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ABSTRACT

For improving speed of program execution, it ipariant to reduce stalls caused by
memory accesses. Traditional programs, usually spaunch time on memory stalls during
accessing lower-level memoty, and so do Java pnogrén order to reduce memory stall
time, prefetching is a feasible“solution. We obedrthat there exist obvious properties of
bytecode fetchings and array accesses, so we xan prefetch them by taking advantage
of their properties. This thesis proposes novefgbching mechanisms for embedded Java
hardware accelerators to prefetch bytecode ang data, so that the time spent on memory
stalls can be reduced. We analyzed their propeamnesdesigned suitable approaches. Our
approaches can reduce half of bytecode stall timearm average; for some array-based

programs, about half of array stall time can als@liminated.
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Chapter 1 Introduction

This chapter gives an overview, and describesrtbgvation and the objective of this
thesis. Section 1.1 introduces Java technology wiéc applied in popularity and its
performance issue. Section 1.2 and 1.3 describentttevation and the objective of this

thesis, respectively. Section 1.4 introduces tigamization of this thesis.

1.1 Introduction to Java

Java [27] was introduced by Sun Microsystems. THevérsion (Java 2) has been
widely applied in many fields-(Figure-1.1).-For @mrise, Java Platform Enterprise Edition
(Java EE) industry standard is"proposed to- devptopable, robust, scalable and secure
server-side applications. For desktop, Java PlatfStandard Edition (Java SE) provides
plenty of APIs for developing applications. For exdded devices such as PDAs, mobile
phones, TV set-top boxes, Java Platform Micro Bdi{ilJava ME) provides a well-defined
virtual platform that fit for heterogeneous embeatidmvironments. In this region, the K
virtual machine (KVM) is designed for products wispproximately 128K of available
memory. In addition, there is also Java Card teldgyofor IC card applications.

In order to accomplish “write once, run anywherigya programs are not immediately
compiled to machine code (say, native code), buinsgrmediate code called bytecode
instead. Java bytecode executes on target platfiormugh a phase of translation. In other
words, a Java program must run below a virtualf@lat, called Java Virtual Machine

(JVM). A JVM interprets Java bytecode and does aip@ns on behalf of Java programs.

1



The simplest implementation of JVM is software iptetation. However, interpretation is
much slower than the direct execution of nativeecol can only be applied in small
embedded environments that don't care performaisen if we try to use a more
sophisticated interpreter, the effect is very laditfor most programs. Thus, how to solve
the performance issue is an essential topic to d=searchers. Now there are many studies

on this topic such as dynamic compilation technieleg

Servers & enterprise
computers

Desktop & personal

computers
A J
Optional :
| Pa‘l:’:kages l High-end consumer
devices

f Optional

Packages Low-end consumer
———y devices

Java 2 Java 2 | Personal Profile l J Smgrt-
Enterprise| | Standard cares
Edition || Edition | Foundation Proﬁlel MIDP
(J2EE) (J2SE) ,
| l cLDC cara '

—ee o
=

—

EE[

""\/’_
Java 2 Micro Edition (J2ME)

Figure 1.1 Java 2 platform editions and their tamarkets [22]

Besides software solutions to speedup Java executamdware accelerators have been
proposed to be an alternative choice; for exampiepJava [19, 25], JOP [29], ARM’s
Jazelle DBX [3, 4] technology and so on. By theaedivare solutions, some simple Java
instructions can be executed directly. Now ARM’gelke solution has been applied in many
embedded environments such as smart phones.

For improving the performance of Java executionaddition to improving JVM

components such as execution engine or memory regnagother way is to reduce



memory stall time. Adding caches, data re-layo8t [ii7, 21, 28] or prefetching [1, 30] are
all possible approaches. [11] also presents sonmmddogies to enhance memory systems.

This thesis focuses on prefetching to eliminate orgrstalls.

1.2 Motivation

Traditional program wastes much time on waitingrfe@mory accesses, and the same
as Java. Adl-Tabatabai et al [1] indicated the daemory stalls take up to 45% of
execution cycles when running the SPEC JBB2000 SR&C JVM98 benchmarks on
Itanium 2. In the experiments of F. Li et al [18@}ray-based embedded programs, on an
average, spend about 45% of execution cycles inanemccess. In our experiments on
Sun’s CLDC HI and EEMBC's.GrinderBench. benchmanksning on the Intel x86 ISA
plus JOP [29], a Java processor, it takes more-208n of execution time on data cache
stalls in average, maximum up to:34%, where theameemiss penalty is around 50 cycles.
Such situation is being deteriorating.as.the dad@irements or the code size of multimedia
applications is continually increasing. So reduding time on memory stalls shall be very
effective in practice.

Bytecode and array data usually take more than &08tall time (see Section 4.3), but
they have obvious properties for prefetching. Byt has sequential-access property and
frequent branch targets. For array, distances lestwwo consecutive accesses of an array

are usually stable values, which are cafiedles

1.3 Objective

In order to reduce memory stall time during Javacetion, we propose some

prefetching mechanisms, which are suitable in embedlava hardware accelerators, to

3



prefetch bytecode and array data. For this purpbsee will be two key points: prediction
of future accesses and timing determination. kkee, prefetching mechanisms have to
predict where future accesses will locate on amth tissue prefetch signals at appropriate

time points before the real accesses.

1.4 Thesis Organization

Chapter 2 describes the background and the relatell of this thesis. Chapter 3
presents our prefetching mechanisms for Java bgee@nd array elements. Chapter 4
shows some experiments and the results of prevdesggns and our designs. Chapter 5

discusses some variations, future works, and medesusions finally.



Chapter 2 Background

This chapter introduces the necessary backgroandhfs thesis. In Section 2.1, we
introduce JVM’s internal and the acceleration tedbgies. Section 2.2 introduces the
concept of prefetching, its potential side-effeantsl prefetch buffer to solve cache pollution.
Then we will introduce some related works. Secd® introduces the next-line prediction
table (NLPT) for instruction prefetching, and theiscusses the timing difficulty of
instruction prefetching to traditional embedded greans. Section 2.4 introduces the

reference prediction table (RPT) which is usedfata prefetching.

2.1 JVM's Internal and Acceleration-fechnologies

A JVM consists of many components, such as claader, execution engine, memory
manager..., and so on. In following we briefly intuwg how a JVM works, especially
focus on implementations of the execution engimel discuss the data types from the

JVM'’s view.
2.1.1 Java Interpreter

An interpreter is the easiest implementation of éixecution engine. Java programs
usually do not be compiled to machine code immedidbut an intermediate form called
bytecode instead. Java achieves its portabilitedas virtual machine technology. All Java

program must be executed on a Java Virtual Macfii8¢ A Java compiler reads Java

5



source code and generates classfiles. Classfile®ios information of classes, including
method tables, constant pools, and bytecode of sathod... etc. The JVM contains a
class loader to load classfiles, resolve namediakdhem together.

After the initializations of necessary classesjrdaarpreter in most JVMs is launched
to execute the main method of entry class. Clagseslynamically loaded during runtime.
An interpreter fetches Java instructions, decodesand maps them to corresponding
machine codes for emulation. Note that the Javadogles are considered as data to

interpreter, the same as Java data and storeddrcdehe (see Figure 2.1).

Java Program
Instruction Processor Data (bytecode)

I cache core cache

Java Data

Main memory

Figure 2.1 Reélationship between:Java and processtes

In this case, both Java bytecode and Java datarmbmiith the data of other processes
in data cache. Only JVM itself (including interget memory manager ... etc) is in

instruction cache.

2.1.2 Memory Access Types in Java Programs

JVM fetches bytecodes and operates data on behdifem. Each data type has its
properties of accessing. The data operated by J&fbe roughly categorized into 3 types:
= Java bytecode fetches

A JVM fetches bytecodes from memory and executathe



Object accesses

Including instances and classes, note that an &mayype of instance in Java.
Stack operations

Computation instructions operate data on the togtatk rather than registers.
Local variables are also stored in stack frameguArents passing and method

return values are both by way of the stack as well.

Object accesses can further be categorized byidstraction types:

Array elements

Accessed by array load/store instructions sudhlaad, iastore aaload...etc.
Instance headers

Accessed explicitly dheckcast instanceof or implicitly for type testing, or
monitorentey monitorexitinstructions.

Instance fields

Accessed by instance"field.read/write instructiomsly getfield and putfield is
associated to this type.

Static fields

Accessed by static field read/write instructions)yogetstatic and putstatic is
associated to this type.

Class structures other than fields

A class structure is a large structure that statass information, constant pool,
method table, and so on. Class structures arelysogdlicitly accessed during

type testing, name resolution ...etc.

This thesis focuses on bytecode and array. Bygpaadvantages of their properties, we

can design some mechanisms to prefetch them.
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2.1.3 Technologies to Speedup Java

Interpreter is relatively simple, easy to be impéeed and only small memory
required. However, a Java program runs on an irgepis much slower than a traditional
program. Thus how to improve Java execution spgesh important issue. There are some
well-known approaches to improve Java’s performakoe example, ahead-of-time (AOT)
compilation [20], just-in-time (JIT) compilation J;7or hardware acceleration [3, 8, 19, 25].

An AOT compiler converts Java bytecode into natiwede after downloaded. It simply
compiles all Java program before execution. Onadtiver hand, a JIT compiler translates
Java bytecode into native instructions on theSince JIT compilers work during runtime
of Java program, they also introduce additional pitation overhead. Thus, a JIT compiler
is usually only allowed to do-simple optimizaticatirer than complicated optimization in
traditional compiler. Even so,-JIT technologiedl stgnificantly speedup Java execution.

However, either AOT or JIT compilers-are not alwaygable in all applications. First,
an extra, large amount of memory is required ftrezicompiler itself or compiled code. It
may be infeasible in many embedded systems that bale small memory. Second,
dynamic compilation may result in a short periodpafuse during program execution.

Pauses are sometimes bad for user experienceldimessystems.

2.1.4 Java Hardware Acceleration

JIT compilation technologies are the most fregyensed approach, but sometimes
infeasible under some circumstances. Java hardaareleration is another solution. An
accelerator can be a separate Java processogwdnartranslation unit or highly integrated

with the processor core. Java instructions carctiyreun on accelerators, so that the speed

8



of Java execution can approximate to native prografurthermore, for example, if the
accelerator supports garbage collection that nmt#jly found on conventional processors,
Java programs run on the accelerator can be féstarsoftware-only approaches. Simple
instructions are usually executed by hardware eeitlirectly implemented or emulated by
microcodes. Complex instructions, such remwv or athrow, must still be emulated by
software.

Sun’s picoJava-l [19, 25] microprocessor is thst fnardware accelerator for Java. It is
a small, configurable core designed to supportlthe Virtual Machine specification. Most
instructions execute in one to three cycles. Fonpex instructions, it traps to software to
keep the complexity and size of the core managedbie picoJava-l has a dedicated cache
to handle stack operations as Figure 2.2. Stackatipas, unless during filling or spilling,
merely access the stack cache instead of the @afaec The picoJava-l has a 4-stage,
RISC-style pipeline (Figure 2.3)..1t has an instimt buffer and also has the capability of
operation folding and monitor support.it-fetchebyles of bytecodes into the buffer at a
time rather than merely one instruction.  Thereftréetches bytecode from the buffer
instead of accessing the cache. After the picolguablished, Sun soon announced the
picoJava-Il [26] for next generation of Java preoesEven if they have never been realized,

the picoJava series became foundations of modemplacessors.

low Fill
water mark . /
- [\

/ Parameters and locals ( \ Data

Pipeline cache

‘ A
Operand stack }

=\ e

water mark

Figure 2.2 picoJava-| stack cache [25]
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and cache back
Fetch 4-byte | Decode Execute for Write results
cache lines up to two one or more back into
into the instructions cycles the operand
instruction stack

buffer Folding logic

Figure 2.3 picoJava-| pipeline [25]

There are many implementations of Java accelergfyrd, 23, 24, 29] today. For
example, ARM Jazelle DBX [4] takes Java bytecodesiainstruction set extension. The
instruction set of Jazelle DBX technology createew state similar to Thumb in which the
processor fetches and decodes Java bytecodes anthingthe Java operand stack. Now
ARM’s Jazelle has been applied:in many embeddetteeguch as smart phones.

Some Java processors expect that the OS can rsotlgibelow them. However, up to
present, no OS porting is developed to.-achievepiipose. So they must still co-work with

a conventional processor core now:

2.2 Concept of Prefetching

Prefetching can be aimed at instructions or da&merally speaking, in stored program
computer, instructions can be viewed as a typeatd.drhis section introduces the concept

of prefetching and its derived issues.

2.2.1 Introduction to Prefetching

Rather than cache uses history of running prograefetching predicts future based

on data properties. Prefetching [30] anticipatesheamisses and issues a fetch to memory
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system in advance of actual memory reference. fteds proceed concurrently with
processor computation. See Figure 2.4(a), the psocehas to stall after memory read
finished. This is because traditional cache onlgHes data “on demand,” namely, issue
data request to memory system only on cache missesSigure 2.4(b), the prefetching
effectively hides all memory latency since memomgcesses go in parallel with the
computation. When the processor requires data, ltheg been ready. However, actually,
nothing is so perfect. Real cases are like Figu#¢c), some prefetches are issued too late
so that the processor still must wait for datag¢adady. Some prefetches proceed too early
and may result in “cache pollution.”

Data prefetching instructions can be inserted rabyiy programmer but increases
the programmer’s work. There are 2 approaches tibonaatic data prefetching: one is
compiler-directed approach, the other is hardwasetd approach. Compiler-directed
prefetching, either statically {32].or dynamicajl;-13], inject additional computation for
miss or address prediction- and.-prefetch. instrustiomto compiled code. Additional
computations, however, slowdoewn..the normal exeautshghtly. Furthermore, extra

instructions may a bit degrade instruction cachéopmance.
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Figure 2.4 lllustration of data prefetching [30]

(a) No prefetching .(b) Perfect prefetching (cpbiled prefetching

Hardware-based prefetching; different to compileected approach, produces no
performance overhead. However, since dynamic appes including dynamic compiler
prefetching, usually lack for high-level languagamantics, it's tough to them to foresee
longer so that they usually make more inaccuratesabs.

We will call the basic unit of prefetching “blockather than line in order to avoid

confusing with cache lines. Basically, the blockesequals to the cache line size.

2.2.2 Side-effects of Prefetching

Prefetching brings not only positive effects buateseffects that play a decisive role.
Prefetching is a kind of non-blocking load, so weed hardware supports of course. In
addition, as we described above, software-basef@tpheng will expand code size, may

increase execution stream and degrade instructiohecperformance. Again, consider we
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prefetched data into some cache line and the aliglata in the line was replaced. If
afterwards the processor requires the original dafdaced, an underserved miss is
produced. It is also possible that our prefetchaith dhas never been used by the processor.
This phenomenon is called “cache pollution.” Ndtattthis effect is different from normal

cache replacement miss.

2.2.3 Prefetch Buffer

Instead of putting data into cache directly whichymesult in cache pollution, it is a
good idea that temporarily putting data in a rekyi small memory. Such a small memory
is called prefetch buffer [14]. We can check thef@ich buffer first when cache misses. If
the requested data is found in the prefetch butf@rpuld be written into the cache directly
so that the processor can go In.proceed: In cagetthlso misses in prefetch buffer, the

processor is obliged to wait on main‘memory acogssventually.

Processor
I-Cache — —D-Cache
core

prefetsher. [ [ [ [ |

Prefetch Request Queue

Long delay Main memory

Figure 2.5 Prefetch buffer

A prefetch buffer can be a tiny cache which had lagsociativity. With such a buffer,
we are able to utilize necessary data only anddauanecessary prefetches polluting the

cache. Note that before a prefetch be really issoidlde memory system, it has to check the
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cache and the prefetch buffer first.

2.2.4 Policy Design of Prefetching

Prefetching is really a tricky approach. Theretaemany issues we have to take into
account. For example, memory latency, cache siz laararchy, implementation of
prefetch buffer, number of processes which may cancurrently, priorities of current
process ...and so on. The effects and designs oétpheg extremely depend on the
platform and what to run.

Note that a prefetch may contend with other pogfes either on timing, or in the
prefetch request queue or in the prefetch buffeudRly speaking, we might be able to use
a more aggressive policy for prefetching if theteotion is slight. That is, we can prefetch
more data even if we don’t have.much confidencevéier, if the contention is so obvious
that the effect of prefetching-degrades,-we-tendsi® a conservative policy, only prefetch

the data we confide in to ease the contention:

2.3 Hardware-Based Instruction Prefetching

Some high-performance processors will fetch follmyvinstructions into a buffer
beforehand when fetch some instruction. For examben a processor fetch an instruction
li, it also fetchesid, li+2, ... lisk INtO @ instruction queue for future use or issumgarallel.
The simplest design is sequential fetching and pecwation. Sophisticated speculative
processors also can make use of a branch preditdide to get better accuracy [31].
Nevertheless, they fetch instruction from cache imstruction queue rather than from
memory into cache. Conventionally, they usuallypsspeculation and maybe stall during

high penalty misses.
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2.3.1 Related Work: Next-Line Prediction Table (NLPT)

Instruction cache misses, different from data eadlisses that can be effectively hided
by a large instruction window and out-of-order axem, the processor usually has to stall
and stop speculation. Hsu and Smith [12] studiedruiction prefetching approaches for
scalar supercomputer pipelines and programs. Thelest method is sequential prefetching,
which is called fall-through prefetching in [12].tAble (called target table) can also be used
to record the history of block switches. Each ertfythe table consists of a pair of
(current-line, next-line) as Figure 2.6. When tlegpam counter changes to a new block,
the prefetch unit looks-up the table and issuesetefzh for the next block if hit. [12] also
proposed a combined algorithm:for block predictionthe combined algorithm, the target
table only records non-sequential pairs. lt-is aigdated at every block switches; however,
when a sequential transition-is detected,-it.wit be inserted or the corresponding entry
will be removed. When the program.counter entemswa block, if current block address of
is found in the table, the corresponding next-liseused for prefetching. Otherwise,
sequential prefetching is adopted. Hsu and Smicated that such hybrid approach can
get better effect than fall-through or target tabldy. Such hybrid approach is called

“next-line prediction table (NLPT)” in this thesis.
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Consider (a) in Figure 2.7, the program countemni®lock Q at present and transferred
from P non-sequentially. The pair (P, Q) will inseito the NLPT. The prefetch unit will
also look up Q in the table and make a predictasrtte future block R.

NLPT has a weakness. Suppose Figure 2.7 (b), ih@r@rocedure call in X to another
block Y. After the call is made and the programmieu transferred to Y, a pair (X, Y) would
be inserted into the NLPT. However, after the pdoce returned, the program counter
would move back to X then Z. Note. here; the tramsibf (X, Z) is sequential, so (X, Y)
will be removed from the table. If the proceduré isain a loop, the (X, Y) will be absent in

the table at the next iteration so that Y will nelge prefetched.

2.3.2 Timing Difficulty to Traditional Embedded Programs

If we want to prefetch instruction block into tbache or a buffer, there are 2 important
issues for us to take account of. One is the ptiediof future fetches. It is easy for coming
instructions since the spatial locality of instraot is so obvious. The other is to determine
the timing. We have to prefetch an instruction befa period of the instruction is really
required. This is very difficult for traditional dsadded program. For instance, suppose an

embedded RISC processor which has 32-bit instnostamnd 16-byte cache line, the time of
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the processor stays per line is only about 4 tgdbes in average. Because hardware-based
prefetching lacks for high-level language semariod is unable to foresee too longer, in
the environments which have decades of memorydgtenvery difficult to have a good
hardware-based approach and obtain good effecppeédup. Even if we use a CISC
processor to get higher code density, the comptlrtends to generate simple instructions
since the complex instructions are not supportddgh-level languages. On the other
hand, it usually stays average 40 to 60 cyclexaehne line which stores Java bytecodes. So
the opportunity of bytecode prefetching will be huwnore than instructions in traditional

embedded programs.

2.4 Hardware-Based Data Prefetching

Sequential prefetching seems effective for insions because of the high locality of it,
but much less for data. Baer and Chen-proposeretbeence prediction table (RPT) design

for data prefetching [5].

Related Work: Reference Prediction Table (RPT)

An RPT is a hardware table. It is similar to artrimstion cache tagged by the program
counter address, but records the generated addressead/store instructions. An entry of
RPT has following fields (See Figure 2.8):

®  |nstruction tag:

The address of a load/store instruction.

®  Previous address:

The address which was referenced by the instmicti

®  Stride
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The difference of the 2 most recently generatidtess.
= State
A 2-bit encoding of 4 states that indicates howther prefetches should be

generated.

An entry in the RPT will be in one of the 4 possibtates (Figure 2.9):
= |nitial
Start state and no prefetching.
=  Transient
The stride may be in transition. A tentative ptef is issued.
®  Steady
The stride is stable. We can issue a prefetstride+ 0.
= No prediction

No fixed stride is detected. It won't.issue amgfptch in this state.

PC | | effective address

\J

instruction tag previous address stride |state

prefetch address

Figure 2.8 Reference prediction table [30]
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Figure 2.9 State design of RTP

-

When the program counter encounters a load/stos&ruction, the instruction is
inserted into the RTP and its PC address is usethdp the location for accessing is stored
in the previous address, the state will be setindidl” and the stride is O initially. The
instruction may be enclosed in«ia loop 'er a subneytiin this situation, it will be
encountered more than once when the loop goes dratthe subroutine is entered again.
Therefore, we can find the cerresponding entry Weafilled previously in the RPT. We are
able to obtain a stride value by calculating thigedence between current address and the
previous address, and then compare it to the digtte If the calculated stride matches the
stride field, the state will goes toward “steadiXfter we mispredicted the stride twice or
more, the stride field will be modified to the nesueThe state goes toward “no prediction”
if we mispredicts repeatedly.

RPT prefetches the data seems be used in nextiateravhere the address for
prefetchingP is calculated by

P = current address- stride
(Figure 2.8). TherR is issued for prefetching if the state is “steady*transient”.

There exist some potential weaknesses of RPT faditional programs. First, a
drawback is that all load/store instructions wal &lso inserted into the RTP no matter what

type of data they access. For example, the loadssstor local variables or structure fields
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which have no fixed strides will be recorded in RIEP and result in unnecessary waste of
entries. Second, the prefetch may cross over thdary of array since it cannot know
where the array begins and ends, so that some ess@y data would also be prefetched.
Third, in case of small stride, even if the prelfieficr next required block has been issued by
previous access, RPT still tries to issue prefdtmhthe same block. This results in
unnecessary cache lookups which consume more p&ubsequent prefetches may also
wait for previous cache checks completed so they tire postponed. Finally, if the loop
body is too small, the prefetched data may areelate for the next access. In a large loop,
the prefetched data maybe wait too long and contetid other data in the cache or the
prefetch buffer. Chen and Baer proposed a duakdoRPT approach, with a look-ahead
program counter taking advantage of branch targieb(BTB) which has dual real ports,
to improve the timing issue for loops [6]. Howevieseems too complex and too expensive

for embedded devices.
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Chapter 3 Designs

By observations of Java properties, we designedesmrechanisms for bytecode and
array data prefetching. Section 3.1 describes thehamism of bytecode prefetching and
discusses the design strategies case-by-caseorSe&&® presents the design of array

prefetching.

3.1 Bytecode Prefetching

A Java hardware accelerator usually fetches bytexand executes them directly.
Bytecode is very similar to traditional program eptiut has some different properties that

we should care or can make use of.
3.1.1 Observations and Main Design ldea

In small line size environments, because of teetihg stay per cache line and the
limited prediction ability of hardware-based prefehg, it can not gain too much benefit by
hardware-based instruction prefetching for trad#io embedded program as we have
mentioned in Subsection 2.3.2. In contrast, Jaegrams have more complex instructions
and much high code density, so that Java takesageetO to 60 cycles per bytecode line
(see Section 4.3). Because of the longer line geaycache line of Java bytecodes, we can
have more adequate time than traditional progranpsdfetch bytecode blocks.

Similar to traditional programs, Java bytecodes®s &lave strongly sequential property.
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About half of cross-block fetches are sequentialywe can apply sequential prediction for
those cases. For non-sequential ones, we usee wahich is named non-sequential block
prediction table (NBPT), to record them similamtext-line prediction table.

However, a Java program usually has more methedcations than a traditional
program. NLPT can not handle such situation welvashave discussed in Subsection 2.3.1.

So NBPT must have some special design for methamtations and returns.

3.1.2 Overview of Bytecode Prefetching

Bytecode prefetching is triggered when the progcammnter transfers to a new block,
namely, at the point of block switching. Suppose fgirogram counter was on block P
previously and is on Q at present, and will.trangte block R in the future. After the
bytecode prefetching is triggered, the prefetch lagks up Q in the NBPT firstly. Then it
gets a prediction for the next block. Finally, wedate the NBPT by (P, Q). The flow path

of bytecode prefetching is depicted-in Figure 3.1.

Prefetch Update the NBPT
— | Lookup Qinthe NBPT & |—* Insert, update or remove
make a prediction for R NEPTI[P] by (P, Q)
Q
updater

Current‘ Next ‘ Info

Current‘ Next ‘ Info

—a [ v T W

predictar Q ‘ y ‘

Figure 3.1 Flow path of bytecode prefetching
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3.1.3 Non-sequential Block Prediction Table (NBPT)

The design of non-sequential block predictionggBPT) is very similar to next-line
prediction table. The NBPT records block pairs ohisequential cross-block fetches of
bytecodes, however, has some additional fieldsgdesl to obtain better performance for

Java which is shown in Figure 3.2.

Lookup
Information for prefetching
1 b
Valid | Currentblock | s ook | State | 1bit | R bit
bit (tag)
1 0x0021234 0x0021236 | NS-HC 0 0
1 Q R1 NS-LC 1 0
1 R2 Q NS-HC 0 1

Bytecode prefetch unit

|

Prefetch signal

Figure 3.2 Structure of nan-sequential block prealictable

Besides the valid bit, an NBPT entry has followfiedds:

= Current-block
The tag of an entry. If a non-sequential block ¢raon is from P to Q, P will be
stored in this field.

= Next-block
The corresponding non-sequential block of the cusbdock. In other words, if a
non-sequential block transition is from P to Q, @ ke stored in this field.

= State

The state of an entry. This field decides whatiption we make.
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= |-bit
Set if the block transition is caused by a metimvdcation.
= R-bit

Set if the block transition is caused by a metredadrn.

Another

method
invoke

/' R1

Q :
\\

| e R2
return

Figure 3.3 Method invocation and return

Figure 3.3 is an example: of method invocation aaturn. There is an invoke
instruction in block Q. When the program countecamters this instruction, a block
transition occurs from Q to R1. Thus-an-entry of B1) will be inserted into the NBPT.
Because this transition is caused by a method atat, the I-bit will be set to 1 during
insertion as in Figure 3.1. When the method endB@mand returns back to Q, then (R2, Q)

will be inserted and the R-bit is set to 1.

3.1.4 The State Design of NBPT

The state design of NBPT follows some principlesst, we amend our prediction
after mispredicted twice rather than the once-poliaken by NLPT. This will be
contributive for us to choose a more frequent p&gtond, we should prevent the entry due
to method invocation from being removed immediatafier return. Especially for Java
programs which usually have more method invocatitns will help improve prefetching.

Finally, we will see in Subsection 3.1.5, thera igeriod of latency between the decoding of
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an invoke/return instruction and the beginninghef target method. By taking advantage of
the latency, we may issue an additional prefetaindumethod invocation or return.
NBPT predicts next block by the state of curreldck, and updates the state of
previous block by current block. The 4-state desijfNBPT is shown in Figure 3.4:
®m  Sequential with High Confidence (S-HC)
If we can not find a corresponding entry for a giv®ock, it is considered in this state,
and vice versa. This state represents a higherapriaty of that the next block of a
given block is sequential.
= Sequential with Low Confidence (S-LC)
Given a block in the S-LC state, we tend to belithe next block of it is sequential
even if it was non-sequential previously. The poesgi non-sequential consecutive
block is recorded in the next-block field:
= Non-Sequential with-Low Confidence (NS-LC)
We tend to believe the next block-of a-given blechon-sequential if it is in this state.
However, we have less confidence.in the next-blidelkl of its corresponding entry
and are ready to refresh it at any moment.
®  Non-Sequential with High Confidence (NS-HC)
We confide in the next-block of the correspondingryeof a block highly when it is in

this state.
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Non-sequential prefetching
accroding to the next-block field
(If I-bit=1 or R-bit=1, issue an additional prefetch)

Sequential prefetching
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: !
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Entry:
remove

Figure 3.4 The state design of NBPT

Suppose a block transition is from block P to bl&kand on Q at present, and will
then transfer to block R in the future, Firstlye threfetch unit looks up Q in the NBPT and
makes a prediction r for R by the state of theesponding entry of Q:

®  Sequential with High Confidence (S-HC)

Q is not found in the:NBPT, do sequential predittibe., our prediction r is Q +
1.

®  Sequential with Low Confidence (S-LC)

Q is found in the NBPT but in state S-LC, do sediaéprediction. Prediction r =
Q+1.
=  Non-Sequential with Low Confidence (NS-LC)
Q is found in the NBPT and in state NS-LC. Predicby the corresponding
next-block. That is, prediction r = NBPT[Q].nexBbk. If the I-bit or the R-bit of
NBPT[Q] is set, we may make an additional predicsdor the block consecutive
to r. For simply, we can let s = r + 1. In this eathe prefetch unit can issue 2
prefetches in this state. Moreover, if the transit{P, Q) is caused by a method

return and the I-bit of entry Q is 1, we don’t mteh the target method again
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since it is unnecessary.
= Non-Sequential with High Confidence (NS-HC)
Q is found in the NBPT and in state NS-HC. Thearcts the same as that in state

NS-LC.

Afterwards, the NBPT should be updated by (P,RQnay be in following states:

= Sequential with High Confidence (S-HC)
P has no corresponding entry in the NBPT is comstién this state. If (P, Q) is
sequential, it remains in the S-HC state and wioa’put into the NBPT.

®  Sequential with Low Confidence (S-LC)
If (P, Q) is non-sequential and any entry of Pas found in the NBPT, it will be
inserted and the state will be set to' S-LC iniall

= Non-Sequential with-Low Confidence (NS-LC)
After the next-block-not matched,-the ;entry whicmresponds to P moves to this
state for updating the next-block.

= Non-Sequential with High Confidence (NS-HC)

If the next-block continuously matches, it go@sdrd this state.

3.1.5 Case-by-case Discussions

We will see how NBPT works case-by-case in thidisa. We go through the NBPT
design by following cases and consider each pattéhie encountered more than once:

I.  Forward branch

[I. Loop (backward branch)

[ll. Method invocation and return

IV. Multiple transition targets
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Case of Forward Branch

Here we consideif instructions in Java. They ardeq, ifne, iflt, ifge, ifgt, ifle,
if_icmpeqif_icmpneif_icmplt, if_icmpge if_icmpgt if_icmple if_acmpegqif_acmpnegota
ifnull andifnonnull. Their destination can be forward or backwardcase of backward, it
usually forms a loop and we will discuss in nexbsection. Now we consider the forward

case.

Ry

Figure 3.5"NBPT: Case of forward branch

See Figure 3.5 (b), there is #ninstruction in block Q. If the branch is takeneth
program counter will jump to block Ry and restakeeution from Ry. Otherwise, it
continues to execute the instructions after ithand then transfer to Rx. If the Ry case
appears more frequently than Rx, the state goeartbtie right hand site along the solid
line in Figure 3.5 (a). Note that we predict Ry the right part and Rx for the left part. If
the Rx case is more common, the entry will be iic\eéd or just stays in the left part of

Figure 3.5 (a).

Case of Loop (Backward Branch)
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A loop is formed by a backwarnd. Consider a loop pattern as Figure 3.6 (b). The
program counter transfers from Q to Ry every iteraso that the state goes toward and
stays in state NS-HC. However, it will leave thegoand transfer to Rx eventually. Then
the state will become NS-LC. If the program courgaters the loop again, NBPT still

predict Ry at the first iteration and then the estet set back to NS-HC at the second

iteration.

Ry

> Loop

Figure 3.6 NBPT: Case of loop

Case of Method Invocation and Return

Method invocations do not be handled well by NLRS we have mentioned in
Subsection 2.3.1. Thus, a key point of NBPT is tevpnt an entry of method invocation
from being invalidated immediately. Figure 3.7 {f®picts the program flow of a method
invocation and its return. There is an invoke stion in block Q. When it encounters the
instruction, the JVM determines the method locataonl restart execution from the first
block R1 of the target method. After finished thetyd of the method, it will return

eventually. Thus the program counter transfers hadke subsequent instruction after the
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invoke site when the method returns. Then it witiva to block R3 after Q completed. Here
we consider the case of R3 is sequential to Qckse that (Q, R3) is non-sequential, this is
a situation of multiple targets. The state machiuilechoose the frequent one between R1

and R3 in this situation as we will describe later.

' *\
I . 1
_khit=1. |
_______ T R 1
. |mt i | l
\

— o o e o o o o

(b) Qe ;
Ris return ~ <-4 R2

Figure 3.7 NBPT: Case-of method invocation

Now refer to Figure 3.8:

(@) Initially, (Q, R1) and (R2, Q) are both not in tNBPT. After entered Q, because
there doesn’t exist any corresponding entry of I§g prefetch unit predicts R3
sequentially.

(b) After encountered the invoke instruction in blocktQe program counter transfers
to R1. At the same time, an entry of (Q, R1) iemed into the NBPT, where the
state is S-LC initially and the I-bit is set to 1.

(c) After the work of the invoked method finished, gr@gram counter returns back to
Q from R2. (R2, Q) is put into the NBPT where th&tes is S-LC and the R-bit is
setto 1.

(d) After the program counter left from Q and moveaiR3, the corresponding entry

of Q should be updated. Note the condition of the foom S-LC to S-HC is
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“sequential and I-bit=0". Because the I-bit of [®1) is 1, it will go along another
arc toward the NS-LC state.

(e) Consider the program counter entered Q again. Ngthas been changed yet if
they were not replaced out. Now the prefetch uredigts R1 for the next block
because (Q, R1) is in the NBPT and in state NS-LC.

() The program counter entered R1 because of the thatkocation. The state of (Q,
R1) became NS-HC from HS-LC since its next-blockahed.

(g) Afterwards the program counter returned back tor@nfR2, (R2, Q) became
NS-HC from S-LC since its next-block matched.

(h) The program counter left from Q and entered R3,RQ), became NS-LC because
its next-block did not match. Note it will becomeéSNMC when the invocation
occurs again. After several iterations;.the NBPT be like (g) or (h) finally. The

state of (Q, R1) moves forth and back.between NSaRECNS-LC.
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Curr-block | Next-block State I-bit R-bit
(a) Initial
L
Curr-block | Next-block State I-bit R-bit
(b) Entered R1 Q R1 S-LC 1 0
Curr-block | Next-block State I-bit R-bit
(¢) Returned to Q Q R1 S-LC 1 0
R2 Q S-LC 0 1
Curr-block | Next-block State I-bit R-bit
(d) Entered R3 Q R1 NS-LC 1 0
R2 Q S-LC 0 1
Curr-block | Next-block State I-bit R-bit
(e) Entgred Q Q R1 NS-LC 1 0
again R2 Q S-LC 0 1
Curr-block | Next-block State I-bit R-bit
(f) Entered R1 Q R1 NS-HC 1 0
R2 Q S-LC 0 1
I
Curr-block | Next-block State I-bit R-bit
(g) Returned to Q Q R1 NS-HC 1 0
R2 Q NS-HC 0 1
Curr-block | Next-block State I-bit R-bit
(h) Entered R3 Q R1 NS-LC 1 0
R2 Q NS-HC 0 1

Figure 3.8 NBPT: A trace of method invocation aetlirn

Besides, we may issue an additional prefetch dum@ghod invocation and return.
This is because during invocation and return,apsrto software JVM to do some duties.
Then there would be a period of time for us to giicdf one block extra. See Figure 3.9 (b),
block A which has a invoke or return instructionrnisnethod X(). The program counter will

transfer to block B which is in another method &ffer met the instruction and then enter C.

32




Before entering B, it will trap to the software J\il fix up frames, determine where B is,
and do some checks. Compare to traditional progrémese works have been done before
the call/return instruction, so a conventional @ssor is able to jump to the target address
directly. Thus, we may prefetch an additional bl@Kuring this period of time. For simply,
we can just speculate that block C is sequentibaldok B. See Figure 3.9 (a) as an example,
we prefetch block B1 and B2 when entering A2 froh At the entry of B3, we prefetch
block A2 as well as A3. Note that the software J¥y also produce misses, however, we

can still obtain some advantages.

Method A() Method B()
Al invoke _» | B1 .
! v |
b A2 [ B2 s
. /.:3 return ~f pa
(a)
Bytecode block A
i Bin Y( C
Java in method X() ()
\ 4
Hardware Invokef’re\\um, trap to o ’ ~
... he softare JM T
A\l /
Prefetch B Prefetchg Software JYM
Memory ' v
2 rforB r+1 for C
Time ;
(b)

Figure 3.9 Additional prefetch during method invii@a and return

Case of Multiple Transition Targets

Finally, we consider the case that the programmt@umay transfer from one block to

multiple target blocks. This is probably causedabyirtual method invocation, an indirect
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branch, or there are multiple branches in a bldeke Figure 3.10 (b) for example, if we
have 2 possible targets Rx and Ry, we would likehinose the most frequent one since our
NBPT only records one target. The selection medmams designed in the left part which is
circled in Figure 3.10 (a). See Figure 3.11, if (R%) appears frequently and (Q, Ry)
appears occasionally, NBPT will tend to select Rawever, if (Q, Ry) continually occurs
twice, the next-block of the NBPT entry will be faped by Ry. At this moment, Ry is

considered as the most frequent block.

Selection

@@E. _________

Candidates

Al

1
1™ Ry
I

\
|
|
[
|
|
1

- e -

Figure 3.10 NBPT: Case of multiple transition tasge

The entry for Q in the NBPT

Exec Pattern Curr Next State
Q — Rx Q Rx S-LC
Q — Rx Q Rx NS-HC
Q — Ry Q Rx NS-LC
Q — Rx Q Rx NS-HC
Q — Ry Q Rx NS-LC
Q — Ry Q Ry NS-LC
Q — Ry Q Ry NS-HC
Q — Rx Q Ry NS-LC

Figure 3.11 NBPT: An example of selection betweeardidates
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3.2 Array Prefetching

Arrays in Java have some properties that not faartdaditional programs. By taking
advantages of the observations, we can achieveerbptrformance than traditional

prefetching approaches.

3.2.1 Observations

Loads and stores of different data types in traddl program code have the same
binary form. Hardware can not tell what data typlead/store instruction is associated to.
For example, hardware is difficult to determineoaded data is a local variable, an array
element or an indirect pointer. Thus if we wanptefetch data based on their properties we
have to ask compiler’s assistance or instrumentualan For array prefetching in Java,
fortunately, JVM Specification [18]. defines-arrageass instructions that operate array only.
Thus, we can concentrate on array.accesses anddget interferences from other data
types.

Most C or C++ programmers prefer to visit an arvéy pointers to achieve better
performance. However, there is no pointer in Jawd feference for substitution.
Programmers are disallowed to operate a Java reerarithmetically unlike pointer
operations. All accesses to certain object are y@wdone through a fixed reference
necessarily. An array is an instance of objectf agprogrammer wants to access an element
of an array, he must give the array reference anddex to the JVM. The JVM can then do
boundary check and calculate the actual addrefiseotlement. In this situation, the JVM
can know an access is associated to which array.

The JVM specification claims that an array operataccess data out of the array is

disallowed. If such condition occurs, the JVM will throw a
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java.lang.ArraylndexOutOfBoundsExcetpion to stogiar actions. Thus, the JVM has to
know the length of the array which is referenced.

Figure 3.12 shows how an array structures in tn@sSKVM implementation. Given
an array reference and an index, the JVM retridvesength field first to check whether the
index lays in the array. Afterward the JVM calcakathe array base from the reference.
Finally it can access the element by calculating

element address array base+ element size index.

Array reference Array base
v v
COMMON_CBJECT_INFO Length Data
_/
~
Length

Figure 3.12 The array structure in KVM

In conclusion, we observed that:

a) Array accesses can be distinguished from other tiggas by the JVM or the
hardware accelerator.

b) The JVM or the hardware accelerator can determih&lwarray an access is

associated to and know the array size during exggan array instruction.

3.2.2 Stride Table

Having the advantageous information describedr@vipus subsection, we can design
our array prefetching mechanism for Java. We caost table, called stride table (ST) to
record accesses of each array. See Figure 3.18da w&ble is similar to the RPT design,
but an entry of the ST has following fields besittes valid bit:

36



Valid Tag Previous
bit | (Array base) offset

1 0x00800100 100 64 Init 0x0080120
1 0x00802300 23 Steady 0x008023a
1 0x00802305 18 S Steady 0x0080312

Stride State Trigger block

(S

Figure 3.13 Stride table for Java

Array base

The base address of an array. Since all array sixgtesild be done via the array
base, we can use it alternative to the program teoufor our tag to distinguish
from other arrays. Thus, one entry is associateh&oarray exactly.

Previous offset

The distance of the:address of previous accesket@iray base in bytes. This
field is calculated bglement size index

Stride

The difference of the addresses of last 2 acce§smsentry is inserted at the first
time, this field is set to the element size inifiabecause most indexes of array
are increased by 1 every iteration in loops.

State

ST adopts a 2-state design rather than 4 staiBThas we will describe later.
Trigger block

This field is optional and will be described in Sabtion 3.2.4. In order to avoid
producing unnecessary prefetch signals and resuihare unnecessary cache
checks, we can add this field. If the trigger blaskenabled, a prefetch is

generated only when an access enters it.
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Because an entry will always be mapped to signmalyawe may use a simpler 2-state
design rather than the conservative 4-state dedig@PT. An entry in the ST has 2 possible

states shown in Figure 3.14:

Stride match

Stride not match / .
update the stride Stride match

Stride not match

Figure 3.14 The 2-state design of stride table

= |nitial
If an entry is inserted at the first time, it would set to this state initially. When
an irregular stride is detected, it will return kdao this state for updating the
stride field. In this state, we may-issue a teméapirefetch and disable the trigger
block.

= Steady
If the stride matches, it will go into this sta&l would issue a prefetch for next

element here. However, the prefetch signal maylteedd by the trigger block.

Every time of an array access, its correspondimgyewill be inserted or updated.
Furthermore, since the hardware can know the logatof where an array begins and ends,
we don’t need to insert an array when its entiréyls inside a block as it is unnecessary to

be prefetched.
3.2.3 Stride-Adaptive Prefetching

Different to RPT which always prefetches the dattanext iteration, ST determines
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which block to be prefetched and how many blockshibuld prefetch according to the
magnitude of stride. The index of current accesdeisoted by, its associated element is

denoted byi], and the block number of an elemejitig denoted by B(]):

if |stridg = Hthen// small stride, H is predefined
if stride> Othen
prefetch( B{])+1)
Trigger_Block= B([i])+1
else ifstride< Othen
prefetch( B{])-1)
Trigger_Block= B([i])-1
end if
else/l large stride
for k = 1to Prefetch_Depthio
prefetch( B([istride*K])")
end
Trigger_Block= B([i+stride* Prefetch_Dept})

end if

If the stride magnitude is smaller than or equa fwredefined valull, we prefetch the next
block. However, if the stride magnitude is larghat means a block is needed only for a
shorter period, then another block is required. thts case, we can try to prefetch more
blocks at one time. But note that any unnecessegfefch may make subsequent useful
prefetches be postponed.

The trigger block is updated to the last block oéfetching during prefetch signal

generation, we will describe it in Subsection 3.2.5
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3.2.4 Array-Base-Tagging

Array base is an alternative option to programnteufor tagging entries. Stride table
uses array base for its entry tag. An array-baggetd approach can be better than a

PC-tagged approach in some common cases of Jageaprd

a) One instruction may manipulate multiple arrays. &mmmple, array utility methods,
multi-threaded codes, or more cases that manynostahave their own arrays.
Their common feature is multiple arrays may shaeesame instruction.

b) Multiple instructions manipulate the same array, there exists a constant stride

between them. Loop-unrolled code isan instance:

int[] a=new int[100], b=new int{100};
/I copy bf] to a[]
for (int i=0; i<a.length; i+=4) {

ali] = bfi] ;

afi+1] = b[i+1] ;

afi+2] = b[i+2] ;

a[i+3] = b[i+3] ;

In this case, a PC-tagged approach needs more<tdrrecord an array.

3.2.5 Trigger Block
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The trigger block field is optional; its purpose to prevent unnecessary prefetches
from being generated. Although most unnecessaretolees would be gated by cache or
buffer checks, however, they consume additional ggoand might make subsequent
prefetches a little delay if the cache or the buigein busy. If the trigger block is enabled
and an access does not enter it, any prefetchlsighanot be produced. Our algorithm
always sets the trigger block to be the last pebfed block of an array.

Consider Figure 3.15 (a), when the program acaessray element [i] in block A, the
prefetch unit tries to prefetch block B. Here wetke trigger block to be the last prefetched
block, namely, block B. When it accesses elemémojpsecutively, the prefetch unit would
also try to prefetch block B. However, it is unnesary since the block has been prefetched,
so will be gated by the trigger block. When an asdé] crosses onto the trigger block, a
prefetch for block C will be issued eventually (g 3.15 (c)). After the prefetch is issued,
the trigger block is also updated to-be-block Gardfirregular stride is detected, the trigger

block should be disabled.

Trigger block
| —— 11999
(a) [i] ! E
A Tttt
e A1 00 EBICEI
(b) [i] i
A TTTTTo B
Trigger block
| R Q- [9gert
(c) K] i E
A B l"""(_j """"

Figure 3.15 Trigger block
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3.2.6 Circular Prefetching

Consider dor loop in a loop as following:

while (k>0) {
for (int i=0; i<a.length; i++) {

Read a]i]

When the index approaches 'the-array-tail, the RPT will try tofereh the data over

the array (Figure 3.16 (a)). However,.since thellware can know the array length, we can

avoid this situation by a simple comparison. Furtiae may prefetch the head of the array

for the next entry ofor as Figure 3.16 (b). This may gain some beneficése that théor

loop is entered repeatedly.

[
o | ol

No circular prefetching

o | ]

U]

Circular prefetching

Figure 3.16 Circular prefetching
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Chapter 4
Experiments and Results

This chapter presents the experiments and resul&sbenchmark suites: Sun’s CLDC
HotSpot Implementation Evaluation Kit 1.0.1 and HE®Ms GrinderBench 1.0. Section 4.1
introduces our environment setting for evaluatiddsction 4.2 gives introductions of the
benchmarks. Section 4.3 presents some analysisese toenchmarks. Section 4.4 shows
the results of applying our prefetch mechanismsamdpares them to the previous studies.

Section 4.5 analyzes memory traffics resulted leyrétated works and our designs.

4.1 Evaluation Environment

We use the cycle parameters of Java OptimizedeBsoc (JOP) [29] for the simulation
of hardware accelerator. JOP is an embedded Jacagsor implemented on FPGA. It has
4-stage pipeline and handles stack in the intamehory (Figure 4.1). Most bytecode are
translated to microcodes. A simple bytecode instvaccan be mapped to single microcode;
however, a complex instruction must be syntheskaedeveral microcodes. For bytecodes
not implemented by JOP, we trap to Sun’s KVM 1.1 lotel x86 processor core for
software emulation. We use a 4k bytes data cactie@i bytes per line; the prefetch buffer
is configured to be an 8-line fully associative liacAverage memory latency is set to 50

cycles.
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bytecode branch condition

next bytecode microcode branch condition

. | v

Bytecode Microcode Microcode Microcode

Fetch, translate Fetch and Decode Execute

and branch branch
4
T branch
spill,

bytecode branch fill

Stack Stack

Address | RAM

generation

Figure 4.1 Datapath of JOP [24]

4.2 Benchmarks

We use 2 CLDC benchmark suites for our evaluat@ne is Sun’s CLDC HotSpot
Implementation Evaluation =Kit. (CLDC HI) version 110 the other is EEMBC’s
GrinderBench (GB) version 1:0 [9].

Sun’s CLDC HI Evaluation Kit‘1:0.1'includes 4 benwrks, following is their brief
descriptions:

®  Richard

Simulating the task dispatcher in the kernel obparating system.

®=  Delta Blue

Solving one-way constraint systems.

®  |mage Manipulation (Processing)

Reading an image file (Sun raster image format)@erfbrms various transformations

on it, such as Sobel, threshold, 3x3 convolver, sméorth. After each transformation,

it compares the result with an expected resultawfiom that the transformation was

done properly.
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B Queen
A solver of then-queens problem, where the objective is to placgieens in a chess
board so that no queen can attack another. Itdsssical problem used to illustrate

several techniques such as general search anddachy.

EEMBC'’s GrinderBench 1.0 [9] contains 5 benchmarks:

®  Chess

It only performs the logical parts of a chess paogyras no graphical output is available.
It plays a preset number of games with itself.

= Crypto

It contains multiple encrypt/decrypt engines. Tldloiving encryption engines are
exercised: DES, DESede, IDEA, Blowfish.and Twofish.

. kXML

It processes a command: script which-specifies XMtuinents to parse and DOM tree
manipulations to do.

= Parallel

This benchmark is used to test the performance ¥WMkthreading capabilities. It
accomplishes this by dividing computational task®ag several threads that must then
cooperate with each other to complete those taske. parallel algorithms are used: a
merge-sort algorithm and a parallel matrix multiption algorithm.

B PNG

PNG is the standard format for image representatiod2ME implementations. This
benchmark does the decoding of a PNG image, inadudecompression, and stores the

result internally as header info, color palettegs)d image data.
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4.3 Analysis on the Benchmarks

In order to understand the properties of Javanarag, we analyzed the benchmarks.
This section presents the experimental resultd: aalysis, array stride analysis to each

benchmark.

4.3.1 Memory Stalls

Figure 4.2 shows the stall time over the totalcexien time of each benchmark. In the
average of Sun's CLDC HI benchmarks, it takes 15.8%cution time on stalls; In
EEMBC’s GrinderBench, average 25.7% execution taree spent on stalls. So it is worth

reducing memory stall time in order to speedup &xescution.

50%
45%
40%
= 159, 34.5%
E 150, o
=
o
2 30% EIC e 2579
: 3% 239% [ 239% —
8 25% 220% ] ] ] B
(5}
E 20% 15.9% |
2 15% ] B
10% 1 6.1% |
dilninin-sinininininint;
| T — ]

0%
Richard Delta Blue Image Queen Ave. Chess Crypto kXML  Parallel PNG  Ave.GB
Manip CLDC HI

Figure 4.2 Memory stall time over total executiome

Now we consider the composition of stall time.lISiestribution depends on program

type. A computation-intensive program will ofteresp more time on bytecode stalls, such
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as Richard, Chess and kXML. An array-based progudhusually have a larger proportion
of time spent on array stalls; Image Manipulati@nypto and Parallel belong to this type.
On an average, stall time caused by bytecode massdarray misses take more than 50%

of total stall time.
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0% 1= =
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g — | [
-8 L — — U Instance header
= S0% — —1 —6p.0 ] AR D
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0% g S S ) S )85 B — — — —2B.1% O Array
0% % P b P B | a53% 121% | | | |EBytecode
— i
20% [37.6% I O 35% | At
301 W60, 30.8% 263t 6%
10% H 1 iR 28— — =
LUYo ]
.0%

0%
Richard  Delta Image  Queen Ave. Chess  Crypto kXML  Parallel PNG Ave.GB
Blue Manip CLDC HI

Figure 4.3 Stall distributions

4.3.2 Experiments on Bytecode

As we have mentioned, because the complex ingiructesign and the high code
density of Java programs, there are more oppoitgnior bytecode prefetching than for
instructions of traditional embedded programs. &&pre 4.4, on an average, if we
eliminate all stalls, the number of stay cycles Ilpgiecode block distributes from 30 to 40
cycles. If plus stalls, the average numbers of stajyes of each benchmark are between 40

to 60 cycles.
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Figure 4.4 Average stay time per bytecode block

If a consecutively-fetched block pair is sequédntizen we call it is &equential cross
otherwise, it is anon-sequential crossFigure 4.5 shows the proportions of sequential
crosses and non-sequential:crosses.-of each berich@mran average, sequential crosses
occupy around half of all crosses. Especially ira¢gm Manipulation, the proportion of
sequential-crosses is up to 77.3%. Thus, we caty aggguential prefetching for most

blocks.
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Figure 4.5 Sequential strength of bytecode

4.3.3 Stride Distributions of Arrays

We may concern with 2what size the ‘stride field aofstride table is needed, or
concentrating on what magnitudes of stride ‘wouldeffective sufficiently if we want to
simplify our design. The stride distributions ofckabenchmark are shown in Figure 4.6.
The x axis is the absolute values of strides irefythe y axis represents the accumulating
proportion of strides. Most magnitudes of strideéthe benchmarks are less than or equal to

4 bytes. That is, if our prefetching works for d&s less than or equal to 4 bytes, it works

for more than 90% of strides.
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Figure 4.6 Stride distributions of arrays

4.4 Results of Prefetching

In order to evaluate effects of-prefetching, wérdetheremaining stall ratio(RSR).

Remaining stall ratimertain datg =

Number of stall cycles due to certain data when its prefetch 1s enabled

Number of stall cycles due to certain data without prefetching
For example:

Remaining stall ratio(bytecode) =

Number of stall cycles due to bytecode when the bytecode prefetching is enabled

Number of stall cycles due to bytecode without prefetching

4.4.1 Prefetching for Bytecode

Firstly, we discuss the size of NLPT and its dfecSee Figure 4.7, the x axis
represents the number of entries of NLPT and thriy represents the remaining stall ratio

of bytecode. The left-most points of each benchnmank RSR(bytecode)s of sequential
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prefetching only. As the table size grows, the R§&{code)s degrade but slightly in most

benchmarks. It even has no effect for Queen anslwgetse than sequential prefetching for

Parallel.
100%
0% - —*— Richard
 —— e N
B e e [ L
70% e ———— —— Image Manip
g oo | e | Quen
2 so% ess
& —+— Crypto
v 40% KXMI
Qﬁ 0 -
30% Parallel
20% ——PNG
10% — = Average
0%
Seq 1 2 4 8 16 32 64 128 256
# of NLPT entries

Figure®4.7 RSR(bytecode)s to'the sizes of NLPT
Now we see how NBPT performs. See Figure 4.8, aresee that the RSR(bytecode)s

start to degrade slowly when the NBPT is largentBao 16 entries. For Queen and PNG,

NBPT introduces good stall reductions.
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RSR(bytecode’
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Figure 4.8 RSR(bytecode)s to the sizes of NBPT

In Figure 4.9, we pick the 16-entry'NBPT, compare 16-entry NLPT and sequential
prefetching. When we add a:‘table to:record nOnesra!:inI crosses rather than sequential
prefetching, we can improve.the prefetching furtiiewe adopt NBPT for Java bytecode

prefetching, we can obtain better performance tlaR T, especially for Queen and PNG.
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Figure 4.9 A comparison of RSR(bytecode)
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4.4.2 Reference Prediction Table for Data Prefetchg

Following discusses the effects of reference ptexi table(RPT) which for data
prefetching. RPT records all load/store instruiomcluding instance-field accesses,
static-field accesses and array accesses. Howewersimulations show RPT is only
effective for instance-field accesses in some spegiograms and doesn't have any
improvement for static-field accesses. Figure 410ws a 128-entry RPT and its effects for
instance fields. Sometimes there are strides betwestance-field accesses as indicated in
[32]. This property is obvious in Delta Blue, asesult, RPT also introduces a good stall
reduction for it. But strides between instances wareommon in most programs, so RPT

usually cannot effectively eliminate the stalldridtance-field accesses.

RSR({nstanceField)s of 128-entry RPT

100% —— —
90% [ ] — ]
80% [ ]
0% [ ]
60% [ ]
50% [ ]
40% [ ]
30% ]
20%
10% [— T
0%

RSR(InstanceField

Richard Delta Blue Image Queen Ave. Chess Crypto kXML Parallel PNG Ave. GB
Manip CLDC HI

Figure 4.10 RSR(InstanceField)s of 128-entry RPT

Figure 4.11 shows the RSR(array)s to the sizé&&Raf. We can see RPT performs well

for array prefetching, especially for Delta BluXML and PNG.
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Figure 4.11 RSR(array)s to the sizes of RPT

A possible variation of RPT_is, letting RPT onlcord array instructions since it is
usually not effective for other:data types. Figdreé2 shows the effects for array data of the
array-only RPT design; Figure 4.13 depicts the ayerRSR(array)s of original RPTs and
array-only RPTs together. Because instructionsioérodata types occupy spaces in the RPT,
unsurprisedly, a small-size array-only RPT perfobatier than an original RPT which has
the same number of entries. However, if we are tbjgovide a larger size for RPT, their

effects will be very close.
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Figure 4.13 Average RSR(arrays)s of original RRi¢ @ray-only RPTs

4.4.3 Stride Table for Array Prefetching

Firstly, we may care about what values of the efieédH and theprefetch deptlof

ST should be. These 2 variables very highly degemaohdividual program. We may profile
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a program offline and embed the appropriate settintp its classfiles. However, we could
try to find the appropriate values for most progsamy experiments. Figure 4.14 shows the
average RSR(array)s of all benchmarks by usingt8r&iTs. We can see when theand
the prefetch deptiboth equal to 2, the average RSR(array) wouldhbartinimum. Now we
apply H=2 and prefetch depth=2 to each benchmarétsampare the result to their optimal
configurations. See Table 4.1, the differences S8RRarray)s between the recommended
configurations and their optimal configurations dess than 1.1%. So we usually can
already get good effects when usidg2 andprefetch depth2 in comparison to using their
individual optimal configurations. Nevertheless,tendhe appropriate values of these 2

variables may highly depend on the platform.

RSR(array)

Prefetch depth

Figure 4.14 Results of configurationstdfandprefetch depttin ST
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: Image
Benchmark Richard Delta Blue ) . Queen
Manipulation
Optimal H, prefetch depth 8,1) 1,1 (16, 1) (2, 8)
Optimal RSR(array) 97.544%| 49.493% | 51.574% | 78.921%
RSR(array)
97.545% | 49.667% | 51.898% | 79.985%

when {H=2, prefetch depth2)
Difference 0.001% 0.174% 0.324% 1.064%
Benchmark Chess Crypto kXML | Parallel PNG
Optimal H, prefetch depth| (1, 8) (2, 2) (2, 2) 2,1) 1,1
Optimal RSR(array) 78.002%77.257%| 43.528%| 83.171%| 90.905%
RSR(array)

78.687%| 77.257%| 43.528%| 83.260%| 91.838%
when {H=2, prefetch depth2)
Difference 0.685%| 0% 0% 0.089% | 0.933%

Table 4.1 RSR(array) differences between

using the recommendétlandprefetch depthand their optimal configurations

Now we may want to know.what size a stride tableutd be. Figure 4.15 shows that
the average RSR(array) almost doesn’t-degradeeifsthide table is larger than 8 or 16
entries. So a stride table has 81016 entriesumlly sufficient for most embedded Java

programs.
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Figure 4.15 RSR(array)s to the sizes of ST

If we use program counter for tagging, we can tbeeperformance of prefetching

almost doesn’t promote after a 32-entry strideete(ﬁlgure 4.16).

100% [ Ee——%— * * * 3 % X
w0 SN
TSt
80% el _\_Q — —a— — —— Delta Blue
70% —®— mage Manip
5 6% N\\H—'\, —*— Queen
X ] —— Chess
;i; i m ' ess
2 o
o —— kXML
30% Parallel
0% ——PNG
—= = Average
10%
0%
1 2 4 8 16 32 64 128
# of ST(PC) entries

Figure 4.16 RSR(array)s to the sizes of PC-tagged S

Then we compare the array-base-tagged ST and @hadged ST, the simulation
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result is shown in Figure 4.17. In the condition tbe same number of entries, an
array-base-tagged ST usually has a lower RSR(athey) a PC-tagged ST. The possible
reason we have discussed in Subsection 3.2.4. Howdvmost strides appear only in
individual instruction but not arrays, a PC-tagg&T will be better than an
array-base-tagged ST, such as Richard, ParallePaitl

ST(both)-256 is a 256-entry ST but tagged by bathdad array base. Both-tagging
can eliminate the interferences of several insioastor several arrays to an entry. However,
it can only perform better than PC-tagging andabrase-tagging slightly for Richard and
Delta Blue. This is maybe because an entry of badiged ST needs longer time to get a

stable stride.

100% — =
90% B = [T
80% [ B 1 o —
0% 1 1 o o . B

g 0% 1 - BERe T = sTeo)-16
z 0% f ] — m B s — — — — | O ST(base)-16
& 20% H PHEL P L EE B B EETE P ] FH (B ST(both)-256

30% HEEE Bt e e EEE B e B Bt et
20% HEEE Bt e e EEE B e B Bt et
10% (B EE EEE BT P e B e e B R
0%

Richard Delta Image Queen Ave. Chess Crypto kXML Parallel PNG  Ave.
Blue Manip CLDC GB
HI

Figure 4.17 Comparison of tagging approaches for ST

In following we compare the efficiencies of STaoay-only RPT. As Figure 4.18, ST
usually obtains better array stall reductions tiRET for Java programs, especially for

Queen, Crypto and kXML.
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Figure 4.18 Comparisons of ST and array-only RPT

Figure 4.19 presents the’effects of each.desegmad ST. The bars of “Array-base” are
RSR(array)s of RPT but adopting array-base-tagging) our 2-state design. We can see
array-base-tagging is effective for Queen and’ @rypithough it is a little bad for Delta
Blue, Chess and PNG. The bars of “Base+S” are R&Bfjs when using
array-base-tagging plus stride-adaptive prefetchirge stride-adaptive approach is much
effective for Chess and kXML, but gets worse fochrird, Crypto and PNG. “Base+S+C”
is base-tagging plus stride-adaptive prefetchirdy@rcular prefetching; that is, our final ST
design. The results show circular prefetching shghmproves the performance of
prefetching. But note that no design absolutelyssewvery case and sometime may result in

negative effects.
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Figure 4.19 Effects of each design idea of ST

In conclusion, our design can’achieve better pevdmce for array prefetching than
RPT. On an average, ST is 6% betteﬁr;‘fo?r‘ Suns ClHIGand 8% better for EEMBC'’s
GrinderBench than RPT in R‘S‘R(ar“ray).‘ z q

Finally, Figure 4.20 shoWs theﬂ“fréé‘tni!)ns‘ of unreseey prefetch signals that can be
eliminated by trigger-block. The ‘trigge‘r-block dpsi eliminates more than 50% of
unnecessary signals for Image Manipulation, kXMd &NG; 17.2% for Sun’s CLDC Hi

and 33.9% for EEMBC'’s GrinderBench in average.
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Figure 4.20 Effects of trigger-block

4.5 Analysis of Memory Traffic

Besides stall reduction, another.issue we mayeaonwith is memory traffic. Useless
prefetches will produce additional. traffics.

Firstly, we define some terms.tAle misss a memory request where the data accessed
is not found either in the cache or in the prefdbciffer. If a prefetched block is really
required and submitted into the cache, we calptieéetch auseful prefetchotherwise, it is
called anunused prefetchAn unused prefetch is never needed before baiptaced out
from the prefetch buffer. The memory traffic caussdbytecode fetches or prefetches is

calledbytecode trafficthearray traffic is similar.

4.5.1 Bytecode Traffic

We compare the bytecode traffics of the sequeptefietching, a 16-entry NLPT and a

16-entry NBPT. The bytecode traffic without prefetgy is normalized to 100%. Their
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traffics are shown in Figure 4.21, as well as tlaffits resulted by useful prefetches (U.P)
only. The fractions larger than 100% are causedriysed prefetches and the rests are true
misses. As we see, the traffic resulted by the ritBteNBPT is a little larger than the
16-entry NLPT in some benchmarks, but no more tharsequential prefetching. However,
the useful prefetches produced by the NBPT-16 aseerthan both the NLPT-16 and the
sequential prefetching in average, especially fae€h and PNG. So despite of including

the effects of unused prefetches, the performahblBeT is still better than NLPT.

160%

140% ]

120% (AT =——1H :

- - @ Sequential
100% O Sequential U.P.
M O NLPT-16
80% (EHH R H EH B L ERH e e e e A THEH

L L 1 ONLPT-16 U.P.
60% HHHEHH | PO | L H 1 L H HAENINE L O NBPT-16

i T H 1 O NBPT-16 U.P.
40% | AHH I H AU HHD

Bytecode Traffic Ratic

20% | AR T A H a

0%
Richard Delta Image Queen Ave. Chess Crypto kXML Parallel PNG  Ave.
Blue  Manip CLDC GB

HI

Figure 4.21 Bytecode traffic

4.5.2 Array Traffic

Similarly, we compare the array traffics of a Irg RPT and a 16-entry ST. See
Figure 4.22, 100% are the array traffics withoutferching. We can find the RPT design
results in almost no additional traffic. This ischase RPT is very conservative and only
prefetch with high confidence. ST does prefetclittke learlier than RPT, and also issues

more tentative prefetches. However, ST can issuee meeful prefetches, especially for
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Queen, Chess, Crypto and KXML, to achieve moré stdlctions. So if the prefetch buffer
is absent or the contention is significant, thesemwative policy of RPT is worth of being
used or we can just disable the tentative prefetdieST; otherwise, the aggressive policy
of ST can provide a better performance. A possibleation will be described in Subsection

5.2.2.
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Figljre 4.22 Array traffic
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Chapter 5
Conclusion and Future Works

This chapter includes the conclusion and the dsioms of some future works in

Section 5.1 and 5.2, respectively.

5.1 Conclusion

As the continuously growing of multimedia applioas, the requirement of memory is
increasing because of their-large amount of codk data. This problem also exists in
embedded devices. In order to reduce-memory stadl and speedup execution, prefetching
is a feasible solution. We studied. bytecode andyaprefetching approaches for Java
hardware accelerators. Because there are usualy smoall method invocations in a Java
program, NBPT has some subtle designs to handlm.tl&rides exist between array
accesses, we indicated using array-base to tatg stritries is an alternative approach to
PC-tagging for Java. By cooperating to our 2-sthtsign and stride-adaptive algorithm, it
performs better than the PC-tagged RPT. We alssbiac analysis on Sun’s CLDC HI and
EEMBC'’s GrinderBench benchmarks. On an average, N& reduce 40% of time spent
on bytecode stalls. The ST design can reduce 25&ray stall time; for some array-based
programs, around 50% of array stall time is elirteda

We can try to apply our mechanisms to mixed-modklgVh advanced environments.
A mixed-mode JVM has a selective JIT compiler. #tettts hotspots in running Java

programs, and compiles them into machine code digadiyy For non-compiled code, it
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still executes them by interpretation. A hardwaceederator can also be used to accelerate

the interpretation.

5.2 Future Works

This section includes some possible variations apyplications of our mechanisms,

and future study directions.

5.2.1 Prefetching More Bytecode Blocks at a Time

Note that NBPT only makes a prediction for the tneontinuously-fetched block. In
case of shorter memory latency, it's adequate Wetissue prefetch for the next block.
However, if the memory latency.is longer.or theedemtor is improved further, the arrival
time of our prefetched block may betoo-late taehite memory stall. Thus we may want to
initiate the prefetch earlier.

For simply, suppose we have a block sequence B, A..., where B is in the cache
and we merely have to prefetch block C. If the mematency is not too long, we can
initiate the prefetch of C when entering B as Fegbirl (a). However, if the memory latency
is longer, our prefetch for C would arrive too lade that there is still a period of stall does
not be hided (Figure 5.1 (b)). Thus we may wanistue the prefetch for C earlier, for
example, at the entry of A (Figure 5.1 (c)). Instliase, we may assume that block B is
already in cache or has been prefetched, or ajstotiprefetch B and let C be a little
postponed. Note that since all prefetches will &tbe cache and the prefetch buffer before
being really issued out to the memory, the prefetdior blocks present in the cache or the
buffer won’'t degrade the performance of prefetchiomgmuch.

To predict C, we can have 2 different policiese@slooking up the NBPT only once
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for B and assume (B, C) is sequential, in otherdspour prediction is NBPT[A]+1. The

other is looking up the NBPT twice continuously,kaa prediction for B and then for C,
l.e., predict NBPT[NBPTIA]] for C.

Bytecode block In cache Not in cache
LA B C
Processer \ I'\ Prefetch C AERUE]
(a) Prefetch B |I
Hit in cache ‘I C Ready
Memory E
Memory latency
In cache Not in cache
A B stall C
Processor | _-——
o) s \ | prefeteh ¢ NBPT(E]
|
Hit in cache ‘I C Ready
Memory v
Memory latency
In cache Not in cache
A B C
Processor :
\l NBPTIA] NBPTZA]
(c) Prefetch C |I or
L C Ready NBPT[A]+1
Memory

Memory latency

Figure 5.1 Timing issue of bytecode prefetching

(a) Short memory latency (b) Prefetch too lateRi@fetch earlier

More generally, if the program counter is on bldc&urrently and we want to prefetch
certain block B which is blocks later. Suppose the accuracy of NBPT priedglidior one

later block isp, the accuracy of sequential prediction for nertklisg, and the accuracy of

our prediction for B denoted sy We can have 2 policies:

Single lookup of NBPT

We only look up the NBPT once and assume the faligerare sequential. That is,
our prediction

b= NBPT[A] + (n-1)
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Thus the accuracy of our prediction
rs=p-q"
In this case, the prediction could be obtainetiintly after the lookup.
®  Multiple lookups of NBPT
We look up the NBPT repeatedly. Our prediction is
bn = NBPT[NBPT][ ... NBPT[A] ... ]] = NBPT[A]

And its accuracy

rm=p"

In this case, the prediction will be known aftdookups.
Note that bothrs andry, are exponential functions afand usually diminish quickly, so it is
only effective if a smalh and the prediction is very accurate. In casewsatidn’t predict
correctly and prefetched a block not required, dhéval time of useful prefetches will be
delayed; or even some useful prefetches alreatheibuffer are discarded.
For processors that have less-memory latencyeteiehg several possible paths into

the buffer may be a possible implementation.

5.2.2 Adaptive Mechanisms

As we have described in Subsection 2.2.4. If thetention on timing or prefetch
buffer is slight, we can issue more tentative pgodfes; otherwise, we may deteriorate the
contention and degrade the performance of prefegchihus, we can switch between
conservative or aggressive policies by monitoriraptentions. Or we may track the
utilization of tentative prefetches to decide wpalicy we should select. If the utilization of
tentative prefetches is low, we may change to us®reservative policy and issue less
tentative prefetches to keep a fine work.

In another aspect, some design idea may not sddio applications. We may develop
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some detection mechanisms to collect program behawa choose a suitable algorithm or

enable/disable unsuitable prefetch mechanisms.

5.2.3 Prefetching for Other Data Types

Subsection 2.1.2 lists several data types; howexer prefetching mechanisms only
focus on bytecode and array data. The other dp&stsre:

®  |nstance headers

= |nstance fields

®  Static fields

®m  Class structures other than fields

Instance fields and static fields have specificringions associate to. The data belong
to these 2 types usually distribute on'the heagaarly and have less regularity. Stalls
caused by static field accesses are relative fesegoerhaps we don’t need to prefetch them.
Stalls caused by instance field -accesses, howewdr, take a large proportion in
instance-based programs. For example, Delta Blines€ and PNG will visit plenty of
instances during traversals of linked structuresmé& researchers try to find compiler
solutions by some complex analysis [13, 32], butirtrapproaches have some strict
restrictions. So it is still a difficult problem tintoday because of the huge amount of
instances. Instance headers and classes strudtives than fields are usually accessed
implicitly. The difficulty of prefetching instandeeaders is the same as instance fields. Class
structures are relative large structures, a clmgstare usually occupies several blocks. The
regularities of their accesses are unobvious arfficudi to catch. [1] proposed a
JIT-compiler approach, by analyzing object metadaiz the aid of a hardware monitor for
misses, to inject prefetch instructions into comegbitode.

In the future, we may dynamically profile theseadgtpes by hardware and launch a
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software analyzer to analyze them. By co-workindpafdware and software, similar to [1],

perhaps there will be more chances for dynamiaepebing.

5.2.4 Next-Block Prediction for Low Power Caches

The prediction approaches of our designs cankaagsed to other fields. For example,
line-decayed cache [16] and drowsy cache [10] asgded to reduce leakage power of
cache. Our prediction approaches may be appligdef@tch data from the next-level cache
into a decayed cache line, or pre-activate cacheslifor a drowsy cache, so that the

performance will not degrade too much in a low-poeache.
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