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嵌入式爪哇硬體加速器中 

位元碼與陣列資料預先抓取之研究 

 

學生：吳易叡 指導教授：單智君 博士 

 

國立交通大學資訊科學與工程研究所碩士班 

 

摘       要 

 

 減少資料存取時的記憶體等待(memory stall)一直是改進程式執行效能

的重要課題。傳統程式常在執行時花費了許多時間在等待較低層記憶體的

存取，爪哇(Java)程式亦然。為了要減少在記憶體上的等待時間，預先抓

取(prefetching)所需要的資料是種可行的方案。我們觀察到爪哇程式中，

位元碼(bytecode)之抓取與陣列資料之存取都有明顯的特性，可以利用這

些特性去預先抓取它們。這篇論文設計了適用於嵌入式爪哇硬體加速器

中，位元碼與陣列資料預先抓取的機制，以減少等待記憶體讀取資料的時

間。我們分析了它們的特性，並設計了一些合適的方法。平均而言，我們

的方法可降低約一半的位元碼抓取所造成的停滯；在某些以陣列存取為主

的程式上，也能減少約一半因陣列存取所造成之記憶體等待。 
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ABSTRACT 

 

 

 For improving speed of program execution, it is important to reduce stalls caused by 

memory accesses. Traditional programs usually spend much time on memory stalls during 

accessing lower-level memory, and so do Java programs. In order to reduce memory stall 

time, prefetching is a feasible solution. We observed that there exist obvious properties of 

bytecode fetchings and array accesses, so we can try to prefetch them by taking advantage 

of their properties. This thesis proposes novel prefetching mechanisms for embedded Java 

hardware accelerators to prefetch bytecode and array data, so that the time spent on memory 

stalls can be reduced. We analyzed their properties and designed suitable approaches. Our 

approaches can reduce half of bytecode stall time on an average; for some array-based 

programs, about half of array stall time can also be eliminated. 
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Chapter 1   Introduction 
 

 

 This chapter gives an overview, and describes the motivation and the objective of this 

thesis. Section 1.1 introduces Java technology which is applied in popularity and its 

performance issue. Section 1.2 and 1.3 describe the motivation and the objective of this 

thesis, respectively. Section 1.4 introduces the organization of this thesis. 

 

 

1.1 Introduction to Java 

 

Java [27] was introduced by Sun Microsystems. The 2nd version (Java 2) has been 

widely applied in many fields (Figure 1.1). For enterprise, Java Platform Enterprise Edition 

(Java EE) industry standard is proposed to develop portable, robust, scalable and secure 

server-side applications. For desktop, Java Platform Standard Edition (Java SE) provides 

plenty of APIs for developing applications. For embedded devices such as PDAs, mobile 

phones, TV set-top boxes, Java Platform Micro Edition (Java ME) provides a well-defined 

virtual platform that fit for heterogeneous embedded environments. In this region, the K 

virtual machine (KVM) is designed for products with approximately 128K of available 

memory. In addition, there is also Java Card technology for IC card applications. 

In order to accomplish “write once, run anywhere”, Java programs are not immediately 

compiled to machine code (say, native code), but an intermediate code called bytecode 

instead. Java bytecode executes on target platform through a phase of translation. In other 

words, a Java program must run below a virtual platform, called Java Virtual Machine 

(JVM). A JVM interprets Java bytecode and does operations on behalf of Java programs. 
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The simplest implementation of JVM is software interpretation. However, interpretation is 

much slower than the direct execution of native code. It can only be applied in small 

embedded environments that don’t care performance. Even if we try to use a more 

sophisticated interpreter, the effect is very limited for most programs. Thus, how to solve 

the performance issue is an essential topic to Java researchers. Now there are many studies 

on this topic such as dynamic compilation technologies. 

 

 

Figure 1.1 Java 2 platform editions and their target markets [22] 

 

Besides software solutions to speedup Java execution, hardware accelerators have been 

proposed to be an alternative choice; for example, picoJava [19, 25], JOP [29], ARM’s 

Jazelle DBX [3, 4] technology and so on. By these hardware solutions, some simple Java 

instructions can be executed directly. Now ARM’s Jazelle solution has been applied in many 

embedded environments such as smart phones. 

 For improving the performance of Java execution, in addition to improving JVM 

components such as execution engine or memory manager, another way is to reduce 
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memory stall time. Adding caches, data re-layout [15, 17, 21, 28] or prefetching [1, 30] are 

all possible approaches. [11] also presents some technologies to enhance memory systems. 

This thesis focuses on prefetching to eliminate memory stalls. 

 

1.2 Motivation 

 

Traditional program wastes much time on waiting for memory accesses, and the same 

as Java. Adl-Tabatabai et al [1] indicated the data memory stalls take up to 45% of 

execution cycles when running the SPEC JBB2000 and SPEC JVM98 benchmarks on 

Itanium 2. In the experiments of F. Li et al [17], array-based embedded programs, on an 

average, spend about 45% of execution cycles in memory access. In our experiments on 

Sun’s CLDC HI and EEMBC’s GrinderBench benchmarks running on the Intel x86 ISA 

plus JOP [29], a Java processor, it takes more than 20% of execution time on data cache 

stalls in average, maximum up to 34%, where the average miss penalty is around 50 cycles. 

Such situation is being deteriorating as the data requirements or the code size of multimedia 

applications is continually increasing. So reducing the time on memory stalls shall be very 

effective in practice. 

Bytecode and array data usually take more than 50% of stall time (see Section 4.3), but 

they have obvious properties for prefetching. Bytecode has sequential-access property and 

frequent branch targets. For array, distances between two consecutive accesses of an array 

are usually stable values, which are called strides.  

 

1.3 Objective 

 

In order to reduce memory stall time during Java execution, we propose some 

prefetching mechanisms, which are suitable in embedded Java hardware accelerators, to 
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prefetch bytecode and array data. For this purpose, there will be two key points: prediction 

of future accesses and timing determination. I.e., the prefetching mechanisms have to 

predict where future accesses will locate on and then issue prefetch signals at appropriate 

time points before the real accesses. 

 

1.4 Thesis Organization 

 

Chapter 2 describes the background and the related work of this thesis. Chapter 3 

presents our prefetching mechanisms for Java bytecode and array elements. Chapter 4 

shows some experiments and the results of previous designs and our designs. Chapter 5 

discusses some variations, future works, and makes conclusions finally. 
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Chapter 2   Background 
 

 

 This chapter introduces the necessary background for this thesis. In Section 2.1, we 

introduce JVM’s internal and the acceleration technologies. Section 2.2 introduces the 

concept of prefetching, its potential side-effects and prefetch buffer to solve cache pollution. 

Then we will introduce some related works. Section 2.3 introduces the next-line prediction 

table (NLPT) for instruction prefetching, and then discusses the timing difficulty of 

instruction prefetching to traditional embedded programs. Section 2.4 introduces the 

reference prediction table (RPT) which is used for data prefetching. 

 

 

2.1 JVM’s Internal and Acceleration Technologies 

 

 A JVM consists of many components, such as class loader, execution engine, memory 

manager…, and so on. In following we briefly introduce how a JVM works, especially 

focus on implementations of the execution engine, and discuss the data types from the 

JVM’s view. 

 

2.1.1 Java Interpreter 

 

An interpreter is the easiest implementation of the execution engine. Java programs 

usually do not be compiled to machine code immediately but an intermediate form called 

bytecode instead. Java achieves its portability based on virtual machine technology. All Java 

program must be executed on a Java Virtual Machine [18]. A Java compiler reads Java 
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source code and generates classfiles. Classfiles contains information of classes, including 

method tables, constant pools, and bytecode of each method… etc. The JVM contains a 

class loader to load classfiles, resolve names and link them together. 

After the initializations of necessary classes, an interpreter in most JVMs is launched 

to execute the main method of entry class. Classes are dynamically loaded during runtime. 

An interpreter fetches Java instructions, decodes it, and maps them to corresponding 

machine codes for emulation. Note that the Java bytecodes are considered as data to 

interpreter, the same as Java data and stored in data cache (see Figure 2.1). 

 

 

Figure 2.1 Relationship between Java and processor caches 

 

In this case, both Java bytecode and Java data contend with the data of other processes 

in data cache. Only JVM itself (including interpreter, memory manager … etc) is in 

instruction cache. 

 

2.1.2 Memory Access Types in Java Programs 

 

 JVM fetches bytecodes and operates data on behalf of them. Each data type has its 

properties of accessing. The data operated by JVM can be roughly categorized into 3 types: 

 Java bytecode fetches 

A JVM fetches bytecodes from memory and execute them. 
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 Object accesses 

Including instances and classes, note that an array is a type of instance in Java. 

 Stack operations 

Computation instructions operate data on the top of stack rather than registers. 

Local variables are also stored in stack frames. Arguments passing and method 

return values are both by way of the stack as well. 

 

Object accesses can further be categorized by Java instruction types: 

 Array elements 

Accessed by array load/store instructions such as iaload, iastore, aaload …etc. 

 Instance headers 

Accessed explicitly (checkcast, instanceof) or implicitly for type testing, or 

monitorenter, monitorexit instructions. 

 Instance fields 

Accessed by instance field read/write instructions, only getfield and putfield is 

associated to this type. 

 Static fields 

Accessed by static field read/write instructions, only getstatic and putstatic is 

associated to this type. 

 Class structures other than fields 

A class structure is a large structure that stores class information, constant pool, 

method table, and so on. Class structures are usually implicitly accessed during 

type testing, name resolution …etc. 

 

 This thesis focuses on bytecode and array. By taking advantages of their properties, we 

can design some mechanisms to prefetch them. 
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2.1.3 Technologies to Speedup Java 

 

Interpreter is relatively simple, easy to be implemented and only small memory 

required. However, a Java program runs on an interpreter is much slower than a traditional 

program. Thus how to improve Java execution speed is an important issue. There are some 

well-known approaches to improve Java’s performance. For example, ahead-of-time (AOT) 

compilation [20], just-in-time (JIT) compilation [7], or hardware acceleration [3, 8, 19, 25]. 

An AOT compiler converts Java bytecode into native code after downloaded. It simply 

compiles all Java program before execution. On the other hand, a JIT compiler translates 

Java bytecode into native instructions on the fly. Since JIT compilers work during runtime 

of Java program, they also introduce additional compilation overhead. Thus, a JIT compiler 

is usually only allowed to do simple optimization rather than complicated optimization in 

traditional compiler. Even so, JIT technologies still significantly speedup Java execution. 

However, either AOT or JIT compilers are not always suitable in all applications. First, 

an extra, large amount of memory is required for either compiler itself or compiled code. It 

may be infeasible in many embedded systems that only have small memory. Second, 

dynamic compilation may result in a short period of pause during program execution. 

Pauses are sometimes bad for user experience or real-time systems. 

 

2.1.4 Java Hardware Acceleration 

 

 JIT compilation technologies are the most frequently used approach, but sometimes 

infeasible under some circumstances. Java hardware acceleration is another solution. An 

accelerator can be a separate Java processor, a hardware translation unit or highly integrated 

with the processor core. Java instructions can directly run on accelerators, so that the speed 
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of Java execution can approximate to native programs. Furthermore, for example, if the 

accelerator supports garbage collection that not typically found on conventional processors, 

Java programs run on the accelerator can be faster than software-only approaches. Simple 

instructions are usually executed by hardware, either directly implemented or emulated by 

microcodes. Complex instructions, such as new or athrow, must still be emulated by 

software. 

 Sun’s picoJava-I [19, 25] microprocessor is the first hardware accelerator for Java. It is 

a small, configurable core designed to support the Java Virtual Machine specification. Most 

instructions execute in one to three cycles. For complex instructions, it traps to software to 

keep the complexity and size of the core manageable. The picoJava-I has a dedicated cache 

to handle stack operations as Figure 2.2. Stack operations, unless during filling or spilling, 

merely access the stack cache instead of the data cache. The picoJava-I has a 4-stage, 

RISC-style pipeline (Figure 2.3). It has an instruction buffer and also has the capability of 

operation folding and monitor support. It fetches 4 bytes of bytecodes into the buffer at a 

time rather than merely one instruction. Therefore it fetches bytecode from the buffer 

instead of accessing the cache. After the picoJava-I published, Sun soon announced the 

picoJava-II [26] for next generation of Java processor. Even if they have never been realized, 

the picoJava series became foundations of modern Java processors. 

 

 

Figure 2.2 picoJava-I stack cache [25] 
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Figure 2.3 picoJava-I pipeline [25] 

 

There are many implementations of Java accelerators [2, 4, 23, 24, 29] today. For 

example, ARM Jazelle DBX [4] takes Java bytecodes as an instruction set extension. The 

instruction set of Jazelle DBX technology creates a new state similar to Thumb in which the 

processor fetches and decodes Java bytecodes and maintains the Java operand stack. Now 

ARM’s Jazelle has been applied in many embedded devices such as smart phones. 

Some Java processors expect that the OS can run directly below them. However, up to 

present, no OS porting is developed to achieve this purpose. So they must still co-work with 

a conventional processor core now. 

 

2.2 Concept of Prefetching 

 

 Prefetching can be aimed at instructions or data. Generally speaking, in stored program 

computer, instructions can be viewed as a type of data. This section introduces the concept 

of prefetching and its derived issues. 

 

2.2.1 Introduction to Prefetching 

 

Rather than cache uses history of running program, prefetching predicts future based 

on data properties. Prefetching [30] anticipates cache misses and issues a fetch to memory 
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system in advance of actual memory reference. Prefetches proceed concurrently with 

processor computation. See Figure 2.4(a), the processor has to stall after memory read 

finished. This is because traditional cache only fetches data “on demand,” namely, issue 

data request to memory system only on cache misses. In Figure 2.4(b), the prefetching 

effectively hides all memory latency since memory accesses go in parallel with the 

computation. When the processor requires data, they have been ready. However, actually, 

nothing is so perfect. Real cases are like Figure 2.4(c), some prefetches are issued too late 

so that the processor still must wait for data to be ready. Some prefetches proceed too early 

and may result in “cache pollution.” 

 Data prefetching instructions can be inserted manually by programmer but increases 

the programmer’s work. There are 2 approaches for automatic data prefetching: one is 

compiler-directed approach, the other is hardware-based approach. Compiler-directed 

prefetching, either statically [32] or dynamically [1, 13], inject additional computation for 

miss or address prediction and prefetch instructions into compiled code. Additional 

computations, however, slowdown the normal execution slightly. Furthermore, extra 

instructions may a bit degrade instruction cache performance. 
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Figure 2.4 Illustration of data prefetching [30] 

(a) No prefetching  (b) Perfect prefetching  (c) Degraded prefetching 

 

 Hardware-based prefetching, different to compiler-directed approach, produces no 

performance overhead. However, since dynamic approaches, including dynamic compiler 

prefetching, usually lack for high-level language semantics, it’s tough to them to foresee 

longer so that they usually make more inaccurate decisions. 

We will call the basic unit of prefetching “block” rather than line in order to avoid 

confusing with cache lines. Basically, the block size equals to the cache line size. 

 

2.2.2 Side-effects of Prefetching 

 

 Prefetching brings not only positive effects but side-effects that play a decisive role. 

Prefetching is a kind of non-blocking load, so we need hardware supports of course. In 

addition, as we described above, software-based prefetching will expand code size, may 

increase execution stream and degrade instruction cache performance. Again, consider we 
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prefetched data into some cache line and the original data in the line was replaced. If 

afterwards the processor requires the original data replaced, an underserved miss is 

produced. It is also possible that our prefetched data has never been used by the processor. 

This phenomenon is called “cache pollution.” Note that this effect is different from normal 

cache replacement miss. 

 

2.2.3 Prefetch Buffer 

 

Instead of putting data into cache directly which may result in cache pollution, it is a 

good idea that temporarily putting data in a relatively small memory. Such a small memory 

is called prefetch buffer [14]. We can check the prefetch buffer first when cache misses. If 

the requested data is found in the prefetch buffer, it would be written into the cache directly 

so that the processor can go in proceed. In case that it also misses in prefetch buffer, the 

processor is obliged to wait on main memory accessing eventually. 

 

 

Figure 2.5 Prefetch buffer 

 

A prefetch buffer can be a tiny cache which has high associativity. With such a buffer, 

we are able to utilize necessary data only and avoid unnecessary prefetches polluting the 

cache. Note that before a prefetch be really issued to the memory system, it has to check the 
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cache and the prefetch buffer first. 

 

2.2.4 Policy Design of Prefetching 

 

 Prefetching is really a tricky approach. There are too many issues we have to take into 

account. For example, memory latency, cache size and hierarchy, implementation of 

prefetch buffer, number of processes which may run concurrently, priorities of current 

process …and so on. The effects and designs of prefetching extremely depend on the 

platform and what to run. 

 Note that a prefetch may contend with other prefetches either on timing, or in the 

prefetch request queue or in the prefetch buffer. Roughly speaking, we might be able to use 

a more aggressive policy for prefetching if the contention is slight. That is, we can prefetch 

more data even if we don’t have much confidence. However, if the contention is so obvious 

that the effect of prefetching degrades, we tend to use a conservative policy, only prefetch 

the data we confide in to ease the contention. 

 

2.3 Hardware-Based Instruction Prefetching 

 

 Some high-performance processors will fetch following instructions into a buffer 

beforehand when fetch some instruction. For example, when a processor fetch an instruction 

Ii, it also fetches Ii+1, Ii+2, … Ii+k into a instruction queue for future use or issuing in parallel. 

The simplest design is sequential fetching and no speculation. Sophisticated speculative 

processors also can make use of a branch prediction table to get better accuracy [31]. 

Nevertheless, they fetch instruction from cache into instruction queue rather than from 

memory into cache. Conventionally, they usually stop speculation and maybe stall during 

high penalty misses. 
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2.3.1 Related Work: Next-Line Prediction Table (NLPT) 

 

 Instruction cache misses, different from data cache misses that can be effectively hided 

by a large instruction window and out-of-order execution, the processor usually has to stall 

and stop speculation. Hsu and Smith [12] studied instruction prefetching approaches for 

scalar supercomputer pipelines and programs. The simplest method is sequential prefetching, 

which is called fall-through prefetching in [12]. A table (called target table) can also be used 

to record the history of block switches. Each entry of the table consists of a pair of 

(current-line, next-line) as Figure 2.6. When the program counter changes to a new block, 

the prefetch unit looks-up the table and issues a prefetch for the next block if hit. [12] also 

proposed a combined algorithm for block prediction. In the combined algorithm, the target 

table only records non-sequential pairs. It is also updated at every block switches; however, 

when a sequential transition is detected, it will not be inserted or the corresponding entry 

will be removed. When the program counter enters a new block, if current block address of 

is found in the table, the corresponding next-line is used for prefetching. Otherwise, 

sequential prefetching is adopted. Hsu and Smith indicated that such hybrid approach can 

get better effect than fall-through or target table only. Such hybrid approach is called 

“next-line prediction table (NLPT)” in this thesis. 
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Figure 2.6 Target table 

 

Figure 2.7 Examples for next-line prediction table 

 

Consider (a) in Figure 2.7, the program counter is on block Q at present and transferred 

from P non-sequentially. The pair (P, Q) will insert into the NLPT. The prefetch unit will 

also look up Q in the table and make a prediction for the future block R. 

 NLPT has a weakness. Suppose Figure 2.7 (b), there is a procedure call in X to another 

block Y. After the call is made and the program counter transferred to Y, a pair (X, Y) would 

be inserted into the NLPT. However, after the procedure returned, the program counter 

would move back to X then Z. Note here, the transition of (X, Z) is sequential, so (X, Y) 

will be removed from the table. If the procedure call is in a loop, the (X, Y) will be absent in 

the table at the next iteration so that Y will never be prefetched. 

 

2.3.2 Timing Difficulty to Traditional Embedded Programs 

 

 If we want to prefetch instruction block into the cache or a buffer, there are 2 important 

issues for us to take account of. One is the prediction of future fetches. It is easy for coming 

instructions since the spatial locality of instructions is so obvious. The other is to determine 

the timing. We have to prefetch an instruction before a period of the instruction is really 

required. This is very difficult for traditional embedded program. For instance, suppose an 

embedded RISC processor which has 32-bit instructions and 16-byte cache line, the time of 
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the processor stays per line is only about 4 to 6 cycles in average. Because hardware-based 

prefetching lacks for high-level language semantics and is unable to foresee too longer, in 

the environments which have decades of memory latency, it very difficult to have a good 

hardware-based approach and obtain good effect of speedup. Even if we use a CISC 

processor to get higher code density, the compiler still tends to generate simple instructions 

since the complex instructions are not supported in high-level languages. On the other 

hand, it usually stays average 40 to 60 cycles per cache line which stores Java bytecodes. So 

the opportunity of bytecode prefetching will be much more than instructions in traditional 

embedded programs. 

 

2.4 Hardware-Based Data Prefetching 

 

 Sequential prefetching seems effective for instructions because of the high locality of it, 

but much less for data. Baer and Chen proposed the reference prediction table (RPT) design 

for data prefetching [5]. 

 

Related Work: Reference Prediction Table (RPT) 

 

An RPT is a hardware table. It is similar to an instruction cache tagged by the program 

counter address, but records the generated addresses of load/store instructions. An entry of 

RPT has following fields (See Figure 2.8): 

 Instruction tag: 

The address of a load/store instruction. 

 Previous address: 

  The address which was referenced by the instruction. 

 Stride 
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  The difference of the 2 most recently generated address. 

 State 

A 2-bit encoding of 4 states that indicates how further prefetches should be 

generated. 

 

An entry in the RPT will be in one of the 4 possible states (Figure 2.9): 

 Initial 

  Start state and no prefetching. 

 Transient 

  The stride may be in transition. A tentative prefetch is issued. 

 Steady 

  The stride is stable. We can issue a prefetch if stride ≠ 0. 

 No prediction 

  No fixed stride is detected. It won’t issue any prefetch in this state. 

 

 

Figure 2.8 Reference prediction table [30] 
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Figure 2.9 State design of RTP 

 

 When the program counter encounters a load/store instruction, the instruction is 

inserted into the RTP and its PC address is used for tag, the location for accessing is stored 

in the previous address, the state will be set to “initial” and the stride is 0 initially. The 

instruction may be enclosed in a loop or a subroutine; in this situation, it will be 

encountered more than once when the loop goes back or the subroutine is entered again. 

Therefore, we can find the corresponding entry that we filled previously in the RPT. We are 

able to obtain a stride value by calculating the difference between current address and the 

previous address, and then compare it to the stride field. If the calculated stride matches the 

stride field, the state will goes toward “steady”. After we mispredicted the stride twice or 

more, the stride field will be modified to the newest. The state goes toward “no prediction” 

if we mispredicts repeatedly. 

RPT prefetches the data seems be used in next iteration where the address for 

prefetching P is calculated by 

 P = current address + stride 

(Figure 2.8). Then P is issued for prefetching if the state is “steady” or “transient”. 

There exist some potential weaknesses of RPT for traditional programs. First, a 

drawback is that all load/store instructions will be also inserted into the RTP no matter what 

type of data they access. For example, the loads/stores for local variables or structure fields 
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which have no fixed strides will be recorded in the RTP and result in unnecessary waste of 

entries. Second, the prefetch may cross over the boundary of array since it cannot know 

where the array begins and ends, so that some unnecessary data would also be prefetched. 

Third, in case of small stride, even if the prefetch for next required block has been issued by 

previous access, RPT still tries to issue prefetch for the same block. This results in 

unnecessary cache lookups which consume more power. Subsequent prefetches may also 

wait for previous cache checks completed so that they are postponed. Finally, if the loop 

body is too small, the prefetched data may arrive too late for the next access. In a large loop, 

the prefetched data maybe wait too long and contend with other data in the cache or the 

prefetch buffer. Chen and Baer proposed a dual-ported RPT approach, with a look-ahead 

program counter taking advantage of branch target buffer (BTB) which has dual real ports, 

to improve the timing issue for loops [6]. However, it seems too complex and too expensive 

for embedded devices. 
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Chapter 3   Designs 
 

 

By observations of Java properties, we designed some mechanisms for bytecode and 

array data prefetching. Section 3.1 describes the mechanism of bytecode prefetching and 

discusses the design strategies case-by-case. Section 3.2 presents the design of array 

prefetching. 

 

 

3.1 Bytecode Prefetching 

 

 A Java hardware accelerator usually fetches bytecodes and executes them directly. 

Bytecode is very similar to traditional program code, but has some different properties that 

we should care or can make use of. 

 

3.1.1 Observations and Main Design Idea 

 

 In small line size environments, because of the fleeting stay per cache line and the 

limited prediction ability of hardware-based prefetching, it can not gain too much benefit by 

hardware-based instruction prefetching for traditional embedded program as we have 

mentioned in Subsection 2.3.2. In contrast, Java programs have more complex instructions 

and much high code density, so that Java takes average 40 to 60 cycles per bytecode line 

(see Section 4.3). Because of the longer line stay per cache line of Java bytecodes, we can 

have more adequate time than traditional programs to prefetch bytecode blocks. 

 Similar to traditional programs, Java bytecodes also have strongly sequential property. 
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About half of cross-block fetches are sequential, so we can apply sequential prediction for 

those cases. For non-sequential ones, we use a table, which is named non-sequential block 

prediction table (NBPT), to record them similar to next-line prediction table. 

 However, a Java program usually has more method invocations than a traditional 

program. NLPT can not handle such situation well as we have discussed in Subsection 2.3.1. 

So NBPT must have some special design for method invocations and returns. 

 

3.1.2 Overview of Bytecode Prefetching 

 

 Bytecode prefetching is triggered when the program counter transfers to a new block, 

namely, at the point of block switching. Suppose the program counter was on block P 

previously and is on Q at present, and will transfer to block R in the future. After the 

bytecode prefetching is triggered, the prefetch unit looks up Q in the NBPT firstly. Then it 

gets a prediction for the next block. Finally, we update the NBPT by (P, Q). The flow path 

of bytecode prefetching is depicted in Figure 3.1. 

 

 

Figure 3.1 Flow path of bytecode prefetching 
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3.1.3 Non-sequential Block Prediction Table (NBPT) 

 

 The design of non-sequential block prediction table (NBPT) is very similar to next-line 

prediction table. The NBPT records block pairs of non-sequential cross-block fetches of 

bytecodes, however, has some additional fields designed to obtain better performance for 

Java which is shown in Figure 3.2. 

 

 

Figure 3.2 Structure of non-sequential block prediction table 

 

Besides the valid bit, an NBPT entry has following fields: 

 Current-block 

The tag of an entry. If a non-sequential block transition is from P to Q, P will be 

stored in this field. 

 Next-block 

The corresponding non-sequential block of the current-block. In other words, if a 

non-sequential block transition is from P to Q, Q will be stored in this field. 

 State 

  The state of an entry. This field decides what prediction we make. 



 24

 I-bit 

  Set if the block transition is caused by a method invocation. 

 R-bit 

  Set if the block transition is caused by a method return. 

 

 

Figure 3.3 Method invocation and return 

 

Figure 3.3 is an example of method invocation and return. There is an invoke 

instruction in block Q. When the program counter encounters this instruction, a block 

transition occurs from Q to R1. Thus an entry of (Q, R1) will be inserted into the NBPT. 

Because this transition is caused by a method invocation, the I-bit will be set to 1 during 

insertion as in Figure 3.1. When the method ends on R2 and returns back to Q, then (R2, Q) 

will be inserted and the R-bit is set to 1. 

 

3.1.4 The State Design of NBPT 

 

 The state design of NBPT follows some principles. First, we amend our prediction 

after mispredicted twice rather than the once-policy taken by NLPT. This will be 

contributive for us to choose a more frequent path. Second, we should prevent the entry due 

to method invocation from being removed immediately after return. Especially for Java 

programs which usually have more method invocations, this will help improve prefetching. 

Finally, we will see in Subsection 3.1.5, there is a period of latency between the decoding of 
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an invoke/return instruction and the beginning of the target method. By taking advantage of 

the latency, we may issue an additional prefetch during method invocation or return. 

 NBPT predicts next block by the state of current block, and updates the state of 

previous block by current block. The 4-state design of NBPT is shown in Figure 3.4: 

 Sequential with High Confidence (S-HC) 

If we can not find a corresponding entry for a given block, it is considered in this state, 

and vice versa. This state represents a higher probability of that the next block of a 

given block is sequential. 

 Sequential with Low Confidence (S-LC) 

Given a block in the S-LC state, we tend to believe the next block of it is sequential 

even if it was non-sequential previously. The previous non-sequential consecutive 

block is recorded in the next-block field. 

 Non-Sequential with Low Confidence (NS-LC) 

We tend to believe the next block of a given block is non-sequential if it is in this state. 

However, we have less confidence in the next-block field of its corresponding entry 

and are ready to refresh it at any moment. 

 Non-Sequential with High Confidence (NS-HC) 

We confide in the next-block of the corresponding entry of a block highly when it is in 

this state. 
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Figure 3.4 The state design of NBPT 

 

Suppose a block transition is from block P to block Q and on Q at present, and will 

then transfer to block R in the future. Firstly, the prefetch unit looks up Q in the NBPT and 

makes a prediction r for R by the state of the corresponding entry of Q: 

 Sequential with High Confidence (S-HC) 

Q is not found in the NBPT, do sequential prediction. I.e., our prediction r is Q + 

1. 

 Sequential with Low Confidence (S-LC) 

Q is found in the NBPT but in state S-LC, do sequential prediction. Prediction r = 

Q + 1. 

 Non-Sequential with Low Confidence (NS-LC) 

Q is found in the NBPT and in state NS-LC. Predict R by the corresponding 

next-block. That is, prediction r = NBPT[Q].next-block. If the I-bit or the R-bit of 

NBPT[Q] is set, we may make an additional prediction s for the block consecutive 

to r. For simply, we can let s = r + 1. In this case, the prefetch unit can issue 2 

prefetches in this state. Moreover, if the transition (P, Q) is caused by a method 

return and the I-bit of entry Q is 1, we don’t prefetch the target method again 
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since it is unnecessary. 

 Non-Sequential with High Confidence (NS-HC) 

Q is found in the NBPT and in state NS-HC. The action is the same as that in state 

NS-LC. 

 

 Afterwards, the NBPT should be updated by (P, Q). P may be in following states: 

 Sequential with High Confidence (S-HC) 

P has no corresponding entry in the NBPT is considered in this state. If (P, Q) is 

sequential, it remains in the S-HC state and won’t be put into the NBPT. 

 Sequential with Low Confidence (S-LC) 

If (P, Q) is non-sequential and any entry of P is not found in the NBPT, it will be 

inserted and the state will be set to S-LC initially. 

 Non-Sequential with Low Confidence (NS-LC) 

After the next-block not matched, the entry which corresponds to P moves to this 

state for updating the next-block. 

 Non-Sequential with High Confidence (NS-HC) 

  If the next-block continuously matches, it goes toward this state. 

 

3.1.5 Case-by-case Discussions 

 

 We will see how NBPT works case-by-case in this section. We go through the NBPT 

design by following cases and consider each pattern will be encountered more than once: 

I. Forward branch 

II.  Loop (backward branch) 

III.  Method invocation and return 

IV.  Multiple transition targets 
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Case of Forward Branch 

 

 Here we consider if instructions in Java. They are: ifeq, ifne, iflt , ifge, ifgt, ifle, 

if_icmpeq, if_icmpne, if_icmplt, if_icmpge, if_icmpgt, if_icmple, if_acmpeq, if_acmpne, goto, 

ifnull and ifnonnull. Their destination can be forward or backward. In case of backward, it 

usually forms a loop and we will discuss in next subsection. Now we consider the forward 

case. 

 

 

Figure 3.5 NBPT: Case of forward branch 

 

 See Figure 3.5 (b), there is an if instruction in block Q. If the branch is taken, the 

program counter will jump to block Ry and restart execution from Ry. Otherwise, it 

continues to execute the instructions after the if and then transfer to Rx. If the Ry case 

appears more frequently than Rx, the state goes toward the right hand site along the solid 

line in Figure 3.5 (a). Note that we predict Ry for the right part and Rx for the left part. If 

the Rx case is more common, the entry will be invalidated or just stays in the left part of 

Figure 3.5 (a). 

 

Case of Loop (Backward Branch) 
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 A loop is formed by a backward if. Consider a loop pattern as Figure 3.6 (b). The 

program counter transfers from Q to Ry every iteration so that the state goes toward and 

stays in state NS-HC. However, it will leave the loop and transfer to Rx eventually. Then 

the state will become NS-LC. If the program counter enters the loop again, NBPT still 

predict Ry at the first iteration and then the state is set back to NS-HC at the second 

iteration. 

 

 

Figure 3.6 NBPT: Case of loop 

 

Case of Method Invocation and Return 

 

 Method invocations do not be handled well by NLPT as we have mentioned in 

Subsection 2.3.1. Thus, a key point of NBPT is to prevent an entry of method invocation 

from being invalidated immediately. Figure 3.7 (b) depicts the program flow of a method 

invocation and its return. There is an invoke instruction in block Q. When it encounters the 

instruction, the JVM determines the method location and restart execution from the first 

block R1 of the target method. After finished the duty of the method, it will return 

eventually. Thus the program counter transfers back to the subsequent instruction after the 
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invoke site when the method returns. Then it will move to block R3 after Q completed. Here 

we consider the case of R3 is sequential to Q. For case that (Q, R3) is non-sequential, this is 

a situation of multiple targets. The state machine will choose the frequent one between R1 

and R3 in this situation as we will describe later.  

 

 

Figure 3.7 NBPT: Case of method invocation 

 

Now refer to Figure 3.8: 

(a) Initially, (Q, R1) and (R2, Q) are both not in the NBPT. After entered Q, because 

there doesn’t exist any corresponding entry of Q, the prefetch unit predicts R3 

sequentially. 

(b) After encountered the invoke instruction in block Q, the program counter transfers 

to R1. At the same time, an entry of (Q, R1) is inserted into the NBPT, where the 

state is S-LC initially and the I-bit is set to 1. 

(c) After the work of the invoked method finished, the program counter returns back to 

Q from R2. (R2, Q) is put into the NBPT where the state is S-LC and the R-bit is 

set to 1. 

(d) After the program counter left from Q and moved into R3, the corresponding entry 

of Q should be updated. Note the condition of the arc from S-LC to S-HC is 
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“sequential and I-bit=0”. Because the I-bit of (Q, R1) is 1, it will go along another 

arc toward the NS-LC state. 

(e) Consider the program counter entered Q again. Nothing has been changed yet if 

they were not replaced out. Now the prefetch unit predicts R1 for the next block 

because (Q, R1) is in the NBPT and in state NS-LC. 

(f) The program counter entered R1 because of the method invocation. The state of (Q, 

R1) became NS-HC from HS-LC since its next-block matched. 

(g) Afterwards the program counter returned back to Q from R2, (R2, Q) became 

NS-HC from S-LC since its next-block matched. 

(h) The program counter left from Q and entered R3, (Q, R1) became NS-LC because 

its next-block did not match. Note it will become NS-HC when the invocation 

occurs again. After several iterations, the NBPT will be like (g) or (h) finally. The 

state of (Q, R1) moves forth and back between NS-HC and NS-LC. 
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Figure 3.8 NBPT: A trace of method invocation and return 

 

Besides, we may issue an additional prefetch during method invocation and return. 

This is because during invocation and return, it traps to software JVM to do some duties. 

Then there would be a period of time for us to prefetch one block extra. See Figure 3.9 (b), 

block A which has a invoke or return instruction is in method X(). The program counter will 

transfer to block B which is in another method Y() after met the instruction and then enter C. 
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Before entering B, it will trap to the software JVM to fix up frames, determine where B is, 

and do some checks. Compare to traditional programs, these works have been done before 

the call/return instruction, so a conventional processor is able to jump to the target address 

directly. Thus, we may prefetch an additional block C during this period of time. For simply, 

we can just speculate that block C is sequential to block B. See Figure 3.9 (a) as an example, 

we prefetch block B1 and B2 when entering A2 from A1. At the entry of B3, we prefetch 

block A2 as well as A3. Note that the software JVM may also produce misses, however, we 

can still obtain some advantages. 

 

 

Figure 3.9 Additional prefetch during method invocation and return 

 

Case of Multiple Transition Targets 

 

 Finally, we consider the case that the program counter may transfer from one block to 

multiple target blocks. This is probably caused by a virtual method invocation, an indirect 
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branch, or there are multiple branches in a block. Take Figure 3.10 (b) for example, if we 

have 2 possible targets Rx and Ry, we would like to choose the most frequent one since our 

NBPT only records one target. The selection mechanism is designed in the left part which is 

circled in Figure 3.10 (a). See Figure 3.11, if (Q, Rx) appears frequently and (Q, Ry) 

appears occasionally, NBPT will tend to select Rx. However, if (Q, Ry) continually occurs 

twice, the next-block of the NBPT entry will be replaced by Ry. At this moment, Ry is 

considered as the most frequent block. 

 

 

Figure 3.10 NBPT: Case of multiple transition targets 

 

 

Figure 3.11 NBPT: An example of selection between 2 candidates 
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3.2 Array Prefetching 

 

 Arrays in Java have some properties that not found in traditional programs. By taking 

advantages of the observations, we can achieve better performance than traditional 

prefetching approaches. 

 

3.2.1 Observations 

 

Loads and stores of different data types in traditional program code have the same 

binary form. Hardware can not tell what data type a load/store instruction is associated to. 

For example, hardware is difficult to determine a loaded data is a local variable, an array 

element or an indirect pointer. Thus if we want to prefetch data based on their properties we 

have to ask compiler’s assistance or instrument manually. For array prefetching in Java, 

fortunately, JVM Specification [18] defines array access instructions that operate array only. 

Thus, we can concentrate on array accesses and get rid of interferences from other data 

types. 

 Most C or C++ programmers prefer to visit an array via pointers to achieve better 

performance. However, there is no pointer in Java but reference for substitution. 

Programmers are disallowed to operate a Java reference arithmetically unlike pointer 

operations. All accesses to certain object are always done through a fixed reference 

necessarily. An array is an instance of object, so if a programmer wants to access an element 

of an array, he must give the array reference and an index to the JVM. The JVM can then do 

boundary check and calculate the actual address of the element. In this situation, the JVM 

can know an access is associated to which array. 

 The JVM specification claims that an array operation access data out of the array is 

disallowed. If such condition occurs, the JVM will throw a 
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java.lang.ArrayIndexOutOfBoundsExcetpion to stop further actions. Thus, the JVM has to 

know the length of the array which is referenced. 

 Figure 3.12 shows how an array structures in the Sun’s KVM implementation. Given 

an array reference and an index, the JVM retrieves the length field first to check whether the 

index lays in the array. Afterward the JVM calculates the array base from the reference. 

Finally it can access the element by calculating 

 element address = array base + element size × index . 

 

 

Figure 3.12 The array structure in KVM 

 

 In conclusion, we observed that: 

a) Array accesses can be distinguished from other data types by the JVM or the 

hardware accelerator. 

b) The JVM or the hardware accelerator can determine which array an access is 

associated to and know the array size during executing an array instruction. 

 

3.2.2 Stride Table 

 

 Having the advantageous information described in previous subsection, we can design 

our array prefetching mechanism for Java. We construct a table, called stride table (ST) to 

record accesses of each array. See Figure 3.13, a stride table is similar to the RPT design, 

but an entry of the ST has following fields besides the valid bit: 
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Figure 3.13 Stride table for Java 

 

 Array base 

The base address of an array. Since all array access should be done via the array 

base, we can use it alternative to the program counter, for our tag to distinguish 

from other arrays. Thus, one entry is associated to one array exactly. 

 Previous offset 

The distance of the address of previous access to the array base in bytes. This 

field is calculated by element size × index. 

 Stride 

The difference of the addresses of last 2 accesses. If an entry is inserted at the first 

time, this field is set to the element size initially, because most indexes of array 

are increased by 1 every iteration in loops. 

 State 

ST adopts a 2-state design rather than 4 states in RPT as we will describe later. 

 Trigger block 

This field is optional and will be described in Subsection 3.2.4. In order to avoid 

producing unnecessary prefetch signals and result in more unnecessary cache 

checks, we can add this field. If the trigger block is enabled, a prefetch is 

generated only when an access enters it. 
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Because an entry will always be mapped to signal array, we may use a simpler 2-state 

design rather than the conservative 4-state design of RPT. An entry in the ST has 2 possible 

states shown in Figure 3.14: 

 

 

Figure 3.14 The 2-state design of stride table 

 

 Initial 

If an entry is inserted at the first time, it would be set to this state initially. When 

an irregular stride is detected, it will return back to this state for updating the 

stride field. In this state, we may issue a tentative prefetch and disable the trigger 

block. 

 Steady 

If the stride matches, it will go into this state. ST would issue a prefetch for next 

element here. However, the prefetch signal may be filtered by the trigger block. 

 

 Every time of an array access, its corresponding entry will be inserted or updated. 

Furthermore, since the hardware can know the locations of where an array begins and ends, 

we don’t need to insert an array when its entire body is inside a block as it is unnecessary to 

be prefetched. 

 

3.2.3 Stride-Adaptive Prefetching 

 

 Different to RPT which always prefetches the data of next iteration, ST determines 
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which block to be prefetched and how many blocks it should prefetch according to the 

magnitude of stride. The index of current access is denoted by i, its associated element is 

denoted by [i], and the block number of an element [j] is denoted by B([j]): 

 

if  |stride| ≦ H then // small stride, H is predefined 

    if  stride > 0 then 

        prefetch( B([i])+1 ) 

        Trigger_Block = B([i])+1 

    else if stride < 0 then 

        prefetch( B([i])-1 ) 

        Trigger_Block = B([i])-1 

    end if 

else // large stride 

    for  k = 1 to Prefetch_Depth do 

        prefetch( B([i+stride*k]) ) 

    end 

    Trigger_Block = B([i+stride*Prefetch_Depth]) 

end if 

 

If the stride magnitude is smaller than or equal to a predefined value H, we prefetch the next 

block. However, if the stride magnitude is larger, that means a block is needed only for a 

shorter period, then another block is required. For this case, we can try to prefetch more 

blocks at one time. But note that any unnecessary prefetch may make subsequent useful 

prefetches be postponed. 

The trigger block is updated to the last block of prefetching during prefetch signal 

generation, we will describe it in Subsection 3.2.5. 
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3.2.4 Array-Base-Tagging 

 

 Array base is an alternative option to program counter for tagging entries. Stride table 

uses array base for its entry tag. An array-base-tagged approach can be better than a 

PC-tagged approach in some common cases of Java program: 

 

a) One instruction may manipulate multiple arrays. For example, array utility methods, 

multi-threaded codes, or more cases that many instances have their own arrays. 

Their common feature is multiple arrays may share the same instruction. 

b) Multiple instructions manipulate the same array, but there exists a constant stride 

between them. Loop-unrolled code is an instance: 

 

int[] a=new int[100], b=new int[100]; 

…… 

// copy b[] to a[] 

for (int i=0; i<a.length; i+=4) { 

    a[i] = b[i] ; 

    a[i+1] = b[i+1] ; 

    a[i+2] = b[i+2] ; 

    a[i+3] = b[i+3] ; 

} 

 

In this case, a PC-tagged approach needs more entries to record an array. 

 

3.2.5 Trigger Block 
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 The trigger block field is optional; its purpose is to prevent unnecessary prefetches 

from being generated. Although most unnecessary prefetches would be gated by cache or 

buffer checks, however, they consume additional power and might make subsequent 

prefetches a little delay if the cache or the buffer is in busy. If the trigger block is enabled 

and an access does not enter it, any prefetch signal will not be produced. Our algorithm 

always sets the trigger block to be the last prefetched block of an array. 

Consider Figure 3.15 (a), when the program access an array element [i] in block A, the 

prefetch unit tries to prefetch block B. Here we set the trigger block to be the last prefetched 

block, namely, block B. When it accesses element [j] consecutively, the prefetch unit would 

also try to prefetch block B. However, it is unnecessary since the block has been prefetched, 

so will be gated by the trigger block. When an access [k] crosses onto the trigger block, a 

prefetch for block C will be issued eventually (Figure 3.15 (c)). After the prefetch is issued, 

the trigger block is also updated to be block C. If an irregular stride is detected, the trigger 

block should be disabled. 

 

 

Figure 3.15 Trigger block 
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3.2.6 Circular Prefetching 

 

 Consider a for loop in a loop as following: 

 

while ( k > 0 ) { 

    …… 

    for (int i=0; i<a.length; i++) { 

        Read a[i] 

        …… 

    } 

    …… 

} 

 

 When the index i approaches the array tail, the RPT will try to prefetch the data over 

the array (Figure 3.16 (a)). However, since the hardware can know the array length, we can 

avoid this situation by a simple comparison. Further, we may prefetch the head of the array 

for the next entry of for as Figure 3.16 (b). This may gain some benefit for case that the for 

loop is entered repeatedly. 

 

 

Figure 3.16 Circular prefetching 
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Chapter 4  
Experiments and Results 

 

 

 This chapter presents the experiments and results on 2 benchmark suites: Sun’s CLDC 

HotSpot Implementation Evaluation Kit 1.0.1 and EEMBC’s GrinderBench 1.0. Section 4.1 

introduces our environment setting for evaluations. Section 4.2 gives introductions of the 

benchmarks. Section 4.3 presents some analysis on these benchmarks. Section 4.4 shows 

the results of applying our prefetch mechanisms and compares them to the previous studies. 

Section 4.5 analyzes memory traffics resulted by the related works and our designs. 

 

 

4.1 Evaluation Environment 

 

 We use the cycle parameters of Java Optimized Processor (JOP) [29] for the simulation 

of hardware accelerator. JOP is an embedded Java processor implemented on FPGA. It has 

4-stage pipeline and handles stack in the internal memory (Figure 4.1). Most bytecode are 

translated to microcodes. A simple bytecode instruction can be mapped to single microcode; 

however, a complex instruction must be synthesized by several microcodes. For bytecodes 

not implemented by JOP, we trap to Sun’s KVM 1.1 on Intel x86 processor core for 

software emulation. We use a 4k bytes data cache with 16 bytes per line; the prefetch buffer 

is configured to be an 8-line fully associative cache. Average memory latency is set to 50 

cycles. 
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Figure 4.1 Datapath of JOP [24] 

 

4.2 Benchmarks 

 

 We use 2 CLDC benchmark suites for our evaluation. One is Sun’s CLDC HotSpot 

Implementation Evaluation Kit (CLDC HI) version 1.0.1, the other is EEMBC’s 

GrinderBench (GB) version 1.0 [9]. 

Sun’s CLDC HI Evaluation Kit 1.0.1 includes 4 benchmarks, following is their brief 

descriptions: 

 Richard 

 Simulating the task dispatcher in the kernel of an operating system. 

 Delta Blue 

 Solving one-way constraint systems. 

 Image Manipulation (Processing) 

Reading an image file (Sun raster image format) and performs various transformations 

on it, such as Sobel, threshold, 3x3 convolver, and so forth. After each transformation, 

it compares the result with an expected result to confirm that the transformation was 

done properly. 



 45

 Queen 

A solver of the n-queens problem, where the objective is to place n queens in a chess 

board so that no queen can attack another. It is a classical problem used to illustrate 

several techniques such as general search and backtracking. 

 

EEMBC’s GrinderBench 1.0 [9] contains 5 benchmarks: 

 Chess 

It only performs the logical parts of a chess program, as no graphical output is available. 

It plays a preset number of games with itself. 

 Crypto 

It contains multiple encrypt/decrypt engines. The following encryption engines are 

exercised: DES, DESede, IDEA, Blowfish and Twofish. 

 kXML 

It processes a command script which specifies XML documents to parse and DOM tree 

manipulations to do. 

 Parallel 

This benchmark is used to test the performance of KVM threading capabilities. It 

accomplishes this by dividing computational tasks among several threads that must then 

cooperate with each other to complete those tasks. Two parallel algorithms are used: a 

merge-sort algorithm and a parallel matrix multiplication algorithm. 

 PNG 

PNG is the standard format for image representation in J2ME implementations. This 

benchmark does the decoding of a PNG image, including decompression, and stores the 

result internally as header info, color palette(s), and image data. 
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4.3 Analysis on the Benchmarks 

 

 In order to understand the properties of Java programs, we analyzed the benchmarks. 

This section presents the experimental results: stall analysis, array stride analysis to each 

benchmark. 

 

4.3.1 Memory Stalls 

 

 Figure 4.2 shows the stall time over the total execution time of each benchmark. In the 

average of Sun’s CLDC HI benchmarks, it takes 15.9% execution time on stalls; In 

EEMBC’s GrinderBench, average 25.7% execution time are spent on stalls. So it is worth 

reducing memory stall time in order to speedup Java execution. 
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Figure 4.2 Memory stall time over total execution time 

 

 Now we consider the composition of stall time. Stall distribution depends on program 

type. A computation-intensive program will often spend more time on bytecode stalls, such 
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as Richard, Chess and kXML. An array-based program will usually have a larger proportion 

of time spent on array stalls; Image Manipulation, Crypto and Parallel belong to this type. 

On an average, stall time caused by bytecode misses and array misses take more than 50% 

of total stall time. 
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Figure 4.3 Stall distributions 

 

4.3.2 Experiments on Bytecode 

 

 As we have mentioned, because the complex instruction design and the high code 

density of Java programs, there are more opportunities for bytecode prefetching than for 

instructions of traditional embedded programs. See Figure 4.4, on an average, if we 

eliminate all stalls, the number of stay cycles per bytecode block distributes from 30 to 40 

cycles. If plus stalls, the average numbers of stay cycles of each benchmark are between 40 

to 60 cycles. 
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Figure 4.4 Average stay time per bytecode block 

 

 If a consecutively-fetched block pair is sequential, then we call it is a sequential cross; 

otherwise, it is a non-sequential cross. Figure 4.5 shows the proportions of sequential 

crosses and non-sequential crosses of each benchmark. On an average, sequential crosses 

occupy around half of all crosses. Especially in Image Manipulation, the proportion of 

sequential-crosses is up to 77.3%. Thus, we can apply sequential prefetching for most 

blocks. 
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Figure 4.5 Sequential strength of bytecode 

 

4.3.3 Stride Distributions of Arrays 

 

 We may concern with what size the stride field of a stride table is needed, or 

concentrating on what magnitudes of stride would be effective sufficiently if we want to 

simplify our design. The stride distributions of each benchmark are shown in Figure 4.6. 

The x axis is the absolute values of strides in bytes; the y axis represents the accumulating 

proportion of strides. Most magnitudes of strides of the benchmarks are less than or equal to 

4 bytes. That is, if our prefetching works for strides less than or equal to 4 bytes, it works 

for more than 90% of strides. 
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Figure 4.6 Stride distributions of arrays 

 

4.4 Results of Prefetching 

 

 In order to evaluate effects of prefetching, we define the remaining stall ratio (RSR). 

Remaining stall ratio(certain data) = 

 

For example: 

Remaining stall ratio(bytecode) = 

 

 

4.4.1 Prefetching for Bytecode 

 

 Firstly, we discuss the size of NLPT and its effects. See Figure 4.7, the x axis 

represents the number of entries of NLPT and the y axis represents the remaining stall ratio 

of bytecode. The left-most points of each benchmark are RSR(bytecode)s of sequential 



 51

prefetching only. As the table size grows, the RSR(bytecode)s degrade but slightly in most 

benchmarks. It even has no effect for Queen and gets worse than sequential prefetching for 

Parallel. 
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Figure 4.7 RSR(bytecode)s to the sizes of NLPT 

 

 Now we see how NBPT performs. See Figure 4.8, we can see that the RSR(bytecode)s 

start to degrade slowly when the NBPT is larger than 8 to 16 entries. For Queen and PNG, 

NBPT introduces good stall reductions. 
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Figure 4.8 RSR(bytecode)s to the sizes of NBPT 

 

 In Figure 4.9, we pick the 16-entry NBPT, compare to a 16-entry NLPT and sequential 

prefetching. When we add a table to record non-sequential crosses rather than sequential 

prefetching, we can improve the prefetching further. If we adopt NBPT for Java bytecode 

prefetching, we can obtain better performance than NLPT, especially for Queen and PNG. 
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Figure 4.9 A comparison of RSR(bytecode) 
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4.4.2 Reference Prediction Table for Data Prefetching 

 

 Following discusses the effects of reference prediction table(RPT) which for data 

prefetching. RPT records all load/store instructions, including instance-field accesses, 

static-field accesses and array accesses. However, our simulations show RPT is only 

effective for instance-field accesses in some special programs and doesn’t have any 

improvement for static-field accesses. Figure 4.10 shows a 128-entry RPT and its effects for 

instance fields. Sometimes there are strides between instance-field accesses as indicated in 

[32]. This property is obvious in Delta Blue, as a result, RPT also introduces a good stall 

reduction for it. But strides between instances are uncommon in most programs, so RPT 

usually cannot effectively eliminate the stalls of instance-field accesses. 
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Figure 4.10 RSR(InstanceField)s of 128-entry RPT 

 

 Figure 4.11 shows the RSR(array)s to the sizes of RPT. We can see RPT performs well 

for array prefetching, especially for Delta Blue, kXML and PNG. 
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Figure 4.11 RSR(array)s to the sizes of RPT 

 

 A possible variation of RPT is, letting RPT only record array instructions since it is 

usually not effective for other data types. Figure 4.12 shows the effects for array data of the 

array-only RPT design; Figure 4.13 depicts the average RSR(array)s of original RPTs and 

array-only RPTs together. Because instructions of other data types occupy spaces in the RPT, 

unsurprisedly, a small-size array-only RPT performs better than an original RPT which has 

the same number of entries. However, if we are able to provide a larger size for RPT, their 

effects will be very close. 
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Figure 4.12 RSR(array)s to the sizes of RPT 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 128

# of RPT entries

R
S
R

(a
rr

ay
)

Original

Array-only

 

Figure 4.13 Average RSR(arrays)s of original RPTs and array-only RPTs 

 

4.4.3 Stride Table for Array Prefetching 

 

 Firstly, we may care about what values of the predefined H and the prefetch depth of 

ST should be. These 2 variables very highly depend on individual program. We may profile 
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a program offline and embed the appropriate settings into its classfiles. However, we could 

try to find the appropriate values for most programs by experiments. Figure 4.14 shows the 

average RSR(array)s of all benchmarks by using 8-entry STs. We can see when the H and 

the prefetch depth both equal to 2, the average RSR(array) would be the minimum. Now we 

apply H=2 and prefetch depth=2 to each benchmarks and compare the result to their optimal 

configurations. See Table 4.1, the differences of RSR(array)s between the recommended 

configurations and their optimal configurations are less than 1.1%. So we usually can 

already get good effects when using H=2 and prefetch depth=2 in comparison to using their 

individual optimal configurations. Nevertheless, note the appropriate values of these 2 

variables may highly depend on the platform. 
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Figure 4.14 Results of configurations of H and prefetch depth in ST 
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Benchmark Richard Delta Blue 
Image 

Manipulation 
Queen 

Optimal (H, prefetch depth) (8, 1) (1, 1) (16, 1) (2, 8) 

Optimal RSR(array) 97.544% 49.493% 51.574% 78.921% 

RSR(array)  

when (H=2, prefetch depth=2) 
97.545% 49.667% 51.898% 79.985% 

Difference 0.001% 0.174% 0.324% 1.064% 

Benchmark Chess Crypto kXML Parallel PNG 

Optimal (H, prefetch depth) (1, 8) (2, 2) (2, 2) (2, 1) (1, 1) 

Optimal RSR(array) 78.002% 77.257% 43.528% 83.171% 90.905% 

RSR(array)  

when (H=2, prefetch depth=2) 
78.687% 77.257% 43.528% 83.260% 91.838% 

Difference 0.685% 0% 0% 0.089% 0.933% 

Table 4.1 RSR(array) differences between 

using the recommended H and prefetch depth, and their optimal configurations 

 

 Now we may want to know what size a stride table should be. Figure 4.15 shows that 

the average RSR(array) almost doesn’t degrade if the stride table is larger than 8 or 16 

entries. So a stride table has 8 to 16 entries is usually sufficient for most embedded Java 

programs. 
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Figure 4.15 RSR(array)s to the sizes of ST 

 

 If we use program counter for tagging, we can see the performance of prefetching 

almost doesn’t promote after a 32-entry stride table (Figure 4.16). 
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Figure 4.16 RSR(array)s to the sizes of PC-tagged ST 

 

 Then we compare the array-base-tagged ST and the PC-tagged ST, the simulation 
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result is shown in Figure 4.17. In the condition of the same number of entries, an 

array-base-tagged ST usually has a lower RSR(array) than a PC-tagged ST. The possible 

reason we have discussed in Subsection 3.2.4. However, if most strides appear only in 

individual instruction but not arrays, a PC-tagged ST will be better than an 

array-base-tagged ST, such as Richard, Parallel and PNG. 

ST(both)-256 is a 256-entry ST but tagged by both PC and array base. Both-tagging 

can eliminate the interferences of several instructions or several arrays to an entry. However, 

it can only perform better than PC-tagging and array-base-tagging slightly for Richard and 

Delta Blue. This is maybe because an entry of both-tagged ST needs longer time to get a 

stable stride. 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Richard Delta

Blue

Image

Manip

Queen Ave.

CLDC

HI

Chess Crypto kXML Parallel PNG Ave.

GB

R
S
R

(a
rr

ay
)

ST(PC)-16

ST(base)-16

ST(both)-256

 

Figure 4.17 Comparison of tagging approaches for ST 

. 

 In following we compare the efficiencies of ST to array-only RPT. As Figure 4.18, ST 

usually obtains better array stall reductions than RPT for Java programs, especially for 

Queen, Crypto and kXML. 
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Figure 4.18 Comparisons of ST and array-only RPT 

 

 Figure 4.19 presents the effects of each design idea of ST. The bars of “Array-base” are 

RSR(array)s of RPT but adopting array-base-tagging and our 2-state design. We can see 

array-base-tagging is effective for Queen and Crypto, although it is a little bad for Delta 

Blue, Chess and PNG. The bars of “Base+S” are RSR(array)s when using 

array-base-tagging plus stride-adaptive prefetching. The stride-adaptive approach is much 

effective for Chess and kXML, but gets worse for Richard, Crypto and PNG. “Base+S+C” 

is base-tagging plus stride-adaptive prefetching and circular prefetching; that is, our final ST 

design. The results show circular prefetching slightly improves the performance of 

prefetching. But note that no design absolutely suits every case and sometime may result in 

negative effects. 
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Figure 4.19 Effects of each design idea of ST 

 

 In conclusion, our design can achieve better performance for array prefetching than 

RPT. On an average, ST is 6% better for Sun’s CLDC HI and 8% better for EEMBC’s 

GrinderBench than RPT in RSR(array). 

 Finally, Figure 4.20 shows the fractions of unnecessary prefetch signals that can be 

eliminated by trigger-block. The trigger-block design eliminates more than 50% of 

unnecessary signals for Image Manipulation, kXML and PNG; 17.2% for Sun’s CLDC HI 

and 33.9% for EEMBC’s GrinderBench in average. 
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Figure 4.20 Effects of trigger-block 

 

4.5 Analysis of Memory Traffic 

 

 Besides stall reduction, another issue we may concern with is memory traffic. Useless 

prefetches will produce additional traffics. 

Firstly, we define some terms. A true miss is a memory request where the data accessed 

is not found either in the cache or in the prefetch buffer. If a prefetched block is really 

required and submitted into the cache, we call the prefetch a useful prefetch; otherwise, it is 

called an unused prefetch. An unused prefetch is never needed before being replaced out 

from the prefetch buffer. The memory traffic caused by bytecode fetches or prefetches is 

called bytecode traffic; the array traffic is similar. 

 

4.5.1 Bytecode Traffic 

 

 We compare the bytecode traffics of the sequential prefetching, a 16-entry NLPT and a 

16-entry NBPT. The bytecode traffic without prefetching is normalized to 100%. Their 
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traffics are shown in Figure 4.21, as well as the traffics resulted by useful prefetches (U.P) 

only. The fractions larger than 100% are caused by unused prefetches and the rests are true 

misses. As we see, the traffic resulted by the 16-entry NBPT is a little larger than the 

16-entry NLPT in some benchmarks, but no more than the sequential prefetching. However, 

the useful prefetches produced by the NBPT-16 are more than both the NLPT-16 and the 

sequential prefetching in average, especially for Queen and PNG. So despite of including 

the effects of unused prefetches, the performance of NBPT is still better than NLPT. 
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Figure 4.21 Bytecode traffic 

 

4.5.2 Array Traffic 

 

 Similarly, we compare the array traffics of a 16-entry RPT and a 16-entry ST. See 

Figure 4.22, 100% are the array traffics without prefetching. We can find the RPT design 

results in almost no additional traffic. This is because RPT is very conservative and only 

prefetch with high confidence. ST does prefetch a little earlier than RPT, and also issues 

more tentative prefetches. However, ST can issue more useful prefetches, especially for 
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Queen, Chess, Crypto and KXML, to achieve more stall reductions. So if the prefetch buffer 

is absent or the contention is significant, the conservative policy of RPT is worth of being 

used or we can just disable the tentative prefetches of ST; otherwise, the aggressive policy 

of ST can provide a better performance. A possible variation will be described in Subsection 

5.2.2. 
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Chapter 5  
Conclusion and Future Works 

 

 

 This chapter includes the conclusion and the discussions of some future works in 

Section 5.1 and 5.2, respectively. 

 

 

5.1 Conclusion 

 

 As the continuously growing of multimedia applications, the requirement of memory is 

increasing because of their large amount of code and data. This problem also exists in 

embedded devices. In order to reduce memory stall time and speedup execution, prefetching 

is a feasible solution. We studied bytecode and array prefetching approaches for Java 

hardware accelerators. Because there are usually more small method invocations in a Java 

program, NBPT has some subtle designs to handle them. Strides exist between array 

accesses, we indicated using array-base to tag stride entries is an alternative approach to 

PC-tagging for Java. By cooperating to our 2-state design and stride-adaptive algorithm, it 

performs better than the PC-tagged RPT. We also had some analysis on Sun’s CLDC HI and 

EEMBC’s GrinderBench benchmarks. On an average, NBPT can reduce 40% of time spent 

on bytecode stalls. The ST design can reduce 25% of array stall time; for some array-based 

programs, around 50% of array stall time is eliminated. 

We can try to apply our mechanisms to mixed-mode JVMs in advanced environments. 

A mixed-mode JVM has a selective JIT compiler. It detects hotspots in running Java 

programs, and compiles them into machine code dynamically. For non-compiled code, it 
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still executes them by interpretation. A hardware accelerator can also be used to accelerate 

the interpretation. 

 

5.2 Future Works 

 

 This section includes some possible variations and applications of our mechanisms, 

and future study directions. 

 

5.2.1 Prefetching More Bytecode Blocks at a Time 

 

 Note that NBPT only makes a prediction for the next continuously-fetched block. In 

case of shorter memory latency, it’s adequate that we issue prefetch for the next block. 

However, if the memory latency is longer or the accelerator is improved further, the arrival 

time of our prefetched block may be too late to hide the memory stall. Thus we may want to 

initiate the prefetch earlier. 

 For simply, suppose we have a block sequence … A, B, C…, where B is in the cache 

and we merely have to prefetch block C. If the memory latency is not too long, we can 

initiate the prefetch of C when entering B as Figure 5.1 (a). However, if the memory latency 

is longer, our prefetch for C would arrive too late, so that there is still a period of stall does 

not be hided (Figure 5.1 (b)). Thus we may want to issue the prefetch for C earlier, for 

example, at the entry of A (Figure 5.1 (c)). In this case, we may assume that block B is 

already in cache or has been prefetched, or also try to prefetch B and let C be a little 

postponed. Note that since all prefetches will check the cache and the prefetch buffer before 

being really issued out to the memory, the prefetches for blocks present in the cache or the 

buffer won’t degrade the performance of prefetching too much. 

 To predict C, we can have 2 different policies. One is looking up the NBPT only once 
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for B and assume (B, C) is sequential, in other words, our prediction is NBPT[A]+1. The 

other is looking up the NBPT twice continuously, make a prediction for B and then for C, 

i.e., predict NBPT[NBPT[A]] for C. 

 

 

Figure 5.1 Timing issue of bytecode prefetching 

(a) Short memory latency (b) Prefetch too late (c) Prefetch earlier 

 

 More generally, if the program counter is on block A currently and we want to prefetch 

certain block B which is n blocks later. Suppose the accuracy of NBPT prediction for one 

later block is p, the accuracy of sequential prediction for next block is q, and the accuracy of 

our prediction for B denoted by r. We can have 2 policies: 

 Single lookup of NBPT 

We only look up the NBPT once and assume the followings are sequential. That is, 

our prediction 

   bs = NBPT[A] + (n-1) 
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  Thus the accuracy of our prediction 

   rs = p．qn-1 

  In this case, the prediction could be obtained instantly after the lookup. 

 Multiple lookups of NBPT 

  We look up the NBPT repeatedly. Our prediction is 

   bm = NBPT[NBPT[ … NBPT[A] … ]] = NBPTn[A] 

  And its accuracy 

   rm = pn 

  In this case, the prediction will be known after n lookups. 

Note that both rs and rm are exponential functions of n and usually diminish quickly, so it is 

only effective if a small n and the prediction is very accurate. In case that we didn’t predict 

correctly and prefetched a block not required, the arrival time of useful prefetches will be 

delayed; or even some useful prefetches already in the buffer are discarded. 

 For processors that have less memory latency, prefetching several possible paths into 

the buffer may be a possible implementation. 

 

5.2.2 Adaptive Mechanisms 

 

 As we have described in Subsection 2.2.4. If the contention on timing or prefetch 

buffer is slight, we can issue more tentative prefetches; otherwise, we may deteriorate the 

contention and degrade the performance of prefetching. Thus, we can switch between 

conservative or aggressive policies by monitoring contentions. Or we may track the 

utilization of tentative prefetches to decide what policy we should select. If the utilization of 

tentative prefetches is low, we may change to use a conservative policy and issue less 

tentative prefetches to keep a fine work. 

 In another aspect, some design idea may not suit certain applications. We may develop 
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some detection mechanisms to collect program behavior, to choose a suitable algorithm or 

enable/disable unsuitable prefetch mechanisms. 

 

5.2.3 Prefetching for Other Data Types 

 

 Subsection 2.1.2 lists several data types; however, our prefetching mechanisms only 

focus on bytecode and array data. The other data types are: 

 Instance headers 

 Instance fields 

 Static fields 

 Class structures other than fields 

Instance fields and static fields have specific instructions associate to. The data belong 

to these 2 types usually distribute on the heap randomly and have less regularity. Stalls 

caused by static field accesses are relative fewer, so perhaps we don’t need to prefetch them. 

Stalls caused by instance field accesses, however, will take a large proportion in 

instance-based programs. For example, Delta Blue, Chess and PNG will visit plenty of 

instances during traversals of linked structures. Some researchers try to find compiler 

solutions by some complex analysis [13, 32], but their approaches have some strict 

restrictions. So it is still a difficult problem until today because of the huge amount of 

instances. Instance headers and classes structures other than fields are usually accessed 

implicitly. The difficulty of prefetching instance headers is the same as instance fields. Class 

structures are relative large structures, a class structure usually occupies several blocks. The 

regularities of their accesses are unobvious and difficult to catch. [1] proposed a 

JIT-compiler approach, by analyzing object metadata and the aid of a hardware monitor for 

misses, to inject prefetch instructions into compiled code. 

In the future, we may dynamically profile these data types by hardware and launch a 
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software analyzer to analyze them. By co-working of hardware and software, similar to [1], 

perhaps there will be more chances for dynamic prefetching. 

 

5.2.4 Next-Block Prediction for Low Power Caches 

 

 The prediction approaches of our designs can also be used to other fields. For example, 

line-decayed cache [16] and drowsy cache [10] are designed to reduce leakage power of 

cache. Our prediction approaches may be applied to prefetch data from the next-level cache 

into a decayed cache line, or pre-activate cache lines for a drowsy cache, so that the 

performance will not degrade too much in a low-power cache. 
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