
Prefetching for Bytecode and Array Data in Embedded Java
Hardware Accelerators

Prefetching for Bytecode and Array Data
in Embedded Java Hardware Accelerators

 Student Yi-Ruei Wu

 Advisor Jean Jyh-Jiun Shann

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

August 2007

Hsinchu, Taiwan, Republic of China

1. (

)

To my parents

 i

嵌入式爪哇硬體加速器中

位元碼與陣列資料預先抓取之研究

學生：吳易叡 指導教授：單智君 博士

國立交通大學資訊科學與工程研究所碩士班

摘 要

 減少資料存取時的記憶體等待(memory stall)一直是改進程式執行效能

的重要課題。傳統程式常在執行時花費了許多時間在等待較低層記憶體的

存取，爪哇(Java)程式亦然。為了要減少在記憶體上的等待時間，預先抓

取(prefetching)所需要的資料是種可行的方案。我們觀察到爪哇程式中，

位元碼(bytecode)之抓取與陣列資料之存取都有明顯的特性，可以利用這

些特性去預先抓取它們。這篇論文設計了適用於嵌入式爪哇硬體加速器

中，位元碼與陣列資料預先抓取的機制，以減少等待記憶體讀取資料的時

間。我們分析了它們的特性，並設計了一些合適的方法。平均而言，我們

的方法可降低約一半的位元碼抓取所造成的停滯；在某些以陣列存取為主

的程式上，也能減少約一半因陣列存取所造成之記憶體等待。

 ii

Prefetching for Bytecode and Array Data

in Embedded Java Hardware Accelerators

Student: Yi-Ruei Wu Advisor: Dr. Jean Jyh-Jiun Shann

Institute of Computer Science and Engineering

National Chiao Tung University

ABSTRACT

 For improving speed of program execution, it is important to reduce stalls caused by

memory accesses. Traditional programs usually spend much time on memory stalls during

accessing lower-level memory, and so do Java programs. In order to reduce memory stall

time, prefetching is a feasible solution. We observed that there exist obvious properties of

bytecode fetchings and array accesses, so we can try to prefetch them by taking advantage

of their properties. This thesis proposes novel prefetching mechanisms for embedded Java

hardware accelerators to prefetch bytecode and array data, so that the time spent on memory

stalls can be reduced. We analyzed their properties and designed suitable approaches. Our

approaches can reduce half of bytecode stall time on an average; for some array-based

programs, about half of array stall time can also be eliminated.

 iii

誌誌誌誌 謝謝謝謝

終於結束一邊吃著學校餐廳賣的便當，一邊猜測裡頭到底放什麼詭異

食材的日子了。

記得第一次 meeting 時坐在底下聽著學長報告，即使前所未有地認真

與專心，但仍是鴨子聽雷。看著老師與博士班學長們的無情批判，就覺得

研究生涯真是可怕，總有一天被釘在牆上的會是我。

碩一修課繁重，曾有段時間，回到宿舍就開始啃書本、論文，連電腦

都不敢開機；曾有段時間，為了期末作業，在實驗室忙到半夜，隔天拖著

疲憊和黑眼圈展示結果。這一年，我不斷地看著學長報告、不斷地自修、

不斷地累積實力、不斷地成長。升了碩二，學長們「突然」畢業了，開始

輪到我這毛頭小鬼上台報告，學習接受考驗。

做研究的過程，真的很累：過程方法不嚴謹、結果數據不好看，就得

重新檢視設計，重頭來過；每次做投影片時，還要自己在腦海不斷預演，

猜想會被質疑的問題。日日排山倒海的壓力，如連續劇般一波接一波，常

常躺在床上難以成眠，絕不只是因為宿舍很吵。

現在，總算一切都熬過去了。

能完成這篇論文，最要感謝的是單智君老師與陳裕生學長，能夠不厭

其煩地給我指導與建議。並感謝鍾崇斌老師的教導、實驗室的各位學長姐

與同學對我的幫助；也感謝各位口試委員的寶貴意見，讓論文更加嚴謹完

整。

最後，我必須感謝父母從小到大的栽培；未來我仍背負著期許，不斷

往前。

我在交大，編織了兩年的回憶，帶著滿滿地感謝；祝福陪伴我的每一

個人，都有美好的人生旅程。

 iv

Contents

摘要.. i

Abstract ... ii

誌謝.. iii

Contents ... iv

List of Figures .. vi

List of Tables.. viii

Chapter 1 Introduction... 1

1.1 Introduction to Java... 1

1.2 Motivation... 3

1.3 Objective ... 3

1.4 Thesis Organization .. 4

Chapter 2 Background ... 5

2.1 JVM’s Internal and Acceleration Technologies .. 5

2.1.1 Java Interpreter... 5

2.1.2 Memory Access Types in Java Programs... 6

2.1.3 Technologies to Speedup Java ... 8

2.1.4 Java Hardware Acceleration .. 8

2.2 Concept of Prefetching ... 10

2.2.1 Introduction to Prefetching .. 10

2.2.2 Side-effects of Prefetching... 12

2.2.3 Prefetch Buffer... 13

2.2.4 Policy Design of Prefetching ... 14

2.3 Hardware-Based Instruction Prefetching.. 14

2.3.1 Related Work: Next-Line Prediction Table (NLPT) 15

2.3.2 Timing Difficulty to Traditional Embedded Programs 16

2.4 Hardware-Based Data Prefetching.. 17

Related Work: Reference Prediction Table (RPT) .. 17

Chapter 3 Designs.. 21

3.1 Bytecode Prefetching .. 21

3.1.1 Observations and Main Design Idea .. 21

3.1.2 Overview of Bytecode Prefetching..22

3.1.3 Non-sequential Block Prediction Table (NBPT) ... 23

3.1.4 The State Design of NBPT... 24

3.1.5 Case-by-case Discussions .. 27

 v

3.2 Array Prefetching .. 35

3.2.1 Observations .. 35

3.2.2 Stride Table .. 36

3.2.3 Stride-Adaptive Prefetching... 38

3.2.4 Array-Base-Tagging... 40

3.2.5 Trigger Block ... 40

3.2.6 Circular Prefetching ... 42

Chapter 4 Experiments and Results... 43

4.1 Evaluation Environment ... 43

4.2 Benchmarks... 44

4.3 Analysis on the Benchmarks... 46

4.3.1 Memory Stalls .. 46

4.3.2 Experiments on Bytecode .. 47

4.3.3 Stride Distributions of Arrays .. 49

4.4 Results of Prefetching ... 50

4.4.1 Prefetching for Bytecode ... 50

4.4.2 Reference Prediction Table for Data Prefetching... 53

4.4.3 Stride Table for Array Prefetching ... 55

4.5.1 Bytecode Traffic... 62

4.5.2 Array Traffic... 63

Chapter 5 Conclusion and Future Works... 65

5.1 Conclusion .. 65

5.2 Future Works... 66

5.2.1 Prefetching More Bytecode Blocks at a Time ... 66

5.2.2 Adaptive Mechanisms.. 68

5.2.3 Prefetching for Other Data Types .. 69

5.2.4 Next-Block Prediction for Low Power Caches.. 70

References... 71

 vi

List of Figures

Figure 1.1 Java 2 platform editions and their target markets [22] .. 2

Figure 2.1 Relationship between Java and processor caches.. 6

Figure 2.2 picoJava-I stack cache [25] ... 9

Figure 2.3 picoJava-I pipeline [25]... 10

Figure 2.4 Illustration of data prefetch [30].. 12

Figure 2.5 Prefetch buffer ... 13

Figure 2.6 Target table .. 16

Figure 2.7 Examples for next-line prediction table .. 16

Figure 2.8 Reference prediction table [30] ... 18

Figure 2.9 State design of RTP ... 19

Figure 3.1 Flow path of bytecode prefetching .. 22

Figure 3.2 Structure of non-sequential block prediction table.. 23

Figure 3.3 Method invocation and return ... 24

Figure 3.4 The state design of NBPT.. 26

Figure 3.5 NBPT: Case of forward branch ... 28

Figure 3.6 NBPT: Case of loop... 29

Figure 3.7 NBPT: Case of method invocation .. 30

Figure 3.8 NBPT: A trace of method invocation and return ... 32

Figure 3.9 Additional prefetch during method invocation and return33

Figure 3.10 NBPT: Case of multiple transition targets... 34

Figure 3.11 NBPT: An example of selection between 2 candidates 34

Figure 3.12 The array structure in KVM .. 36

Figure 3.13 Stride table for Java ... 37

Figure 3.14 The 2-state design of stride table... 38

Figure 3.15 Trigger block ... 41

Figure 3.16 Circular prefetching... 42

Figure 4.1 Datapath of JOP [24] ... 44

Figure 4.2 Memory stall time over total execution time... 46

Figure 4.3 Stall distributions... 47

Figure 4.4 Average stay time per bytecode block ... 48

Figure 4.5 Sequential strength of bytecode... 49

Figure 4.6 Stride distributions of arrays.. 50

Figure 4.7 RSR(bytecode)s to the sizes of NLPT... 51

Figure 4.8 RSR(bytecode)s to the sizes of NBPT... 52

 vii

Figure 4.9 A comparison of RSR(bytecode) ... 52

Figure 4.10 RSR(InstanceField)s of 128-entry RPT... 53

Figure 4.11 RSR(array)s to the sizes of RPT.. 54

Figure 4.12 RSR(array)s to the sizes of RPT.. 55

Figure 4.13 Average RSR(arrays)s of original RPTs and array-only RPTs 55

Figure 4.14 Results of configurations of H and prefetch depth in ST 56

Figure 4.15 RSR(array)s to the sizes of ST .. 58

Figure 4.16 RSR(array)s to the sizes of PC-tagged ST .. 58

Figure 4.17 Comparison of tagging approaches for ST.. 59

Figure 4.18 Comparisons of ST and array-only RPT ... 60

Figure 4.19 Effects of each design idea of ST .. 61

Figure 4.20 Effects of trigger-block.. 62

Figure 4.21 Bytecode traffic ... 63

Figure 4.22 Array traffic ... 64

Figure 5.1 Timing issue of bytecode prefetching.. 67

 viii

List of Tables

Table 4.1 RSR(array) differences between using the recommended H and prefetch depth,

and their optimal configurations... 57

 1

Chapter 1 Introduction

 This chapter gives an overview, and describes the motivation and the objective of this

thesis. Section 1.1 introduces Java technology which is applied in popularity and its

performance issue. Section 1.2 and 1.3 describe the motivation and the objective of this

thesis, respectively. Section 1.4 introduces the organization of this thesis.

1.1 Introduction to Java

Java [27] was introduced by Sun Microsystems. The 2nd version (Java 2) has been

widely applied in many fields (Figure 1.1). For enterprise, Java Platform Enterprise Edition

(Java EE) industry standard is proposed to develop portable, robust, scalable and secure

server-side applications. For desktop, Java Platform Standard Edition (Java SE) provides

plenty of APIs for developing applications. For embedded devices such as PDAs, mobile

phones, TV set-top boxes, Java Platform Micro Edition (Java ME) provides a well-defined

virtual platform that fit for heterogeneous embedded environments. In this region, the K

virtual machine (KVM) is designed for products with approximately 128K of available

memory. In addition, there is also Java Card technology for IC card applications.

In order to accomplish “write once, run anywhere”, Java programs are not immediately

compiled to machine code (say, native code), but an intermediate code called bytecode

instead. Java bytecode executes on target platform through a phase of translation. In other

words, a Java program must run below a virtual platform, called Java Virtual Machine

(JVM). A JVM interprets Java bytecode and does operations on behalf of Java programs.

 2

The simplest implementation of JVM is software interpretation. However, interpretation is

much slower than the direct execution of native code. It can only be applied in small

embedded environments that don’t care performance. Even if we try to use a more

sophisticated interpreter, the effect is very limited for most programs. Thus, how to solve

the performance issue is an essential topic to Java researchers. Now there are many studies

on this topic such as dynamic compilation technologies.

Figure 1.1 Java 2 platform editions and their target markets [22]

Besides software solutions to speedup Java execution, hardware accelerators have been

proposed to be an alternative choice; for example, picoJava [19, 25], JOP [29], ARM’s

Jazelle DBX [3, 4] technology and so on. By these hardware solutions, some simple Java

instructions can be executed directly. Now ARM’s Jazelle solution has been applied in many

embedded environments such as smart phones.

 For improving the performance of Java execution, in addition to improving JVM

components such as execution engine or memory manager, another way is to reduce

 3

memory stall time. Adding caches, data re-layout [15, 17, 21, 28] or prefetching [1, 30] are

all possible approaches. [11] also presents some technologies to enhance memory systems.

This thesis focuses on prefetching to eliminate memory stalls.

1.2 Motivation

Traditional program wastes much time on waiting for memory accesses, and the same

as Java. Adl-Tabatabai et al [1] indicated the data memory stalls take up to 45% of

execution cycles when running the SPEC JBB2000 and SPEC JVM98 benchmarks on

Itanium 2. In the experiments of F. Li et al [17], array-based embedded programs, on an

average, spend about 45% of execution cycles in memory access. In our experiments on

Sun’s CLDC HI and EEMBC’s GrinderBench benchmarks running on the Intel x86 ISA

plus JOP [29], a Java processor, it takes more than 20% of execution time on data cache

stalls in average, maximum up to 34%, where the average miss penalty is around 50 cycles.

Such situation is being deteriorating as the data requirements or the code size of multimedia

applications is continually increasing. So reducing the time on memory stalls shall be very

effective in practice.

Bytecode and array data usually take more than 50% of stall time (see Section 4.3), but

they have obvious properties for prefetching. Bytecode has sequential-access property and

frequent branch targets. For array, distances between two consecutive accesses of an array

are usually stable values, which are called strides.

1.3 Objective

In order to reduce memory stall time during Java execution, we propose some

prefetching mechanisms, which are suitable in embedded Java hardware accelerators, to

 4

prefetch bytecode and array data. For this purpose, there will be two key points: prediction

of future accesses and timing determination. I.e., the prefetching mechanisms have to

predict where future accesses will locate on and then issue prefetch signals at appropriate

time points before the real accesses.

1.4 Thesis Organization

Chapter 2 describes the background and the related work of this thesis. Chapter 3

presents our prefetching mechanisms for Java bytecode and array elements. Chapter 4

shows some experiments and the results of previous designs and our designs. Chapter 5

discusses some variations, future works, and makes conclusions finally.

 5

Chapter 2 Background

 This chapter introduces the necessary background for this thesis. In Section 2.1, we

introduce JVM’s internal and the acceleration technologies. Section 2.2 introduces the

concept of prefetching, its potential side-effects and prefetch buffer to solve cache pollution.

Then we will introduce some related works. Section 2.3 introduces the next-line prediction

table (NLPT) for instruction prefetching, and then discusses the timing difficulty of

instruction prefetching to traditional embedded programs. Section 2.4 introduces the

reference prediction table (RPT) which is used for data prefetching.

2.1 JVM’s Internal and Acceleration Technologies

 A JVM consists of many components, such as class loader, execution engine, memory

manager…, and so on. In following we briefly introduce how a JVM works, especially

focus on implementations of the execution engine, and discuss the data types from the

JVM’s view.

2.1.1 Java Interpreter

An interpreter is the easiest implementation of the execution engine. Java programs

usually do not be compiled to machine code immediately but an intermediate form called

bytecode instead. Java achieves its portability based on virtual machine technology. All Java

program must be executed on a Java Virtual Machine [18]. A Java compiler reads Java

 6

source code and generates classfiles. Classfiles contains information of classes, including

method tables, constant pools, and bytecode of each method… etc. The JVM contains a

class loader to load classfiles, resolve names and link them together.

After the initializations of necessary classes, an interpreter in most JVMs is launched

to execute the main method of entry class. Classes are dynamically loaded during runtime.

An interpreter fetches Java instructions, decodes it, and maps them to corresponding

machine codes for emulation. Note that the Java bytecodes are considered as data to

interpreter, the same as Java data and stored in data cache (see Figure 2.1).

Figure 2.1 Relationship between Java and processor caches

In this case, both Java bytecode and Java data contend with the data of other processes

in data cache. Only JVM itself (including interpreter, memory manager … etc) is in

instruction cache.

2.1.2 Memory Access Types in Java Programs

 JVM fetches bytecodes and operates data on behalf of them. Each data type has its

properties of accessing. The data operated by JVM can be roughly categorized into 3 types:

 Java bytecode fetches

A JVM fetches bytecodes from memory and execute them.

 7

 Object accesses

Including instances and classes, note that an array is a type of instance in Java.

 Stack operations

Computation instructions operate data on the top of stack rather than registers.

Local variables are also stored in stack frames. Arguments passing and method

return values are both by way of the stack as well.

Object accesses can further be categorized by Java instruction types:

 Array elements

Accessed by array load/store instructions such as iaload, iastore, aaload …etc.

 Instance headers

Accessed explicitly (checkcast, instanceof) or implicitly for type testing, or

monitorenter, monitorexit instructions.

 Instance fields

Accessed by instance field read/write instructions, only getfield and putfield is

associated to this type.

 Static fields

Accessed by static field read/write instructions, only getstatic and putstatic is

associated to this type.

 Class structures other than fields

A class structure is a large structure that stores class information, constant pool,

method table, and so on. Class structures are usually implicitly accessed during

type testing, name resolution …etc.

 This thesis focuses on bytecode and array. By taking advantages of their properties, we

can design some mechanisms to prefetch them.

 8

2.1.3 Technologies to Speedup Java

Interpreter is relatively simple, easy to be implemented and only small memory

required. However, a Java program runs on an interpreter is much slower than a traditional

program. Thus how to improve Java execution speed is an important issue. There are some

well-known approaches to improve Java’s performance. For example, ahead-of-time (AOT)

compilation [20], just-in-time (JIT) compilation [7], or hardware acceleration [3, 8, 19, 25].

An AOT compiler converts Java bytecode into native code after downloaded. It simply

compiles all Java program before execution. On the other hand, a JIT compiler translates

Java bytecode into native instructions on the fly. Since JIT compilers work during runtime

of Java program, they also introduce additional compilation overhead. Thus, a JIT compiler

is usually only allowed to do simple optimization rather than complicated optimization in

traditional compiler. Even so, JIT technologies still significantly speedup Java execution.

However, either AOT or JIT compilers are not always suitable in all applications. First,

an extra, large amount of memory is required for either compiler itself or compiled code. It

may be infeasible in many embedded systems that only have small memory. Second,

dynamic compilation may result in a short period of pause during program execution.

Pauses are sometimes bad for user experience or real-time systems.

2.1.4 Java Hardware Acceleration

 JIT compilation technologies are the most frequently used approach, but sometimes

infeasible under some circumstances. Java hardware acceleration is another solution. An

accelerator can be a separate Java processor, a hardware translation unit or highly integrated

with the processor core. Java instructions can directly run on accelerators, so that the speed

 9

of Java execution can approximate to native programs. Furthermore, for example, if the

accelerator supports garbage collection that not typically found on conventional processors,

Java programs run on the accelerator can be faster than software-only approaches. Simple

instructions are usually executed by hardware, either directly implemented or emulated by

microcodes. Complex instructions, such as new or athrow, must still be emulated by

software.

 Sun’s picoJava-I [19, 25] microprocessor is the first hardware accelerator for Java. It is

a small, configurable core designed to support the Java Virtual Machine specification. Most

instructions execute in one to three cycles. For complex instructions, it traps to software to

keep the complexity and size of the core manageable. The picoJava-I has a dedicated cache

to handle stack operations as Figure 2.2. Stack operations, unless during filling or spilling,

merely access the stack cache instead of the data cache. The picoJava-I has a 4-stage,

RISC-style pipeline (Figure 2.3). It has an instruction buffer and also has the capability of

operation folding and monitor support. It fetches 4 bytes of bytecodes into the buffer at a

time rather than merely one instruction. Therefore it fetches bytecode from the buffer

instead of accessing the cache. After the picoJava-I published, Sun soon announced the

picoJava-II [26] for next generation of Java processor. Even if they have never been realized,

the picoJava series became foundations of modern Java processors.

Figure 2.2 picoJava-I stack cache [25]

 10

Figure 2.3 picoJava-I pipeline [25]

There are many implementations of Java accelerators [2, 4, 23, 24, 29] today. For

example, ARM Jazelle DBX [4] takes Java bytecodes as an instruction set extension. The

instruction set of Jazelle DBX technology creates a new state similar to Thumb in which the

processor fetches and decodes Java bytecodes and maintains the Java operand stack. Now

ARM’s Jazelle has been applied in many embedded devices such as smart phones.

Some Java processors expect that the OS can run directly below them. However, up to

present, no OS porting is developed to achieve this purpose. So they must still co-work with

a conventional processor core now.

2.2 Concept of Prefetching

 Prefetching can be aimed at instructions or data. Generally speaking, in stored program

computer, instructions can be viewed as a type of data. This section introduces the concept

of prefetching and its derived issues.

2.2.1 Introduction to Prefetching

Rather than cache uses history of running program, prefetching predicts future based

on data properties. Prefetching [30] anticipates cache misses and issues a fetch to memory

 11

system in advance of actual memory reference. Prefetches proceed concurrently with

processor computation. See Figure 2.4(a), the processor has to stall after memory read

finished. This is because traditional cache only fetches data “on demand,” namely, issue

data request to memory system only on cache misses. In Figure 2.4(b), the prefetching

effectively hides all memory latency since memory accesses go in parallel with the

computation. When the processor requires data, they have been ready. However, actually,

nothing is so perfect. Real cases are like Figure 2.4(c), some prefetches are issued too late

so that the processor still must wait for data to be ready. Some prefetches proceed too early

and may result in “cache pollution.”

 Data prefetching instructions can be inserted manually by programmer but increases

the programmer’s work. There are 2 approaches for automatic data prefetching: one is

compiler-directed approach, the other is hardware-based approach. Compiler-directed

prefetching, either statically [32] or dynamically [1, 13], inject additional computation for

miss or address prediction and prefetch instructions into compiled code. Additional

computations, however, slowdown the normal execution slightly. Furthermore, extra

instructions may a bit degrade instruction cache performance.

 12

Figure 2.4 Illustration of data prefetching [30]

(a) No prefetching (b) Perfect prefetching (c) Degraded prefetching

 Hardware-based prefetching, different to compiler-directed approach, produces no

performance overhead. However, since dynamic approaches, including dynamic compiler

prefetching, usually lack for high-level language semantics, it’s tough to them to foresee

longer so that they usually make more inaccurate decisions.

We will call the basic unit of prefetching “block” rather than line in order to avoid

confusing with cache lines. Basically, the block size equals to the cache line size.

2.2.2 Side-effects of Prefetching

 Prefetching brings not only positive effects but side-effects that play a decisive role.

Prefetching is a kind of non-blocking load, so we need hardware supports of course. In

addition, as we described above, software-based prefetching will expand code size, may

increase execution stream and degrade instruction cache performance. Again, consider we

 13

prefetched data into some cache line and the original data in the line was replaced. If

afterwards the processor requires the original data replaced, an underserved miss is

produced. It is also possible that our prefetched data has never been used by the processor.

This phenomenon is called “cache pollution.” Note that this effect is different from normal

cache replacement miss.

2.2.3 Prefetch Buffer

Instead of putting data into cache directly which may result in cache pollution, it is a

good idea that temporarily putting data in a relatively small memory. Such a small memory

is called prefetch buffer [14]. We can check the prefetch buffer first when cache misses. If

the requested data is found in the prefetch buffer, it would be written into the cache directly

so that the processor can go in proceed. In case that it also misses in prefetch buffer, the

processor is obliged to wait on main memory accessing eventually.

Figure 2.5 Prefetch buffer

A prefetch buffer can be a tiny cache which has high associativity. With such a buffer,

we are able to utilize necessary data only and avoid unnecessary prefetches polluting the

cache. Note that before a prefetch be really issued to the memory system, it has to check the

 14

cache and the prefetch buffer first.

2.2.4 Policy Design of Prefetching

 Prefetching is really a tricky approach. There are too many issues we have to take into

account. For example, memory latency, cache size and hierarchy, implementation of

prefetch buffer, number of processes which may run concurrently, priorities of current

process …and so on. The effects and designs of prefetching extremely depend on the

platform and what to run.

 Note that a prefetch may contend with other prefetches either on timing, or in the

prefetch request queue or in the prefetch buffer. Roughly speaking, we might be able to use

a more aggressive policy for prefetching if the contention is slight. That is, we can prefetch

more data even if we don’t have much confidence. However, if the contention is so obvious

that the effect of prefetching degrades, we tend to use a conservative policy, only prefetch

the data we confide in to ease the contention.

2.3 Hardware-Based Instruction Prefetching

 Some high-performance processors will fetch following instructions into a buffer

beforehand when fetch some instruction. For example, when a processor fetch an instruction

Ii, it also fetches Ii+1, Ii+2, … Ii+k into a instruction queue for future use or issuing in parallel.

The simplest design is sequential fetching and no speculation. Sophisticated speculative

processors also can make use of a branch prediction table to get better accuracy [31].

Nevertheless, they fetch instruction from cache into instruction queue rather than from

memory into cache. Conventionally, they usually stop speculation and maybe stall during

high penalty misses.

 15

2.3.1 Related Work: Next-Line Prediction Table (NLPT)

 Instruction cache misses, different from data cache misses that can be effectively hided

by a large instruction window and out-of-order execution, the processor usually has to stall

and stop speculation. Hsu and Smith [12] studied instruction prefetching approaches for

scalar supercomputer pipelines and programs. The simplest method is sequential prefetching,

which is called fall-through prefetching in [12]. A table (called target table) can also be used

to record the history of block switches. Each entry of the table consists of a pair of

(current-line, next-line) as Figure 2.6. When the program counter changes to a new block,

the prefetch unit looks-up the table and issues a prefetch for the next block if hit. [12] also

proposed a combined algorithm for block prediction. In the combined algorithm, the target

table only records non-sequential pairs. It is also updated at every block switches; however,

when a sequential transition is detected, it will not be inserted or the corresponding entry

will be removed. When the program counter enters a new block, if current block address of

is found in the table, the corresponding next-line is used for prefetching. Otherwise,

sequential prefetching is adopted. Hsu and Smith indicated that such hybrid approach can

get better effect than fall-through or target table only. Such hybrid approach is called

“next-line prediction table (NLPT)” in this thesis.

 16

Figure 2.6 Target table

Figure 2.7 Examples for next-line prediction table

Consider (a) in Figure 2.7, the program counter is on block Q at present and transferred

from P non-sequentially. The pair (P, Q) will insert into the NLPT. The prefetch unit will

also look up Q in the table and make a prediction for the future block R.

 NLPT has a weakness. Suppose Figure 2.7 (b), there is a procedure call in X to another

block Y. After the call is made and the program counter transferred to Y, a pair (X, Y) would

be inserted into the NLPT. However, after the procedure returned, the program counter

would move back to X then Z. Note here, the transition of (X, Z) is sequential, so (X, Y)

will be removed from the table. If the procedure call is in a loop, the (X, Y) will be absent in

the table at the next iteration so that Y will never be prefetched.

2.3.2 Timing Difficulty to Traditional Embedded Programs

 If we want to prefetch instruction block into the cache or a buffer, there are 2 important

issues for us to take account of. One is the prediction of future fetches. It is easy for coming

instructions since the spatial locality of instructions is so obvious. The other is to determine

the timing. We have to prefetch an instruction before a period of the instruction is really

required. This is very difficult for traditional embedded program. For instance, suppose an

embedded RISC processor which has 32-bit instructions and 16-byte cache line, the time of

 17

the processor stays per line is only about 4 to 6 cycles in average. Because hardware-based

prefetching lacks for high-level language semantics and is unable to foresee too longer, in

the environments which have decades of memory latency, it very difficult to have a good

hardware-based approach and obtain good effect of speedup. Even if we use a CISC

processor to get higher code density, the compiler still tends to generate simple instructions

since the complex instructions are not supported in high-level languages. On the other

hand, it usually stays average 40 to 60 cycles per cache line which stores Java bytecodes. So

the opportunity of bytecode prefetching will be much more than instructions in traditional

embedded programs.

2.4 Hardware-Based Data Prefetching

 Sequential prefetching seems effective for instructions because of the high locality of it,

but much less for data. Baer and Chen proposed the reference prediction table (RPT) design

for data prefetching [5].

Related Work: Reference Prediction Table (RPT)

An RPT is a hardware table. It is similar to an instruction cache tagged by the program

counter address, but records the generated addresses of load/store instructions. An entry of

RPT has following fields (See Figure 2.8):

 Instruction tag:

The address of a load/store instruction.

 Previous address:

 The address which was referenced by the instruction.

 Stride

 18

 The difference of the 2 most recently generated address.

 State

A 2-bit encoding of 4 states that indicates how further prefetches should be

generated.

An entry in the RPT will be in one of the 4 possible states (Figure 2.9):

 Initial

 Start state and no prefetching.

 Transient

 The stride may be in transition. A tentative prefetch is issued.

 Steady

 The stride is stable. We can issue a prefetch if stride ≠ 0.

 No prediction

 No fixed stride is detected. It won’t issue any prefetch in this state.

Figure 2.8 Reference prediction table [30]

 19

Figure 2.9 State design of RTP

 When the program counter encounters a load/store instruction, the instruction is

inserted into the RTP and its PC address is used for tag, the location for accessing is stored

in the previous address, the state will be set to “initial” and the stride is 0 initially. The

instruction may be enclosed in a loop or a subroutine; in this situation, it will be

encountered more than once when the loop goes back or the subroutine is entered again.

Therefore, we can find the corresponding entry that we filled previously in the RPT. We are

able to obtain a stride value by calculating the difference between current address and the

previous address, and then compare it to the stride field. If the calculated stride matches the

stride field, the state will goes toward “steady”. After we mispredicted the stride twice or

more, the stride field will be modified to the newest. The state goes toward “no prediction”

if we mispredicts repeatedly.

RPT prefetches the data seems be used in next iteration where the address for

prefetching P is calculated by

 P = current address + stride

(Figure 2.8). Then P is issued for prefetching if the state is “steady” or “transient”.

There exist some potential weaknesses of RPT for traditional programs. First, a

drawback is that all load/store instructions will be also inserted into the RTP no matter what

type of data they access. For example, the loads/stores for local variables or structure fields

 20

which have no fixed strides will be recorded in the RTP and result in unnecessary waste of

entries. Second, the prefetch may cross over the boundary of array since it cannot know

where the array begins and ends, so that some unnecessary data would also be prefetched.

Third, in case of small stride, even if the prefetch for next required block has been issued by

previous access, RPT still tries to issue prefetch for the same block. This results in

unnecessary cache lookups which consume more power. Subsequent prefetches may also

wait for previous cache checks completed so that they are postponed. Finally, if the loop

body is too small, the prefetched data may arrive too late for the next access. In a large loop,

the prefetched data maybe wait too long and contend with other data in the cache or the

prefetch buffer. Chen and Baer proposed a dual-ported RPT approach, with a look-ahead

program counter taking advantage of branch target buffer (BTB) which has dual real ports,

to improve the timing issue for loops [6]. However, it seems too complex and too expensive

for embedded devices.

 21

Chapter 3 Designs

By observations of Java properties, we designed some mechanisms for bytecode and

array data prefetching. Section 3.1 describes the mechanism of bytecode prefetching and

discusses the design strategies case-by-case. Section 3.2 presents the design of array

prefetching.

3.1 Bytecode Prefetching

 A Java hardware accelerator usually fetches bytecodes and executes them directly.

Bytecode is very similar to traditional program code, but has some different properties that

we should care or can make use of.

3.1.1 Observations and Main Design Idea

 In small line size environments, because of the fleeting stay per cache line and the

limited prediction ability of hardware-based prefetching, it can not gain too much benefit by

hardware-based instruction prefetching for traditional embedded program as we have

mentioned in Subsection 2.3.2. In contrast, Java programs have more complex instructions

and much high code density, so that Java takes average 40 to 60 cycles per bytecode line

(see Section 4.3). Because of the longer line stay per cache line of Java bytecodes, we can

have more adequate time than traditional programs to prefetch bytecode blocks.

 Similar to traditional programs, Java bytecodes also have strongly sequential property.

 22

About half of cross-block fetches are sequential, so we can apply sequential prediction for

those cases. For non-sequential ones, we use a table, which is named non-sequential block

prediction table (NBPT), to record them similar to next-line prediction table.

 However, a Java program usually has more method invocations than a traditional

program. NLPT can not handle such situation well as we have discussed in Subsection 2.3.1.

So NBPT must have some special design for method invocations and returns.

3.1.2 Overview of Bytecode Prefetching

 Bytecode prefetching is triggered when the program counter transfers to a new block,

namely, at the point of block switching. Suppose the program counter was on block P

previously and is on Q at present, and will transfer to block R in the future. After the

bytecode prefetching is triggered, the prefetch unit looks up Q in the NBPT firstly. Then it

gets a prediction for the next block. Finally, we update the NBPT by (P, Q). The flow path

of bytecode prefetching is depicted in Figure 3.1.

Figure 3.1 Flow path of bytecode prefetching

 23

3.1.3 Non-sequential Block Prediction Table (NBPT)

 The design of non-sequential block prediction table (NBPT) is very similar to next-line

prediction table. The NBPT records block pairs of non-sequential cross-block fetches of

bytecodes, however, has some additional fields designed to obtain better performance for

Java which is shown in Figure 3.2.

Figure 3.2 Structure of non-sequential block prediction table

Besides the valid bit, an NBPT entry has following fields:

 Current-block

The tag of an entry. If a non-sequential block transition is from P to Q, P will be

stored in this field.

 Next-block

The corresponding non-sequential block of the current-block. In other words, if a

non-sequential block transition is from P to Q, Q will be stored in this field.

 State

 The state of an entry. This field decides what prediction we make.

 24

 I-bit

 Set if the block transition is caused by a method invocation.

 R-bit

 Set if the block transition is caused by a method return.

Figure 3.3 Method invocation and return

Figure 3.3 is an example of method invocation and return. There is an invoke

instruction in block Q. When the program counter encounters this instruction, a block

transition occurs from Q to R1. Thus an entry of (Q, R1) will be inserted into the NBPT.

Because this transition is caused by a method invocation, the I-bit will be set to 1 during

insertion as in Figure 3.1. When the method ends on R2 and returns back to Q, then (R2, Q)

will be inserted and the R-bit is set to 1.

3.1.4 The State Design of NBPT

 The state design of NBPT follows some principles. First, we amend our prediction

after mispredicted twice rather than the once-policy taken by NLPT. This will be

contributive for us to choose a more frequent path. Second, we should prevent the entry due

to method invocation from being removed immediately after return. Especially for Java

programs which usually have more method invocations, this will help improve prefetching.

Finally, we will see in Subsection 3.1.5, there is a period of latency between the decoding of

 25

an invoke/return instruction and the beginning of the target method. By taking advantage of

the latency, we may issue an additional prefetch during method invocation or return.

 NBPT predicts next block by the state of current block, and updates the state of

previous block by current block. The 4-state design of NBPT is shown in Figure 3.4:

 Sequential with High Confidence (S-HC)

If we can not find a corresponding entry for a given block, it is considered in this state,

and vice versa. This state represents a higher probability of that the next block of a

given block is sequential.

 Sequential with Low Confidence (S-LC)

Given a block in the S-LC state, we tend to believe the next block of it is sequential

even if it was non-sequential previously. The previous non-sequential consecutive

block is recorded in the next-block field.

 Non-Sequential with Low Confidence (NS-LC)

We tend to believe the next block of a given block is non-sequential if it is in this state.

However, we have less confidence in the next-block field of its corresponding entry

and are ready to refresh it at any moment.

 Non-Sequential with High Confidence (NS-HC)

We confide in the next-block of the corresponding entry of a block highly when it is in

this state.

 26

Figure 3.4 The state design of NBPT

Suppose a block transition is from block P to block Q and on Q at present, and will

then transfer to block R in the future. Firstly, the prefetch unit looks up Q in the NBPT and

makes a prediction r for R by the state of the corresponding entry of Q:

 Sequential with High Confidence (S-HC)

Q is not found in the NBPT, do sequential prediction. I.e., our prediction r is Q +

1.

 Sequential with Low Confidence (S-LC)

Q is found in the NBPT but in state S-LC, do sequential prediction. Prediction r =

Q + 1.

 Non-Sequential with Low Confidence (NS-LC)

Q is found in the NBPT and in state NS-LC. Predict R by the corresponding

next-block. That is, prediction r = NBPT[Q].next-block. If the I-bit or the R-bit of

NBPT[Q] is set, we may make an additional prediction s for the block consecutive

to r. For simply, we can let s = r + 1. In this case, the prefetch unit can issue 2

prefetches in this state. Moreover, if the transition (P, Q) is caused by a method

return and the I-bit of entry Q is 1, we don’t prefetch the target method again

 27

since it is unnecessary.

 Non-Sequential with High Confidence (NS-HC)

Q is found in the NBPT and in state NS-HC. The action is the same as that in state

NS-LC.

 Afterwards, the NBPT should be updated by (P, Q). P may be in following states:

 Sequential with High Confidence (S-HC)

P has no corresponding entry in the NBPT is considered in this state. If (P, Q) is

sequential, it remains in the S-HC state and won’t be put into the NBPT.

 Sequential with Low Confidence (S-LC)

If (P, Q) is non-sequential and any entry of P is not found in the NBPT, it will be

inserted and the state will be set to S-LC initially.

 Non-Sequential with Low Confidence (NS-LC)

After the next-block not matched, the entry which corresponds to P moves to this

state for updating the next-block.

 Non-Sequential with High Confidence (NS-HC)

 If the next-block continuously matches, it goes toward this state.

3.1.5 Case-by-case Discussions

 We will see how NBPT works case-by-case in this section. We go through the NBPT

design by following cases and consider each pattern will be encountered more than once:

I. Forward branch

II. Loop (backward branch)

III. Method invocation and return

IV. Multiple transition targets

 28

Case of Forward Branch

 Here we consider if instructions in Java. They are: ifeq, ifne, iflt , ifge, ifgt, ifle,

if_icmpeq, if_icmpne, if_icmplt, if_icmpge, if_icmpgt, if_icmple, if_acmpeq, if_acmpne, goto,

ifnull and ifnonnull. Their destination can be forward or backward. In case of backward, it

usually forms a loop and we will discuss in next subsection. Now we consider the forward

case.

Figure 3.5 NBPT: Case of forward branch

 See Figure 3.5 (b), there is an if instruction in block Q. If the branch is taken, the

program counter will jump to block Ry and restart execution from Ry. Otherwise, it

continues to execute the instructions after the if and then transfer to Rx. If the Ry case

appears more frequently than Rx, the state goes toward the right hand site along the solid

line in Figure 3.5 (a). Note that we predict Ry for the right part and Rx for the left part. If

the Rx case is more common, the entry will be invalidated or just stays in the left part of

Figure 3.5 (a).

Case of Loop (Backward Branch)

 29

 A loop is formed by a backward if. Consider a loop pattern as Figure 3.6 (b). The

program counter transfers from Q to Ry every iteration so that the state goes toward and

stays in state NS-HC. However, it will leave the loop and transfer to Rx eventually. Then

the state will become NS-LC. If the program counter enters the loop again, NBPT still

predict Ry at the first iteration and then the state is set back to NS-HC at the second

iteration.

Figure 3.6 NBPT: Case of loop

Case of Method Invocation and Return

 Method invocations do not be handled well by NLPT as we have mentioned in

Subsection 2.3.1. Thus, a key point of NBPT is to prevent an entry of method invocation

from being invalidated immediately. Figure 3.7 (b) depicts the program flow of a method

invocation and its return. There is an invoke instruction in block Q. When it encounters the

instruction, the JVM determines the method location and restart execution from the first

block R1 of the target method. After finished the duty of the method, it will return

eventually. Thus the program counter transfers back to the subsequent instruction after the

 30

invoke site when the method returns. Then it will move to block R3 after Q completed. Here

we consider the case of R3 is sequential to Q. For case that (Q, R3) is non-sequential, this is

a situation of multiple targets. The state machine will choose the frequent one between R1

and R3 in this situation as we will describe later.

Figure 3.7 NBPT: Case of method invocation

Now refer to Figure 3.8:

(a) Initially, (Q, R1) and (R2, Q) are both not in the NBPT. After entered Q, because

there doesn’t exist any corresponding entry of Q, the prefetch unit predicts R3

sequentially.

(b) After encountered the invoke instruction in block Q, the program counter transfers

to R1. At the same time, an entry of (Q, R1) is inserted into the NBPT, where the

state is S-LC initially and the I-bit is set to 1.

(c) After the work of the invoked method finished, the program counter returns back to

Q from R2. (R2, Q) is put into the NBPT where the state is S-LC and the R-bit is

set to 1.

(d) After the program counter left from Q and moved into R3, the corresponding entry

of Q should be updated. Note the condition of the arc from S-LC to S-HC is

 31

“sequential and I-bit=0”. Because the I-bit of (Q, R1) is 1, it will go along another

arc toward the NS-LC state.

(e) Consider the program counter entered Q again. Nothing has been changed yet if

they were not replaced out. Now the prefetch unit predicts R1 for the next block

because (Q, R1) is in the NBPT and in state NS-LC.

(f) The program counter entered R1 because of the method invocation. The state of (Q,

R1) became NS-HC from HS-LC since its next-block matched.

(g) Afterwards the program counter returned back to Q from R2, (R2, Q) became

NS-HC from S-LC since its next-block matched.

(h) The program counter left from Q and entered R3, (Q, R1) became NS-LC because

its next-block did not match. Note it will become NS-HC when the invocation

occurs again. After several iterations, the NBPT will be like (g) or (h) finally. The

state of (Q, R1) moves forth and back between NS-HC and NS-LC.

 32

Figure 3.8 NBPT: A trace of method invocation and return

Besides, we may issue an additional prefetch during method invocation and return.

This is because during invocation and return, it traps to software JVM to do some duties.

Then there would be a period of time for us to prefetch one block extra. See Figure 3.9 (b),

block A which has a invoke or return instruction is in method X(). The program counter will

transfer to block B which is in another method Y() after met the instruction and then enter C.

 33

Before entering B, it will trap to the software JVM to fix up frames, determine where B is,

and do some checks. Compare to traditional programs, these works have been done before

the call/return instruction, so a conventional processor is able to jump to the target address

directly. Thus, we may prefetch an additional block C during this period of time. For simply,

we can just speculate that block C is sequential to block B. See Figure 3.9 (a) as an example,

we prefetch block B1 and B2 when entering A2 from A1. At the entry of B3, we prefetch

block A2 as well as A3. Note that the software JVM may also produce misses, however, we

can still obtain some advantages.

Figure 3.9 Additional prefetch during method invocation and return

Case of Multiple Transition Targets

 Finally, we consider the case that the program counter may transfer from one block to

multiple target blocks. This is probably caused by a virtual method invocation, an indirect

 34

branch, or there are multiple branches in a block. Take Figure 3.10 (b) for example, if we

have 2 possible targets Rx and Ry, we would like to choose the most frequent one since our

NBPT only records one target. The selection mechanism is designed in the left part which is

circled in Figure 3.10 (a). See Figure 3.11, if (Q, Rx) appears frequently and (Q, Ry)

appears occasionally, NBPT will tend to select Rx. However, if (Q, Ry) continually occurs

twice, the next-block of the NBPT entry will be replaced by Ry. At this moment, Ry is

considered as the most frequent block.

Figure 3.10 NBPT: Case of multiple transition targets

Figure 3.11 NBPT: An example of selection between 2 candidates

 35

3.2 Array Prefetching

 Arrays in Java have some properties that not found in traditional programs. By taking

advantages of the observations, we can achieve better performance than traditional

prefetching approaches.

3.2.1 Observations

Loads and stores of different data types in traditional program code have the same

binary form. Hardware can not tell what data type a load/store instruction is associated to.

For example, hardware is difficult to determine a loaded data is a local variable, an array

element or an indirect pointer. Thus if we want to prefetch data based on their properties we

have to ask compiler’s assistance or instrument manually. For array prefetching in Java,

fortunately, JVM Specification [18] defines array access instructions that operate array only.

Thus, we can concentrate on array accesses and get rid of interferences from other data

types.

 Most C or C++ programmers prefer to visit an array via pointers to achieve better

performance. However, there is no pointer in Java but reference for substitution.

Programmers are disallowed to operate a Java reference arithmetically unlike pointer

operations. All accesses to certain object are always done through a fixed reference

necessarily. An array is an instance of object, so if a programmer wants to access an element

of an array, he must give the array reference and an index to the JVM. The JVM can then do

boundary check and calculate the actual address of the element. In this situation, the JVM

can know an access is associated to which array.

 The JVM specification claims that an array operation access data out of the array is

disallowed. If such condition occurs, the JVM will throw a

 36

java.lang.ArrayIndexOutOfBoundsExcetpion to stop further actions. Thus, the JVM has to

know the length of the array which is referenced.

 Figure 3.12 shows how an array structures in the Sun’s KVM implementation. Given

an array reference and an index, the JVM retrieves the length field first to check whether the

index lays in the array. Afterward the JVM calculates the array base from the reference.

Finally it can access the element by calculating

 element address = array base + element size × index .

Figure 3.12 The array structure in KVM

 In conclusion, we observed that:

a) Array accesses can be distinguished from other data types by the JVM or the

hardware accelerator.

b) The JVM or the hardware accelerator can determine which array an access is

associated to and know the array size during executing an array instruction.

3.2.2 Stride Table

 Having the advantageous information described in previous subsection, we can design

our array prefetching mechanism for Java. We construct a table, called stride table (ST) to

record accesses of each array. See Figure 3.13, a stride table is similar to the RPT design,

but an entry of the ST has following fields besides the valid bit:

 37

Figure 3.13 Stride table for Java

 Array base

The base address of an array. Since all array access should be done via the array

base, we can use it alternative to the program counter, for our tag to distinguish

from other arrays. Thus, one entry is associated to one array exactly.

 Previous offset

The distance of the address of previous access to the array base in bytes. This

field is calculated by element size × index.

 Stride

The difference of the addresses of last 2 accesses. If an entry is inserted at the first

time, this field is set to the element size initially, because most indexes of array

are increased by 1 every iteration in loops.

 State

ST adopts a 2-state design rather than 4 states in RPT as we will describe later.

 Trigger block

This field is optional and will be described in Subsection 3.2.4. In order to avoid

producing unnecessary prefetch signals and result in more unnecessary cache

checks, we can add this field. If the trigger block is enabled, a prefetch is

generated only when an access enters it.

 38

Because an entry will always be mapped to signal array, we may use a simpler 2-state

design rather than the conservative 4-state design of RPT. An entry in the ST has 2 possible

states shown in Figure 3.14:

Figure 3.14 The 2-state design of stride table

 Initial

If an entry is inserted at the first time, it would be set to this state initially. When

an irregular stride is detected, it will return back to this state for updating the

stride field. In this state, we may issue a tentative prefetch and disable the trigger

block.

 Steady

If the stride matches, it will go into this state. ST would issue a prefetch for next

element here. However, the prefetch signal may be filtered by the trigger block.

 Every time of an array access, its corresponding entry will be inserted or updated.

Furthermore, since the hardware can know the locations of where an array begins and ends,

we don’t need to insert an array when its entire body is inside a block as it is unnecessary to

be prefetched.

3.2.3 Stride-Adaptive Prefetching

 Different to RPT which always prefetches the data of next iteration, ST determines

 39

which block to be prefetched and how many blocks it should prefetch according to the

magnitude of stride. The index of current access is denoted by i, its associated element is

denoted by [i], and the block number of an element [j] is denoted by B([j]):

if |stride| ≦ H then // small stride, H is predefined

 if stride > 0 then

 prefetch(B([i])+1)

 Trigger_Block = B([i])+1

 else if stride < 0 then

 prefetch(B([i])-1)

 Trigger_Block = B([i])-1

 end if

else // large stride

 for k = 1 to Prefetch_Depth do

 prefetch(B([i+stride*k]))

 end

 Trigger_Block = B([i+stride*Prefetch_Depth])

end if

If the stride magnitude is smaller than or equal to a predefined value H, we prefetch the next

block. However, if the stride magnitude is larger, that means a block is needed only for a

shorter period, then another block is required. For this case, we can try to prefetch more

blocks at one time. But note that any unnecessary prefetch may make subsequent useful

prefetches be postponed.

The trigger block is updated to the last block of prefetching during prefetch signal

generation, we will describe it in Subsection 3.2.5.

 40

3.2.4 Array-Base-Tagging

 Array base is an alternative option to program counter for tagging entries. Stride table

uses array base for its entry tag. An array-base-tagged approach can be better than a

PC-tagged approach in some common cases of Java program:

a) One instruction may manipulate multiple arrays. For example, array utility methods,

multi-threaded codes, or more cases that many instances have their own arrays.

Their common feature is multiple arrays may share the same instruction.

b) Multiple instructions manipulate the same array, but there exists a constant stride

between them. Loop-unrolled code is an instance:

int[] a=new int[100], b=new int[100];

……

// copy b[] to a[]

for (int i=0; i<a.length; i+=4) {

 a[i] = b[i] ;

 a[i+1] = b[i+1] ;

 a[i+2] = b[i+2] ;

 a[i+3] = b[i+3] ;

}

In this case, a PC-tagged approach needs more entries to record an array.

3.2.5 Trigger Block

 41

 The trigger block field is optional; its purpose is to prevent unnecessary prefetches

from being generated. Although most unnecessary prefetches would be gated by cache or

buffer checks, however, they consume additional power and might make subsequent

prefetches a little delay if the cache or the buffer is in busy. If the trigger block is enabled

and an access does not enter it, any prefetch signal will not be produced. Our algorithm

always sets the trigger block to be the last prefetched block of an array.

Consider Figure 3.15 (a), when the program access an array element [i] in block A, the

prefetch unit tries to prefetch block B. Here we set the trigger block to be the last prefetched

block, namely, block B. When it accesses element [j] consecutively, the prefetch unit would

also try to prefetch block B. However, it is unnecessary since the block has been prefetched,

so will be gated by the trigger block. When an access [k] crosses onto the trigger block, a

prefetch for block C will be issued eventually (Figure 3.15 (c)). After the prefetch is issued,

the trigger block is also updated to be block C. If an irregular stride is detected, the trigger

block should be disabled.

Figure 3.15 Trigger block

 42

3.2.6 Circular Prefetching

 Consider a for loop in a loop as following:

while (k > 0) {

 ……

 for (int i=0; i<a.length; i++) {

 Read a[i]

 ……

 }

 ……

}

 When the index i approaches the array tail, the RPT will try to prefetch the data over

the array (Figure 3.16 (a)). However, since the hardware can know the array length, we can

avoid this situation by a simple comparison. Further, we may prefetch the head of the array

for the next entry of for as Figure 3.16 (b). This may gain some benefit for case that the for

loop is entered repeatedly.

Figure 3.16 Circular prefetching

 43

Chapter 4
Experiments and Results

 This chapter presents the experiments and results on 2 benchmark suites: Sun’s CLDC

HotSpot Implementation Evaluation Kit 1.0.1 and EEMBC’s GrinderBench 1.0. Section 4.1

introduces our environment setting for evaluations. Section 4.2 gives introductions of the

benchmarks. Section 4.3 presents some analysis on these benchmarks. Section 4.4 shows

the results of applying our prefetch mechanisms and compares them to the previous studies.

Section 4.5 analyzes memory traffics resulted by the related works and our designs.

4.1 Evaluation Environment

 We use the cycle parameters of Java Optimized Processor (JOP) [29] for the simulation

of hardware accelerator. JOP is an embedded Java processor implemented on FPGA. It has

4-stage pipeline and handles stack in the internal memory (Figure 4.1). Most bytecode are

translated to microcodes. A simple bytecode instruction can be mapped to single microcode;

however, a complex instruction must be synthesized by several microcodes. For bytecodes

not implemented by JOP, we trap to Sun’s KVM 1.1 on Intel x86 processor core for

software emulation. We use a 4k bytes data cache with 16 bytes per line; the prefetch buffer

is configured to be an 8-line fully associative cache. Average memory latency is set to 50

cycles.

 44

Figure 4.1 Datapath of JOP [24]

4.2 Benchmarks

 We use 2 CLDC benchmark suites for our evaluation. One is Sun’s CLDC HotSpot

Implementation Evaluation Kit (CLDC HI) version 1.0.1, the other is EEMBC’s

GrinderBench (GB) version 1.0 [9].

Sun’s CLDC HI Evaluation Kit 1.0.1 includes 4 benchmarks, following is their brief

descriptions:

 Richard

 Simulating the task dispatcher in the kernel of an operating system.

 Delta Blue

 Solving one-way constraint systems.

 Image Manipulation (Processing)

Reading an image file (Sun raster image format) and performs various transformations

on it, such as Sobel, threshold, 3x3 convolver, and so forth. After each transformation,

it compares the result with an expected result to confirm that the transformation was

done properly.

 45

 Queen

A solver of the n-queens problem, where the objective is to place n queens in a chess

board so that no queen can attack another. It is a classical problem used to illustrate

several techniques such as general search and backtracking.

EEMBC’s GrinderBench 1.0 [9] contains 5 benchmarks:

 Chess

It only performs the logical parts of a chess program, as no graphical output is available.

It plays a preset number of games with itself.

 Crypto

It contains multiple encrypt/decrypt engines. The following encryption engines are

exercised: DES, DESede, IDEA, Blowfish and Twofish.

 kXML

It processes a command script which specifies XML documents to parse and DOM tree

manipulations to do.

 Parallel

This benchmark is used to test the performance of KVM threading capabilities. It

accomplishes this by dividing computational tasks among several threads that must then

cooperate with each other to complete those tasks. Two parallel algorithms are used: a

merge-sort algorithm and a parallel matrix multiplication algorithm.

 PNG

PNG is the standard format for image representation in J2ME implementations. This

benchmark does the decoding of a PNG image, including decompression, and stores the

result internally as header info, color palette(s), and image data.

 46

4.3 Analysis on the Benchmarks

 In order to understand the properties of Java programs, we analyzed the benchmarks.

This section presents the experimental results: stall analysis, array stride analysis to each

benchmark.

4.3.1 Memory Stalls

 Figure 4.2 shows the stall time over the total execution time of each benchmark. In the

average of Sun’s CLDC HI benchmarks, it takes 15.9% execution time on stalls; In

EEMBC’s GrinderBench, average 25.7% execution time are spent on stalls. So it is worth

reducing memory stall time in order to speedup Java execution.

22.0%

34.5%

6.1%

1.1%

15.9%

24.3% 23.9%

27.3%

23.9%

28.8%

25.7%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Richard Delta Blue Image

Manip

Queen Ave.

CLDC HI

Chess Crypto kXML Parallel PNG Ave. GB

S
ta

ll
 t
im

e
/
ex

ec
ut

io
n

ti
m

e

Figure 4.2 Memory stall time over total execution time

 Now we consider the composition of stall time. Stall distribution depends on program

type. A computation-intensive program will often spend more time on bytecode stalls, such

 47

as Richard, Chess and kXML. An array-based program will usually have a larger proportion

of time spent on array stalls; Image Manipulation, Crypto and Parallel belong to this type.

On an average, stall time caused by bytecode misses and array misses take more than 50%

of total stall time.

37.6%
32.1%

18.0%
22.8%

27.6% 31.8%

44.5%

8.0%

26.3% 29.6%

2.3%
3.0%

65.0%
50.0%

30.1%
16.4%

32.9% 8.0%

46.3% 12.1%

23.1%

37.5%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Richard Delta

Blue

Image

Manip

Queen Ave.

CLDC HI

Chess Crypto kXML Parallel PNG Ave. GB

S
ta

ll
 t
im

e

Class o/t fields

Static fields

Instance header

Instance fields

Array

Bytecode

Figure 4.3 Stall distributions

4.3.2 Experiments on Bytecode

 As we have mentioned, because the complex instruction design and the high code

density of Java programs, there are more opportunities for bytecode prefetching than for

instructions of traditional embedded programs. See Figure 4.4, on an average, if we

eliminate all stalls, the number of stay cycles per bytecode block distributes from 30 to 40

cycles. If plus stalls, the average numbers of stay cycles of each benchmark are between 40

to 60 cycles.

 48

38.6

43.3
41.2

39.4 40.6

31.8

39.4

32.5

40.0

26.1

33.9

49.4

62.4

48.9

41.4

50.7
47.0

52.2

36.0

45.543.9 39.8

0

10

20

30

40

50

60

70

Richard Delta

Blue

Image

Manip

Queen Ave.

CLDC

HI

Chess Crypto kXML Parallel PNG Ave. GB

of

 c
yc

le
s

Eli. stalls

Plus stalls

Figure 4.4 Average stay time per bytecode block

 If a consecutively-fetched block pair is sequential, then we call it is a sequential cross;

otherwise, it is a non-sequential cross. Figure 4.5 shows the proportions of sequential

crosses and non-sequential crosses of each benchmark. On an average, sequential crosses

occupy around half of all crosses. Especially in Image Manipulation, the proportion of

sequential-crosses is up to 77.3%. Thus, we can apply sequential prefetching for most

blocks.

 49

27.2% 23.9%

77.3%

51.7%
45.0%

51.3%

68.9%

47.5%

66.2%

47.2%
56.2%

72.8% 76.1%

22.7%

48.3%
55.0%

48.7%

31.1%

52.5%

33.8%

52.8%
43.8%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Richard Delta

Blue

Image

Manip

Queen Ave.

CLDC

HI

Chess Crypto kXML Parallel PNG Ave.

GB

Non-sequential%

Sequential%

Figure 4.5 Sequential strength of bytecode

4.3.3 Stride Distributions of Arrays

 We may concern with what size the stride field of a stride table is needed, or

concentrating on what magnitudes of stride would be effective sufficiently if we want to

simplify our design. The stride distributions of each benchmark are shown in Figure 4.6.

The x axis is the absolute values of strides in bytes; the y axis represents the accumulating

proportion of strides. Most magnitudes of strides of the benchmarks are less than or equal to

4 bytes. That is, if our prefetching works for strides less than or equal to 4 bytes, it works

for more than 90% of strides.

 50

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 4 8 16 32 64 1024

| stride |

Richard

Delta Blue

Image Manip

Queen

Chess

Crypto

kXML

Parallel

PNG

Average

Figure 4.6 Stride distributions of arrays

4.4 Results of Prefetching

 In order to evaluate effects of prefetching, we define the remaining stall ratio (RSR).

Remaining stall ratio(certain data) =

For example:

Remaining stall ratio(bytecode) =

4.4.1 Prefetching for Bytecode

 Firstly, we discuss the size of NLPT and its effects. See Figure 4.7, the x axis

represents the number of entries of NLPT and the y axis represents the remaining stall ratio

of bytecode. The left-most points of each benchmark are RSR(bytecode)s of sequential

 51

prefetching only. As the table size grows, the RSR(bytecode)s degrade but slightly in most

benchmarks. It even has no effect for Queen and gets worse than sequential prefetching for

Parallel.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Seq 1 2 4 8 16 32 64 128 256

of NLPT entries

R
S
R

(b
yt

ec
od

e)

Richard

Delta Blue

Image Manip

Queen

Chess

Crypto

kXML

Parallel

PNG

Average

Figure 4.7 RSR(bytecode)s to the sizes of NLPT

 Now we see how NBPT performs. See Figure 4.8, we can see that the RSR(bytecode)s

start to degrade slowly when the NBPT is larger than 8 to 16 entries. For Queen and PNG,

NBPT introduces good stall reductions.

 52

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Seq 1 2 4 8 16 32 64 128 256

of NBPT entries

R
S
R

(b
yt

ec
od

e)
Richard

Delta Blue

Image Manip

Queen

Chess

Crypto

kXML

Parallel

PNG

Average

Figure 4.8 RSR(bytecode)s to the sizes of NBPT

 In Figure 4.9, we pick the 16-entry NBPT, compare to a 16-entry NLPT and sequential

prefetching. When we add a table to record non-sequential crosses rather than sequential

prefetching, we can improve the prefetching further. If we adopt NBPT for Java bytecode

prefetching, we can obtain better performance than NLPT, especially for Queen and PNG.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Richard Delta

Blue

Image

Manip

Queen Ave.

CLDC

HI

Chess Crypto kXML Parallel PNG Ave.

GB

Ave.

Total

R
S
R

(b
yt

ec
od

e)

Sequential

NLPT-16

NBPT-16

Figure 4.9 A comparison of RSR(bytecode)

 53

4.4.2 Reference Prediction Table for Data Prefetching

 Following discusses the effects of reference prediction table(RPT) which for data

prefetching. RPT records all load/store instructions, including instance-field accesses,

static-field accesses and array accesses. However, our simulations show RPT is only

effective for instance-field accesses in some special programs and doesn’t have any

improvement for static-field accesses. Figure 4.10 shows a 128-entry RPT and its effects for

instance fields. Sometimes there are strides between instance-field accesses as indicated in

[32]. This property is obvious in Delta Blue, as a result, RPT also introduces a good stall

reduction for it. But strides between instances are uncommon in most programs, so RPT

usually cannot effectively eliminate the stalls of instance-field accesses.

RSR(InstanceField)s of 128-entry RPT

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Richard Delta Blue Image

Manip

Queen Ave.

CLDC HI

Chess Crypto kXML Parallel PNG Ave. GB

R
S
R

(I
ns

ta
nc

eF
ie

ld
)

Figure 4.10 RSR(InstanceField)s of 128-entry RPT

 Figure 4.11 shows the RSR(array)s to the sizes of RPT. We can see RPT performs well

for array prefetching, especially for Delta Blue, kXML and PNG.

 54

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 128

of RPT entries

R
S
R

(a
rr

ay
)

Richard

Delta Blue

Image Manip

Queen

Chess

Crypto

kXML

Parallel

PNG

Average

Figure 4.11 RSR(array)s to the sizes of RPT

 A possible variation of RPT is, letting RPT only record array instructions since it is

usually not effective for other data types. Figure 4.12 shows the effects for array data of the

array-only RPT design; Figure 4.13 depicts the average RSR(array)s of original RPTs and

array-only RPTs together. Because instructions of other data types occupy spaces in the RPT,

unsurprisedly, a small-size array-only RPT performs better than an original RPT which has

the same number of entries. However, if we are able to provide a larger size for RPT, their

effects will be very close.

 55

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 128

of RPT entries

R
S
R

(a
rr

ay
)

Richard

Delta Blue

Image Manip

Queen

Chess

Crypto

kXML

Parallel

PNG

Average

Figure 4.12 RSR(array)s to the sizes of RPT

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 128

of RPT entries

R
S
R

(a
rr

ay
)

Original

Array-only

Figure 4.13 Average RSR(arrays)s of original RPTs and array-only RPTs

4.4.3 Stride Table for Array Prefetching

 Firstly, we may care about what values of the predefined H and the prefetch depth of

ST should be. These 2 variables very highly depend on individual program. We may profile

 56

a program offline and embed the appropriate settings into its classfiles. However, we could

try to find the appropriate values for most programs by experiments. Figure 4.14 shows the

average RSR(array)s of all benchmarks by using 8-entry STs. We can see when the H and

the prefetch depth both equal to 2, the average RSR(array) would be the minimum. Now we

apply H=2 and prefetch depth=2 to each benchmarks and compare the result to their optimal

configurations. See Table 4.1, the differences of RSR(array)s between the recommended

configurations and their optimal configurations are less than 1.1%. So we usually can

already get good effects when using H=2 and prefetch depth=2 in comparison to using their

individual optimal configurations. Nevertheless, note the appropriate values of these 2

variables may highly depend on the platform.

1
2

4
8

1

2

4

8

16

72.6%

70.0%

70.5%

71.0%

71.5%

72.0%

72.5%

73.0%

73.5%

74.0%

R
S
R

(a
rr

ay
)

Prefetch depth

H

Figure 4.14 Results of configurations of H and prefetch depth in ST

 57

Benchmark Richard Delta Blue
Image

Manipulation
Queen

Optimal (H, prefetch depth) (8, 1) (1, 1) (16, 1) (2, 8)

Optimal RSR(array) 97.544% 49.493% 51.574% 78.921%

RSR(array)

when (H=2, prefetch depth=2)
97.545% 49.667% 51.898% 79.985%

Difference 0.001% 0.174% 0.324% 1.064%

Benchmark Chess Crypto kXML Parallel PNG

Optimal (H, prefetch depth) (1, 8) (2, 2) (2, 2) (2, 1) (1, 1)

Optimal RSR(array) 78.002% 77.257% 43.528% 83.171% 90.905%

RSR(array)

when (H=2, prefetch depth=2)
78.687% 77.257% 43.528% 83.260% 91.838%

Difference 0.685% 0% 0% 0.089% 0.933%

Table 4.1 RSR(array) differences between

using the recommended H and prefetch depth, and their optimal configurations

 Now we may want to know what size a stride table should be. Figure 4.15 shows that

the average RSR(array) almost doesn’t degrade if the stride table is larger than 8 or 16

entries. So a stride table has 8 to 16 entries is usually sufficient for most embedded Java

programs.

 58

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 128

of entries

R
S
R

(a
rr

ay
)

Richard

Delta Blue

Image Manip

Queen

Chess

Crypto

kXML

Parallel

PNG

Average

Figure 4.15 RSR(array)s to the sizes of ST

 If we use program counter for tagging, we can see the performance of prefetching

almost doesn’t promote after a 32-entry stride table (Figure 4.16).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 128

of ST(PC) entries

R
S
R

(a
rr

ay
)

Richard

Delta Blue

Image Manip

Queen

Chess

Crypto

kXML

Parallel

PNG

Average

Figure 4.16 RSR(array)s to the sizes of PC-tagged ST

 Then we compare the array-base-tagged ST and the PC-tagged ST, the simulation

 59

result is shown in Figure 4.17. In the condition of the same number of entries, an

array-base-tagged ST usually has a lower RSR(array) than a PC-tagged ST. The possible

reason we have discussed in Subsection 3.2.4. However, if most strides appear only in

individual instruction but not arrays, a PC-tagged ST will be better than an

array-base-tagged ST, such as Richard, Parallel and PNG.

ST(both)-256 is a 256-entry ST but tagged by both PC and array base. Both-tagging

can eliminate the interferences of several instructions or several arrays to an entry. However,

it can only perform better than PC-tagging and array-base-tagging slightly for Richard and

Delta Blue. This is maybe because an entry of both-tagged ST needs longer time to get a

stable stride.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Richard Delta

Blue

Image

Manip

Queen Ave.

CLDC

HI

Chess Crypto kXML Parallel PNG Ave.

GB

R
S
R

(a
rr

ay
)

ST(PC)-16

ST(base)-16

ST(both)-256

Figure 4.17 Comparison of tagging approaches for ST

.

 In following we compare the efficiencies of ST to array-only RPT. As Figure 4.18, ST

usually obtains better array stall reductions than RPT for Java programs, especially for

Queen, Crypto and kXML.

 60

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Richard Delta

Blue

Image

Manip

Queen Ave.

CLDC

HI

Chess Crypto kXML Parallel PNG Ave.

GB

Ave.

Total

R
S
R

(a
rr

ay
)

RPT-16

ST-16

Figure 4.18 Comparisons of ST and array-only RPT

 Figure 4.19 presents the effects of each design idea of ST. The bars of “Array-base” are

RSR(array)s of RPT but adopting array-base-tagging and our 2-state design. We can see

array-base-tagging is effective for Queen and Crypto, although it is a little bad for Delta

Blue, Chess and PNG. The bars of “Base+S” are RSR(array)s when using

array-base-tagging plus stride-adaptive prefetching. The stride-adaptive approach is much

effective for Chess and kXML, but gets worse for Richard, Crypto and PNG. “Base+S+C”

is base-tagging plus stride-adaptive prefetching and circular prefetching; that is, our final ST

design. The results show circular prefetching slightly improves the performance of

prefetching. But note that no design absolutely suits every case and sometime may result in

negative effects.

 61

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Richard Delta

Blue

Image

Manip

Queen Ave.

CLDC

HI

Chess Crypto kXML Parallel PNG Ave.

GB

Ave.

Total

R
S

R
(a

rr
ay

) RPT

Array-base

Base+S

Base+S+C

Figure 4.19 Effects of each design idea of ST

 In conclusion, our design can achieve better performance for array prefetching than

RPT. On an average, ST is 6% better for Sun’s CLDC HI and 8% better for EEMBC’s

GrinderBench than RPT in RSR(array).

 Finally, Figure 4.20 shows the fractions of unnecessary prefetch signals that can be

eliminated by trigger-block. The trigger-block design eliminates more than 50% of

unnecessary signals for Image Manipulation, kXML and PNG; 17.2% for Sun’s CLDC HI

and 33.9% for EEMBC’s GrinderBench in average.

 62

0.4%

15.1%

52.2%

1.3%

17.2%
20.3% 18.1%

63.5%

13.8%

53.7%

33.9%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Richard Delta Blue Image

Manip

Queen Ave.

CLDC HI

Chess Crypto kXML Parallel PNG Ave. GB

E
li

m
in

at
ed

 b
y

tr
ig

ge
r-

bl
oc

k
%

Figure 4.20 Effects of trigger-block

4.5 Analysis of Memory Traffic

 Besides stall reduction, another issue we may concern with is memory traffic. Useless

prefetches will produce additional traffics.

Firstly, we define some terms. A true miss is a memory request where the data accessed

is not found either in the cache or in the prefetch buffer. If a prefetched block is really

required and submitted into the cache, we call the prefetch a useful prefetch; otherwise, it is

called an unused prefetch. An unused prefetch is never needed before being replaced out

from the prefetch buffer. The memory traffic caused by bytecode fetches or prefetches is

called bytecode traffic; the array traffic is similar.

4.5.1 Bytecode Traffic

 We compare the bytecode traffics of the sequential prefetching, a 16-entry NLPT and a

16-entry NBPT. The bytecode traffic without prefetching is normalized to 100%. Their

 63

traffics are shown in Figure 4.21, as well as the traffics resulted by useful prefetches (U.P)

only. The fractions larger than 100% are caused by unused prefetches and the rests are true

misses. As we see, the traffic resulted by the 16-entry NBPT is a little larger than the

16-entry NLPT in some benchmarks, but no more than the sequential prefetching. However,

the useful prefetches produced by the NBPT-16 are more than both the NLPT-16 and the

sequential prefetching in average, especially for Queen and PNG. So despite of including

the effects of unused prefetches, the performance of NBPT is still better than NLPT.

0%

20%

40%

60%

80%

100%

120%

140%

160%

Richard Delta

Blue

Image

Manip

Queen Ave.

CLDC

HI

Chess Crypto kXML Parallel PNG Ave.

GB

B
yt

ec
od

e
T

ra
ff

ic
 R

at
io

Sequential

Sequential U.P.

NLPT-16

NLPT-16 U.P.

NBPT-16

NBPT-16 U.P.

Figure 4.21 Bytecode traffic

4.5.2 Array Traffic

 Similarly, we compare the array traffics of a 16-entry RPT and a 16-entry ST. See

Figure 4.22, 100% are the array traffics without prefetching. We can find the RPT design

results in almost no additional traffic. This is because RPT is very conservative and only

prefetch with high confidence. ST does prefetch a little earlier than RPT, and also issues

more tentative prefetches. However, ST can issue more useful prefetches, especially for

 64

Queen, Chess, Crypto and KXML, to achieve more stall reductions. So if the prefetch buffer

is absent or the contention is significant, the conservative policy of RPT is worth of being

used or we can just disable the tentative prefetches of ST; otherwise, the aggressive policy

of ST can provide a better performance. A possible variation will be described in Subsection

5.2.2.

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

Richard Delta

Blue

Image

Manip

Queen Ave.

CLDC

HI

Chess Crypto kXML Parallel PNG Ave.

GB

A
rr

ay
 T

ra
ff

ic
 R

at
io

RPT-16

RPT-16 U.P.

ST-16

ST-16 U.P.

Figure 4.22 Array traffic

 65

Chapter 5
Conclusion and Future Works

 This chapter includes the conclusion and the discussions of some future works in

Section 5.1 and 5.2, respectively.

5.1 Conclusion

 As the continuously growing of multimedia applications, the requirement of memory is

increasing because of their large amount of code and data. This problem also exists in

embedded devices. In order to reduce memory stall time and speedup execution, prefetching

is a feasible solution. We studied bytecode and array prefetching approaches for Java

hardware accelerators. Because there are usually more small method invocations in a Java

program, NBPT has some subtle designs to handle them. Strides exist between array

accesses, we indicated using array-base to tag stride entries is an alternative approach to

PC-tagging for Java. By cooperating to our 2-state design and stride-adaptive algorithm, it

performs better than the PC-tagged RPT. We also had some analysis on Sun’s CLDC HI and

EEMBC’s GrinderBench benchmarks. On an average, NBPT can reduce 40% of time spent

on bytecode stalls. The ST design can reduce 25% of array stall time; for some array-based

programs, around 50% of array stall time is eliminated.

We can try to apply our mechanisms to mixed-mode JVMs in advanced environments.

A mixed-mode JVM has a selective JIT compiler. It detects hotspots in running Java

programs, and compiles them into machine code dynamically. For non-compiled code, it

 66

still executes them by interpretation. A hardware accelerator can also be used to accelerate

the interpretation.

5.2 Future Works

 This section includes some possible variations and applications of our mechanisms,

and future study directions.

5.2.1 Prefetching More Bytecode Blocks at a Time

 Note that NBPT only makes a prediction for the next continuously-fetched block. In

case of shorter memory latency, it’s adequate that we issue prefetch for the next block.

However, if the memory latency is longer or the accelerator is improved further, the arrival

time of our prefetched block may be too late to hide the memory stall. Thus we may want to

initiate the prefetch earlier.

 For simply, suppose we have a block sequence … A, B, C…, where B is in the cache

and we merely have to prefetch block C. If the memory latency is not too long, we can

initiate the prefetch of C when entering B as Figure 5.1 (a). However, if the memory latency

is longer, our prefetch for C would arrive too late, so that there is still a period of stall does

not be hided (Figure 5.1 (b)). Thus we may want to issue the prefetch for C earlier, for

example, at the entry of A (Figure 5.1 (c)). In this case, we may assume that block B is

already in cache or has been prefetched, or also try to prefetch B and let C be a little

postponed. Note that since all prefetches will check the cache and the prefetch buffer before

being really issued out to the memory, the prefetches for blocks present in the cache or the

buffer won’t degrade the performance of prefetching too much.

 To predict C, we can have 2 different policies. One is looking up the NBPT only once

 67

for B and assume (B, C) is sequential, in other words, our prediction is NBPT[A]+1. The

other is looking up the NBPT twice continuously, make a prediction for B and then for C,

i.e., predict NBPT[NBPT[A]] for C.

Figure 5.1 Timing issue of bytecode prefetching

(a) Short memory latency (b) Prefetch too late (c) Prefetch earlier

 More generally, if the program counter is on block A currently and we want to prefetch

certain block B which is n blocks later. Suppose the accuracy of NBPT prediction for one

later block is p, the accuracy of sequential prediction for next block is q, and the accuracy of

our prediction for B denoted by r. We can have 2 policies:

 Single lookup of NBPT

We only look up the NBPT once and assume the followings are sequential. That is,

our prediction

 bs = NBPT[A] + (n-1)

 68

 Thus the accuracy of our prediction

 rs = p．qn-1

 In this case, the prediction could be obtained instantly after the lookup.

 Multiple lookups of NBPT

 We look up the NBPT repeatedly. Our prediction is

 bm = NBPT[NBPT[… NBPT[A] …]] = NBPTn[A]

 And its accuracy

 rm = pn

 In this case, the prediction will be known after n lookups.

Note that both rs and rm are exponential functions of n and usually diminish quickly, so it is

only effective if a small n and the prediction is very accurate. In case that we didn’t predict

correctly and prefetched a block not required, the arrival time of useful prefetches will be

delayed; or even some useful prefetches already in the buffer are discarded.

 For processors that have less memory latency, prefetching several possible paths into

the buffer may be a possible implementation.

5.2.2 Adaptive Mechanisms

 As we have described in Subsection 2.2.4. If the contention on timing or prefetch

buffer is slight, we can issue more tentative prefetches; otherwise, we may deteriorate the

contention and degrade the performance of prefetching. Thus, we can switch between

conservative or aggressive policies by monitoring contentions. Or we may track the

utilization of tentative prefetches to decide what policy we should select. If the utilization of

tentative prefetches is low, we may change to use a conservative policy and issue less

tentative prefetches to keep a fine work.

 In another aspect, some design idea may not suit certain applications. We may develop

 69

some detection mechanisms to collect program behavior, to choose a suitable algorithm or

enable/disable unsuitable prefetch mechanisms.

5.2.3 Prefetching for Other Data Types

 Subsection 2.1.2 lists several data types; however, our prefetching mechanisms only

focus on bytecode and array data. The other data types are:

 Instance headers

 Instance fields

 Static fields

 Class structures other than fields

Instance fields and static fields have specific instructions associate to. The data belong

to these 2 types usually distribute on the heap randomly and have less regularity. Stalls

caused by static field accesses are relative fewer, so perhaps we don’t need to prefetch them.

Stalls caused by instance field accesses, however, will take a large proportion in

instance-based programs. For example, Delta Blue, Chess and PNG will visit plenty of

instances during traversals of linked structures. Some researchers try to find compiler

solutions by some complex analysis [13, 32], but their approaches have some strict

restrictions. So it is still a difficult problem until today because of the huge amount of

instances. Instance headers and classes structures other than fields are usually accessed

implicitly. The difficulty of prefetching instance headers is the same as instance fields. Class

structures are relative large structures, a class structure usually occupies several blocks. The

regularities of their accesses are unobvious and difficult to catch. [1] proposed a

JIT-compiler approach, by analyzing object metadata and the aid of a hardware monitor for

misses, to inject prefetch instructions into compiled code.

In the future, we may dynamically profile these data types by hardware and launch a

 70

software analyzer to analyze them. By co-working of hardware and software, similar to [1],

perhaps there will be more chances for dynamic prefetching.

5.2.4 Next-Block Prediction for Low Power Caches

 The prediction approaches of our designs can also be used to other fields. For example,

line-decayed cache [16] and drowsy cache [10] are designed to reduce leakage power of

cache. Our prediction approaches may be applied to prefetch data from the next-level cache

into a decayed cache line, or pre-activate cache lines for a drowsy cache, so that the

performance will not degrade too much in a low-power cache.

 71

References

[1] A. Adl-Tabatabai et al, “Prefetch Injection Based on Hardware Monitoring and Object

Metadata.” In Proceedings of the ACM SIGPLAN 2004 conference on Programming

language design and implementation, pp. 267-276, 2004.

[2] aJile, “aj-100 Real-time Low Power Java Processor.” Preliminary data sheet, 2000.

[3] ARM Jazelle, http://www.arm.com/products/esd/jazelle_home.html

[4] ARM, “Jazelle DBX Technology: ARM Acceleration Technology for Java Platform,”

Jazelle DBX white paper, 2005.

[5] J.-L. Bare and T.-F Chen, “An Effective On-chip Preloading Scheme to reduce Data

Access Penalty.” In Proceedings of the 1991 ACM/IEEE Conference on

Supercomputing, pp.176-186, Nov, 1991.

[6] T.-F. Chen and J.-L. Baer, “Effective Hardware-Based Data Prefetching for

High-Performance Processors.” In IEEE Transitions on Computers, Vol. 44, No. 5,

May 1995.

[7] T. Cramer, R. Friedman, T. Miller, D. Seberger, R. Wilson, M. Wolczko, “Compiling

Java Just In Time.” In IEEE Micro, pp. 36-43, 1997.

[8] M. W. El-Kharashi and F. Elguibaly, “Java Microprocessors: Computer Architecture

Implicants.” In IEEE Communications, Computers and Signal Processing, Vol. 1, pp.

277-280, 1997.

[9] EEMBC’s GrinderBench, http://www.grinderbench.com/

[10] K. Flautner and et al, “Drowsy Caches: Simple Techniques for Reducing Leakage

Power.” In Proceedings of the 29th Annual International Symposium on Computer

Architecture (ISCA’02), pp. 148-157, 2002.

[11] John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative

 72

Approach 3ed, Morgan Kaufmann Publishers, 2003.

[12] W.-C. Hsu and J. E. Smith, “A Performance Study of Instruction Cache Prefetching

Methods.” In IEEE Transitions on Computers, Vol. 47, No. 5, pp. 497-508, May 1998.

[13] T. Inagaki et al, “Stride Prefetching by Dynamically Inspecting Objects.” In

Proceedings of the ACM SIGPLAN 2003 conference on Programming language

design and implementation, pp. 269-277, Jun 2003.

[14] N. P. Jouppi, “Improving direct-mapped cache performance by the addition of a small

fully-associative cache and prefetch buffers.” In Proceedings of the 17th annual

international symposium on Computer Architecture, Vol 18, Issue 3a, pp. 364-373,

1990.

[15] T. Kistler and M. Franz, “Automated data-member layout of heap objects to improve

memory-hierarchy performance.” In ACM Transactions on Programming Languages

and Systems, Vol. 22, Issue 3, pp. 490-505, Oct 2000.

[16] S. Kaxiras and et al, “Cache-line Decay: A Mechanism to Reduce Cache Leakage

Power.” In IEEE Workshop on Power Aware Computer Systems 2000, pp. 82-96,

2000.

[17] F. Li, P. Agrawal, G. Eberhardt, E. Manavoglu, S. Ugurel, and M. Kandemir,

“Improving Memory Performance of Embedded Java Applications by Dynamic

Layout Modifications.” In Preceeding of the 18th International Parallel and

Distributed Processing Symoisium, pp. 159-166, 2004.

[18] T. Lintholm and F. Yellin, The Java Virtual Machine Specification 2ed, Sun

Microsystems, 1999.

[19] J. M. O’Connor and M. Tremblay, “picoJava-I: The Java Virtual Machine In

Hardware.” In IEEE Micro, pp. 45-53, 1997.

[20] T.A. Proebsting et al., "Toba: Java for Applications. A Way Ahead of Time (WAT)

Compiler." In Proc. 3rd USENIX Conference on Object-Oriented Technologies and

 73

Systems (COOTS), pp. 41-53, 1997.

[21] S. Rubin, R. Bodik, and T. Chilimbi, “An Efficient Profile-Analysis Framework for

Data-Layout Optimizations.” In Proceedings of the 29th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, Vol. 37, Issue 1, pp.140-153,

Jan 2002.

[22] R. Riggs, A. Taivalsaari, and M. VandenBrink, Programming Wireless Devices with

the Java 2 Platform, Micro Edition, Pearson Education, 2001.

[23] M. Schoeberl, “JOP: A Optimized Java Processor.” In On The Move to Meaningful

Internet Systems 2003: OTM 2003Workshops, pp. 346-359, 2003.

[24] M. Schoeberl, “Evaluation of a Java Processor,” In Tagungsband Austrochip 2005.

[25] Sun Microelectronics, “picoJava-I Microprocessor Core Architecture,” white paper,

1996.

[26] Sun Microsystems, “picoJava-II: Java Processor Core,” write paper, 1997.

[27] Sun Microsystems, Java Technology, http://java.sun.com/

[28] H. Tomiyama and H. Yasurra, “Code placement techniques for cache miss rate

reduction.” In ACM Transactions on Design Automation of Electronic Systems, Vol. 2,

Issue 4, pp. 410-429, 1997.

[29] Y. Y. Tan et al, “Design and implementation of a Java processor.” In Computers and

Digital Techniques, IEE Proceedings, Vol. 153, Issue 1, pp. 20-30, Jan 2006.

[30] S. P. Vanderwiel and D. J. Lilja, “Data Prefetch Mechanisms.” In ACM Computing

Surveys, Vol. 32, No. 2, Jun 2000.

[31] T. Y. Yeh and Y. N. Patt, “A Comprehensive Instruction Fetch Mechanism for a

Processor Supporting Speculative Instruction.” In Microarchitecture, 1992. MICRO

25., Proceedings of the 25th Annual International Symposium, pp. 129-139, 1992.

[32] Y. Wu, “Efficient discovery of regular stride patterns in irregular programs and its use

in compiler prefetching.” In Proceedings of the ACM SIGPLAN 2002 Conference on

 74

Programming language design and implementation, pp. 210-221, 2002.

