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利用方向小波轉換分析進行視訊編碼之位元分配 

 

學生：蔡雅婷                            指導教授：蔡淳仁博士 

國立交通大學資訊科學與工程研究所 

 

摘要 

 

本論文主旨在於探討人類視覺特性於視訊編碼中之位元配置方式，並根據論文中提

出的方法利用方向小波轉換分析視訊影片中的原始圖像及殘值圖像的結構性特徵，且依

此分析結果設計一個位元分配的策略，使得在視覺上較為重要的區域可得到較多的位

元，以期達到較佳的視覺品質。本論文中使用方向小波轉換分析的主因為它可在不同方

向上做子頻帶分解，所以相較於離散餘弦轉換或其他基於可分離轉換的小波轉換，方向

小波轉換能顯現出更多的結構性資訊。論文中提出的位元分配的策略嘗試在非結構性區

域節省位元及在結構性區域增加視覺品質。在 MPEG-4 簡易版類別編碼器上的實驗結果

顯示，提案方法在所有測試案例中皆有較好的表現，能在人眼視覺較為重視的區域得到

較佳的影像品質。 
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Curvelet Domain Analysis for Video Coding Bit Allocation 

 

Student：Ya-Ting Tsai                       Advisor：Dr. Chun-Jen Tsai 

 

Computer Science and Engineering College of Computer Science 

National Chiao Tung University 

 

Abstract 
 

This paper proposes a video bit allocation scheme based on Curvelet domain analysis. 

The proposed algorithm analyzes the structural characteristics of the intensity and 

motion-compensated residual images of a video sequence in curvelet domain to determine a 

bit-allocation policy so that visually important regions will be allocated with more bits. 

Curvelet transform is adopted in this thesis for such analysis because it performs sub-band 

decomposition in various directions so that more structure information is revealed in curvelet 

domain than in DCT or other wavelet domains based on separable transforms. The proposed 

bit-allocation policy tries to save bits in unstructured regions and increase quality in structured 

regions. Experiments using standard test sequences coded with an MPEG-4 simple profile 

video encoder show that the proposed bit allocation method has better performance (achieves 

higher PSNR’s) in the regions most human observers care about in all test cases.  
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1. Introduction 

Digital distribution of video is becoming popular today due to the applications such as 

digital television, digital camcorder, DVD player, etc. For the decades, video compression is 

an important technology in multimedia applications. A great number of digital video codec 

standards have been published; including MPEG-2, MPEG-4, and H.264, etc. Many research 

efforts have been put into the design of encoders that can achieves the best overall quality 

based on these standard codecs. 

In video codec, the coding scheme can be divided into several processes: predictive 

coding, transform coding, quantization (e.g. rate-distortion coding), and entropy coding. 

Transform coding tries to decorrelate the components of video data and to centralize the 

energy of video data in order to facilitate rate-distortion coding and entropy coding. In recent 

years, many different transforms have been published to improve compression efficiency. 

Among these transforms, the most popular transforms are Fourier Transform, Discrete Cosine 

Transform (DCT) and Wavelet Transform. 

Discrete Cosine Transform is more widely used for image and video coding than Fourier 

Transform since the performances of these two transforms are similar but the operation of 

DCT is simpler: DCT involves only real number operations instead of complex number 

operations. Wavelet Transform becomes more popular in recent years since it captures both 

frequency domain and spatial domain information in one compact representation. The wavelet 

transform performs very well on one dimensional signal since it can represent signal 

discontinuity in a more compact form than DCT does, but not as good as expected on 

two-dimensional data.. The main reason is that to reduce computational complexity, most 

practical wavelet transform implementation uses separable 1-D transform. The contours in a 

two-dimensional image can be oriented in any directions. However, the separable wavelet 
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transform only captures signal discontinuities in horizontal and vertical directions. 

Recently, a new sub-band decomposition method called curvelet transform has been 

proposed. Unlike the wavelet transform, curvelet transform decomposes data components into 

multi-directional data sets and it also maintains the multi-scale spatial information similar to 

that of a wavelet transform. However, it is not easy to find a critically-sampled curvelet 

domain representation of an image, therefore, curvelet transform are not used for general 

image or video compression applications. It is more often used to separate high frequency 

components due to noises and high frequency components due to signal discontinuities of the 

image data. 

In a video codec, the module that controls the size of the bitstreams for different coding 

units is called the rate control module. Finding a good trade off between video data rate and 

visual quality (distortion) is one of the key issues of a high performance rate control scheme. 

Most encoder tries to estimate the rate-distortion function of a video sequence during 

encoding. However, the distortion measures are usually MSE or MAD-based so that it does 

not precisely reflect the visual importance of the video data. In general, the importance of a 

coding unit is related to the sub-band data in the frequency domain. For example, the 

components of high-band frequency data are less visually important than the low-band 

frequency data at the same spatial resolution scale. 

It has been shown X[19]XX[35]X that a structured-region in image has more visual importance 

than an unstructured-region in image. A region full of random textures (or 

motion-compensated residuals in residual images) is usually hard to encode and not easy for 

human eyes to discern the degree of distortions. This kind of image component is referred to 

as unstructured regions. On the other hand, a region whose textures are simple, with 

discontinuities in only few directions is referred to as structured region, and any distortion in 

such regions can be picked up easily by human eyes. 
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In general, it is not easy to classify between structured and unstructured regions in an 

image, especially when the definition of “structureness” is dependent on human observers. In 

this thesis, the curvelet domain analysis is proposed to achieve this goal. 

The major advantage of curvelet transform is to decompose input data into frequency 

coefficients of several directions at each spatial resolution scale. Therefore, in this thesis, we 

try to analyze video data in curvelet transform domain by its directional presentation in order 

to classify image regions into structured and unstructured regions and to achieve better bit 

allocation for video compression. The goal of the proposed technique is to save bits in 

unstructured regions since human eyes can not discern the distortion. The saved bit budget 

will be allocated to structured regions to improve its visual quality. 

The organization of the thesis is as follows. Chapter 2 introduces some related work of 

rate control schemes and the perceptual models of human visual systems. Chapter 3 

introduces the curvelet transform, including the mathematical definition and its architecture. 

In chapter 4, the proposed method will be described in detail. The experimental results will be 

shown in chapter 5. Finally, the conclusions and discussions will be given in chapter 6. 
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2. Previous Work 

As mentioned in chapter one, the main purposes of the transform coding process are to 

find a more compact data representation and to facilitate video data analysis for rate-distortion 

coding. For several decades, a great number of different transforms has been studied. Among 

these transforms, the most popular transforms used for transform coding are the Discrete 

Cosine Transform (DCT) and the Wavelet Transform. However, since these transforms do not 

decompose the frequency sub-bands alone image edges, existing transform domain 

representations are not compact at signal discontinuities. A new transform, curvelet transform, 

tries to provide multi-resolution and multi-directional signal decomposition, is introduced by 

Cand`es et al.X[22]X X[23]XX[24]X. What is more, Human Visual System (HVS) is researched to 

classify the regions in image whether the distortion of the region human eyes are sensitive to 

or not. These studies are of use in compression technique during the bit-allocation selection 

scheme. 

The organization of this chapter is as follows. In section 2.1, we will first introduce 

popular transforms used in transform coding systems. And then we will analyze the pros and 

cons of existing transforms and briefly describe the reasons why a new transform, curvelet 

transform, is adopted in this thesis. In section 2.2, existing work on modeling the relation 

between human vision systems and the characteristics of images are discussed. Furthermore, 

the reason why we use curvelet analysis to distinguish between unstructured-texture regions 

and structured-texture regions are discussed. 

2.1. Transform Analysis 

For a long time, Discrete Cosine Transform (DCT) X[1]XX[2]X is one of the most popular 

transforms which is used in transform coding systems. It is because DCT keeps a good 

balance between compactness of data representation and computational complexity X[3]XX[6]X. 
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The DCT is defined as follows X[3]XX[4]X: 

j)f(i,
2N

1)v(2jcos
2M

1)u(2icos
MN

C(u)C(v)v)F(u,
1-M

0i

1-N

0j

ππ ++
= ∑∑

= =

 (2.1)

⎪⎩

⎪
⎨
⎧

==
otherwise.1

0, if
2
2

)C( ξξ  (2.2)

In equation 2.1, f(i, j) represents an entry of coefficients on the location of (i, j) and M 

and N mean the size in the horizontal and vertical direction separately. The two-dimensional 

DCT transforms it into a new function F(u,v), with integer u and v running over the same 

range as i and j. Equation 2.2 defines the value of multiplicator C(ξ) according to whether the 

DCT coefficient is the direct current (DC) component of the signal or not. 

Compared to DFT, DCT can minimize the blocking artifact when coefficients are 

truncated or quantized. For example, as shown in Figure 2.1, the implicit n-point periodicity 

of the DFT can be replaced by the implicit 2n-point periodicity of the DCT. Therefore, the 

boundaries between adjacent sub-images become invisible because implicit 2n-point 

periodicity of DCT does not inherently produce boundary discontinuities. 

n 

2n 

D

D

 

Figure 2.1. Reduction of blocking artifacts using DCT 
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In 1987, Mallat constructed a structure of wavelet function and the analysis and synthesis 

progress of signal decomposition. More importantly, Mallat first showed that wavelets are the 

foundation of a powerful approach to signal processing and analysis called multi-resolution 

theory X[7]X. In the next year, Daubechies proposed orthonormal and compactly supported 

wavelet and the theory of wavelet analysis was constructed X[8]X. 

The main advantages of wavelet transform are listed as follows. First of all, wavelet 

transform is computationally efficient and inherently local; therefore, it is not necessary to 

subdivide the original image into sub-images before applying the transform. As a result, the 

method eliminates the side effect of blocking artifact which is usually produced by the 

DCT-based compression scheme. Even more importantly, signals decomposed into wavelet 

domain have good resolution in both time and frequency domain. These characteristics work 

nicely for one-dimensional signals. Signals such as audio data using wavelet-based 

compression scheme perform better than those using the traditional DCT-based compression 

scheme. Finally, wavelet transform can decompose signals into coefficients with different 

levels of resolution, and the characteristic is called multi-resolution X[9]X. For analyzing the 

signal data, multi-resolution representation is very effective since the decomposed coefficients 

are scale-invariant interpretations. These kinds of decomposition provide a hierarchical 

framework to interpret the signal data. 

However, for two-dimensional image or video compression, traditional wavelet 

transforms which use 1-D separable transforms to decompose the sub-bands has significant 

drawbacks. Such transforms only capture signal discontinuity efficiently in either horizontal 

or vertical directions. Nevertheless, the direction of signal discontinuities in two dimensional 

signals can vary along 360 degree of angles. Traditional separable wavelet transform fails to 

capture the geometry of image and edges due to the fact that the directions of contours in 

two-dimensional images can take arbitrary angles X[10]XX[11]X. 
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To remedy this shortcoming, another method of sub-band decomposition called curvelet 

transform has been published. Unlike the wavelet transform, curvelet transform not only 

decomposes data components into multi-direction data sets but also maintains the 

characteristic of multi-scale spatial resolution of wavelet transforms X[12]XX[13]X. In this thesis, 

curvelet transform is used as a tool to help analyzing the contours of the two-dimensional 

images. The detail description of curvelet transform is presented in next chapter. 

 

2.2. Properties of Human Visual System 

In resent years, many researches on Human Visual System (HVS) are published, hoping 

to find a computational model for the behavior of human eyes X[14]XX[15]X. These researches are 

important to image processing and coding X[16]XX[36]X. 

When human observers look at still images, the perceptual importance of each region in 

images is not the same. Many characteristics of the image regions such as the shape of objects, 

the contrast of luminance, the location of objects, the size of the full objects, and the 

articulation of the objects will affect the perceptual importance significantly. Furthermore, 

whether an object is in the foreground or the background may also affect its perceptual 

importance X[17]X. 

Many studies of the relation of human eye movements and the features have been 

published X[15]X-X[19]X. When humans look at a still image, they move their eyes several times a 

second. Therefore, the features of the region that human eyes stop to gaze every time can be 

considered as the features that can attract human eyes. Enhancement of the visual quality of 

these regions is a higher priority task than improving other regions’. Some researchers 

classify the features of the regions that attract human eyes’ attention into three main groups. 

First, human observers always take priori notice of the regions that contain the faces X[18]X. 

Secondly, the regions that have higher spatial contrast intensity would attract human 
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observers than other regions. Third, human eyes also tend to look at the regions that the 

correlations of the intensities of the nearby image pixels are weaker X[19]X. 

The regions which have large contrast intensities include two different types of textures: 

the structured-textured regions and the unstructured-textured regions. More precisely 

speaking, these two kinds of regions can be discriminated by the representation of the edges 

(signal discontinuities) in the region. First of all, the structured region means that the number 

of the edges of objects inside the specific region is relatively little and the lengths of the edges 

are long (structured stimuli). On the other hand, the unstructured region means that the 

number of the edges of objects inside the specific regions is quite large, the position and the 

direction of the edges are quite random, and the lengths of the edges are small (random 

stimuli). 

As a result, the distribution of edge pixels in unstructured region is scrambled and 

entropy of this kind of region is usually higher than that of the structured regions. However, 

human observers usually have trouble discerning the distortion in the unstructured regions. In 

other words, we can dispatch fewer bits to the unstructured regions because human eyes are 

less sensitive to its distortions. On the other hand, since human eyes are more sensitive to the 

distortions in the structured regions, allocating more bits to structured regions can enhance the 

visual quality more significantly than allocating more bits to unstructured regions. 

For a video sequence, previous discussion on the structure of textures can be extended to 

the temporal domain as well. If the motion of an object from one frame to the next is smooth 

and can be tracked easily by eye movements, the texture of the object will have a stable 

projection on the retinas. Therefore, it would be easy for human to discern coding distortion 

of the sequence on this particular object. On the other hand, if the motion is random, it would 

not be easy for human eyes to get a stable image on the retina and the coding noises would not 

be apparent to a human observer. The type of motion can be analyzed from the 
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motion-compensated error residual images. Again, random, small edges in the error residual 

images around the area of the object means that the object is moving randomly, while an area 

with structured residual images means that the object is moving smoothly. 

In this thesis, we propose a new model that can distinguish the unstructured regions from 

the structured ones. Therefore, the new model can be used in the bit-allocation process to 

enhance the visual quality of coded bitstreams. 
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3. Study and Analysis of Curvelet Transform 

The goal of this thesis is to design a video bit allocation model based on visual behavior. 

As the previous chapter describes, we perform video data analysis in curvelet domain. 

Therefore, before we present the perceptual model-based bit allocation algorithm, we first 

introduce the 2-D curvelet transform in this chapter. First of all, we must study the theory and 

characteristics of curvelet transform. Secondly, it is important to understand the digital 

implementation of curvelet transform and the meaning of transformed coefficients in order to 

design the bit-allocation algorithm for perceptual-based video coding. 

This chapter is organized as follows: We begin in section 3.1 by showing the reason why 

we must use curvelet transform to analyze the video data. Section 3.2 describes the main 

features of curvelet transform. In section 3.3, the mathematical formulation of curvelet 

transform is presented. Furthermore, section 3.4 presents the implementation of digital 

curvelet transform. Finally, the representation of transformed coefficients is introduced in 

section 3.5. 

 

3.1. Why Curvelet TransformT 

For the last two decades, many transformations based on multi-scale decomposition have 

been published X[7]X-X[14]X. Today, especially in the field of signal processing, multi-scale and 

multi-resolution based transformations such as wavelets are becoming the popular 

decomposition methods. Multi-scale transforms have many advantages X[21]X. First of all, with 

multi-resolution transform, compressed data can be transmitted in scalable fashion. That is, 

low resolution data can be transmitted before high resolution data. Secondly, using multi-scale 

transform is convenient for data mining in large datasets. Thirdly, signal noise removal, for 
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example, in image restoration is more effective in the multi-resolution transform domain. As a 

result, there are an increasing number of studies of multi-scale and multi-resolution 

transformations recently. 

In last few years, a multi-scale based transform, curvelet transform, was developed to 

improve the limitations of traditional multi-scale transforms.X[22]X X[23]XX[24]X Generally 

speaking, the curvelet transform is applied using a pyramid structure with multi-resolution. In 

each scale of the pyramid, the curvelet coefficients records frequency components along 

different directions X[25]X X[26]X. 

Comparing to traditional 2-D wavelet transform for images, curvelet transform is an 

over-complete system that contains more sub-band information and therefore it handles some 

problems better than traditional wavelets X[27]X. In curvelet transform domain, the 

representation of edges in an image region (at a particular scale) can be analyzed from 

multi-directional decomposition of the spatial edges into frequency components. With 

multi-directional frequency decomposition and multi-resolution characteristics of the curvelet 

transform, we can obtain more information regarding the structure of the image textures (or 

the motion-compensated residuals). To be more specific, in the proposed bit allocation 

scheme, we first analyze the image data according to their frequency components along each 

edge direction. This analysis discriminates a region with structured texture (or 

motion-compensated residuals) from a region with unstructured texture (or 

motion-compensated residuals). Finally, the result of the analysis is used in the bit allocation 

decision in the video rate control mechanism. All the processes will be described in detail in 

next chapter. 

 

3.2. TFundamentals of TCurvelet TransformT 

The basic idea of curvelet transform arises from anisotropy scaling relation for curves 
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which is also called the curve scaling law X[23]X. 

2length width ∝  (3.1)

 XFigure 3.1X illustrates the basic idea of curvelet transform X[23]XX[24]X. First of all, suppose 

there exists a curve u = u(v) in the (u, v) orthogonal coordinate system. In general, we can use 

the Taylor series expansion to expand the equation u=u(v) as in Equation 3.2. 

     XFigure 3.1X shows that the curve of u=u(v) can be locally approximated by a basis 

function with rectangle with width w and length l. The relation of the width and length is 

w=u( l/2 ). 

( ) ( ) ( ) ( ) 0n v       whe,v
2

0'u'v0u'0uvu 2 ≈++≈  (3.2)

 

Figure 3.1 The anisotropy scaling relation for curves. 

 

Moreover, since the v-axis is tangent to the curve at the origin (0, 0), the value of the u(0) 

and u’(0) is zero. As a result, we can obtain Equations 3.3 and 3.4. 
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2

∝  (3.3)

8
 w

2l
∝  (3.4)

In conclusion, if we construct a correct multi-resolution scale for two-dimensional curves, 

we will get better approximations when the scale becomes finer. 

The advantage of curvelet transform comes from a flexible multi-resolution and 

directional image expansion using curve segments. To be more specific, curvelet transform is 

a multi-resolution decomposition method. If the total number of resolution is N, the 1P

st
P level 

is the coarsest level and level N being the finest level N. Coefficients in the coarsest level and 

the finest level are not decomposed by directional filters, so they do not contain the 

information of directional frequency component analysis. On the other hand, coefficients from 

the 2P

nd
P level to the N-1P

th
P level are decomposed by two-dimensional band pass filter first and 

then by directional filter latter. Therefore, for these levels, the coefficients will be separated 

by many angular wedges, and each wedge contains frequency components of the image 

signals decomposed along a specific orientation. The procedure of coefficients separation by 

angular wedges is called parabolic scaling. 

3.3. Mathematical Formulation of Curvelet TransformT 

First of all, we define a two dimensional space, RP

2
P, with four variables which are a 

spatial-domain variable x, a frequency-domain variable ω, and variables r andθin polar 

coordinates in the frequency-domain X[21]X. Conceptually, the principal filters are based on two 

basic windows, which are radial window, W(r), and angular window, V(t), respectively. 
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Equation 3.5 is the radial window W(r), which decomposes the image data in Fourier 

domain as the band pass filter. The window is smooth, nonnegative and real-valued, and its 

argument r is positive and real valued. Equation 3.6 is the angular window V(t), which 

decomposes the image data in Fourier domain into several wedges that contain different 

directional coefficients. The filter is also smooth, nonnegative and real-valued, and its 

argument t is real valued. The argument j represents the scale of the coefficients, and l means 

the direction of the coefficients. 
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π
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The radial and angular window can form a frequency window UBjB as shown in Equation 

3.7. Like Equation 3.5, the argument j represents the scale of the coefficient. To be more 

specific, jB0B is just the 1P

st
P level of the decomposition scale and ⎣ ⎦j/2  is the integer part of j/2. 

In curvelet transform, the directional decomposition starts from the 2P

nd
P level of resolution and 

ends at the last level of resolution. In other words, the 1P

st
P level (coarse scale) decomposition 

can only produce the roughly low pass filtered coefficients. For other scales, UBjB can 

decompose image data into polar wedges that contain different directions. 

More precisely, we can use the waveform to represent the frequency window. 
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( ) ( ) ( )ωωωθ j21jj U,Ur,U ==  (3.8)

( ) ( )ωωϕ jj Uˆ =  (3.9)

In Equation 3.8, we change the form of frequency window form polar coordinate to 

orthogonal coordinate. And then we can use the waveform in Equation 3.9 to define the 

frequency window. 

Let’s introduce two parameters that indicate the position of coefficient in the polar 

wedge. 
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⎠
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⎜⎜
⎝

⎛
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The Equation 3.10 expresses the rotation angles θBl Bthat we use to indicate the direction 

of coefficients. The next Equation 3.11 shows the position of coefficient  in the spatial 

domain that is controlled by the translation parameter k. And the notation  is the inverse 

(and transpose) of rotation by θ radians as what Equation 3.12 shows. 

( )kj,
kx

-1Rθ

Therefore, at decomposition scale 2P

-j
P, at the orientation of rotation anglesθBlB, and at the 

position , basic curvelets can be defined as follows: ( )kj,
kx
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As a result, we can use the inner product operation on an element f and a curvelet to 

produce a curvelet coefficient, and the formulation is represented as Equation 3.14.  
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22
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We can also translate the curvelet coefficient of Equation 3.10 into the frequency domain 

operation as Equation 3.15 shows: 
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j,
k
l

l
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 (3.15)

XFigure 3.2X shows the diagram of decomposition by curvelets in frequency domain. This 

figure represents five decomposition level of resolution. The 1P

st
P level is the coarsest level, 

which is only decomposed by low pass filter. Therefore, the 1P

st
P level coefficients are non 

directional. Other levels are composed of angular wedges. The dotted region is one of the 

angular wedges in the 5P

th
P level coefficients. At scale 2P

-j
P, the length of each wedge is 2P

-j/2
P, and 

the width of each wedge is 2P

-j
P.   
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Figure 3.2 The curvelet tiling in the frequency domain 

3.4. Implementation of Digital Curvelet TransformT 

In this section, we will describe the procedure for computing 2-D curvelet transform 

X[21]XX[28]X. In short, the 2-D curvelet transform can be computed using unequally-spaced fast 

Fourier transform (USFFT). The Fast Fourier Transform library used in the program can be 

obtained in X[29]X. 

Some input parameters to the algorithm are described in XTable 3.1X, where nx and ny are 

the input image width and height, and ns is the number of image resolution scale for wavelet 

decomposition, which is a result of logB2B(nx)-3. In addition, Meyer wavelet X[30]X is used for the 

wavelet transform in the algorithm and nBϕB is the degree of the Mayer window function. 
 

nx 512 
ny 512 
ns 6 
nBϕB 3 

Table 3.1 Input Parameter to curvelet codec 

 

First of all, we convert the component of image, RGB, to YCBBBCBRB format to get the Luma 
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component Y. And then we use the Luma component Y as the input of the curvelet 

transformation. The procedure of computing curvelet transform is composed of four steps and 

each of the steps will be described in the following sections. Section 3.4.1 describes the 

Fourier transform procedure which transforms the image inputs into frequency components. 

Section 3.4.2 introduces the band pass filtering process that decomposes the frequency data 

into several resolution scales. The polar scaling method is described in section 3.4.3. Finally, 

section 3.4.4 shows how the coefficients are converted back to spatial domain via inverse 

Fourier Transform. 

 

3.4.1. Take Fourier transform into frequency domainT 

First of all, since we need to scale the image data by different resolution in the following 

steps, we must transform the image data into frequency domain. Assume that the input image 

data is in YCBBBCBRB format. To obtain Fourier samples of the image, a two-dimensional Fast 

Fourier Transform is applied on the Luma components(Y channel of data), and the transform 

coefficients is normalized by dividing by (nx⋅ny)P

0.5
P. As XFigure 3.3X indicates, the low-band 

coefficients are centralized in the center of the image since this representation facilitates 

repetitive decomposition of the coefficients. 

n

n

2D 

Figure 3.3 Decomposition of image into frequency domain 
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3.4.2. Band-pass filteringT 

In the second step, we have to obtain frequency coefficients in different resolutions. First 

of all, we must create different levels of wavelet transform window function to decompose the 

coefficients obtained from previous step. XFigure 3.4X illustrates how the band-pass filters are 

applied. 

 

 

Level 
0  

(a) 

Level 
1 

(b) 

Level 
2 

(c) 
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Level 
3 

(d) 

Level 
4 

(e)  

Figure 3.4 Decomposition of Meyer wavelet in resolution of scale 0 to scale 4 

 

XFigure 3.4X shows the decomposition of Meyer wavelet in different resolution. The 

coefficients in coarsest level are filtered by the low pass filter with size 32x32, and the 

procedure is indicated by XFigure 3.4X(a). XFigure 3.4X(b) to XFigure 3.4X(e) represents the 

coefficients in resolution of scale 1 to scale 4, respectively. For these scales, the filters are 

composed by the subtraction of two low-pass filters in order to form a band pass filters. 

During the band-pass filtering procedure, the filters we apply are based on the low-pass 

Meyer window function. The scaling function and wavelet function of the Meyer window 

function is shown in XFigure 3.5X X[28]X X[30]X. 
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(b) 

Figure 3.5 Scaling function and wavelet function of Meyer window function 

 

The detail procedure of decomposition is described as follows. First of all, we generate 

one-dimensional Meyer window of degree 3 by combining four basic parts, see XTable 3.2X. 

The one-dimensional Meyer window is leading with a zero coefficient and then followed by 

the 4 parts with the order 4 3 2 1 2 3 4. Therefore, the one-dimensional Meyer window will be 

composed of [zero 4 3 2 1 2 3 4]. The two-dimensional Meyer window is constructed by 

point-wise multiplication of two one-dimensional Meyer windows. 
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Part The actual value of the filter 

1 1…1 

2 cos(πv/2(3a/2)) where a are dyadic points (2P

i+1
P/3…2P

i
P/3-1)/2P

i
P-1 

3 cos(πv/2(3a/2))where a are dyadic points (2P

i
P…2P

i+1
P)/2P

i
P-1 

4 1…1 
 

Table 3.2 Four basic parts of 1-D Meyer window 

After generating the two-dimensional Meyer window, we filter the low frequency 

components by the Meyer window. To be more specific, the range of resulted low frequency 

components in resolution level i, sxBiB and syBiB, can be calculated by XTable 3.3X. The filter 

coefficient we use in level i, where i are 1 to 4, is the square of coefficient i minus square of 

coefficient i-1, and then get its square root.  In level 5, we use the coefficient of square roots 

of 1 minus square of coefficient 4. After the decomposition, we can get six different scales 

with size sxBiB·syBiB. 

More over, the size of the coefficients is controlled by the level of their scale. And the 

relation of size and scale can be show as XTable 3.3X. To be more specific, sxBiB and syBiB are width 

and height of level i. 

Level i sxBiB = syBi B= min(2P

i+2
P,nx) Window(i) 

0 iB0B=3 32 iB0B 

1 iB1B=4 64 (iB1PB

2
P-iB0PB

2
P)P

0.5
P 

2 iB2B=5 128 (iB2PB

2
P-iB1PB

2
P)P

0.5
P 

3 iB3B=6 256 (iB3PB

2
P-iB2PB

2
P)P

0.5
P 

4 iB4B=7 512 (iB4PB

2
P-iB3PB

2
P)P

0.5
P 

5 iB5B=8 512 (1P

2
P-iB4PB

2
P)P

0.5
P 

 

Table 3.3 Parameters of each resolution level 

One example of the band-pass filtered coefficients in each resolution is shown in XTable 

3.4X. 
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Result Decomposition of Meyer wavelet 

Level 0 
 

Level 1 

 

Level 2 

 

Level 3 

 

Level 4 

 

Table 3.4 The band-pass filtered coefficients of image Lena 
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3.4.3. Polar interpolationT 

The frequency coefficients in different resolutions computed by the band pass filter must 

be re-sampled to form directional frequency components. This can be done by interpolating 

the coefficients obtained from the previous procedure along vertical and horizontal directions. 

After resampling, the coefficients may be rearranged into four groups, namely west, east, 

north and south, based on the directions of directional decomposition. 

For example, for the coefficients in the east quadrant, the whole procedure of the 

directional decomposition is shown in XFigure 3.6X.  

 

Figure 3.6 Angular scaling in the East quadrant region 

 

First of all, we can obtain the rectangle shaped coefficients in the East quadrant. 

Secondly, we apply column-wise one-dimensional inverse Fast Fourier Transform on the 

coefficients. And then we have to resample the coefficients into a shape of wedges (shown in 

the middle picture in XFigure 3.6X). From XFigure 3.6X, one can see that, for each column, x 

sampling gird stays the same, but y sampling grid must be rearranged along each column. 

Therefore, we have to calculate the new indices and interpolate the new coefficients. We 

obtain the new indices by performing a one-dimensional Meyer Window, see XTable 3.5X.  
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Meyer window is combined by the 4 parts 

Part 1 sin(πv/2(3a)) 

Part 2 sin(πv/2(3a)) 

Part 3 cos(πv/2(3a)) 

Part 4 cos(πv/2(3a)) 

Table 3.5 Formula of Meyer Window 

Furthermore, the interpolation method is calculated by one sine window such as 

Equation 3.16. Finally, the resampled coefficients is stored in a rectangular shape region in 

transform domain for the purpose of easy accesses. 

))))
2
1(sin(1(

4
sin())))

2
1(sin(1(

4
sin(w tt −+⋅++= ππππ

 (3.16) 

Note that for the east and west groups of coefficients the interpolation is done 

column-wise while for north and south groups of coefficients, the interpolation is done 

row-wise. XFigure 3.7X shows the coefficients before and after the procedure of the directional 

decomposition. Coefficient in the right part is the result of the red ladder shaped region (East 

quadrant) in the 4P

th
P level resolution after applying the polar interpolation. To be more specific, 

the region which is framed in yellow designates the first angle in the resolution. 
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Figure 3.7 The directional decomposition in the 4P

th
P level coefficients. 

3.4.4. Inverse Fourier transformT 

In the final step shown in XFigure 3.8X, two-dimensional Inverse Fast Fourier Transform is 

applied on the coefficients to transform the data back to spatial domain. The pixel data is 

normalized by multiplication with (nx⋅ny)P

0.5
P in order to cancel the original normalization we 

apply on the coefficients. 

 

Figure 3.8 Perform 2D IFFT on lowest level 

3.5. TInterpretation of Tthe Curvelet TransformT Coefficients 

In this section, we will give an interpretation to the curvelet coefficients in each level of 

resolution. The coefficients at the coarsest and the finest levels are not decomposed along 
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different directions while the coefficients at other levels are decomposed along different 

angles. 

3.5.1. Curvelet Coefficients in the Coarsest and the Finest level  

As previous paragraph describes, the curvelet in the coarsest and the finest level of 

resolution do not contain the information of directional decomposition. To be more specific, 

the coarsest curvelet coefficients are the low-pass coefficients, and on the contrary, the finest 

curvelet coefficients are the high-pass coefficients.  

Here we show an example of coarset level curvelet coefficients by stefan image with size 

352×288. Size of the coarset level curvelet coefficients is 32×32. After normalizing the 

coarest level of curvelet coefficients, the image of coefficients is shown in XFigure 3.9X. 

 

Figure 3.9 Result of coarsest level of curvelet coefficients 

3.5.2. Curvelet Coefficients in the Middle Levels of Resolutions 

Curvelets in the middle levels of resolution contain the information of directional 

decomposition. For each resolution scale, the coefficients in different directions (within a 

wedges area along different angles) are resampled according to their orientation. The number 

of angles analyzed at one scale is chosen by the resolution of the scale. For instance, there are 

32 different angular wedges in the 2P

nd
P and 3P

rd
P levels, and 64 different angular wedges in the 

4P

th
P and 5P

th
P levels. 

As other multi-resolution based transforms, curvelet coefficients can be presented in a 

spatial image. XFigure 3.10X (a) helps to define the position of curvelet coefficients. In the first 
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step, we allocate the coefficients of the coarsest level in the middle of image. In the second 

step, the coefficients of one scale are separate in to 4 parts composed of North, East, South 

and West. More over, we separately put the coefficients around the coarsest level coefficients 

from low level to high level. XFigure 3.11X shows the actual curvelet coefficient in 4 levels of 

resolution of the Stefan image. 

 

 

(a) (b) 

Figure 3.10 Coefficients of each resolution level 

 

Moreover, an example of the mapping between the positions of the curvelet coefficients 

and the original image pixel position is illustrated in XFigure 3.11X. The mapping function of the 

coarsest-level coefficient is simple since it is just a subsampled version of the original image. 

However, the mapping of the other levels of coefficients is not as trivial since their samples 

are rearranged in the frequency domain. However, one can still derive the mapping function 

precisely by inversing the band pass filtering and the coefficient storage procedure described 

in this chapter. More details of the mapping function will be discussed in next chapter. 
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Figure 3.11 Position mapping of curvelet coefficients 
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4. Proposed Bit Allocation Framework 

In order to design a video bit allocation policy that matches human perceptual behavior, 

we must design a measure to distinguish between structured and unstructured regions (or 

motion-compensated residuals). The texture structure can be classified by analyzing the 

distribution of the angular frequency components in the curvelet domain. In the proposed 

framework, the analysis is done by classification of the histogram of frequency components 

across different angles. The assumption is that for a structured region, the histogram should 

have clear peaks (large magnitude frequency components) at few angles. On the other hand, 

for an unstructured region, the histogram will be nearly uniformly distributed. 

The organization of this chapter is listed as follows. In section 4.1, some analyses on 

curvelet coefficients at different resolutions are presented. In section 4.2, we describe the Otsu 

thesholding algorithm, which is used in the proposed framework for histogram classification. 

Section 4.3 formulates the proposed statistical measure that calculates the degree of texture 

structure randomness in a specified region. Finally, section 4.4 presents the proposed bit 

allocation scheme for MPEG-4 simple profile. 

4.1. Analysis on curvelet transform coefficientsT 

Although curvelet transform provides decomposed frequency components at different 

resolutions, the coefficients at the coarsest and the finest resolutions do not arrange frequency 

components according to the direction of the transform windows. In this thesis, these 

coefficients are referred to as the first group of coefficients. The second group contains 

coefficients at other intermediate resolutions. These coefficients are arranged according to the 

direction of the transform windows. In section 4.1.1, we will describe the detail information 

of the curvelet coefficients in the two groups. In section 4.1.2, we will show the spatial 
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mapping between the original image positions and the corresponding curvelet coefficients. 

4.1.1. The composition of the curvelet transform T 

We have glanced at some features in section 3.5. In this section, we will put more 

emphasis on the meaning of coefficients in a curvelet domain image and their relation to the 

original image. 

First, we explain the components in the first group that do not contain the information of 

directional decomposition. For the coarsest-level coefficients, they contain the low frequency 

components and the size is diminished into fixed size of 32×32 pixels. Therefore, the position 

mapping between the original image and the transformed coefficients is a direct down-scale. 

 

Figure 4.1 Position mapping of curvelet coefficients in the coarsest level 
resolution 

Let’s take the simple edge image that the only edge starts from right-up corner to 

left-bottom corner as an instance. XFigure 4.1X shows the way of position mapping between 

curvelet coefficients in the coarsest level resolution and the original image. The image of 

normalized coarsest coefficients is listed left whose size is 32×32 pixels, and the original 

image is listed right whose size is 352×288 pixels. We can easily find out the original spatial 

properties are remained in the curvelet coarsest level coefficients. Similarly, XFigure 4.2X is the 

image of normalized finest level coefficients. Curvelet coefficients in the finest level 

resolution are the collection of high frequency components of the original image, and their 

total size is the same as the original image. Therefore, the positional mapping is direct 
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one-to-one mapping. In the proposed bit-allocation method, neither coefficient in the coarsest 

nor finest level of resolutions is used. 

 

Figure 4.2 Curvelet coefficients in the finest level resolution 

For the second group of coefficients that contain the information of directional 

decomposition, the number of levels depends on the original image size. For example, if the 

original image has 352×288 pixels, we can obtain three middle levels of resolution which are 

the 2P

nd
P level, 3P

rd
P level and 4P

th
P level respectively, see XFigure 4.3X. 

 

 

Figure 4.3 Curvelet coefficients in the 2P

nd
P, 3P

rd
P and 4P

th
P level resolution 

For the 2P

nd
P and 3P

rd
P level, coefficients are separated into 32 angles. However, there are 64 

angular wedges in the 4P

th
P level. That is to say, the total number of separated angles in one 

resolution is twice every two levels. 
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As XFigure 4.3X shows, because the original image contains only an edge starts from the 

right-up corner to the left-down corner, we can easily find out the coefficients are centralized 

in the region of left-up and right-down. In short, curvelet coefficients centralize the energy 

into the orthogonal angles of direction of the curves. 

More over, the position mapping function of the middle levels is different from that of 

the first group. In section 3.5.1, as XFigure 3.11X shows, we have glanced at the relation of 

positions between the curvelet coefficients and the original image. Because the directional 

decomposition process re-samples the coefficients in the frequency domain, and the direction 

of re-sampling varies according to the specified angles, the actual positions of the final 

coefficients are shifted in some direction. We can classify the directions of shifting into two 

groups. First, for East and West quadrants, coefficients in the vertical direction are simply 

proportional, but coefficients are shifted by the angle of the orientation in the horizontal 

direction. Secondly, for North and South quadrants, coefficients in the horizontal direction are 

simply proportional, but coefficients are shifted by the angle of the orientation in the vertical 

direction. 

4.1.2. Image type and the presentation of the related coefficient 

As XFigure 4.3X shows, we can easily understand the distribution of the curvelet 

coefficients. Since the original image only contains a simple edge, the positions where the 

coefficient appears are simple, too.  

Let’s see a more complex example. If the original image contains multiple 

multi-directional edges, such as the image in XFigure 4.4X(a), the distribution of its coefficients 

is much more complicated.  
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(a) (b) 

Figure 4.4 Curvelet coefficients in the 2P

nd
P, 3P

rd
P and 4P

th
P level resolution 

In XFigure 4.4X(b), we can see that the coefficients are distributed in multiple angular 

wedges. Furthermore, it is natural that the angular wedges which the coefficient appears are 

different in each resolution. Therefore, curvelet transform can determine whether the curves 

in an image are complicated or not according to the directional decomposition in the middle 

levels of resolutions. 

In our proposed scheme, we take each angular wedge in each resolution scale as a data 

unit. The actual process is to calculate the magnitude of one angular wedge in one resolution, 

and the magnitude becomes the representative value of the energy in the orientation in the 

resolution. Secondly, since we can get three resolution scales with directional decomposition, 

the coordinate formed by the magnitudes can be shown as in XFigure 4.5X.  
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Figure 4.5 The coordinate formed by curvelet coefficients 

It is a three dimensional coordinate which is formed by the scale, magnitude, and angle. 

The angle indicates the angle of the orientation which starts at 0∘and ends at 360∘in the 

direction of clockwise. However, the total angles in each resolution scale are different. To be 

more specific, the 2P

nd
P, 3P

rd
P level resolution contains 32 angles respectively, but the 4P

th
P level 

resolution contains 64 angles. In the plane of angle θand magnitude, we can see the figure as 

histogram. Naturally, value of the magnitude is according to its quantity of coefficient in the 

orientation. If the value of magnitude is larger, it means more data in this direction. Therefore, 

we can analyze the composition of histogram to see whether the direction in the image is 

structured image or not.  

As a result, we can take advantage of the property in curvelet transform to analyze the 

input video data in our proposed bit-allocation scheme. In next section, we will introduce the 

Otsu algorithm to help analyzing the curvelet coefficients for the sake of determine whether a 

small area in an image contains complicated curves or not. 

4.2. The Otsu AlgorithmT 

For picture processing, the technique of selecting histogram threshold is very useful for 

many applications, such as object extraction or edge detection X[31]X. Therefore, there are a 

variety of techniques proposed for threshold selection. In this section, we will introduce a 

typical threshold selection algorithm from gray-level histograms. The method is proposed by 
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Nobuyuki Otsu in 1979 X[32]X. 

Generally speaking, given a histogram of an image, there is a deep and sharp valley 

between every two neighbor peaks. The position of the bottom of each valley is the threshold 

we want to obtain. In the algorithm proposed by Otsu, the histogram threshold can be derived 

form the viewpoint of discrimination analysis. 

First of all, we assume the number of gray level in an image is L. The total number of 

pixels N is the summation of nBiB for level i=1, 2,…, L. The probability distribution is as 

Equation 4.1 shows:  
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Secondly, we can separate all pixels into two classes by a threshold at level k. CB0B is the 

group which contain the pixels with level 1 to level k, and CB1B contain the pixels with level 

k+1 to level L. The probabilities of class occurrence of CB0B and CB1B are listed in Equation 4.2. 
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Moreover, the probabilities of class mean levels of CB0B and CB1B are listed in Equation 4.3. 
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For any choice of k, we can get the relation in Equation 4.4. 
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Based on the formula and variable above, we can introduce the discriminate criterion 

measure, between-class variance, in Equation 4.5 to evaluate the threshold k X[33]X. 
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2
B --- μμωωμμωμμωσ =+=  (4.5)

Since we can assume that if the two classes are distinguished by good threshold, the 

number of between-class variance must be large. Therefore, we can easily obtain the 

conclusion that the best threshold that separates the two groups must derive the maximum 

between-class variance over other thresholds. This relation can be formulated in Equation 4.6 

where kP

*
P is the best solution of histogram threshold.  
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 Furthermore, the method can easily be extended into a multi-threshold case.  Equation 

4.7 shows the example of two-threshold selection method which can produce four peaks in the 

gray-scale histogram. 
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In the previous section, we know that the input histogram is the curvelet coefficient in 

one resolution scale. The level indicates the angle of the angular wedges. In other words, the 

input data is the histogram of 32 or 64 level histogram. XFigure 4.6X(a) represents the result of 

single threshold produced by Otsu algorithm where k* is the best threshold to separate the 
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histogram into two groups.  

 
 

(a) (b) 

Figure 4.6 The histogram separated by Otsu threshold selection method 

Furthermore, in our proposed scheme, we extend the threshold selection method to 

five-thresholds. As a result, we can obtain six classes in the whole histogram. And then as 

XFigure 4.6X(b) shows, we will compute the value of the peak in each class. As a result, the rise 

and fall of each histogram is different according to its composition of data in each orientation. 

We can assume that if the variety of histogram is bigger, the direction of edges in the image is 

more complicated. Therefore, we can use the six mountain peaks in the histogram to indicate 

the degree of complication of the image. The actual computational method is described in the 

continuous section.  

4.3. Statistical method to analyze the coefficientsT 

TIn the section, we use the coefficient of variation to measure the degree of variation of 

our histogram. The coefficient of variation (CV), which is also called “relative variability”, is 

a Tmeasure of dispersion of a probability distribution X[34]X. To be more specific, CVT represents 

the ratio of standard deviation to the mean value. 

TWe do not useTT Tstandard deviation to analyze our data because has interpretable meaning 

under the condition that the mean value of every sample is the same. In other words, standard 

deviation represents the degree of variability relative to the mean value. However, in our 

histogram of curvelet coefficients, the average magnitude of each angular wedge is definitely 
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different. Therefore the coefficient of variation is used instead. 
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Equation 4.8 shows the formula of the coefficient of variation (CV). It is easily seen that 

CV is the value the standard deviation divided by the mean. The measurement of the 

coefficient of variation is better in datasets with markedly different means or with different 

units of measurement. Our input dataset just match the first type. 

Here we list six classical examples of histogram and its coefficient of variation in XFigure 

4.7X. We take one residual frame of Stefan sequence with resolution CIF as our example. First 

of all, we divided the image into 396 blocks with size 16 by 16. Therefore, we can obtain 

curvelet histogram of each block in each resolution level.  

 
(a) (b) 
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(c) 

Figure 4.7 The histogram and coefficient of variation of six blocks in Stefan 

Figure 4.7(a) shows actual positions of blocks we select. In Figure 4.7(b), it lists the 

coefficient of variation of each block in each level. To be more specific, cv1 means the 

coefficient of variation of the first level with directional decomposition, and cv2 means the 

coefficient of variation of the second level with directional decomposition, etc. And the 

curvelet histogram of the relative block is presented in Figure 4.7(c). As the histogram shows, 

one can see that the value of variation and the number of peaks exist some relation. Based on 

the number of peaks and the magnitudes of peaks in the histograms, the image region can be 

classified into several types of images. The first type is that the region doesn’t contain any 

clear edges at all, such as block 31, and the second type is that the region contains many small 

edges, such as block 24 in the first resolution level with directional decomposition. Both these 

two kinds of images are considered as unstructured image since their texture has complex 

edges in them. On the other hand, if the magnitudes of the peaks in the histogram are strong, 

image 

X X X X

X X
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it means that the distribution of the edges in the block is simple and clear. For example, block 

145, 167, and 280 in the third resolution level shows such case. 

 

4.4. Proposed Bit Allocation Scheme 

The bit allocation algorithm st determines the quantization parameter 

, we analyze the 

 for video coding mu

based on the visual importance of a coding block. The input to the bit-allocation algorithm is 

a macroblock of video data. For intra-coded blocks, the input data is the image pixels while 

for inter-coded blocks, the input data is the motion-compensated error residuals. After 

curvelet transform, one can obtain the coefficients that are separated by their direction of 

contour and resolution. And then we can directly take each angular wedge in each resolution 

scale as a data unit as described in section 4.1. To be more specific, we integrate the 

coefficients by calculating the magnitude of one angular wedge in one resolution, and the 

magnitude becomes the representative value of the energy in the orientation in this resolution. 

As a result, the display of curvelet coefficients can be expressed as in XFigure 4.5X a three 

dimensional coordinate which is formed by the scale, magnitude and angle. 

Next, as described in section 4.2, for each plane of angle and magnitude

mountain peaks of the histogram. Each mountain peak represents the gathering of direction of 

edges. To classify the complexity of the region, the coefficient of variation (CV) to analyze 

the mountain peaks of the angular histogram. On one hand, if the value of each mountain peak 

in one histogram varies slightly, it will be represented by a small CV and it means that the 

direction of edge in the block is not obvious. Of course we can indicate the image as an 

unstructured region. On the other hand, if the value of each mountain peak in one histogram 

varies dramatically, it will be represented by a large CV. It means that the direction of edge in 

the block is obvious, and we can indicate the image as a structured region. 
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In the proposed method, we separate all images into three groups. They are group of 

unstructured regions, group of structured region, and group of well structured regions. Since 

human eyes are less sensitive to images of unstructured regions than images of structured 

regions, we can adjust the way of bit allocation according to our analysis of the image. As a 

result, images of unstructured regions can be seen as unimportant regions, so we can diminish 

bits of the regions in a compression technique. On the other hand, we can increase bits of the 

well structured regions in order to enhance the performance of compression. 

XFigure 4.8X shows the block diagram of the proposed bit allocation algorithm. Blocks in 

the first line is the original encoding procedure of an MPEG-4 simple profile encoder, and 

blocks in the second line is the modified encoding flow. 

Residual 

Image 
Quantization 

Curvelet 

Transform 

Distribution 

Analysis 

Adjust QP by CV of 

Peak Computation 

Blocked-DCT 

Transform Coding 

Entropy 

Figure 4.8 Block diagram of the proposed bit allocation model 

In the process of determining the complexity of images and adjusting QP based on the CV of 

histogram peaks, Equation 4.8 is proposed. 

CV of maximum  theisCVmax       where0.5)-
T-T
T-CV

round(d
minmaxu

minmax
QP =  

If dBQPB is equal to 1, then check the minimum of CV: 

If CVBminB is smaller then TBmaxlB, then change the value of dBQPB from 1 to 0 

(4.8)
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In Equation 4.8, TBminB controls the boundary of decreasing QP. If the maximum 

coefficient of variation in three resolution levels (CVBmaxB) is less than TBminB, the macro block is 

considered unstructured region, and QP of the macro block is reduced. 

On the other hand, the way to judge whether the macro block is a strictly structured 

region or not is similar but contains one extra condition. TBmaxuB and TBmaxlB control the boundary 

of increasing QP. If the maximum coefficients of variance (CVBmaxB) is larger than TBmaxuB and 

minimum coefficients of variance (CVBmin.B) is not less than TBmaxlB, the macro block is 

considered strictly structured region, and QP of the macro block is increased. 

By using the formula to computing updates of quantization parameters for each 

macroblock, we can obtain three kinds of updated quantization parameters. The first group of 

quantization parameter is the same as the original quantization parameter. This means that the 

composition of image is a normally structured region, and we do not have to increase or 

decrease its bits. The second group of quantization parameter corresponds to the original 

quantization parameter plus one. This type of regions means that the composition of image 

does not contain obvious edges, so it is typically unstructured regions. We can decrease its 

bits and the compression result does not cause obvious degradation to human eyes. In addition, 

we can allocate the saving bits to other regions that the human observers are more sensitive to. 

And this is the behavior of the third type. The third group of quantization parameter equals the 

original quantization parameter minus one. This type of regions means that the composition of 

image contain clear edge structures, which is referred to as well structured regions. Therefore, 

we can increase its bits to enhance performance by human eyes, since the improvement of 

visual quality in this kind of region can dramatically catches human eyes. 

4.5. TDetermination of the Weighting Threshold 

In the section, the selection of thresholds mentioned in previous section is described. In 

general, the degree of presentation of signal discontinuity contains a relationship to the 
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sampling frequency. Therefore, in order to consider the weighting of each resolution scale, we 

must analyze the range of minimum and maximum sampling frequencies in each directional 

resolution scale as listed in XTable 4.1X . 

  Min Max 

Scale Direction 
F 

(cycles/samples) 

T 

(cycle)

F 

(cycles/samples) 

T 

(cycle) 

Horizontal 16/352 22 32/352 11 
1 

Vertical 16/288 18 32/288 9 

Horizontal 32/352 11 64/352 5.5 
2 

Vertical 32/288 9 64/288 4.5 

Horizontal 64/352 5.5 128/352 2.75 
3 

Vertical 64/288 4.5 128/288 2.25 
 

Table 4.1 Analysis of frequency components. 

From XTable 4.1X, one can see that the proportions of mean frequencies in these three 

scales are 1:2:4. Consequently, the formula for the overall CV (combining information form 

all resolution scales) is computed as in Equaltion 4.1. Note that the sum of the coefficients is 

one and CVB1B, CVB2B, and CVB3B are the CV’s for different resolution scales. 

 

321 CV0.57CV0.29CV0.14CV ⋅+⋅+⋅=  (4.1) 

Next, we must determine the threshold CV for structured and unstructured regions. The 

threshold is estimated by a pre-analysis step for each group of picture (GOP). One example of 

GOP structure which contains nine frames is shown in XFigure 4.9X. 
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Figure 4.9  GOP structure of a video sequence. 

Two possible methods are tested to determine the CV threshold at a particular scale. 

Both methods are based on estimating the boundaries between well structured regions (SR) 

and unstructured region (USR). 

Method I: the threshold of SR is computed as the value of CV that makes the regions 

with top 1/3 CV values being counted as well structured regions. Then, the threshold for the 

unstructured regions is selected so that it decreases the bitrate for the unstructured regions 

(nB1B%) so that the overall bitrate stays the same. 

Method II: the threshold for SR is computed as that in method I, and the threshold for 

USR is determined so that blocks of the last nB2B% number are considered as USR. 

 

(a)

(b)

Figure 4.10. Threshold selection of CV. 
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5. Experiment and Analysis 

In this section, the performance of the proposed curvelet-based bit allocation scheme is 

investigated using the MPEG test sequences STEFAN, FOOTBALL, and BUS in CIF 

resolution. An MPEG-4 Simple Profile encoder is used for the experiments. 

5.1. Result of the proposed bit allocation scheme 

The goal of our proposed scheme is to achieve better visual quality given same the target 

bitrate constraint. That means that we have to enhance the performance of the regions that 

human observers are more sensitive to by allocating more bits to them. And the process 

should not increase total bits a lot. In this chapter, we conducted some experiments to show 

the efficiency of the proposed algorithm. PSNR and SSIM are used as measures to evaluate 

the performance of the video. For divided regions of image, we only use PSNR to evaluate 

their visual quality since SSIM is good at extracting structural information and it does not 

work well in small size regions. 

Three MPEG test sequences STEFAN, FOOTBALL, and BUS in CIF (352×288) 

resolution are used to test the performance of the proposed curvelet-based bit allocation 

scheme. The first 120 frames are used to conduct the experiment for each sequence. XTable 5.1X 

lists the setting parameters of the experiments. TBmaxuB, TBmaxBBlB and TBminB are the manually selected 

thresholds of coefficient of variation (CV) of curvelet coefficients used in the image region 

classification algorithm. Results with automatic selection of thresholds will be presented in 

section 5.2. QP is the default quantization parameter, and Luma Bitrate is the original bitrate 

of luma components produced by the MPEG-4 simple profile without the proposed scheme. 
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case sequence TBmaxuB TBmaxlB TBminB QP Luma 
Bitrate 

1 Stefan 0.62 0.27 0.23 12 616 

2 Football 0.58 0.25 0.24 9 611 

3 Bus 0.57 0.28 0.18 9 1071 
 

Table 5.1 Parameter settings of the three experiments 

First of all, the resulted data of the three sequences are listed in XTable 5.2X. The field 

“Original” indicates that the sequence is compressed by the original MPEG-4 simple profile, 

and the field “Modified” indicates that the sequence is compressed by the proposed bit 

allocation scheme. QP is the value of quantization parameter for the whole sequence. 

Furthermore, QP from the proposed algorithm varies within a range of ±1 from the original 

encoder. Total Bitrate is the total bitrate of the whole sequence. Luma Bitrate indicates bitrate 

of luma components of the whole sequence. Next, Header Bitrate and Chrome Bitrate mean 

bitrates of header and chrominance components of the whole sequence, respectively. 

Sequence Stefan Football Bus 

Type Original Modified Original Modified Original Modified

PSNR 30.16714 30.17565 33.84276 33.86667 31.75857 31.75973

SSIM 0.92485 0.92554 0.88017 0.88093 0.90463 0.90473

QP 12 11~13 9 8~10 9 8~10 

Total Bitrate 790 796 1294 1299 1250 1254 

Luma Bitrate 618 616 928 927 1071 1071 

Header Bitrate 144 152 273 279 161 166 

Chroma Bitrate 27 27 92 92 16 16 
 

Table 5.2 Resulted data of the three sequences 

As the numbers in gray cells show, the proposed scheme increases visual quality without 

increasing the bitrates of luminance components. Since our proposed scheme allocates 

 47



different number of bits to macro blocks according to their composition of directional edges, 

we may increase bits of header data definitely. Therefore, the experiments only focus on the 

variation of bits of luminance components. 

Next, for each sequence we list two kinds of typical frames to analyze the result of visual 

quality and bits our proposed scheme causes. XFigure 5.1X, XFigure 5.2X and XFigure 5.3X show the 

result of visual quality in three sequences respectively. In these figures, we divide whole 

frame into 396 macro blocks with size 16x16. And we label the macro blocks of three kinds of 

properties we are interested in. First of all, macro block in label | indicates the block which 

has better visual quality in PSNR measurement and more bits of luminance components than 

the original MPEG-4 simple profile. Secondly, macro block in label ─ indicates the block 

which has better visual quality in PSNR measurement but less bits of luminance components. 

Thirdly, macro block in label ╳ indicates the block which has worse visual quality in PSNR 

measurement and less bits of luminance components. We can easily see the distribution of 

visual quality by dividing the frame into two groups. Group of region with label ╳ indicates 

worse visual quality and group of region with label ─ and | indicate better visual quality than 

the original image. 

For the Stefan sequence, human observers may pay special attention to tennis player and 

the area with obvious edges such as words on the wall. On the other hand, the regions that 

audiences on the grandstand and the flat regions are mostly human observers are not sensitive 

to relatively. In XFigure 5.1X(a), the major movement in the 51P

st
P frame is the tennis player 

moving towards the right hand side. In the proposed scheme, the regions with clear and 

obvious directional edges will be considered structured region. As a result, performances of 

this kind of regions such as tennis player’s legs, words on the wall and lines on the ground are 

mostly enhanced. Nevertheless, the regions of audiences on the grandstand and the flat 

regions will be seemed to unstructured regions since their directions of edges are complicated. 
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So bits of these regions are usually decreased and it may cause worse visual quality. 

(a) (b) 
Figure 5.1 Comparison of visual quality in Stefan Sequence 

(a)The 51P

st
P frame in Stefan. (b) The 96P

th
P frame in Stefan. 

In XFigure 5.1X(b), the 96P

th
P frame, the major movement in the 96P

th
P frame is the tennis 

player waving his rocket. Therefore, human eyes may notice the area of tennis player’s whole 

body and the area with obvious edges such as words on the wall and lines on the ground. 

Performances of these kinds of regions are mostly enhanced. And similar as in XFigure 5.1X(a), 

bits of the regions of audiences on the grandstand and the flat regions are usually decreased 

and it may cause worse visual quality. XTable 5.3X shows ratio of number of regions with better 

PSNR and worse PSNR, and it is obvious that the ratio of regions of audience is smaller than 

others. 

 51P

st
P frame 96P

th
P frame 

PSNR Better Worse Better Worse 
Audience 78 54 65 67 

Words 20 4 30 9 
Legs 9 2 - - 

Whole body - - 12 5  

Table 5.3 Ratio of improvement in Stefan sequence 
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(a) (b) 

Figure 5.2 Comparison of visual quality in Football Sequence 
(a)The 27P

th
P frame in Football. (b) The 116P

th
P frame in Football. 

Next, in whole Football sequence, human observers may pay more attention on the area 

of football and football player than the area of grass. Moreover, obvious edges on football 

player such as numbers on their sports coats or stripes on their pants may attract human eyes 

dramatically. In XFigure 5.2X(a), the major movement in the 27P

th
P frame is the football players 

competing for the football. In the proposed scheme, the performances of the regions we said 

above that humans may be more sensitive to, numbers on their sports coats or stripes on their 

pants, are mostly enhanced. Nevertheless, bits which are allocated to the regions of too 

complicated grass and the flat regions are usually decreased because these regions may be 

seemed to unstructured regions. And the processing may cause worse visual quality of these 

regions. Here we select the other kind of frame in Football sequence to analyze its result. In 

XFigure 5.2X(b), the major movement in the 116P

th
P frame is the football players running towards 

right with the football in his hand. In this frame, human may pay attention to the only football 

player and the football. In our proposed scheme, the performances of the regions we said 

above mostly enhanced. However, for less important regions, such as the regions of too 

complicated grass and flat regions, their bits are usually decreased and their visual quality 

may be reduced. 
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 27P

th
P frame 116P

th
P frame 

PSNR Better Worse Better Worse 
Grass 70 57 110 102 
Numbers 12 2 - - 
Stripe 13 1 - - 
Whole body - - 21 10  

Table 5.4 Ratio of improvement in Football sequence 

XTable 5.4X shows ratio of number of regions with better PSNR and worse PSNR, and it is 

obvious that the ratio of regions of grass is smaller than others. 

 

(a) (b) 

Figure 5.3 Comparison of visual quality in Bus Sequence 
 (a)The 25P

th
P frame in Bus. (b) The 92P

nd
P frame in Bus. 

Last, in Bus sequence, human observers may not pay more attention on the area of 

complicated background such as the trees on the top of image, and complicated foreground 

such as railings and still car. On the other hand, the moving bus and various backgrounds are 

more attracted to human eyes than the region we said above generally. Here we select two 

different kinds of scenes of bus sequence to analyze our result. In XFigure 5.3X(a), the bus is just 

passing through the pillar with sculpture. Therefore, human observers may take their on the 
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regions of the sculpture, human under the sculpture, the head of bus and the top of bus. In our 

proposed scheme, visual qualities of these regions are mostly enhanced. In the 92P

nd
P frame, as 

XFigure 5.3X(b) shows, the regions that human observer may notice a lot are listed as follows: 

the advertisement with photograph and words on the bus, the street light near the head of bus 

and the region that sky and trees are associated with. Visual qualities of these regions are 

mostly enhanced. Nevertheless, for the regions of complicated edges, such as trees, railings 

and still car, human observers often skip their detail. In our scheme, these regions may be 

considered unstructured region, and their visual quality may be decrease to save bits. 

XTable 5.5X shows the ratio of number of regions with better PSNR and worse PSNR, and 

it is obvious that the ratio of regions of grass and railings are smaller than others. 

 25P

th
P frame 92P

nd
P frame 

PSNR Better Worse Better Worse 
Trees 38 37 48 70 

Railings 72 82 87 67 
Sculpture 12 7 - - 
Passerby 6 1 - - 

Photo and word - - 13 4 
Edge of Sky 

and Trees 
- - 6 2 

 

Table 5.5 Ratio of improvement in in Bus sequence 
 

5.2. TResult of Proposed Bit Allocation Scheme with Weighting 

Threshold 

In this section, we will show the results of our proposed bit allocation scheme with 

automatic CV threshold selection described in section 4.5. Section 5.2.1 will compare results 

in Method I and Method II and section 5.2.2 will show the detail result of the better Method 

of two. 
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5.2.1. TNumber of structured and unstructured blocks of the two

 method 

XTable 5.6X and XTable 5.7X show quantity of blocks (%) indicated as SR and USR by 

Method I and Method II respectively. There are three input sequences with CIF resolution 

which are Stefan, Football and Bus sequences. There are two types of threshold source. Type 

“EACH” means that the threshold are calculated by each residual frame, and the type “GOP” 

means that the threshold are calculated by all residual frames in each GOP. TBSRB is the CV 

value of lower bound of SR, and TBUSRB is the CV value of upper bound of USR. BlocksBSRB is 

the number of blocks indicated as SR, and BlocksBUSRB is the number of blocks indicated as 

USR. ErrBSRB is the error range of BlocksBSRB, and ErrBUSRB is the error range of BlocksBUSRB. For 

example, the number of SR blocks is 5.42%+-7.71% among all blocks. 

 

Average 

Method I 
Sequence 

type 

Threshold 

source TBSR 

(CV)

TBUSR 

(CV)

BlocksBSRB 

(%) 

BlocksBUSRB 

(%) 

ErrBSRB 

(%) 

ErrBUSRB 

(%) 

EACH 0.47 0.11 5.42 4.68 7.71 12.74 
Stefan 

GOP 0.54 0.09 2.61 2.04 2.41 2.51 

EACH 0.48 0.16 5.31 10.55 26.26 16.47 
Football 

GOP 0.55 0.12 4.35 3.65 12.82 3.96 

EACH 0.48 0.16 5.31 10.55 5.55 13.96 
Bus 

GOP 0.62 0.08 1.56 1.66 3.62 1.09 
 

Table 5.6 Automatic selection of threshold using method I. 
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Average 

Method II 
Sequence 

type 

Threshold 

source TBSR 

(CV)

TBUSR

(CV)

BlocksBSRB 

(%) 

BlocksBUSRB 

(%) 

ErrBSRB 

(%) 

ErrBUSRB 

(%) 

EACH 0.28 0.25 36.04 52.92 13.06 15.01 
Stefan 

GOP 0.27 0.23 34.15 52.07 22.61 21.10 

EACH 0.34 0.29 28.69 51.53 26.92 40.14 
Football 

GOP 0.34 0.36 39.07 63.75 57.99 60.31 

EACH 0.27 0.18 27.71 37.42 10.29 9.30 
Bus 

GOP 0.27 0.18 31.89 33.58 8.89 10.47 
 

Table 5.7 Automatic selection of threshold using method II. 

 

For Method I, number of blocks indicated as SR or USR is sparse and is below 11 %. 

However, for Method II, number of blocks indicated as SR or USR is larger than two times of 

Method I. For Method I, the error range of GOP is smaller than EACH because composition 

of CV in each frame is quite different. For Method II, the error range of EACH is smaller than 

GOP because selection by quantity can be more accurate. Nevertheless, in each frame, 

distinguishing of SR and USR is better in the method of threshold calculated by all residual 

frames in each GOP whatever in Method I or Method II. 

 

5.2.2. TThe result of proposed scheme with linear formula 

XTable 5.8X and XTable 5.9X show the results of testing the algorithm on three sequences 

using Method I and Method II, respectively. The test conditions and the meaning of the fields 

in the table are the same as those in section 5.1 (in particular Table 5.2). 
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Sequence Stefan Football Bus 

Type Original Modified Original Modified Original Modified

PSNR 29.52022 29.52101 33.48467 33.49391 31.14866 31.14505

SSIM 0.91944 0.91938 0.87353 0.87397 0.89351 0.89323

QP 14 13~15 10 9~11 10 9~11 

Total Bitrate 828 837 1177 1187 1279 1287 

Luma Bitrate 655 655 841 841 1103 1103 

Header Bitrate 133 141 245 256 150 157 

Chroma Bitrate 39 39 89 89 25 25 
 

Table 5.8 Average result of Method I  

 

Sequence Stefan Football Bus 

Type Original Modified Original Modified Original Modified

PSNR 29.52022 29.50551 33.48467 33.46981 31.14866 31.1424

SSIM 0.91944 0.9191 0.87353 0.87381 0.89351 0.89236

QP 14 13~15 10 9~11 10 9~11 

Total Bitrate 828 852 1177 1194 1279 1291 

Luma Bitrate 655 655 841 840 1103 1103 

Header Bitrate 133 156 245 263 150 161 

Chroma Bitrate 39 39 89 89 25 25 
 

Table 5.9 Average result of Method II  

 

Method I perform slightly better on distinguishing between SR and USR than Method II. 

Moreover, on average, Method I is slightly better than Method II on video quality too. 

XTable 5.8X shows the result of a single frame by Method I. For each sequence we list two 

kinds of typical frames to analyze the result of visual quality and bits our proposed scheme 

causes. XFigure 5.4X, XFigure 5.5X and XFigure 5.6X show the result of visual quality in three 

sequences respectively. Symbols in these figures are as figures in section 5.1 defined. 
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(a) (b) 

Figure 5.4 Comparison of visual quality in Stefan Sequence 
(a)The 43P

rd
P frame in Stefan. (b) The 80P

th
P frame in Stefan. 

 

 43P

rd
P frame 80P

th
P frame 

PSNR Better Worse Better Worse 
Audience 99 33 87 45 

Words 28 6 16 1 
Whole body 28 8 18 6  

Table 5.10 Ratio of number of regions with better PSNR and worse PSNR 
in Stefan sequence 

For the Stefan sequence, human observers may pay special attention to tennis player and 

the area with obvious edges such as words on the wall. On the other hand, the regions that 

audiences on the grandstand and the flat regions are mostly human observers are not sensitive 

to relatively. In XFigure 5.4X(a), the major movement in the 43P

rd
P frame is the tennis player 

moving towards right hand side. In our proposed scheme, the regions with clear and obvious 

directional edges will be considered structured region. As a result, performances of this kind 

of regions such as tennis player’s legs, words on the wall and lines on the ground are mostly 

enhanced. Nevertheless, the regions of audiences on the grandstand and the flat regions will 
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be seemed to unstructured regions since their directions of edges are complicated. So bits of 

these regions are usually decreased and it may cause worse visual quality. 

In XFigure 5.4X(b), the 80P

th
P frame, the major movement in the 80P

th
P frame is the tennis 

player waving his rocket. Therefore, human eyes may notice the area of tennis player’s whole 

body and the area with obvious edges such as words on the wall and lines on the ground. 

Performances of these kinds of regions are mostly enhanced. And similar as in XFigure 5.4X(a), 

bits of the regions of audiences on the grandstand and the flat regions are usually decreased 

and it may cause worse visual quality. XTable 5.10X shows ratio of number of regions with 

better PSNR and worse PSNR, and it is obvious that the ratio of regions of audience is 

smaller than others. XTable 5.11X shows the saved bits of unstructured regions by our model. 

Saved bits in unstructured regions 
Saved bits 43P

rd
P 80P

th
P 

Audience 92 105  

Table 5.11 Saved bits in unstructured regions in Stefan sequence 

Next, in whole Football sequence, human observers may pay more attention on the area 

of football and football player than the area of grass. Moreover, obvious edges on football 

player such as numbers on their sports coats or stripes on their pants may attract human eyes 

dramatically. In XFigure 5.5X(a), the major movement in the 65P

th
P frame is the football players 

competing for the football. In the proposed scheme, the performances of the regions we said 

above that humans may be more sensitive to, numbers on their sports coats or stripes on their 

pants, are mostly enhanced. Nevertheless, bits which are allocated to the regions of too 

complicated grass and the flat regions are usually decreased because these regions may be 

seemed to unstructured regions. And the processing may cause worse visual quality of these 

regions. Here we select the other kind of frame in Football sequence to analyze its result. In 

XFigure 5.5X(b), the major movement in the 120P

th
P frame is the football players running towards 

the right with the football in his hand. In this frame, human may pay attention to the only 
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football player and the football. In our proposed scheme, the performances of the regions we 

said above mostly enhanced. However, for less important regions, such as the regions of too 

complicated grass and flat regions, their bits are usually decreased and their visual quality 

may be reduced. 

 

(a) (b) 

Figure 5.5 Comparison of visual quality in Football Sequence 

(a)The 65P

th
P frame in Football. (b) The 120P

th
P frame in Football. 

 

XTable 5.12X shows ratio of number of regions with better PSNR and worse PSNR, and it 

is obvious that the ratio of regions of grass is smaller than others. XTable 5.13X shows the saved 

bits of unstructured regions by our model. 

 65P

th
P frame 120P

th
P frame 

PSNR Better Worse Better Worse 
Grass 79 16 214 21 

Numbers 14 1 - - 
Stripe 13 1 - - 

Whole body - - 31 10  
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Table 5.12 Ratio of number of regions with better PSNR and worse PSNR 
in Football sequence 

 

Saved bits in unstructured regions 
Saved bits 65P

th
P 120P

th
P 

Grass 101 66  

Table 5.13 Saved bits in unstructured regions in Football sequence 

Last, in Bus sequence, human observers may not pay more attention on the area of 

complicated background such as the trees on the top of image, and complicated foreground 

such as railings and still car. On the other hand, the moving bus and various backgrounds are 

more attracted to human eyes than the region we said above generally. Here we select two 

different kinds of scenes of bus sequence to analyze our result. In XFigure 5.6X(a), the bus is 

just passing through the pillar with sculpture. Therefore, human observers may take their on 

the regions of the sculpture, human under the sculpture, the head of bus and the top of bus. In 

our proposed scheme, visual qualities of these regions are mostly enhanced. In the 98P

th
P frame, 

as XFigure 5.6X(b) shows, the regions that human observer may notice a lot are listed as follows: 

the advertisement with photograph and words on the bus, the street light near the head of bus 

and the region that sky and trees are associated with. Visual qualities of these regions are 

mostly enhanced. Nevertheless, for the regions of complicated edges, such as trees, railings 

and still car, human observers often skip their detail. In our scheme, these regions may be 

considered unstructured region, and their visual quality may be decrease to save bits. 
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(a) (b) 

Figure 5.6 Comparison of visual quality in Bus Sequence 

(a)The 47P

th
P frame in Bus. (b) The 98P

th
P frame in Bus. 

 

 47P

th
P frame 98P

th
P frame 

PSNR Better Worse Better Worse 
Trees 64 32 80 55 

Railings 88 70 62 70 
Sculpture 9 1 - - 
Passerby 2 0 - - 
Photo and 

Word 8 2 13 2 
 

Table 5.14 Ratio of number of regions with better PSNR and worse PSNR 
in Stefan sequence 

 

Saved bits in unstructured regions 
Saved bits 47P

th
P 98P

th
P 

Tree 92 61 
Railings 70 787  

Table 5.15 Saved bits in unstructured regions in Bus sequence 
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XTable 5.14X shows ratio of number of regions with better PSNR and worse PSNR, and it 

is obvious that the ratio of regions of grass and railings are smaller than others. XTable 5.15X 

shows the saved bits of unstructured regions by our model. 
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6. Conclusion and Future Work 

In this thesis, we proposed a video coder bit allocation scheme in Curvelet domain. A 

new transform, curvelet transform, which contains the property of multi-resolution and 

multi-directional decomposition, is introduced into the proposed bit allocation algorithm. The 

Otsu threshold selection algorithm is used to pick the principal edge directions in image 

regions. And then, Tcoefficient of variation (CV) is used to measure the complexity of image 

region to determining the quantization parameters for video coding.T 

To be more specific, the proposed scheme classifies all macro blocks into three groups 

with three different quantization parameters. The first group of regions is the normally 

structured regions whose texture (or motion-compensated residual) is neither complicated nor 

simple so we do not change its allocated bits. The second group of regions is composed of 

unstructured regions. This type of region means that the texture is either too simple or too 

complicated. Therefore, we can decrease its bits and the compression result does not cause 

obvious distortion to human eyes. In addition, we can allocate the saved bits to the regions 

that human observers are more sensitive to. The third group of regions is composed of well 

structured regions whose texture (or motion) is clear and easily recognizable so the proposed 

scheme increase its bits to enhance the quality since the improvement of visually quality in 

this kind of region is obvious to human eyes. 

The coding performance of the proposed method is compared with the MPEG-4 simple 

profile encoder. Experiments show that the result of our directional complexity analysis can 

distinguish the groups of structured and unstructured area for all the test sequences used. The 

proposed method has the better performance with higher PSNR numbers in regions that 

human observers are more sensitive to. Even for the average result of PSNR and SSIM, our 

method can obtain slightly better performance given the same or lower luma bitrate. 
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Although the proposed bit allocation algorithm performs well, there are still some 

improvements that can be expected. For example, the proposed automatic threshold selection 

algorithm requires two pass encoding, which may not be desirable in some cases. 

Secondly, some regions which are structured regions or even strictly structured regions 

are on the position that human observers don’t care about. For example, the regions of 

audiences in the Stefan sequence is the typical regions that human eyes may not pay attention 

to. Therefore, even some of the regions are well structured in this area, it may not make sense 

to allocate more bits to them. 

Another drawback is about the directional decomposition procedure of curvelet 

transform. As section 3.4.4 describes, the directional decomposition is processed by polar 

interpolation. However, for each angular wedge, the direction of coefficients they collect is 

not so accurate. XFigure 6.1X shows the coefficients before and after the procedure of the 

directional decomposition. 

 Figure 6.1 The directional decomposition in the 4P

th
P level coefficients. 
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For instance, the direction of interpolation inside the first angular wedge is always along 

the direction of arrow C2. However, coefficients on the trajectory the arrow C1 do not 

represent the coefficients of this angle. Therefore, coefficients introduced by the polar 

interpolation method are not accurate enough. Consequently, the directional information we 

obtain is not accurate according to the influence. If the directional decomposition algorithm 

can be improved, the edge distribution analysis of the proposed bit allocation algorithm can be 

more precise and it will improve the performance of the proposed scheme too. 

In summary, future improvements can be expected with these efforts. 
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