyzing the contours of the two-dimensional

images. The detail description of curvelet transform is presented in next chapter.

2.2. Properties of Human Visual System

In resent years, many researches on Human Visual System (HVS) are published, hoping
to find a computational model for the behavior of human eyes [14][15]. These researches are

important to image processing and coding {161[36]:

When human observers look at'still images, the:perceptual importance of each region in
images is not the same. Many characteristics-of the.image.regions such as the shape of objects,
the contrast of luminance, the location. of objects, .the size of the full objects, and the
articulation of the objects will affect the perceptual importance significantly. Furthermore,
whether an object is in the foreground or the background may also affect its perceptual
importance [17].

Many studies of the relation of human eye movements and the features have been
published [15]-[19]. When humans look at a still image, they move their eyes several times a
second. Therefore, the features of the region that human eyes stop to gaze every time can be
considered as the features that can attract human eyes. Enhancement of the visual quality of
these regions is a higher priority task than improving other regions’. Some researchers
classify the features of the regions that attract human eyes’ attention into three main groups.
First, human observers always take priori notice of the regions that contain the faces [18].

Secondly, the regions that have higher spatial contrast intensity would attract human



observers than other regions. Third, human eyes also tend to look at the regions that the

correlations of the intensities of the nearby image pixels are weaker [19].

The regions which have large contrast intensities include two different types of textures:
the structured-textured regions and the unstructured-textured regions. More precisely
speaking, these two kinds of regions can be discriminated by the representation of the edges
(signal discontinuities) in the region. First of all, the structured region means that the number
of the edges of objects inside the specific region is relatively little and the lengths of the edges
are long (structured stimuli). On the other hand, the unstructured region means that the
number of the edges of objects inside the specific regions is quite large, the position and the
direction of the edges are quite random, and the lengths of the edges are small (random

stimuli).

As a result, the distribution of.'edge pixels-in tnstructured region is scrambled and
entropy of this kind of region is usually higher than that-of the structured regions. However,
human observers usually have trouble discerning-the distortion in the unstructured regions. In
other words, we can dispatch fewer bits ‘to, theunstructured regions because human eyes are
less sensitive to its distortions. On the other hand, since human eyes are more sensitive to the
distortions in the structured regions, allocating more bits to structured regions can enhance the

visual quality more significantly than allocating more bits to unstructured regions.

For a video sequence, previous discussion on the structure of textures can be extended to
the temporal domain as well. If the motion of an object from one frame to the next is smooth
and can be tracked easily by eye movements, the texture of the object will have a stable
projection on the retinas. Therefore, it would be easy for human to discern coding distortion
of the sequence on this particular object. On the other hand, if the motion is random, it would
not be easy for human eyes to get a stable image on the retina and the coding noises would not

be apparent to a human observer. The type of motion can be analyzed from the



motion-compensated error residual images. Again, random, small edges in the error residual
images around the area of the object means that the object is moving randomly, while an area

with structured residual images means that the object is moving smoothly.

In this thesis, we propose a new model that can distinguish the unstructured regions from
the structured ones. Therefore, the new model can be used in the bit-allocation process to

enhance the visual quality of coded bitstreams.



3. Study and Analysis of Curvelet Transform

The goal of this thesis is to design a video bit allocation model based on visual behavior.
As the previous chapter describes, we perform video data analysis in curvelet domain.
Therefore, before we present the perceptual model-based bit allocation algorithm, we first
introduce the 2-D curvelet transform in this chapter. First of all, we must study the theory and
characteristics of curvelet transform. Secondly, it is important to understand the digital
implementation of curvelet transform and the meaning of transformed coefficients in order to

design the bit-allocation algorithm for perceptual-based video coding.

This chapter is organized as follows: We begin in section 3.1 by showing the reason why
we must use curvelet transform to analyzejthesvideo data. Section 3.2 describes the main
features of curvelet transform. In sectiony 3.3, the mrathematical formulation of curvelet
transform is presented. Furthermaore, section’3.4 presents the implementation of digital
curvelet transform. Finally, the representation of transformed coefficients is introduced in

section 3.5.

3.1. Why Curvelet Transform

For the last two decades, many transformations based on multi-scale decomposition have
been published [7]-[14]. Today, especially in the field of signal processing, multi-scale and
multi-resolution based transformations such as wavelets are becoming the popular
decomposition methods. Multi-scale transforms have many advantages [21]. First of all, with
multi-resolution transform, compressed data can be transmitted in scalable fashion. That is,
low resolution data can be transmitted before high resolution data. Secondly, using multi-scale

transform is convenient for data mining in large datasets. Thirdly, signal noise removal, for

10



example, in image restoration is more effective in the multi-resolution transform domain. As a
result, there are an increasing number of studies of multi-scale and multi-resolution

transformations recently.

In last few years, a multi-scale based transform, curvelet transform, was developed to
improve the limitations of traditional multi-scale transforms.[22] [23][24] Generally
speaking, the curvelet transform is applied using a pyramid structure with multi-resolution. In
each scale of the pyramid, the curvelet coefficients records frequency components along

different directions [25] [26].

Comparing to traditional 2-D wavelet transform for images, curvelet transform is an
over-complete system that contains more sub-band information and therefore it handles some
problems better than traditional wavelets [27]. In curvelet transform domain, the
representation of edges in an image region.(at.a particular scale) can be analyzed from
multi-directional decomposition of the spatial-edges -into frequency components. With
multi-directional frequency decompesition and multi-resolution characteristics of the curvelet
transform, we can obtain more information regarding the structure of the image textures (or
the motion-compensated residuals). To be more specific, in the proposed bit allocation
scheme, we first analyze the image data according to their frequency components along each
edge direction. This analysis discriminates a region with structured texture (or
motion-compensated residuals) from a region with unstructured texture (or
motion-compensated residuals). Finally, the result of the analysis is used in the bit allocation
decision in the video rate control mechanism. All the processes will be described in detail in

next chapter.

3.2. Fundamentals of Curvelet Transform

The basic idea of curvelet transform arises from anisotropy scaling relation for curves

11



which is also called the curve scaling law [23].

width oc length® 3.1

Figure 3.1 illustrates the basic idea of curvelet transform [23][24]. First of all, suppose
there exists a curve u = u(v) in the (u, v) orthogonal coordinate system. In general, we can use

the Taylor series expansion to expand the equation u=u(v) as in Equation 3.2.

u() = u0)+ v O+ 2Oy wheny =0 62)

Figure 3.1 shows that the curve of u=u(v) can be locally approximated by a basis
function with rectangle with width w and_length £. The relation of the width and length is

w=u(4/2).

length

Figure 3.1 The anisotropy scaling relation for curves.

Moreover, since the v-axis is tangent to the curve at the origin (0, 0), the value of the u(0)

and u’(0) is zero. As a result, we can obtain Equations 3.3 and 3.4.

12



u(v) o — (3.3)

W (3.4)

In conclusion, if we construct a correct multi-resolution scale for two-dimensional curves,

we will get better approximations when the scale becomes finer.

The advantage of curvelet transform comes from a flexible multi-resolution and
directional image expansion using curve segments. To be more specific, curvelet transform is
a multi-resolution decomposition method. If the total number of resolution is N, the 1% level
is the coarsest level and level N being the finest level N. Coefficients in the coarsest level and
the finest level are not decomposed by directional  filters, so they do not contain the
information of directional frequency.component analysis..On the other hand, coefficients from
the 2™ level to the N-1™ level are decomposed by two-dimensional band pass filter first and
then by directional filter latter. Therefore, for these levels, the coefficients will be separated
by many angular wedges, and each wedge contains frequency components of the image
signals decomposed along a specific orientation. The procedure of coefficients separation by

angular wedges is called parabolic scaling.

3.3. Mathematical Formulation of Curvelet Transform

First of all, we define a two dimensional space, Rz, with four variables which are a

spatial-domain variable X, a frequency-domain variable ®, and variables r and 6 in polar
coordinates in the frequency-domain [21]. Conceptually, the principal filters are based on two

basic windows, which are radial window, W(r), and angular window, V(t), respectively.

13



iw2(2jr):1, I‘E(%,%); (3.5)

ivz(t-ﬁ)ZI, te(-l,l) (3.6)

Equation 3.5 is the radial window W(r), which decomposes the image data in Fourier
domain as the band pass filter. The window is smooth, nonnegative and real-valued, and its
argument r is positive and real valued. Equation 3.6 is the angular window V(t), which
decomposes the image data in Fourier domain into several wedges that contain different
directional coefficients. The filter is also smooth, nonnegative and real-valued, and its
argument t is real valued. The argumentyj represents the scale of the coefficients, and £ means

the direction of the coefficients.

) 2BJ0

Uj(r,H):Z-XW(er)V T for j> j, (3.7)

The radial and angular window can form a frequency window Uj; as shown in Equation
3.7. Like Equation 3.5, the argument j represents the scale of the coefficient. To be more
specific, jo is just the 1* level of the decomposition scale and Lj/2J is the integer part of j/2.
In curvelet transform, the directional decomposition starts from the 2™ level of resolution and
ends at the last level of resolution. In other words, the 1% level (coarse scale) decomposition
can only produce the roughly low pass filtered coefficients. For other scales, U; can

decompose image data into polar wedges that contain different directions.

More precisely, we can use the waveform to represent the frequency window.

14



Uj(r,H):Uj(a)l,a)z):Uj(a)) (3.8)

9;(0)=U;(o) (3.9)

In Equation 3.8, we change the form of frequency window form polar coordinate to
orthogonal coordinate. And then we can use the waveform in Equation 3.9 to define the

frequency window.

Let’s introduce two parameters that indicate the position of coefficient in the polar

wedge.

9, =2x-21% .4, where ¢=0,1,...
: (3.10)
and +0<60, <2r
Xg’k) = R'gt (kl 27k, ~2'j/2) where k = (k,.k, ) e Z* (3.11)
cosf sind B T
R,=| . , RI=RT =R, (3.12)
-sinf cosé

The Equation 3.10 expresses the rotation angles & ,that we use to indicate the direction

of coefficients. The next Equation 3.11 shows the position of coefficient xff’k) in the spatial
domain that is controlled by the translation parameter k. And the notation R} is the inverse

(and transpose) of rotation by 6 radians as what Equation 3.12 shows.

Therefore, at decomposition scale 27, at the orientation of rotation angles 6 ,, and at the

position xfj’k) , basic curvelets can be defined as follows:
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0. (x)=0,[R,, (x-x)) (3.13)

As a result, we can use the inner product operation on an element f and a curvelet to

produce a curvelet coefficient, and the formulation is represented as Equation 3.14.

c(j, £,k) < Mk> wherefeLz(Rz)

I JZkixidx

(3.14)

We can also translate the curvelet coefficient of Equation 3.10 into the frequency domain

operation as Equation 3.15 shows:

c(j, 0,k)=

1 IR
v | H@duileio

(27)

1 o 3 i)
iRk

(3.15)

Figure 3.2 shows the diagram of decomposition-by curvelets in frequency domain. This
figure represents five decomposition level of resolution. The 1 level is the coarsest level,
which is only decomposed by low pass filter. Therefore, the 1% level coefficients are non
directional. Other levels are composed of angular wedges. The dotted region is one of the
angular wedges in the 5™ level coefficients. At scale 2 I, the length of each wedge is 2 92 and

the width of each wedge is 27.
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Figure 3.2 The curvelet tiling in the frequency domain

3.4. Implementation of Digital Curvelet Transform

In this section, we will describe the procedure for computing 2-D curvelet transform
[21][28]. In short, the 2-D curvelet transform can be computed using unequally-spaced fast
Fourier transform (USFFT). The Fast.Fourier Transform library used in the program can be
obtained in [29].

Some input parameters to the algorithm are described in Table 3.1, where nx and ny are
the input image width and height, and ns is the number of image resolution scale for wavelet
decomposition, which is a result of log,(nx)-3. In addition, Meyer wavelet [30] is used for the

wavelet transform in the algorithm and n,, is the degree of the Mayer window function.

nx 512
ny 512
ns 6
Ny 3

Table 3.1 Input Parameter to curvelet codec

First of all, we convert the component of image, RGB, to YCgCr format to get the Luma
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component Y. And then we use the Luma component Y as the input of the curvelet
transformation. The procedure of computing curvelet transform is composed of four steps and
each of the steps will be described in the following sections. Section 3.4.1 describes the
Fourier transform procedure which transforms the image inputs into frequency components.
Section 3.4.2 introduces the band pass filtering process that decomposes the frequency data
into several resolution scales. The polar scaling method is described in section 3.4.3. Finally,
section 3.4.4 shows how the coefficients are converted back to spatial domain via inverse

Fourier Transform.

3.4.1. Take Fourier transform into frequency domain

First of all, since we need to scale the image data by different resolution in the following
steps, we must transform the image data into frequency domain. Assume that the input image
data is in YCgCr format. To obtain Fourier-Samples of‘the image, a two-dimensional Fast
Fourier Transform is applied on the Euma components(’Y channel of data), and the transform
coefficients is normalized by dividing by (nx-ny)’”. As Figure 3.3 indicates, the low-band
coefficients are centralized in the center of the image since this representation facilitates

repetitive decomposition of the coefficients.

P .

2D

A o

Figure 3.3 Decomposition of image into frequency domain

18



3.4.2. Band-pass filtering

In the second step, we have to obtain frequency coefficients in different resolutions. First

of all, we must create different levels of wavelet transform window function to decompose the

coefficients obtained from previous step. Figure 3.4 illustrates how the band-pass filters are

applied.
512
32 32
Meyer
SIS L ————> 32
Level
0 =
J.'-'f-'
~ =
512 '
32
512 32 Meyer
312 B Wi oy
Level
1
(b)
5 513
128
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e
512 i Meyer
512 | 128 - Windows > 128
Level
2
(©)
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Figure 3.4 Decomposition of I\ll_éi/er wavele{*m_ resolution of scale 0 to scale 4

coefficients in coarsest level are ﬁlter% Ia:_y—thﬁ,,ldw pass filter with size 32x32, and the
procedure is indicated by Figure 3.4(a). Figure 3.4(b) to Figure 3.4(e) represents the
coefficients in resolution of scale 1 to scale 4, respectively. For these scales, the filters are

composed by the subtraction of two low-pass filters in order to form a band pass filters.

During the band-pass filtering procedure, the filters we apply are based on the low-pass
Meyer window function. The scaling function and wavelet function of the Meyer window

function is shown in Figure 3.5 [28] [30].
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Figure 3.5 Scaling function and wavelet function of Meyer window function

The detail procedure of decomposition is described as follows. First of all, we generate
one-dimensional Meyer window of degree 3 by combining four basic parts, see Table 3.2.
The one-dimensional Meyer window is leading with a zero coefficient and then followed by
the 4 parts with the order 4 3 2 1 2 3 4. Therefore, the one-dimensional Meyer window will be
composed of [zero 4 3 2 1 2 3 4]. The two-dimensional Meyer window is constructed by

point-wise multiplication of two one-dimensional Meyer windows.
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Part The actual value of the filter

1 l1...1

2 cos(mv/2(3a/2)) where a are dyadic points (27'/3...2'/3-1)/2'-1
3 cos(mv/2(3a/2))where a are dyadic points (2'...2"")/2'-1

4 l...1

After generating the two-dimensional Meyer window, we filter the low frequency
components by the Meyer window. To be more specific, the range of resulted low frequency
components in resolution level i, sx; and syi, can be calculated by Table 3.3. The filter
coefficient we use in level i, where 1 are 1 to 4, is the square of coefficient 1 minus square of
coefficient i-1, and then get its square root.
of 1 minus square of coefficient 4. After'the decomposition, we can get six different scales
with size SX;*SYi.

More over, the size of the coefficients 1S controlled-by the level of their scale. And the

relation of size and scale can be show as Table 3.3. To be more specific, Sx; and Sy; are width

Table 3.2 Four basic parts of 1-D Meyer window

In level 5, we use the coefficient of square roots

and height of level i.

Level i sx; = sy; = min(2"%,nx) Window(i)
0 ip=3 32 i
1 i= 64 (i12-ipH)"
2 i,=5 128 (i%-i; 5"
3 i3=6 256 (i32-i,5)"
4 i,=7 512 (is2-i35)"
5 is=8 512 (1%-i,H)"

One example of the band-pass filtered coefficients in each resolution is shown in Table

3.4.

Table 3.3 Parameters of each resolution level
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Result

Decomposition of Meyer wavelet

Level 0

Level 1

Level 2

Level 3

Level 4

Table 3.4 The band-pass filtered coefficients of image Lena
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3.4.3. Polar interpolation

The frequency coefficients in different resolutions computed by the band pass filter must
be re-sampled to form directional frequency components. This can be done by interpolating
the coefficients obtained from the previous procedure along vertical and horizontal directions.
After resampling, the coefficients may be rearranged into four groups, namely west, east,

north and south, based on the directions of directional decomposition.

For example, for the coefficients in the east quadrant, the whole procedure of the

directional decomposition is shown in Figure 3.6.

Original image with Image with new polar
rectangle sample grid sampling grid

© OO0
© 00

resampling store

— e g—

0000000008
0000000000

© 0 0O
© 00O
© 00O
00000

Figure 3.6 Angular scaling in the East quadrant region

First of all, we can obtain the rectangle shaped coefficients in the East quadrant.
Secondly, we apply column-wise one-dimensional inverse Fast Fourier Transform on the
coefficients. And then we have to resample the coefficients into a shape of wedges (shown in
the middle picture in Figure 3.6). From Figure 3.6, one can see that, for each column, x
sampling gird stays the same, but y sampling grid must be rearranged along each column.
Therefore, we have to calculate the new indices and interpolate the new coefficients. We

obtain the new indices by performing a one-dimensional Meyer Window, see Table 3.5.
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Meyer window is combined by the 4 parts
Part 1 sin(mtv/2(3a))
Part 2 sin(tv/2(3a))
Part 3 cos(mv/2(3a))
Part 4 cos(mv/2(3a))

Table 3.5 Formula of Meyer Window

Furthermore, the interpolation method is calculated by one sine window such as
Equation 3.16. Finally, the resampled coefficients is stored in a rectangular shape region in

transform domain for the purpose of easy accesses.
W= sin(% (1+sin(z(t + %)))) : sin(% (1+ sin(ﬂ(% —1)) (3.16)

Note that for the east and west.groups ‘of coefficients the interpolation is done
column-wise while for north and south groups of coefficients, the interpolation is done
row-wise. Figure 3.7 shows the coefficients before and after the procedure of the directional
decomposition. Coefficient in the right part is the result of the red ladder shaped region (East
quadrant) in the 4™ level resolution after applying the polar interpolation. To be more specific,

the region which is framed in yellow designates the first angle in the resolution.
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After interpolation

Eefore interpolation

Figure 3.7 The directional decomposition in the 4™ level coefficients.

3.4.4. Inverse Fourier transform

In the final step shown in Figure 3.8, two=dimensional Inverse Fast Fourier Transform is
applied on the coefficients to transform the data back.to spatial domain. The pixel data is
normalized by multiplication with (nx-ny)™ in order to cancel the original normalization we

apply on the coefficients.

2D IFFT

Level O

Figure 3.8 Perform 2D IFFT on lowest level

3.5. Interpretation of the Curvelet Transform Coefficients

In this section, we will give an interpretation to the curvelet coefficients in each level of

resolution. The coefficients at the coarsest and the finest levels are not decomposed along
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different directions while the coefficients at other levels are decomposed along different

angles.

3.5.1. Curvelet Coefficients in the Coarsest and the Finest level

As previous paragraph describes, the curvelet in the coarsest and the finest level of
resolution do not contain the information of directional decomposition. To be more specific,
the coarsest curvelet coefficients are the low-pass coefficients, and on the contrary, the finest

curvelet coefficients are the high-pass coefficients.
Here we show an example of coarset level curvelet coefficients by stefan image with size

352x288. Size of the coarset level curvelet coefficients is 32x32. After normalizing the

coarest level of curvelet coefficients, the image of coefficients is shown in Figure 3.9.

Figure 3.9 Result of coarsest level of curvelet coefficients

3.5.2. Curvelet Coefficients in the Middle Levels of Resolutions

Curvelets in the middle levels of resolution contain the information of directional
decomposition. For each resolution scale, the coefficients in different directions (within a
wedges area along different angles) are resampled according to their orientation. The number
of angles analyzed at one scale is chosen by the resolution of the scale. For instance, there are
32 different angular wedges in the 2™ and 3™ levels, and 64 different angular wedges in the

4% and 5™ levels.

As other multi-resolution based transforms, curvelet coefficients can be presented in a

spatial image. Figure 3.10 (a) helps to define the position of curvelet coefficients. In the first
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step, we allocate the coefficients of the coarsest level in the middle of image. In the second
step, the coefficients of one scale are separate in to 4 parts composed of North, East, South
and West. More over, we separately put the coefficients around the coarsest level coefficients
from low level to high level. Figure 3.11 shows the actual curvelet coefficient in 4 levels of

resolution of the Stefan image.

Morth

Wyest |:| East

South

(@) B (b)

Figure 3.10 Coefficients of each resolution level

Moreover, an example of the mapping between the positions of the curvelet coefficients
and the original image pixel position is illustrated in Figure 3.11. The mapping function of the
coarsest-level coefficient is simple since it is just a subsampled version of the original image.
However, the mapping of the other levels of coefficients is not as trivial since their samples
are rearranged in the frequency domain. However, one can still derive the mapping function
precisely by inversing the band pass filtering and the coefficient storage procedure described

in this chapter. More details of the mapping function will be discussed in next chapter.
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Figure 3.11 Position mapping of curvelet coefficients
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4. Proposed Bit Allocation Framework

In order to design a video bit allocation policy that matches human perceptual behavior,
we must design a measure to distinguish between structured and unstructured regions (or
motion-compensated residuals). The texture structure can be classified by analyzing the
distribution of the angular frequency components in the curvelet domain. In the proposed
framework, the analysis is done by classification of the histogram of frequency components
across different angles. The assumption is that for a structured region, the histogram should
have clear peaks (large magnitude frequency components) at few angles. On the other hand,

for an unstructured region, the histogram will be nearly uniformly distributed.

The organization of this chapter is Jisted ‘as:follows. In section 4.1, some analyses on
curvelet coefficients at different resolutions are presented. In section 4.2, we describe the Otsu
thesholding algorithm, which is used in the proposed framework for histogram classification.
Section 4.3 formulates the proposed statistical measure that calculates the degree of texture
structure randomness in a specified region. Finally, section 4.4 presents the proposed bit

allocation scheme for MPEG-4 simple profile.

4.1. Analysis on curvelet transform coefficients

Although curvelet transform provides decomposed frequency components at different
resolutions, the coefficients at the coarsest and the finest resolutions do not arrange frequency
components according to the direction of the transform windows. In this thesis, these
coefficients are referred to as the first group of coefficients. The second group contains
coefficients at other intermediate resolutions. These coefficients are arranged according to the
direction of the transform windows. In section 4.1.1, we will describe the detail information

of the curvelet coefficients in the two groups. In section 4.1.2, we will show the spatial
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mapping between the original image positions and the corresponding curvelet coefficients.

4.1.1. The composition of the curvelet transform

We have glanced at some features in section 3.5. In this section, we will put more
emphasis on the meaning of coefficients in a curvelet domain image and their relation to the
original image.

First, we explain the components in the first group that do not contain the information of
directional decomposition. For the coarsest-level coefficients, they contain the low frequency
components and the size is diminished into fixed size of 32x32 pixels. Therefore, the position

mapping between the original image and the transformed coefficients is a direct down-scale.

project
==

Figure 4.1 Position mapping of curvelet coefficients in the coarsest level
resolution

Let’s take the simple edge image that the only edge starts from right-up corner to
left-bottom corner as an instance. Figure 4.1 shows the way of position mapping between
curvelet coefficients in the coarsest level resolution and the original image. The image of
normalized coarsest coefficients is listed left whose size is 32x32 pixels, and the original
image is listed right whose size is 352x288 pixels. We can easily find out the original spatial
properties are remained in the curvelet coarsest level coefficients. Similarly, Figure 4.2 is the
image of normalized finest level coefficients. Curvelet coefficients in the finest level
resolution are the collection of high frequency components of the original image, and their

total size is the same as the original image. Therefore, the positional mapping is direct
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one-to-one mapping. In the proposed bit-allocation method, neither coefficient in the coarsest

nor finest level of resolutions is used.

Figure 4.2 Curvelet coefficients in the finest level resolution
For the second group of coefficients that contain the information of directional
decomposition, the number of levels depends on the original image size. For example, if the
original image has 352x288 pixels, we can obtain three middle levels of resolution which are

the 2™ level, 3™ level and 4™ level respéctively, sec Figure 4.3.

Figure 4.3 Curvelet coefficients in the 2", 3" and 4™ level resolution

For the 2™ and 3™ level, coefficients are separated into 32 angles. However, there are 64
angular wedges in the 4™ level. That is to say, the total number of separated angles in one

resolution is twice every two levels.
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As Figure 4.3 shows, because the original image contains only an edge starts from the
right-up corner to the left-down corner, we can easily find out the coefficients are centralized
in the region of left-up and right-down. In short, curvelet coefficients centralize the energy

into the orthogonal angles of direction of the curves.

More over, the position mapping function of the middle levels is different from that of
the first group. In section 3.5.1, as Figure 3.11 shows, we have glanced at the relation of
positions between the curvelet coefficients and the original image. Because the directional
decomposition process re-samples the coefficients in the frequency domain, and the direction
of re-sampling varies according to the specified angles, the actual positions of the final
coefficients are shifted in some direction. We can classify the directions of shifting into two
groups. First, for East and West quadrants, coefficients in the vertical direction are simply
proportional, but coefficients are shifted by the angle of the orientation in the horizontal
direction. Secondly, for North and Seuth quadrants, coefficients in the horizontal direction are
simply proportional, but coefficients are shifted-by-the angle of the orientation in the vertical

direction.

4.1.2. Image type and the presentation of the related coefficient

As Figure 4.3 shows, we can easily understand the distribution of the curvelet
coefficients. Since the original image only contains a simple edge, the positions where the
coefficient appears are simple, too.

Let’s see a more complex example. If the original image contains multiple
multi-directional edges, such as the image in Figure 4.4(a), the distribution of its coefficients

is much more complicated.
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(@) (b)
Figure 4.4 Curvelet coefficients in the 2", 3™ and 4™ level resolution
In Figure 4.4(b), we can see that'_\the'coefﬁc‘_i’ents are distributed in multiple angular
wedges. Furthermore, it is natural th'ar"t‘the arixgull'af_we.' dges which the coefficient appears are

different in each resolution. Therefore, curvcle’t'fransforrﬁ can determine whether the curves

in an image are complicated or not r"ag:cordi'r'vlrgi to -t:her di_rectional decomposition in the middle
levels of resolutions.

In our proposed scheme, we take each angular wedge in each resolution scale as a data
unit. The actual process is to calculate the magnitude of one angular wedge in one resolution,
and the magnitude becomes the representative value of the energy in the orientation in the
resolution. Secondly, since we can get three resolution scales with directional decomposition,

the coordinate formed by the magnitudes can be shown as in Figure 4.5.
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Figure 4.5 The coordinate formed by curvelet coefficients

It is a three dimensional coordinate which is formed by the scale, magnitude, and angle.
The angle indicates the angle of the orientation which starts at 0° and ends at 360° in the
direction of clockwise. However, the total angles in each resolution scale are different. To be
more specific, the 2™, 3™ level resolution contains 32 angles respectively, but the 4™ level
resolution contains 64 angles. In the plane of angle *6.and magnitude, we can see the figure as
histogram. Naturally, value of the magnitude is“according to its quantity of coefficient in the
orientation. If the value of magnitudg is larger, it means more data in this direction. Therefore,
we can analyze the composition of histogram to.see* whether the direction in the image is

structured image or not.

As a result, we can take advantage of the property in curvelet transform to analyze the
input video data in our proposed bit-allocation scheme. In next section, we will introduce the
Otsu algorithm to help analyzing the curvelet coefficients for the sake of determine whether a

small area in an image contains complicated curves or not.

4.2. The Otsu Algorithm

For picture processing, the technique of selecting histogram threshold is very useful for
many applications, such as object extraction or edge detection [31]. Therefore, there are a
variety of techniques proposed for threshold selection. In this section, we will introduce a
typical threshold selection algorithm from gray-level histograms. The method is proposed by
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Nobuyuki Otsu in 1979 [32].

Generally speaking, given a histogram of an image, there is a deep and sharp valley
between every two neighbor peaks. The position of the bottom of each valley is the threshold
we want to obtain. In the algorithm proposed by Otsu, the histogram threshold can be derived

form the viewpoint of discrimination analysis.

First of all, we assume the number of gray level in an image is L. The total number of
pixels N is the summation of n; for level i=1, 2,..., L. The probability distribution is as

Equation 4.1 shows:
pi=-r. P20 D pi=I (@.1)

Secondly, we can separate all pixels into two.classes by a threshold at level k. Cy is the
group which contain the pixels with level 1 to level k, and C; contain the pixels with level

k+1 to level L. The probabilities of class oceurrenceof Cy and C; are listed in Equation 4.2.

k k
w, =Pr(C,) = zpi = w(k) where (k) = Zpi
i1 =1

. 4.2)
o, =Pr(C)) = zpi =1- (k)

i=k+1

Moreover, the probabilities of class mean levels of Cy and C, are listed in Equation 4.3.

k K L
Hy = Zi Pr(i|Cy) = zipi/wo = pu®&)/ k)  where u(k)= Zi Pi
i=1 =1 =

(4.3)

L

L
o : My - 1K)
:ElPr1C:El./a):—
# i=k+1 G1c) i=k+1pl : 1- (k)

For any choice of k, we can get the relation in Equation 4.4.
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L
oty + gty = p(L)=Dip, = piy wa
i=1 .

w, +w, =1

Based on the formula and variable above, we can introduce the discriminate criterion

measure, between-class variance, in Equation 4.5 to evaluate the threshold k [33].
o =0y (1 - )+ o (1 - 1y )= 000, (1 - 1y )’ (4.5)

Since we can assume that if the two classes are distinguished by good threshold, the
number of between-class variance must be large. Therefore, we can easily obtain the
conclusion that the best threshold that separates the two groups must derive the maximum
between-class variance over other thresholds. This relation can be formulated in Equation 4.6

where k" is the best solution of histogram threshold.

oy (k) “max o, (K) (46)

Furthermore, the method can easily be extended into a multi-threshold case. Equation
4.7 shows the example of two-threshold selection method which can produce four peaks in the
gray-scale histogram.
oi(ki,k3)= max o,(k;,k})

1<k, <k, <L (47)
where C, for[1,---k,],C, for[k, +1,---k,],C, for[k, +1,---,L].

In the previous section, we know that the input histogram is the curvelet coefficient in
one resolution scale. The level indicates the angle of the angular wedges. In other words, the
input data is the histogram of 32 or 64 level histogram. Figure 4.6(a) represents the result of

single threshold produced by Otsu algorithm where k* is the best threshold to separate the
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histogram into two groups.

........................

1 K I
(€)) (b)
Figure 4.6 The histogram separated by Otsu threshold selection method

Furthermore, in our proposed scheme, we extend the threshold selection method to
five-thresholds. As a result, we can obtain six classes in the whole histogram. And then as
Figure 4.6(b) shows, we will compute the value of the peak in each class. As a result, the rise
and fall of each histogram is different aceording to it§.composition of data in each orientation.
We can assume that if the variety ofthistogram is bigger, the direction of edges in the image is
more complicated. Therefore, we can use the“six mountain peaks in the histogram to indicate
the degree of complication of the image. The actual:computational method is described in the

continuous section.

4.3. Statistical method to analyze the coefficients

In the section, we use the coefficient of variation to measure the degree of variation of
our histogram. The coefficient of variation (CV), which is also called “relative variability”, is
a measure of dispersion of a probability distribution [34]. To be more specific, CV represents

the ratio of standard deviation to the mean value.

We do not use standard deviation to analyze our data because has interpretable meaning
under the condition that the mean value of every sample is the same. In other words, standard
deviation represents the degree of variability relative to the mean value. However, in our
histogram of curvelet coefficients, the average magnitude of each angular wedge is definitely
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different. Therefore the coefficient of variation is used instead.

1
n 5 1 (4.8)

Equation 4.8 shows the formula of the coefficient of variation (CV). It is easily seen that
CV is the value the standard deviation divided by the mean. The measurement of the
coefficient of variation is better in datasets with markedly different means or with different

units of measurement. Our input dataset just match the first type.

Here we list six classical examples of histogram and its coefficient of variation in Figure
4.7. We take one residual frame of Stefan sequence with resolution CIF as our example. First
of all, we divided the image into 396 blocks with size 16 by 16. Therefore, we can obtain

curvelet histogram of each block in each resolution level.

CY of each zcale far macro block
mb24 mhb3A1 mhbd T

cwl= 02247 | owl= 01363 [ owl= 0.2324
cwids 02130 | owi=s 01324 | owi= 01463
cwi= 001622 | owd= 0.2330 | cwid= 01163

mhb145 mbl 67 mb2E0

cvl= 0.3368 | ovl= 0.3196 | owl= 0.3211
cw2= 02179 | ov2= 01046 | owi= 0.3283

cvi3= 0.5332 | ov3= 0.5357 | cw3= 0.3647

(b)
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magnitude

rnagnitude

Figure 4.7(a) shows actual positions-of blocks we select. In Figure 4.7(b), it lists the
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Figure 4.7 The histogram and coefficient of variation of six blocks in Stefan

coefficient of variation of each block in each level. To be more specific, cvl means the
coefficient of variation of the first level with directional decomposition, and cv2 means the
coefficient of variation of the second level with directional decomposition, etc. And the
curvelet histogram of the relative block is presented in Figure 4.7(c). As the histogram shows,
one can see that the value of variation and the number of peaks exist some relation. Based on
the number of peaks and the magnitudes of peaks in the histograms, the image region can be
classified into several types of images. The first type is that the region doesn’t contain any
clear edges at all, such as block 31, and the second type is that the region contains many small
edges, such as block 24 in the first resolution level with directional decomposition. Both these
two kinds of images are considered as unstructured image since their texture has complex

edges in them. On the other hand, if the magnitudes of the peaks in the histogram are strong,



it means that the distribution of the edges in the block is simple and clear. For example, block

145, 167, and 280 in the third resolution level shows such case.

4.4. Proposed Bit Allocation Scheme

The bit allocation algorithm for video coding must determines the quantization parameter
based on the visual importance of a coding block. The input to the bit-allocation algorithm is
a macroblock of video data. For intra-coded blocks, the input data is the image pixels while
for inter-coded blocks, the input data is the motion-compensated error residuals. After
curvelet transform, one can obtain the coefficients that are separated by their direction of
contour and resolution. And then we can directly take each angular wedge in each resolution
scale as a data unit as described ingsection 4.1.°Fo be more specific, we integrate the
coefficients by calculating the magnitude of one-angular wedge in one resolution, and the
magnitude becomes the representative value of the energy in the orientation in this resolution.
As a result, the display of curvelet coefficients ean be expressed as in Figure 4.5 a three

dimensional coordinate which is formed by the scale, magnitude and angle.

Next, as described in section 4.2, for each plane of angle and magnitude, we analyze the
mountain peaks of the histogram. Each mountain peak represents the gathering of direction of
edges. To classify the complexity of the region, the coefficient of variation (CV) to analyze
the mountain peaks of the angular histogram. On one hand, if the value of each mountain peak
in one histogram varies slightly, it will be represented by a small CV and it means that the
direction of edge in the block is not obvious. Of course we can indicate the image as an
unstructured region. On the other hand, if the value of each mountain peak in one histogram
varies dramatically, it will be represented by a large CV. It means that the direction of edge in

the block is obvious, and we can indicate the image as a structured region.
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In the proposed method, we separate all images into three groups. They are group of
unstructured regions, group of structured region, and group of well structured regions. Since
human eyes are less sensitive to images of unstructured regions than images of structured
regions, we can adjust the way of bit allocation according to our analysis of the image. As a
result, images of unstructured regions can be seen as unimportant regions, so we can diminish
bits of the regions in a compression technique. On the other hand, we can increase bits of the

well structured regions in order to enhance the performance of compression.

Figure 4.8 shows the block diagram of the proposed bit allocation algorithm. Blocks in
the first line is the original encoding procedure of an MPEG-4 simple profile encoder, and

blocks in the second line is the modified encoding flow.

. R Entro
Image Transform Coding
A 4
Curvelet .| Distribution Adjust QP by CV of
Ll _>
Transform Analysis Peak Computation

Figure 4.8 Block diagram of the proposed bit allocation model

In the process of determining the complexity of images and adjusting QP based on the CV of
histogram peaks, Equation 4.8 is proposed.

Ccv,_.. -T.
=round(————-0.5) where CVmax is the maximum of CV

maxu min

dgp

(4.8)
If dgp is equal to 1, then check the minimum of CV:

If CV pin 1s smaller then Ty, then change the value of dgp from 1 to 0
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In Equation 4.8, Tmin controls the boundary of decreasing QP. If the maximum
coefficient of variation in three resolution levels (CV ) is less than T, the macro block is

considered unstructured region, and QP of the macro block is reduced.

On the other hand, the way to judge whether the macro block is a strictly structured
region or not is similar but contains one extra condition. Ty, and Tpax control the boundary
of increasing QP. If the maximum coefficients of variance (CV ) is larger than Ty, and
minimum coefficients of variance (CVpi,) is not less than Ty, the macro block is

considered strictly structured region, and QP of the macro block is increased.

By using the formula to computing updates of quantization parameters for each
macroblock, we can obtain three kinds of updated quantization parameters. The first group of
quantization parameter is the same as the original quantization parameter. This means that the
composition of image is a normally.Structured.region, and we do not have to increase or
decrease its bits. The second group o6f quantization parameter corresponds to the original
quantization parameter plus one. This type of regions means that the composition of image
does not contain obvious edges, so it is‘typically unstructured regions. We can decrease its
bits and the compression result does not cause obvious degradation to human eyes. In addition,
we can allocate the saving bits to other regions that the human observers are more sensitive to.
And this is the behavior of the third type. The third group of quantization parameter equals the
original quantization parameter minus one. This type of regions means that the composition of
image contain clear edge structures, which is referred to as well structured regions. Therefore,
we can increase its bits to enhance performance by human eyes, since the improvement of

visual quality in this kind of region can dramatically catches human eyes.

4.5. Determination of the Weighting Threshold

In the section, the selection of thresholds mentioned in previous section is described. In

general, the degree of presentation of signal discontinuity contains a relationship to the
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sampling frequency. Therefore, in order to consider the weighting of each resolution scale, we
must analyze the range of minimum and maximum sampling frequencies in each directional

resolution scale as listed in Table 4.1 .

Min Max
F T F T
Scale Direction
(cycles/samples) | (cycle) | (cycles/samples) (cycle)
Horizontal 16/352 22 32/352 11
1
Vertical 16/288 18 32/288 9
Horizontal 32/352 11 64/352 5.5
2
Vertical 32/288 9 64/288 4.5
Horizontal 64/352 %9 128/352 2.75
3
Vertical 647288 4.5 128/288 2.25

Table 4.1 Analysis of frequency components.

From Table 4.1, one can see that the proportions of mean frequencies in these three
scales are 1:2:4. Consequently, the formula for the overall CV (combining information form
all resolution scales) is computed as in Equaltion 4.1. Note that the sum of the coefficients is

one and CV, CV,, and CV; are the CV’s for different resolution scales.

CV =0.14-CV, +0.29-CV, +0.57-CV, @.1)

Next, we must determine the threshold CV for structured and unstructured regions. The
threshold is estimated by a pre-analysis step for each group of picture (GOP). One example of

GOP structure which contains nine frames is shown in Figure 4.9.
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Interval of P frame =8

RRRRRERL

Figure 4.9 GOP structure of a video sequence.

Two possible methods are tested to determine the CV threshold at a particular scale.
Both methods are based on estimating the boundaries between well structured regions (SR)
and unstructured region (USR).

Method I: the threshold of SR is computed as the value of CV that makes the regions
with top 1/3 CV values being counted as wellsstructured regions. Then, the threshold for the
unstructured regions is selected so that it decreases the bitrate for the unstructured regions
(n1%) so that the overall bitrate stays the same.

Method II: the threshold for SR.is computed-as that in method I, and the threshold for

USR is determined so that blocks of the last ns% nhumber are considered as USR.

Mo, of blocks
& F_F,ﬂa—ﬂd___-h
USR SR
USR
CViin 1% 3 CV, S
e . . n2% 143
T | T T (a) -
CV, . Cy

Max (b)

Figure 4.10. Threshold selection of CV.
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5. Experiment and Analysis

In this section, the performance of the proposed curvelet-based bit allocation scheme is
investigated using the MPEG test sequences STEFAN, FOOTBALL, and BUS in CIF

resolution. An MPEG-4 Simple Profile encoder is used for the experiments.

5.1. Result of the proposed bit allocation scheme

The goal of our proposed scheme is to achieve better visual quality given same the target
bitrate constraint. That means that we have to enhance the performance of the regions that
human observers are more sensitive to by allocating more bits to them. And the process
should not increase total bits a lot. In this chapter, we conducted some experiments to show
the efficiency of the proposed algorithm. PSNR-and SSIM are used as measures to evaluate
the performance of the video. For divided regions of image, we only use PSNR to evaluate
their visual quality since SSIM is good :at extracting structural information and it does not

work well in small size regions.

Three MPEG test sequences STEFAN, FOOTBALL, and BUS in CIF (352x288)
resolution are used to test the performance of the proposed curvelet-based bit allocation
scheme. The first 120 frames are used to conduct the experiment for each sequence. Table 5.1
lists the setting parameters of the experiments. Taxu, Tmaxi and Tpin are the manually selected
thresholds of coefficient of variation (CV) of curvelet coefficients used in the image region
classification algorithm. Results with automatic selection of thresholds will be presented in
section 5.2. QP is the default quantization parameter, and Luma Bitrate is the original bitrate

of luma components produced by the MPEG-4 simple profile without the proposed scheme.
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case sequence T maxu T maxt T min QP é il:;;ltae
1 Stefan 0.62 0.27 0.23 12 616
2 Football 0.58 0.25 0.24 9 611
3 Bus 0.57 0.28 0.18 9 1071

Table 5.1 Parameter settings of the three experiments

First of all, the resulted data of the three sequences are listed in Table 5.2. The field
“Original” indicates that the sequence is compressed by the original MPEG-4 simple profile,
and the field “Modified” indicates that the sequence is compressed by the proposed bit
allocation scheme. QP is the value of quantization parameter for the whole sequence.
Furthermore, QP from the proposed algorithm varies within a range of £1 from the original
encoder. Total Bitrate is the total bitrate of the whole sequence. Luma Bitrate indicates bitrate
of luma components of the whole sequence. Next; Header Bitrate and Chrome Bitrate mean

bitrates of header and chrominance components ofthe whole sequence, respectively.

Sequence Stefan Football Bus
Type Original | Modified | Original | Modified | Original | Modified
PSNR 30.16714 | 30.17565 | 33.84276 | 33.86667 | 31.75857 | 31.75973
SSIM 0.92485 | 0.92554 | 0.88017 | 0.88093 | 0.90463 | 0.90473
QP 12 11~13 9 8~10 9 8~10
Total Bitrate 790 796 1294 1299 1250 1254
Luma Bitrate 618 616 928 927 1071 1071
Header Bitrate 144 152 273 279 161 166
Chroma Bitrate 27 27 92 92 16 16

Table 5.2 Resulted data of the three sequences

As the numbers in gray cells show, the proposed scheme increases visual quality without

increasing the bitrates of luminance components. Since our proposed scheme allocates

47



different number of bits to macro blocks according to their composition of directional edges,
we may increase bits of header data definitely. Therefore, the experiments only focus on the

variation of bits of luminance components.

Next, for each sequence we list two kinds of typical frames to analyze the result of visual
quality and bits our proposed scheme causes. Figure 5.1, Figure 5.2 and Figure 5.3 show the
result of visual quality in three sequences respectively. In these figures, we divide whole
frame into 396 macro blocks with size 16x16. And we label the macro blocks of three kinds of
properties we are interested in. First of all, macro block in label | indicates the block which
has better visual quality in PSNR measurement and more bits of luminance components than
the original MPEG-4 simple profile. Secondly, macro block in label — indicates the block
which has better visual quality in PSNR measurement but less bits of luminance components.
Thirdly, macro block in label < indieates the block shich has worse visual quality in PSNR
measurement and less bits of luminance components: We can easily see the distribution of
visual quality by dividing the frameinto two-greups. Group of region with label X indicates
worse visual quality and group of region with.label = and | indicate better visual quality than

the original image.

For the Stefan sequence, human observers may pay special attention to tennis player and
the area with obvious edges such as words on the wall. On the other hand, the regions that
audiences on the grandstand and the flat regions are mostly human observers are not sensitive
to relatively. In Figure 5.1(a), the major movement in the 51% frame is the tennis player
moving towards the right hand side. In the proposed scheme, the regions with clear and
obvious directional edges will be considered structured region. As a result, performances of
this kind of regions such as tennis player’s legs, words on the wall and lines on the ground are
mostly enhanced. Nevertheless, the regions of audiences on the grandstand and the flat

regions will be seemed to unstructured regions since their directions of edges are complicated.
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So bits of these regions are usually decreased and it may cause worse visual quality.

(b)

Figure 5.1 Comparison of visual quality in Stefan Sequence
(a)The 51° frame in Stefan. (b) The 96" frame in Stefan.

and it may cause worse visual quality. Table 5.3 shows ratio of number of regions with better

PSNR and worse PSNR, and it is obvious that the ratio of regions of audience is smaller than

others.
51 frame 96" frame
PSNR Better Worse Better Worse
Audience 78 54 65 67
Words 20 4 30 9
Legs 9 2 - -
Whole body - - 12 5
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(a) (b)

Figure 5.2 Comparison of visual quality in Football Sequence
(a)The 27™ frame in Football. (b) The 116" frame in Football.

Next, in whole Football sequence, human observers may pay more attention on the area

% LAl
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of football and football player than ﬂme area,.x[f ,gnassﬁ,,Moreover obvious edges on football

f—& 4 Y '-» “‘- 'r
player such as numbers on their spd;fs coat§ 0 §§1ﬁpes qli their pants may attract human eyes

.-'
"’-‘L""

dramatically. In Figure 5.2(a), the majonwg@ in'f fhe 27" frame is the football players
. "
competing for the football. In the proI;dsﬁd gehpp{ jf;lhe performances of the regions we said
above that humans may be more sensitive to, numbers on their sports coats or stripes on their
pants, are mostly enhanced. Nevertheless, bits which are allocated to the regions of too
complicated grass and the flat regions are usually decreased because these regions may be
seemed to unstructured regions. And the processing may cause worse visual quality of these
regions. Here we select the other kind of frame in Football sequence to analyze its result. In
Figure 5.2(b), the major movement in the 116™ frame is the football players running towards
right with the football in his hand. In this frame, human may pay attention to the only football
player and the football. In our proposed scheme, the performances of the regions we said
above mostly enhanced. However, for less important regions, such as the regions of too

complicated grass and flat regions, their bits are usually decreased and their visual quality

may be reduced.
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27" frame 116™ frame
PSNR Better Worse Better Worse
Grass 70 57 110 102
Numbers 12 2 - -
Stripe 13 1 - -
Whole body - - 21 10

Table 5.4 Ratio of improvement in Football sequence

Table 5.4 shows ratio of number of regions with better PSNR and worse PSNR, and it is

obvious that the ratio of regions of grass is smaller than others.

(a) (b)

Figure 5.3 Comparison of visual quality in Bus Sequence
(a)The 25" frame in Bus. (b) The 92" frame in Bus.

Last, in Bus sequence, human observers may not pay more attention on the area of
complicated background such as the trees on the top of image, and complicated foreground
such as railings and still car. On the other hand, the moving bus and various backgrounds are
more attracted to human eyes than the region we said above generally. Here we select two
different kinds of scenes of bus sequence to analyze our result. In Figure 5.3(a), the bus is just

passing through the pillar with sculpture. Therefore, human observers may take their on the
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regions of the sculpture, human under the sculpture, the head of bus and the top of bus. In our
proposed scheme, visual qualities of these regions are mostly enhanced. In the 92™ frame, as
Figure 5.3(b) shows, the regions that human observer may notice a lot are listed as follows:
the advertisement with photograph and words on the bus, the street light near the head of bus
and the region that sky and trees are associated with. Visual qualities of these regions are
mostly enhanced. Nevertheless, for the regions of complicated edges, such as trees, railings
and still car, human observers often skip their detail. In our scheme, these regions may be

considered unstructured region, and their visual quality may be decrease to save bits.

Table 5.5 shows the ratio of number of regions with better PSNR and worse PSNR, and

it is obvious that the ratio of regions of grass and railings are smaller than others.

25" frame 92" frame
PSNR Better Worse Better Worse
Trees 38 37 48 70
Railings 72 82 87 67
Sculpture 12 7 - -
Passerby 6 1 - -
Photo and word - - 13
Edge of Sky - - 6 2
and Trees

Table 5.5 Ratio of improvement in in Bus sequence

5.2. Result of Proposed Bit Allocation Scheme with Weighting
Threshold

In this section, we will show the results of our proposed bit allocation scheme with
automatic CV threshold selection described in section 4.5. Section 5.2.1 will compare results

in Method I and Method Il and section 5.2.2 will show the detail result of the better Method

of two.
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5.2.1. Number of structured and unstructured blocks of the two
method

Table 5.6 and Table 5.7 show quantity of blocks (%) indicated as SR and USR by
Method I and Method II respectively. There are three input sequences with CIF resolution
which are Stefan, Football and Bus sequences. There are two types of threshold source. Type
“EACH” means that the threshold are calculated by each residual frame, and the type “GOP”
means that the threshold are calculated by all residual frames in each GOP. Tggr is the CV
value of lower bound of SR, and Tysr is the CV value of upper bound of USR. Blockssr is
the number of blocks indicated as SR, and Blocksysr is the number of blocks indicated as
USR. Errgr is the error range of Blockssg, and Errysg is the error range of Blocksysr. For

example, the number of SR blocks is 5.42%+-7.71% among all blocks.

Average
Method 1
Sequence | Threshold
type source TSR TUSR Blocks SR BlOCkSUSR EIT.SR EIT.USR
(CV) | (CV) (%) (%) (%) (%)
EACH 0.47 0.11 5.42 4.68 7.71 12.74
Stefan
GOP 0.54 0.09 2.61 2.04 2.41 2.51
EACH 0.48 0.16 5.31 10.55 26.26 16.47
Football
GOP 0.55 0.12 4.35 3.65 12.82 3.96
B EACH 0.48 0.16 5.31 10.55 5.55 13.96
us
GOP 0.62 0.08 1.56 1.66 3.62 1.09

Table 5.6 Automatic selection of threshold using method I.

53




Average
Method II
Sequence | Threshold
type source T»SR T»USR BlOCkS,SR BlOCkS‘USR. EITSR EIT,USR
(CV) | (CV) (%) (%) (%) (%)
EACH 0.28 | 0.25 36.04 52.92 13.06 15.01
Stefan
GOP 0.27 | 0.23 34.15 52.07 22.61 21.10
EACH 0.34 | 0.29 28.69 51.53 26.92 40.14
Football
GOP 0.34 | 0.36 39.07 63.75 57.99 60.31
B EACH 027 | 0.18 27.71 37.42 10.29 9.30
us
GOP 027 | 0.18 31.89 33.58 8.89 10.47

For Method I, number of blocks indicated as SR or USR is sparse and is below 11 %.
However, for Method II, number of bloeks indicated as: SR or USR is larger than two times of
Method 1. For Method I, the error range of GOP.is smaller than EACH because composition
of CV in each frame is quite different. For Methed-1I, the error range of EACH is smaller than
GOP because selection by quantity can be meore accurate. Nevertheless, in each frame,
distinguishing of SR and USR is better in the method of threshold calculated by all residual

frames in each GOP whatever in Method I or Method II.

Table 5.7 Automatic selection of threshold using method I1.

5.2.2. The result of proposed scheme with linear formula

Table 5.8 and Table 5.9 show the results of testing the algorithm on three sequences

using Method I and Method II, respectively. The test conditions and the meaning of the fields

in the table are the same as those in section 5.1 (in particular Table 5.2).
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Sequence Stefan Football Bus
Type Original | Modified | Original | Modified | Original | Modified
PSNR 29.52022 | 29.52101 | 33.48467 | 33.49391 | 31.14866 | 31.14505
SSIM 0.91944 | 091938 | 0.87353 | 0.87397 | 0.89351 | 0.89323
QP 14 13~15 10 9~11 10 9~11
Total Bitrate 828 837 1177 1187 1279 1287
Luma Bitrate 655 655 841 841 1103 1103
Header Bitrate 133 141 245 256 150 157
Chroma Bitrate 39 39 &9 89 25 25
Table 5.8 Average result of Method |
Sequence Stefan Football Bus
Type Original | Modified | Original | Modified | Original | Modified
PSNR 29.52022 | 29.50551 | 33.48467 1.33.46981 | 31.14866 | 31.1424
SSIM 091944 | 09191 | 0.87353.| 0.87381 | 0.89351 | 0.89236
QP 14 13~15 10 9~11 10 9~11
Total Bitrate 828 852 R 1194 1279 1291
Luma Bitrate 655 655 841 840 1103 1103
Header Bitrate 133 156 245 263 150 161
Chroma Bitrate 39 39 89 89 25 25

Table 5.9 Average result of Method 11
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Method I perform slightly better on distinguishing between SR and USR than Method II.
Moreover, on average, Method I is slightly better than Method II on video quality too.
Table 5.8 shows the result of a single frame by Method 1. For each sequence we list two
kinds of typical frames to analyze the result of visual quality and bits our proposed scheme
causes. Figure 5.4, Figure 5.5 and Figure 5.6 show the result of visual quality in three

sequences respectively. Symbols in these figures are as figures in section 5.1 defined.
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Figure 5.4 Comparison of V|sual quallty in Stefan Sequence
(a)The 43" frame in S tefan. (b) The 80" frame in Stefan.

43" frame L 80" frame
PSNR Better Worse Better Worse
Audience 9 .03 A g7 45
Words 28 i 16
Whole body 28 8 18 6

Table 5.10 Ratio of number of regions with better PSNR and worse PSNR
in Stefan sequence

For the Stefan sequence, human observers may pay special attention to tennis player and
the area with obvious edges such as words on the wall. On the other hand, the regions that
audiences on the grandstand and the flat regions are mostly human observers are not sensitive
to relatively. In Figure 5.4(a), the major movement in the 43" frame is the tennis player
moving towards right hand side. In our proposed scheme, the regions with clear and obvious
directional edges will be considered structured region. As a result, performances of this kind
of regions such as tennis player’s legs, words on the wall and lines on the ground are mostly

enhanced. Nevertheless, the regions of audiences on the grandstand and the flat regions will
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be seemed to unstructured regions since their directions of edges are complicated. So bits of

these regions are usually decreased and it may cause worse visual quality.

In Figure 5.4(b), the 80" frame, the major movement in the 80™ frame is the tennis
player waving his rocket. Therefore, human eyes may notice the area of tennis player’s whole
body and the area with obvious edges such as words on the wall and lines on the ground.
Performances of these kinds of regions are mostly enhanced. And similar as in Figure 5.4(a),
bits of the regions of audiences on the grandstand and the flat regions are usually decreased
and it may cause worse visual quality. Table 5.10 shows ratio of number of regions with
better PSNR and worse PSNR, and it is obvious that the ratio of regions of audience is

smaller than others. Table 5.11 shows the saved bits of unstructured regions by our model.

Saved bits in unstructured regions
Saved bits 43" 80"
Audience 92 105

Table 5.11 Saved bits in upstructured regions in Stefan sequence

Next, in whole Football sequence, human observers may pay more attention on the area
of football and football player than the area of grass. Moreover, obvious edges on football
player such as numbers on their sports coats or stripes on their pants may attract human eyes
dramatically. In Figure 5.5(a), the major movement in the 65" frame is the football players
competing for the football. In the proposed scheme, the performances of the regions we said
above that humans may be more sensitive to, numbers on their sports coats or stripes on their
pants, are mostly enhanced. Nevertheless, bits which are allocated to the regions of too
complicated grass and the flat regions are usually decreased because these regions may be
seemed to unstructured regions. And the processing may cause worse visual quality of these
regions. Here we select the other kind of frame in Football sequence to analyze its result. In
Figure 5.5(b), the major movement in the 120" frame is the football players running towards

the right with the football in his hand. In this frame, human may pay attention to the only
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football player and the football. In our proposed scheme, the performances of the regions we
said above mostly enhanced. However, for less important regions, such as the regions of too
complicated grass and flat regions, their bits are usually decreased and their visual quality

may be reduced.

Figure 5.5 Comparison of visual quality in Football Sequence

(a)The 65" frame in Football. (b) The 120" frame in Football.

Table 5.12 shows ratio of number of regions with better PSNR and worse PSNR, and it
is obvious that the ratio of regions of grass is smaller than others. Table 5.13 shows the saved

bits of unstructured regions by our model.

65" frame 120" frame
PSNR Better Worse Better Worse
Grass 79 16 214 21
Numbers 14 1 - -
Stripe 13 1 - -
Whole body - - 31 10
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Table 5.12 Ratio of number of regions with better PSNR and worse PSNR
in Football sequence

Saved bits in unstructured regions
Saved bits 65" 120"
Grass 101 66

Table 5.13 Saved bits in unstructured regions in Football sequence

Last, in Bus sequence, human observers may not pay more attention on the area of
complicated background such as the trees on the top of image, and complicated foreground
such as railings and still car. On the other hand, the moving bus and various backgrounds are
more attracted to human eyes than the region we said above generally. Here we select two
different kinds of scenes of bus sequence to analyze our result. In Figure 5.6(a), the bus is
just passing through the pillar with seulptures“Fherefore, human observers may take their on
the regions of the sculpture, human under the sculpture, the head of bus and the top of bus. In
our proposed scheme, visual qualities of thesé fegions are mostly enhanced. In the 98" frame,
as Figure 5.6(b) shows, the regions that human @bserver may notice a lot are listed as follows:
the advertisement with photograph and words on the bus, the street light near the head of bus
and the region that sky and trees are associated with. Visual qualities of these regions are
mostly enhanced. Nevertheless, for the regions of complicated edges, such as trees, railings
and still car, human observers often skip their detail. In our scheme, these regions may be

considered unstructured region, and their visual quality may be decrease to save bits.
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(a) (b)

Figure 5.6 Comparison of visual quality in Bus Sequence

(a)The 47" framéin Bus. (b)' The 98" frame in Bus.

|

47" frame 98" frame

PSNR Better Worse Better Worse

Trees 64 A 80 55
Railings 88 70 62 70
Sculpture 9 1 - -
Passerby 2 0 - -
Ph\‘;;grf‘ind 8 2 13 2

Table 5.14 Ratio of number of regions with better PSNR and worse PSNR
in Stefan sequence

Saved bits in unstructured regions
Saved bits 47" 98"
Tree 92 61
Railings 70 787

Table 5.15 Saved bits in unstructured regions in Bus sequence
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Table 5.14 shows ratio of number of regions with better PSNR and worse PSNR, and it
is obvious that the ratio of regions of grass and railings are smaller than others. Table 5.15

shows the saved bits of unstructured regions by our model.
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6. Conclusion and Future Work

In this thesis, we proposed a video coder bit allocation scheme in Curvelet domain. A
new transform, curvelet transform, which contains the property of multi-resolution and
multi-directional decomposition, is introduced into the proposed bit allocation algorithm. The
Otsu threshold selection algorithm is used to pick the principal edge directions in image
regions. And then, coefficient of variation (CV) is used to measure the complexity of image

region to determining the quantization parameters for video coding.

To be more specific, the proposed scheme classifies all macro blocks into three groups
with three different quantization parameters. The first group of regions is the normally
structured regions whose texture (or motion-compensated residual) is neither complicated nor
simple so we do not change its allocated bits. The'second group of regions is composed of
unstructured regions. This type of region means that the texture is either too simple or too
complicated. Therefore, we can decrease its bits and'the compression result does not cause
obvious distortion to human eyes. In addition, we can allocate the saved bits to the regions
that human observers are more sensitive to. The third group of regions is composed of well
structured regions whose texture (or motion) is clear and easily recognizable so the proposed
scheme increase its bits to enhance the quality since the improvement of visually quality in

this kind of region is obvious to human eyes.

The coding performance of the proposed method is compared with the MPEG-4 simple
profile encoder. Experiments show that the result of our directional complexity analysis can
distinguish the groups of structured and unstructured area for all the test sequences used. The
proposed method has the better performance with higher PSNR numbers in regions that
human observers are more sensitive to. Even for the average result of PSNR and SSIM, our

method can obtain slightly better performance given the same or lower luma bitrate.
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Although the proposed bit allocation algorithm performs well, there are still some
improvements that can be expected. For example, the proposed automatic threshold selection

algorithm requires two pass encoding, which may not be desirable in some cases.

Secondly, some regions which are structured regions or even strictly structured regions
are on the position that human observers don’t care about. For example, the regions of
audiences in the Stefan sequence is the typical regions that human eyes may not pay attention
to. Therefore, even some of the regions are well structured in this area, it may not make sense

to allocate more bits to them.

Another drawback is about the directional decomposition procedure of curvelet
transform. As section 3.4.4 describes, the directional decomposition is processed by polar
interpolation. However, for each angular wedges the direction of coefficients they collect is
not so accurate. Figure 6.1 shows ithe coefficients before and after the procedure of the

directional decomposition.

Figure 6.1 The directional decomposition in the4™ level coefficients.

After interpolation

Eefore interpolation
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For instance, the direction of interpolation inside the first angular wedge is always along
the direction of arrow C2. However, coefficients on the trajectory the arrow C1 do not
represent the coefficients of this angle. Therefore, coefficients introduced by the polar
interpolation method are not accurate enough. Consequently, the directional information we
obtain is not accurate according to the influence. If the directional decomposition algorithm
can be improved, the edge distribution analysis of the proposed bit allocation algorithm can be

more precise and it will improve the performance of the proposed scheme too.

In summary, future improvements can be expected with these efforts.
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