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Abstract

Ordered arrays of carbon nanotubes (CNTs) and titanium oxide (TiO,) nanodots
have been successfully prepared by using the nanoporous anodic aluminum oxide (AAO)
films as templates. Nanoporous AAO templates with hexagonal pore arrangement were
prepared by the two-step anodization of aluminum films. Highly aligned CNTs were
grown in vertical channels ~of' the AAQ template by microwave plasma electron
cyclotron resonance chemical vapor deposition (ECR-CVD). The segments of CNTs
stretching out of the AAO nanopores still maintain relatively good alignment, and have
a very slow growth rate, which allows us to obtain reproducible tube length by tuning
the growth time. Field emission measurements of the CNTs showed good electron
emission properties, attributed to their uniformity in size, good alignment, and good
graphitization properties. We have also demonstrated that the tube number density of
aligned CNTs grown over the AAO template can be directly controlled by adjusting the
CHy:H; feed ratio during the CNT growth. We ascribe the variation of the tube density
as a function of the CH4:H, feed ratio to the kinetic competition between outgrowth of
CNTs from the AAO pore bottom and deposition of the amorphous carbon overlayer on
the AAO template. A pore-filling ratio of 18 to 82% for the nanotubes overgrown out of
nanopores on the AAO template can be easily achieved by adjusting the CH4:H, feed
ratio. Enhanced field emission properties of CNTs were obtained by lowering the tube
density on AAO. However, at a high CH4 concentration, amorphous carbon byproduct
deposit on the CNT surface can degrade the field emission property due to a high energy

barrier and significant potential drop at the emission site.
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Highly ordered nanodot arrays of TiO, were prepared from AI/TiN films on the
silicon substrate by electrochemical anodization of a TiN layer using a nanoporous
AAO film as the template. The arrangement and shape of the nanodots are in
accordance with the nanopores of the AAO template. The size of the nanodots can be
varied over a wide range (ten to several hundred nanometers) because the diameter of
the AAO nanopores is dependent upon anodization parameters. The size uniformity and
surface smoothness of the TiO, nanodots can be further improved by anodization of an
epitaxial AI/TIN film stack on a sapphire substrate. The phase development of the
isolated TiO, nanodots is very much different from TiO; thin films and powders. After
high temperature annealing, the nanodots are polycrystalline and consist of a mixed
phase of anatase and rutile instead of single rutile phase. We conclude that TiO,
nanodots with a single phase of anatase can be realized as long as the size of the
nanodots is smaller than the critical nuclei size for rutile formation. Using this novel
approach, it is expected that nanodot arrays of various oxide semiconductors can be
achieved. Furthermore, a field emissionstriode device using the self-organized nanodot
arrays as electron emission source was proposed and fabricated. The field emission
triodes with nanodot emitters. exhibited a low gate turn-on voltage of 45 V and high
emission current density of 25 mA/em? at 120 V, The desirable electric properties and
easily controllable fabrications proeess of the -nanodot triodes show potential for

application in field emission displays(FEDs) and vacuum microelectronics.
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List of Symbols

U.: oxide/electrolyte interfacial speed

Un: metal/oxide interfacial speed

a,: faradaic coefficient

p1: faradaic coefficient

y1: faradaic coefficient

A1 kinetic constant

Bj: kinetic constant

kq: kinetic constant

ko: kinetic constant

E.: electric field strength at the oxide/electrolyte interface
E.: electric field strength at the metal/oxide interface
Ey: base state electric field

Vo: applied voltage for aluminiim anodization
D,: aluminum oxide thickness

R: AAO pore radius

Ro: AAO pore radius extrapolatedto pH =0
k: a function of ko, kq, a1, f1, and y;

Ag: decrease in barrier height

@: work function

E: applied electric field

q: electron charge

€o: permittivity of free space

J: field-emission current density

A: 1.54x10"° (AV? eV)

B: 6.83x10° (V eV m™)

y: 3.7947x10°E"/¢

I: field emission current

V. applied voltage

o: emitting area

p: local field enhancement factor at the emitting surface
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d: distance between cathode and anode

S slope of the F-N plot

B magnetic field

re: cyclotron radius for electron orbiting in a magnetic field
: microwave angular frequency

m.: mass of electron

e: electron charge

Ve: electron velocity component perpendicular to By,
Ry: average metal grain radius

t: time

I': a temperature-dependent parameter

Eo: turn-on electric field

Eoc: effective local electric field at the emitter tip
R:: radius of a free-standing emitter tip

&: a geometric factor with a value between d.and 5
h: effective barrier height

w: effective barrier width

Ra: mean roughness

y: surface free energy

f: surface stress

G: Gibbs free energy

AG®: change of the molar standard free energy
AG°: standard free energy of formation

€: ratio of surface stress to surface free energy

M: molecular weight

D: average diameter of nanoparticles

p: density

T: temperature
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