
 

   

國 立 交 通 大 學 
 

資訊科學與工程研究所 
 

碩 士 論 文 
 

 

 

 

繪圖處理器中分庫材質快取記憶體之設計 

 

Design of a Banked Texture Cache for Graphic Processing 

Unit 
 
 
 
 
 

研 究 生：康 哲 瑋 

指導教授：單 智 君 博士 

 

 

 

 

 

 

 

中 華 民 國 九 十 六 年 八 月



 

   

繪圖處理器中分庫材質快取記憶體之設計 

Design of a Banked Texture Cache for Graphic Processing 

Unit 

 

研 究 生：康 哲 瑋      Student：Che-Wei Kang 

指導教授：單 智 君  博士     Advisor：Dr. Jyh-Jiun Shann 

 
 
 

國 立 交 通 大 學 
資 訊 科 學 與 工 程 研 究 所 

碩 士 論 文 
 
 
 

A Thesis 
Submitted to Institute of Computer Science and Engineering  

College of Computer Science 
National Chiao Tung University 

in Partial Fulfillment of the Requirements 
for the Degree of 

Master 
In 
 

Computer Science  
 

Auguest 2007 
 

Hsinchu, Taiwan, Republic of China 
 
 

中華民國 九十六 年 八 月



 

   

 
 
 
 



 

   



 

   

 



 

  I 

繪圖處理器中分庫材質快取記憶體之設計 

 
學生：康哲瑋          指導教授：單智君 博士 

 
國立交通大學資訊科學與工程研究所 碩士班 

 

摘  要 

 
    在現今繪圖處理器中，材質過濾器演算法需要多個紋素(材質上的最小單位)去混色

出最後顯示在螢幕的顏色。由於這些紋素在材質快取記憶體可能散在數個區段中或是分

散在同一個區段中不連續的位子。這樣的情形使得完成一次過材質過濾可能要多次存取

材質快取記憶體，讓整體處理時間變長。然而多次的快取記憶體存取間接也造成動態電

力的消耗提高。在此篇論文我們提出了分庫的材質快取記憶體設計，利用雙向性過濾演

算法以及材質擺放的特性下去設計。我們提出兩種資料庫的設計，分別是插敘資料庫和

連續資料庫。此外我們也設計分庫標籤，以降低每次存取需要多筆標籤比對的代價。我

們的設計可以讓做雙向性處理時，只需要去材質快取記憶體存取一次即可拿到所需的紋

素。跟寬的匯流排設計比較，在畫面解析度為1280×1024下，分庫的材質快取記憶體減

少大約50%的快取記憶體存取次數。由於存取的次數減少，兩種分庫設計分別減少大約

44%以50%的材質快取記憶體的動態電力消耗。 



 

  II

Design of a Banked Texture Cache for Graphic Processing 

Unit 
 

Student：Che-Wei Kang       Advisor：Dr. Jyh-Jiun Shann 
 

Institute of Computer Science and Engineering  
National Chiao-Tung University 

 

Abstract 

 
In modern Graphic Processing Unit (GPU), texture filter needs several texels (element of 

texture) to compute the final color in screen. The requested texels of texture filtering may be 

in different cache lines or discontinuous position of a cache line. This makes finishing one 

filtering may have to access texture multiple times. Multiple cache access causes the process 

time longer. However, multiple cache access also causes the dissipation of access power high. 

At this thesis, we proposed a banked texture cache which is according to bilinear filtering and 

texture placement. We design two kinds of data bank. The two kinds of data bank are 

interleaved data bank and continuous data bank. And we also design tag bank to reduce the 

cost of multiple tag comparison. The banked texture cache can fetch the requested texels of 

bilinear filtering in one cache access. Compare with wide bus design, banked texture cache 

can reduce 50% of cache access times. The access energy of two kinds of texture cache are 

reduced by 44% and 50% with 1280×1024 resolution due to less cache access times. 



 

  III

誌  謝 

首先感謝我的指導老師 單智君教授，在老師的諄諄教誨、辛勤指導與勉勵下，我

得以順利完成此論文，並且順利通過畢業口試。同時感謝我的另一位參與計劃老師兼口

試委員 鍾崇斌教授以及口試委員 陳青文教授以及 邱日清教授，由於他們的指導與建

議，讓這篇論文更加完整和確實。 

 

此外，感謝指導我的惠親學姊，學姊在論文上給了我很多寶貴的意見。還有喬偉豪

學長、吳奕緯學長以及各位實驗室的大家，經常在各種問題上給予我不同的建議。還有

同樣今年一起畢業的辰瑋、立傑、慧榛、志遠、易叡。感謝實驗室的大家，謝謝你們陪

我度過充實又快樂的兩年研究生活。 

 

 在此也要感謝我的女朋友，雅婷。在忙碌的時候，我總是沒有時間陪伴她。但是妳

總是在我心情不好時一直鼓勵我，讓我有動力繼續努力。很感謝有這麼一位妳陪著我，

跟妳在一起真的很幸福。 

 

最後感謝我的家人，謝謝你們在背後全心全意地支持我，讓我在這研究的路上走得

更順利，進而能無後顧之憂的學習，讓我追求自己的理想。 

 

謹向所有支持我、勉勵我的師長與親友，奉上最誠摯的祝福，謝謝你們。 

 
 
 
 
 

康哲瑋 

2007.08.27 



 

  IV

Table of Contents 

摘  要 ...............................................................................................................................I 
Abstract...................................................................................................................................... II 
誌  謝 ............................................................................................................................ III 
Table of Contents......................................................................................................................IV 
List of Figures...........................................................................................................................VI 
List of Tables .........................................................................................................................VIII 
Chapter 1  Introduction........................................................................................................ - 1 - 

1.1 GPU and Programmable Graphics Render Pipeline................................................ - 1 - 
1.1.1 Vertex Processing ......................................................................................... - 3 - 
1.1.2 Triangle Setup & Rasterization..................................................................... - 3 - 
1.1.3 Pixel Processing............................................................................................ - 4 - 
1.1.4 Depth Processing .......................................................................................... - 4 - 

1.2 Texture Mapping and Texture Filtering ................................................................... - 4 - 
1.2.1 Texture Mapping........................................................................................... - 5 - 
1.2.2 Texture Filtering ........................................................................................... - 6 - 

1.3 Texture Unit ............................................................................................................. - 9 - 
1.4 Motivation ............................................................................................................... - 9 - 
1.5 Objective................................................................................................................ - 10 - 
1.6 Thesis Origination ................................................................................................. - 10 - 

Chapter 2  Background...................................................................................................... - 11 - 
2.1 Texture Placement ................................................................................................. - 11 - 

2.1.1 Texture Placement Method: 4D.................................................................. - 11 - 
2.1.2 Texture Placement Method: 6D.................................................................. - 13 - 
2.1.3 Texture Placement Method: Recursive Z (RZ)........................................... - 14 - 

Chapter 3  Design .............................................................................................................. - 17 - 
3.1 System Overview................................................................................................... - 17 - 
3.2 Data Bank Design v1: Continuous Data Bank ...................................................... - 18 - 

3.1.1 Address Mapping in Cache......................................................................... - 19 - 
3.1.2 Address Control .......................................................................................... - 21 - 
3.1.3 Word Select................................................................................................. - 23 - 
3.1.4 Discussion of Continuous Data Bank......................................................... - 24 - 

3.2 Data Bank Design v2 (Interleaved Data Bank) ..................................................... - 26 - 
3.2.1 Address Mapping in Cache......................................................................... - 27 - 
3.2.2 Address Control .......................................................................................... - 31 - 
3.2.3 Discussion of Interleaved Data Bank ......................................................... - 32 - 



 

  V

3.3 Banked Tag ............................................................................................................ - 32 - 
3.3.1 Tag Control ................................................................................................. - 34 - 
3.3.2 Tag Compare............................................................................................... - 35 - 
3.3.3 Discussion of Banked Tag .......................................................................... - 35 - 

3.4 Cache Miss Replacement ...................................................................................... - 36 - 
Chapter 4  Experiment Result............................................................................................ - 38 - 

4.1 Simulation Environment........................................................................................ - 38 - 
4.1.1 Software Simulation Environment ............................................................. - 38 - 
4.1.2 Hardware Simulation Environment ............................................................ - 38 - 

4.2 Software Simulation Result ................................................................................... - 39 - 
4.2.1 Cache Access Count ................................................................................... - 39 - 
4.2.2 Total Access Energy ................................................................................... - 43 - 

4.3 Hardware Simulation Result.................................................................................. - 45 - 
4.3.1 Timing Comparison .................................................................................... - 45 - 
4.3.2 Area Comparison ........................................................................................ - 48 - 

Chapter 5  Discussion and Conclusion.............................................................................. - 51 - 
5.1 Discussion.............................................................................................................. - 51 - 
5.2 Conclusion............................................................................................................. - 53 - 

Reference ............................................................................................................................. - 55 - 
Appendix ............................................................................................................................. - 57 - 

 



 

  VI

List of Figures 

Fig. 1-1 Programmable graphics render pipeline .............................................................. - 2 - 
Fig. 1-2 Horizontal scan line into primitive ...................................................................... - 3 - 
Fig. 1-3 A texture, its width and height are all eight ......................................................... - 5 - 
Fig. 1-4 Concept of texture mapping................................................................................. - 6 - 
Fig. 1-5 A texture mapping example [6]............................................................................ - 6 - 
Fig. 1-6 Concept of texture filtering and mip-map............................................................ - 7 - 
Fig. 1-7 Concept of anisotropic filtering ........................................................................... - 8 - 
Fig. 1-8 Texture Unit ......................................................................................................... - 9 - 
Fig. 2-1 A 4D placement example with 4×4 tile size....................................................... - 12 - 
Fig. 2-2 Address translation equation of 4D placement .................................................. - 12 - 
Fig. 2-3 6D placement example with 4×4 1st level tile and 8×8 2nd level tile ............... - 13 - 
Fig. 2-4 Address translation equation of 6D placement .................................................. - 14 - 
Fig. 2-5 RZ placement example ...................................................................................... - 15 - 
Fig. 2-6 Address translation equation of RZ placement .................................................. - 16 - 
Fig. 3-1 Origination of the texture cache: (a) original texture cache (b) banked texture 

cache ........................................................................................................................ - 18 - 
Fig. 3-2 Data bank design v1: Continuous data bank...................................................... - 19 - 
Fig. 3-3 data bank id field in address............................................................................... - 19 - 
Fig. 3-4 address mapping in data bank............................................................................ - 20 - 
Fig. 3-5 Example of address mapping in data bank: (a) Texel mapped address with RZ 

placement (b) address mapping in data bank........................................................... - 21 - 
Fig. 3-6 Address control: Ai is the address from ATi and Bi is the data bank id of Ai ..... - 22 - 
Fig. 3-7 Circuit of priority encoder ................................................................................. - 22 - 
Fig. 3-8 Word select......................................................................................................... - 24 - 
Fig. 3-9 Si and MUXi in address with tile size 2×2 ......................................................... - 24 - 
Fig. 3-10 An conflict situation in continuous data bank.................................................. - 25 - 
Fig. 3-11 Data bank design v2: interleaved data bank..................................................... - 27 - 
Fig. 3-12 texel mapping in data bank .............................................................................. - 27 - 
Fig. 3-13 Data bank id and offset in data bank field in address with 2×2 tile size.......... - 28 - 
Fig. 3-14 Texel mapping in interleaved data bank which tile size is 2×2 and cache line size 

is 64 byte.................................................................................................................. - 28 - 
Fig. 3-15 Address mapping in interleaved data bank, which tile size is 2×2 and cache line 

size is 64 bytes......................................................................................................... - 29 - 
Fig. 3-16 Data bank id and offset in data bank field in address with 4×4 tile size.......... - 29 - 
Fig. 3-17 Texel mapping in interleaved data bank with 4×4 tile size .............................. - 30 - 



 

  VII

Fig. 3-18 Address mapping in interleaved data bank, which tile size is 4×4 and cache line 
size is 64 bytes......................................................................................................... - 30 - 

Fig. 3-19 Cases of switching address to corresponded data bank. .................................. - 31 - 
Fig. 3-20 Address control in data bank design v2 ........................................................... - 32 - 
Fig. 3-21 Proposed banked tag design............................................................................. - 33 - 
Fig. 3-22 Tag index field and tag bank id in address....................................................... - 33 - 
Fig. 3-23 Tag control ....................................................................................................... - 34 - 
Fig. 3-24 Circuit of modified tag comparison ................................................................. - 35 - 
Fig. 3-25 A conflict situation of banked tag .................................................................... - 36 - 
Fig. 3-26 Cache miss replacement example: (a) Cache miss happen (b) Replace all the 

same line of each data bank..................................................................................... - 37 - 
Fig. 4-1 Access count of each design: (a) traditional design (b) wide bus design (c) 

multi-port, banked designs ...................................................................................... - 41 - 
Fig. 4-2 per access energy of each line size with 16KB texture cache............................ - 41 - 
Fig. 4-3 Cache access count comparison with traditional as baseline............................. - 42 - 
Fig. 4-4 Cache access count comparison with wide bus as baseline............................... - 43 - 
Fig. 4-5 Energy of per access .......................................................................................... - 44 - 
Fig. 4-6 Total cache access energy of one frame............................................................. - 45 - 
Fig. 4-7 Delay of data access time................................................................................... - 47 - 
Fig. 4-8 Delay of tag access............................................................................................. - 47 - 
Fig. 4-9 Delay of cache access ........................................................................................ - 48 - 
Fig. 4-10 Area comparison of each design ...................................................................... - 49 - 
Fig. 4-11 Percentage of extra circuit of banked texture cache ........................................ - 50 - 
Fig. 5-1 block of each cache design: (a) One data array, output is 128 bits (b) Interleaved 

data bank with four tag arrays, output of each bank is 32bits (c) Interleaved data bank 
with share tag, output of each bank is 32bits (d) Interleaved data bank with banked 
tag, output of each bank is 32 bits (e) Continuous data bank with banked tag, output 
of each bank is 128 bits ........................................................................................... - 52 - 

 



 

  VIII

List of Tables 

Table 1-1 Input, output and operation of each stage.......................................................... - 2 - 
Table 1-2 Comparison of bilinear, trilinear, and anisotropic filtering algorithms ............. - 8 - 
Table 3-1 Truth table of priority encoder......................................................................... - 23 - 
Table 4-1 Cache configuration applied in our designs .................................................... - 42 - 
Table 4-2 bank number, access port of each design ........................................................ - 46 - 
Table 4-3 clock frequency of GPU which its process 0.13 um ....................................... - 48 - 
Table 5-1 Comparison of each cache design ................................................................... - 53 - 

 



 

 - 1 - 

Chapter 1  Introduction 

1.1 GPU and Programmable Graphics 

Render Pipeline 

Graphic processing unit (GPU) is a growing of field of application specific 

processor. It targets on graphics rendering, which display the two-dimensional (2D) 

viewing of three-dimensional (3D) space. Complexity of modern GPU becomes more 

complex due to users’ increasing demands for 3D scene realism improvement [1]. 

Programmable graphics pipeline is the most popular solution for the requirements 

of both performance and flexibility in computer graphics nowadays. With the rapidly 

development of computer graphics, such as 3D games, virtual realities and digital 

lives, the requirements of computer graphics in effects and performance become 

higher [15]. To meet all kinds of users’ requirements, programmable graphics pipeline 

have been introduced into graphics hardware and many complicated function units 

have been put in. Different from fixed-functionality (non-programmable) graphics 

pipeline, programmable graphics pipeline has new graphics processing units: vertex 

shader unit and pixel shader unit. These two new processing units give graphics 

pipeline the flexibility to deal with all kinds of computation requirements while 

retaining the capability of complicated computation. 

Fig. 1-1 is the programmable graphics render pipeline, we discuss the render 

pipeline in several parts, which are vertex processing, rasterization, pixel processing 

and depth processing. 

 



 

 - 2 - 

 
Fig. 1-1 Programmable graphics render pipeline 

 

Table 1-1 shows the input, output and operations of each stage to give a concept of 

the graphics pipeline. Then we introduce the detail operations of each stage in the 

follow sub-sections. 

 

Stage Input Output Operation 

Vertex Processing Vertices with 3D 
coordinates 

Vertices positioned 
in the 2D scene 

Transforms 3D vertex 
in world space to 2D 
vertex on scene 

Triangle Setup & 
Rasterization 

Triangles assembled 
by vertices 

Fragments Interpolates each 
triangle into numbers 
of fragments 

Pixel Processing Fragments Pixel with final 
color 

Colors each fragment 
according to its 
information  

Depth Processing Pixel with final color 
value 

Image composed 
of ‘finalized’ pixel

Uses frame buffer 
storing pixels which 
will be showed in 
screen 

Table 1-1 Input, output and operation of each stage 



 

 - 3 - 

1.1.1 Vertex Processing 

  Vertex processing is supported by vertex shader in GPU [4]. Vertex shader performs 

mathematics operations on the vertex data for objects by the vertex shader programs. 

Vertex data are the 3D coordinate values (which are x, y and z) for the vertex and an 

object consists of three vertexes. Vertex shader does several transformations and 

normalizations, which are model-view transformation, projection transformation, 

Clipping, perspective division and viewport mapping. After the transformations and 

normalizations, the 3D based objects will be transformed into normalized 2D based 

objects on screen which all the coordinate values are in the interval 0 and 1. Then 

vertex processing sends the normalized 2D coordinate values to rasterization which 

will be introduced at next section. 

 

1.1.2 Triangle Setup & Rasterization 

  Rasterization receives the data from vertex processing, then produces the fragments 

which are in the primitive. It uses horizontal scan line onto the primitive to produce 

fragments, which is showed below Fig. 1-2. 

 

Fig. 1-2 Horizontal scan line into primitive 

 



 

 - 4 - 

1.1.3 Pixel Processing 

  Pixel processing is supported by pixel shader. Pixel shader receives fragments from 

rasterization stage and does computations for the fragments. Each fragment will be 

colored according to the pixel shader code, including texture mapping which we will 

introduce in section 1.2. After pixel processing, the fragments with final color will be 

sent to depth processing. 

 

1.1.4 Depth Processing 

  Using frame buffer to store the pixel color which will be display on the screen. In 

this stage, z value of every pixel is compared with z value which has the same screen 

address (means has the same x, y values) of Z-Buffer. Z-Buffer is a buffer of 

screen-size using to store the nearest z value of every pixel [5]. If z value of the pixel 

is smaller than the value of the Z-Buffer, Z-Buffer is updated by the z value and frame 

buffer is updated by the new color. After depth processing, screen display the colors 

which are stored in frame buffer. 

 

1.2 Texture Mapping and Texture Filtering 

At this section, we will introduce an important technique in GPU which is called 

texture mapping. We also introduce two techniques used in texture mapping in the 

subsections which are called mip-map and texture filtering. 

 



 

 - 5 - 

1.2.1 Texture Mapping 

Before introducing texture mapping, we introduce texture at first. Texture is a 2D 

bit-map object and its width and height are powers of two. The max size of texture 

supported in modern GPU is 4096. Element of texture is called texel, it is consist of 

four components which are red (R), green (G), blue (B), and alpha (A). R, G, and B 

are the value of color. A is the value of transparency. Each component is 1 byte, is 

means that each texel is four bytes. An example is shown in Fig. 1-3. As Fig. 1-3 

shows, width and height of the texture are eight. It means that size of the texture is 4×

8×8=256 bytes. 

 

 

Fig. 1-3 A texture, its width and height are all eight 

 

Texture mapping is a relatively efficient means to reduce computations for realistic 

scenes without the tedium of modeling and rendering every 3D detail of a surface [2, 

3]. It is a process in which a texture is applied to an object in the 3D world, as shown 

in Fig. 1-4. X and y are pixel coordinates. U and v are texture coordinates. 

The number of required triangles is increased and thus the number of calculations is 

increased due to realize realistic images or a very complex image. The number of 

polygons should be reduced because the computing power of the given system is not 

enough to perform the required calculations in time. So quality degradation in terms 



 

 - 6 - 

of scene complexity is introduced but in some cases this degradation is not tolerable. 

Hence, to have more realistic images with less geometric data, texture mapping has 

been used commonly in 3D computer graphics. 

Fig. 1-5 shows an example that a texture is mapped onto an object. The object (a 

ball) which a texture (a world map) is mapped onto the object shown on screen is a 

globe. 

 

 
Fig. 1-4 Concept of texture mapping 

 

 
Fig. 1-5 A texture mapping example [6] 

 

1.2.2 Texture Filtering 

Due to the absence of no one-to-one mapping between texels and pixels, an 

interpolation calculation is necessary for high quality mapping. Higher quality 

requires computation intensive interpolation to generate a final pixel value from many 

texel values. 

Commonly used texture filtering algorithms in current 3D games are bilinear 

filtering (Bi), trilinear filtering (Tri), and anisotropic filtering (Ani). There is a 



 

 - 7 - 

tradeoff between operation complexity and image quality among various texture 

filtering algorithms. Both trilinear and anisotropic support the mip-map technique. 

Mip-map is a technique to reduce the artifacts which arise from the use of a single 

bitmap image while the level of detail of an object decreases with an increase in the 

distance. It is made by an original-size texture with level-of-detail 0 (LOD 0), then 

iteratively resample it to make a quarter-sized texture with LOD i (i>0). The number 

of LOD depends on application designer. In Fig. 1-6, there are three LODs for 

mip-map. The original size of texture (LOD 0) is 8×8, the size of LOD 1 is 4×4, and 

the size of LOD 2 is 2×2. 

 

 
Fig. 1-6 Concept of texture filtering and mip-map 

 

The final value of filtering is weighted average of several color values of texels. 

The value of bilinear is weighted of four texels that are closest to the center of the 

pixel being textured. Trilinear filtering is to choose two adjacent mip-maps which are 

most closely match the size of the pixel being textured. First, use bilinear filter to 

produce a texture value from each mip-map. Second, do linear average of theses two 

results from bilinear filtering. An example is in Fig. 1-5, two mip-maps are LOD 0 

and LOD 1. The final color value is weighted average of the values which are after 

doing bilinear filtering of LOD.  

http://tw.dictionary.yahoo.com/search?ei=UTF-8&p=quarter


 

 - 8 - 

  If we need to do texture mapping for a plane which is at an oblique angle to the 

camera, traditional filters (bilinear/trilinear) don’t have sufficient horizontal resolution 

and extraneous vertical resolution. Anisotropic is a method of enhancing the image 

quality of textures on surfaces that are far away and steeply angled with respect to the 

camera. The final color value of n:1 anisotropic is an average of the values of n 

trilinears results. The value n is called anisotropic ratio, the ratio of horizontal 

direction to vertical direction, is defined by game designer. The value may be 2, 4, 8, 

or 16. We use n=2 as example and shown in Fig. 1-7. Table 1-2 is comparison of three 

types filtering algorithms. 

 

 
Fig. 1-7 Concept of anisotropic filtering 

 

Filtering Type # of Mip-map # of Texel / Mip-map # of Texel 

Bi 1 4 4 

Tri 2 4 8 

n:1 Ani, n=2,4,8,16 2 4n 8n  

Table 1-2 Comparison of bilinear, trilinear, and anisotropic filtering algorithms 

 



 

 - 9 - 

1.3 Texture Unit 

Texture unit supports texture mapping operation in GPU. Texture unit is composed 

of an address translation, texture cache, and texture filter, as shown in Fig. 1-8. 

Process of texture unit is that texture unit receives texture coordinate (u, v). Then 

address translation translates the texture coordinate (u, v) of texel into real address, 

then sends the address to texture cache to fetch texel. This action may active several 

times. After all the requested texels are sent to texture filter, texture filter will compute 

the final color value according to the filter type and weight then sends the color value 

to pixel shader. 

 

 
Fig. 1-8 Texture Unit 

 

1.4 Motivation 

  The texture filtering algorithms in modern GPU always need several texels. In 

traditional single port texture cache, it may need several times of cache access. This is 

wasteful of processing time and access power. 

The power dissipation of cache on modern processor is an important part [7]. For 

example, power dissipation of on-chip D-cache in the StrongARM110 is 16% of its 

total power [8]. On the other hand, if the texture cache has multi-port, we can fetch 



 

 - 10 - 

the requested in one cache access. But the overhead of multi-port cache is too heavily. 

 

1.5 Objective 

  Design a banked texture cache which is according to bilinear filtering. Other 

complex filtering algorithms can be seen as several times of bilinear filtering. 

Trilinear filtering can be seen as two times of bilinear filtering and N:1 anisopostic 

filtering can be seen as 2N times of bilinear filtering. The banked texture can fetch the 

requested texels of bilinear filtering in one cache access if there is no cache miss. The 

performance of our banked texture cache is the same as multi-port texture cache but 

the cost is lower than multi-port texture cache.  

  We use the characteristic of bilinear filtering which needs 2×2 texels to separate the 

original texture cache into four banks. Cache line size of each bank is quarter of 

original cache line size. 

 

1.6 Thesis Origination 

  The origination of follow sections in this thesis is: Chapter 2 introduces background 

of texture placement and a related work. Chapter 3 introduces our banked design, 

including two kinds of data bank design and banked tag design. Experiment results 

are shown in chapter 4. Discussion and conclusion are made in chapter 5. 



 

 - 11 - 

Chapter 2  Background 

In this chapter, we will introduce the texture placement methods which our 

banked texture cache rests on. The texture placements which we will introduce are 4D 

placement, 6D placement, and recursive Z (RZ) placement. We will introduce how 

they map the texture in memory and the address translation equations. 

 

2.1 Texture Placement 

Texture placement is to map the 2D based texture in texture memory (can see as 

map 2D object on 1D). The representation of texture maps in memory is important to 

the cache behavior because it effects where texture data is placed in the cache [9]. 

Placement also effects complexity of address translation logic. Texture placement can 

be separated into two kinds which are non-tile based and tile based. Non-tile based 

placement method is linear and tile based placement methods are 4D, 6D and RZ. 

At this section, we will introduce the tile based placement methods which we use 

for our banked texture cache. These placements methods are 4D, 6D [9], and 

Recursive Z (RZ) [10]. 

 

2.1.1 Texture Placement Method: 4D 

  4D placement is a tile based placement, texels that are within a square region of 2D 

image are order consecutively in memory. The tile sizes for width and height are equal 

and are powers of two. An illustration of 4D placement is shown in Fig. 2-1, which 

the tile size is 4×4. The left part is the 2D based texture, and the arrowed line means 



 

 - 12 - 

the order of texel. The right part is texels (tiles) placement order in texture memory. 

 

 
Fig. 2-1 A 4D placement example with 4×4 tile size 

 

The address translation equation is shown in Fig. 2-2. Its concept has two steps. 

First step is to calculate the tile start address which the requested texel is in it. Second 

is to calculate the texel address by adding offset in the tile to tile start address 

 

 
Fig. 2-2 Address translation equation of 4D placement 



 

 - 13 - 

2.1.2 Texture Placement Method: 6D 

6D placement is also a tile based placement which is like 4D placement. The 

difference between 4D placement and 6D placement is that 6D placement has 

two-level tile. The limits of two-level tile width and height are the same as tile width 

and height of 4D placement. But the second level tile size has to be bigger than first 

level tile size. An illustration of 6D placement with first level tile size is 8×8 and 

second level tile size is 4×4 is shown in Fig. 2-3. The left part is the 2D texture, and 

the red line means the order of texel in memory. The right part is the order of texels in 

the memory. 

 

 
Fig. 2-3 6D placement example with 4×4 1st level tile and 8×8 2nd level tile 

 

  The address translation of 6D placement is like 4D placement. The difference 

between these two placements is that 6D placement has two level tiles, so 6D 

placement has to calculate tile start address two times. First step is to calculate the 

second level tile start address which the requested texel is in. Second step is to 

calculate the first level tile start address which the requested texel is in by adding tile 



 

 - 14 - 

offset to second level tile start address. At last, calculate the offset by adding the intra 

second level tile offset to the second level tile start address. The equation is shown in 

Fig. 2-4. 

 

 

Fig. 2-4 Address translation equation of 6D placement 

 

2.1.3 Texture Placement Method: Recursive Z (RZ) 

  Recursive Z placement can be seen as multi-level tile placement. Each first level 

tile has four texels. Each second level tile has four first level tiles (16 texels). From 

this rule, we can know that each third level tile has four second level tiles (64 texels) 

and so on. 

Fig. 2-5 shows an illustration of RZ placement. The first level tile is shown as the 

smallest “Z” in Fig. 2-5. The second level tile is shown as middle “Z” in Fig. 2-5. The 

third level tile is shown as the biggest “Z” in Fig. 2-5. Using this rule can map the 

order of texels in texture into memory. 

 



 

 - 15 - 

 
Fig. 2-5 RZ placement example 

 

  The address translation of RZ is shown in Fig. 2-6. The concept of RZ placement is 

bit interleaved by texture coordinate (u, v). As Fig. 2-6 shows, there are three cases of 

texture, which are width is equal to height (case 1), width is smaller than height (case 

2), and width is bigger than height (case 3). In case 1, assume width and height of 

texture have n valid bits (Ex: the valid bits of 128 are 7). The valid bits of offset are 

2n bits which are made by the bits of u direction and v direction interleaved. The 

interleaved method is that u direction offers a bit then v direction offers a bit and 

repeats until the u and v direction valid bits are use over. Case 2 and case 3 are like 

case 1, but the difference is that the bits interleaved until the small value bit length 

then the other bits in offset are offer by the leaved bits of big value. If the bits length 

of texture width and height are n and m, the valid bits of offset are m+n bits. 

 



 

 - 16 - 

 

Fig. 2-6 Address translation equation of RZ placement 



 

 - 17 - 

Chapter 3  Design 

  In this chapter, we will introduce our design of banked texture cache. We will 

introduce two kinds of design which are interleaved data bank and continuous data 

bank. Then, we will introduce the banked tag which is to reduce to access port in tag. 

 

3.1 System Overview 

  At this section, we introduce the differences between traditional texture cache and 

banked texture cache. We discuss them in two parts, which are data array and tag array. 

In data array, our design is to separate data array into four data banks (DB0~DB3). 

The cache line size of each data bank is quarter of original cache line size and number 

of lines is the same as original texture cache. In tag array, banked texture cache 

separates the tag array into four tag banks (TB0~TB3). The number of line of each tag 

bank is quarter of original tag array. 

  We will introduce two kinds of data bank designs at section 3.2 and section 3.3. Tag 

bank design will be introduced in section 3.4 

 

 
Fig. 3-1(a) 



 

 - 18 - 

 

Fig. 3-1(b) 

Fig. 3-1 Origination of the texture cache: (a) original texture cache (b) banked texture 
cache 

 

3.2 Data Bank Design v1: Continuous Data 

Bank 

  The concept of reducing access power in continuous data bank is by less data bank 

access. The proposed data bank design v1 is shown in Fig. 3-2. From Fig. 3-2 we can 

find that the requested texels may be in one, two or four data banks. To get the 

requested texels in all cases, the column select is outside each data bank and the 

inputs of each column select is interleaved from each data bank. 

  The extra circuit has two parts which are address control and word select. Address 

control is to send correct addresses to correct data bank and gate needless access 

which will be introduced in section 3.2.2. Word select is to produce the select signal 

for each column select which will be introduced in section 3.2.3. 

 



 

 - 19 - 

 
Fig. 3-2 Data bank design v1: Continuous data bank 

 

3.1.1 Address Mapping in Cache 

  Because the line size of each data bank is quarter of original cache line size, so the 

data bank id field of address is the highest two bits of line offset field. The data bank 

id field in address is shown in Fig. 3-3. The lowest two bits of address are word offset. 

 

 

Fig. 3-3 data bank id field in address 

 

  From Fig. 3-3, we find that texels in data bank is separate a line data into four parts 

by address. Fig. 3-4 is the illustration which shows the address mapping in cache. A  



 

 - 20 - 

Sis the block start address and  is the cache lines size in texel. 

 

 

Fig. 3-4 address mapping in data bank  

 

  Fig. 3-5 is an example of address mapping in continuous data bank. The texture 

placement method is RZ placement and cache line size is 64 bytes (16 texels). Fig. 

3-5(a) is the texel mapped address with RZ placement. The number above in each 

texel is the address and the number below is the line offset binary code of each 

address. In the line offset binary code, the italic and boldface is the data bank id. Fig. 

3-5 (b) is the address mapping in data bank. Use the rule shown in Fig. 3-4, texels 

with address 0, 1, 2, 3 have the same data bank id are placed the same data bank 

(DB0), and texels with address 4, 5, 6. 7 are placed in the same data bank (DB1) and 

so on. 

 

 
Fig. 3-5(a) 

 



 

 - 21 - 

 

Fig. 3-5(b) 

Fig. 3-5 Example of address mapping in data bank: (a) Texel mapped address with RZ 
placement (b) address mapping in data bank 

 

3.1.2 Address Control 

  Because in continuous data bank, we find that the requested texels may be in 1, 2, 

or 4 data banks. To send addresses to data bank in all cases is the function of address 

control. Address control is to check the addresses and send the only one address to its 

corresponded data bank. We use four comparators to compare the data bank field of 

the four addresses.  

Address control consists of comparators, priority encoders and multiplexers. The 

four comparators send the results of comparison to a priority encoder. The priority 

produces an address select signal and a data bank enable signal. The select signal is 

sent to multiplexer for selecting the address to the data bank. The address control 

circuit is shown in Fig. 3-6. The input of each comparator Bi is the data bank id of the 

address which is from ATi. And the inputs of each multiplexer are the addresses from 

the AT 



 

 - 22 - 

 
Fig. 3-6 Address control: Ai is the address from ATi and Bi is the data bank id of Ai

 

We use the control of DB0 as example. The data bank field of each address is 

compared with binary signal “00”. If the data bank field matches the binary signal, the 

result is “1” otherwise is “0”. The results of the comparators are as inputs of priority 

encoder, the priority encoder accords to the priority truth table to produce a select 

signal to multiplexer. The data bank enable signal is also produced from priority 

encoder. If one of the inputs is not “0”, the bank enable signal is “1”. It means that 

there is address will be sent to DB0. Otherwise, all inputs are “0” means that no 

address will be sent to DB0. 

  The priority encoder circuit is shown in Fig. 3-7, and Table 3-1 is the truth table of 

the priority encoder. 

 

 

Fig. 3-7 Circuit of priority encoder 



 

 - 23 - 

 

X3 X2 X1 X0 Y1 Y0 EN

1 X X X 1 1 1 

0 1 X X 1 0 1 

0 0 1 X 0 1 1 

0 0 0 1 0 0 1 

0 0 0 0 X X 0 

Table 3-1 Truth table of priority encoder 

 

3.1.3 Word Select 

  Before introducing word select, we introduce how texels in cache line to be inputs 

of multiplexers first. In our design, we want to design that the requested texels is from 

each multiplexer. So we let the cache data be the inputs of multiplexers interleaved. 

Assume that texture placement tile size is  and texel address is NxN A . Texel 

should be sent to the multiplexer with number ]3][3)([log2 +NA , and the position in 

the multiplexer is the remain bits of line offset field. Use this rule can let the requested 

2×2 texels be in each multiplexer individually. 

The function of word select is to produce select signals for outside data bank 

multiplexers. The signals are the positions of the requested texels in each multiplexer. 

The inputs of word select are line offset fields of texel addresses. Then separate each 

line offset field into two parts which are select signal for outside data bank 

multiplexer  and select signal . These two fields depend on tile size, 

 is  and  is remain bits of line offset field. Use  

as the select signal and  as the inputs of multiplexers. The reason is that texels 

iS iMUX

iMUX ]3][3)([log2 +NAi iS iMUX

iS



 

 - 24 - 

placed in cache are continuous, but we design the outside bank column select which 

its input are interleaved. So, the  and  are like the data bank id and offset 

in bank field in interleaved data bank design respectively. The  and  for 

other tile size are also mapped to the data bank field and offset field in interleaved 

data bank. The word select circuit is shown in Fig. 3-8. There are four multiplexers 

and each output of the multiplexer is the select signal for outside data bank cache 

column select. 

iMUX iS

iMUX iS

 

 
Fig. 3-8 Word select 

 

Use tile size is 2×2 as example. Use the cache data to outside data bank rule, 

 is  ( ]) and other bits of line offset field is . Fig, 

3-9 shows  field and  field in address with tile size 2×2.  

iMUX ]3][3)2([log2 +iA 3][4[iA iS

iMUX iS

 

 
Fig. 3-9 Si and MUXi in address with tile size 2×2 

 

3.1.4 Discussion of Continuous Data Bank 

  In continuous data bank design, we find that in some tile size and cache line size 



 

 - 25 - 

parameters will happen the requested texels are in same data bank but in different 

cache lines. A conflict example is shown in Fig. 3-10. Tile size of texture placement is 

2×2 and cache line size is 64 byte. If the requested texels addresses of bilinear are 2, 3, 

16, and 17, conflict happens. The four addresses are all mapped in DB0 but the texels 

with address 2, 3 are in a cache line, texels with address 16, 17 are in another cache 

line. 

Conflict situations happen in the wrong texture placement tile size and cache line 

size parameters. Especially in large cache line size, conflict situation may happen in 

each texture placement tile size. 

 

 

Fig. 3-10 An conflict situation in continuous data bank 

 

Address control is complex due to several access situations. The requested texels of 

bilinear filtering may be in one, two, or four data banks. Address control is designed 

to control each situation, so the circuit is complex. 

Another problem is that we design the cache data (texels) are inputs of outside data 

bank multiplexers interleaved, output bit of each data bank is equal to the line size of 

data bank. It means that the dynamic energy consumption of each data bank is high. If 

the requested texels are in two or four data banks, the dynamic energy of per access is 

high than original design. 



 

 - 26 - 

3.2 Data Bank Design v2 (Interleaved Data 

Bank) 

  In data bank design v1, there are some access situation cases. These access cases 

make the address control complex. And the output bit of each data bank is wide. In 

data bank design v2, we want to design a simpler data bank and the address control is 

also simpler.  

Basic idea of interleaved data bank is that the requested texels of bilinear filtering 

are in different data banks. Output bit of each data bank is one texels. This concept of 

interleaved data bank is that from [11], Igehy proposed a texture data organization 

which use 6D placement. We follow this concept to design our interleaved data bank. 

The proposed data bank v2 is shown Fig. 3-11. The extra circuit called address control 

is to switch the texel addresses to the correct corresponded data bank, we will 

introduce it at section 3.2.2. 

Fig. 3-12 shows that the texels are interleaved mapped in data bank. The left part is 

the texture and number is the coordinate of texels. The right part is the texels mapped 

data bank number. We can find that in each 2×2 tile, texels in the tile are from 

different data banks, so that one bilinear filtering can fetch the four texels from four 

data banks in one cache access. The difficulty of interleaved data bank is that how we 

map the texels in data bank interleaved by addresses. To do that, we analyze each 

texture placement methods introduced in chapter 2 and to find the mapping method to 

map texels in data bank, which will be introduced at next section. 



 

 - 27 - 

 
Fig. 3-11 Data bank design v2: interleaved data bank 

 

 
Fig. 3-12 texel mapping in data bank 

 

3.2.1 Address Mapping in Cache 

  For mapping address to cache, the mapping rule is like the rule introduced in data 

bank design v1. Consider the texture placement tile size which is , the texel 

with address 

NxN

A  is in data bank ]3][3)([log 2 +NA  and position in data bank is the 

remain bits of line offset. 



 

 - 28 - 

First, we use texture placement tile size 2×2 (Ex: 4D_2×2, 6D_N×N_2×2, RZ) as 

example. Texel which its address is A , the data bank id is  

( ) and offset in data bank is the remainder bits of line offset. The data bank id 

and offset in data bank field in texel address are shown in Fig. 3-13 

]3][3)2([log 2 +A

]3][4[A

 

 
Fig. 3-13 Data bank id and offset in data bank field in address with 2×2 tile size 

 

Use this rule to map a texture in cache. An example is shown in Fig. 3-14, texture 

placement method is RZ and cache line size is 64 bytes. The number above is the 

address of texel and number below is the binary code of the address. We find that use 

the boldface and italic numbers of binary code as data bank id, each texel in 2×2 tile 

can be placed in different data banks. 

 

   
Fig. 3-14 Texel mapping in interleaved data bank which tile size is 2×2 and cache line 

size is 64 byte 

 

Fig. 3-15 is the address mapping in cache which is following the example shown in 

Fig. 3-14. Texels which addresses are 0, 4, 8, and 12 are placed in the same data bank 

(DB0) because they have the same data bank id (00). Texels which addresses are 1, 5, 



 

 - 29 - 

9, and 13 are placed in the same data bank (DB1) because they have the same data 

bank id (01), so are other texels. 

 

 
Fig. 3-15 Address mapping in interleaved data bank, which tile size is 2×2 and cache 

line size is 64 bytes 

 

We use tile size is 4×4 as another example. From the mapping rule, texel with 

address A  is at data bank ]3][3)4([log 2 +A  ( ) and the position in data bank 

is the remainder bits of line offset. Fig. 3-16 shows the data bank id and position in 

data bank field in address which texture placement tile size is 4×4.  

]3][5[A

 

 
Fig. 3-16 Data bank id and offset in data bank field in address with 4×4 tile size 

 

The concept is that u direction of texture coordinate place four texels then v 

direction of texture coordinate place one texel. It can be seen as that the u direction 

offers two bits then v direction offers one bit. So, we can use this concept to place 

each 2×2 tile of texture in data bank interleaved which texture placement tile size is 4×

4. The data bank id is the boldface and italic number of the binary code of address in 

the Fig. 3-17. 

 

 



 

 - 30 - 

 
Fig. 3-17 Texel mapping in interleaved data bank with 4×4 tile size 

 

Fig. 3-18 shows an example of address mapping in data bank which is following 

the example shown in Fig. 3-17. Assume cache line size is 64 bytes (16 texels). Texels 

with address is 0, 2, 8, and 10 are placed in the same data bank (DB0). The texels with 

address 1, 3, 9, and 11 are placed in the same data bank (DB1) and so on. From Fig. 

3-18 we can find that the requested texels are in different data banks for each 2×2 

texels. 

 

 
Fig. 3-18 Address mapping in interleaved data bank, which tile size is 4×4 and cache 

line size is 64 bytes 

 

Use the rule to find other tile size interleaved mapping method. Tile size is 8×8 uses 

third and fifth bits of address to be data bank id and so on. 

The constraint of the interleaved data bank is that the cache line size has to be the 

smallest tile size at least. If the cache line size is small than tile size, the data in a line 

are not continuous. For example, if cache line size for tile size is 4×4 is 16 bytes, it 

means that a line is texels with address 0, 1, 4, 5 and the next line is texels with 



 

 - 31 - 

address 2, 3, 6, 7. At this situation, if cache is missed, memory may have to transmit 

several times. This makes miss plenty be worse. 

 

3.2.2 Address Control 

  The function of address control in data bank design v2 is to switch the address to 

corresponded data bank. It receives addresses from the address translation array and 

then switches the addresses to the corresponded data bank. There are four cases which 

are address mapping data bank of bilinear filtering, shown in Fig. 3-19. First, see the 

above part, four texels masked by square are the requested texels of bilinear filtering. 

The below part is address control how to switch the addresses to the corresponded 

data bank. 

 

 
Fig. 3-19 Cases of switching address to corresponded data bank. 

 

  By analysis of the four cases, we find the situation that the address from ATi is sent 

to DBj (i and j are 0~3), and the address from ATj is sent to DBi. It can be seen as two 

of the four addresses change its address. So we use four 4-1 multiplexer to implement 

address control and the select signal is the data bank field of the address from the 



 

 - 32 - 

corresponded AT. The implementation circuit of address control is shown in Fig. 3-20. 

 

 
Fig. 3-20 Address control in data bank design v2 

 

3.2.3 Discussion of Interleaved Data Bank 

  The effect of accessing four data banks in one cache access is waste of dynamic 

power. But output bit of each data bank is one texels. The energy consumption 

between these two data bank designs depends on bilinear filtering access parameters. 

If requested texels are in one data bank in data bank design v1, the access energy in 

data bank design v1 is less than data bank design v2. On the other hand, if requested 

texels are in different data banks, the access energy in data bank design v1 is larger 

than data bank design v2. 

 

3.3 Banked Tag 

  In the two designs which are introduced above, each data bank is only one access 

port. But there is still multi-port in tag, because accessing four data banks needs four 

tag data. Like multi-port in data bank, this makes area of tag be larger. We use the 

characteristic of bilinear filtering to design banked tag which each tag bank is only 

one access port. Banked tag can apply in interleaved data bank or continuous data 

bank, shown in Fig. 3-21. Banked tag design can apply with data bank design v1 and 



 

 - 33 - 

also can apply with data bank design v2. 

 

 

Fig. 3-21 Proposed banked tag design 

 

  Banked tag design is to separate original tag into four banks. Its placement is very 

like interleaved data bank which using two bits of index field as tag bank id and other 

bits as tag index field, shown in Fig. 3-22. It means that tag of line 0 is placed in tag 

bank 0 (as TB0 in Fig. 3-21), tag of line 1 is placed in tag bank 1 (as TB1 in Fig. 3-21), 

tag of line 2 is placed in tag bank 2 (TB2), tag of line 3 is placed in tag bank 3 (TB3), 

and so on. 

 

 

Fig. 3-22 Tag index field and tag bank id in address 

 

  The best situation of banked tag happens at the requested texels are in one cache 

line, the banked tag only needs to access one tag bank. Otherwise, the worse situation 

is the requested texels are all in different cache lines. 



 

 - 34 - 

  The difficulties of banked tag are the same as the difficulties of address control in 

continuous data bank, which are how to control the tag indexes to the corresponded 

tag bank and send one tag index to tag bank. Tag control in Fig. 3-21 is designed to do 

these works. 

 

3.3.1 Tag Control 

Tag control implementation is very like address control introduced in continuous 

data bank. The difference between tag control and address control are their inputs. 

Input of tag control is the index fields of addresses. The TBi is the tag bank id in Fig. 

3-23 of address from ATi. TIi is the tag index in Fig. 3-23 of address from ATi. 

Use the control of TB0 as example, the four TBi is compared with a binary signal 

“00” then the results are as inputs to priority encoder to produce a select signal to 

multiplexer and an enable signal EN for tag bank 0 (TB0). The multiplexer is 

according to the select signal to select a tag index to TB0. 

 

 
Fig. 3-23 Tag control 



 

 - 35 - 

3.3.2 Tag Compare 

  Modification in tag compare is due to banked tag. Because the tag may be from 

each tag bank, there must be a multiplexer to select the correct tag data for comparing. 

And the select signal is the tag bank id of the address. The modified circuit of tag 

comparison is shown in Fig. 3-24. 

 

 
Fig. 3-24 Circuit of modified tag comparison 

 

3.3.3 Discussion of Banked Tag 

  We find that in some tile size of texture placement and cache line size parameters, 

the 4D placement and the 6D placement may happen conflict situation in banked tag 

design. That is due to row-major placing tiles of 4D placement and 6D placement. A 

conflict example is shown in Fig. 3-25. In this example, placement method is 4D with 

tile size is 2×2 and cache line size is 4 texels. As Fig. 3-25 shows, four texels mapping 

in a line and the number above is the line index. The number below is the binary code 

of the line index, and the boldface and italic number is the tag bank id. Conflict 

situation happens when bilinear filtering accesses the mask block. Because two of the 

requested texels are in a line and the other two are in another line, but tags of the two 

lines are in the same tag bank. To avoid this situation, we check the tile size and cache 



 

 - 36 - 

line size which the pair will not happen conflict situation. 

In RZ placement, this situation will not happen. It is because that the line index is 

not the same in adjacent tiles with any cache line size. 

 

 

Fig. 3-25 A conflict situation of banked tag 

 

3.4 Cache Miss Replacement 

  Our replacement mechanism is that when a data bank is missed, the bank texture 

cache will replace the same line of each data bank. This is because our design the tag 

is not duplicated. 

  Even tag is duplicated, we still use the mechanism. In interleaved data bank, texels 

are interleaved placed in data bank. In continuous data bank, texels are interleaved as 

inputs of the outside data bank column select. If cache only replaces the line of the 

data bank when cache miss happen, it may need several transmission from memory to 

cache because the addresses of texels in the data bank are not continous. 

  According to these two reasons, we think this mechanism is better. A replace 

example is shown in Fig. 3-26. As Fig. 3-26(a) shows, DB0 and DB2 happen cache 

miss, the cache replace all the same line of each data bank (Fig. 3-26(b)). 

 



 

 - 37 - 

 

Fig. 3-26(a) 

 

 

Fig. 3-26(b) 

Fig. 3-26 Cache miss replacement example: (a) Cache miss happen (b) Replace all the 
same line of each data bank 



 

 - 38 - 

Chapter 4  Experiment Result 

4.1 Simulation Environment 

  Our simulation environment has two parts, which are software simulation and 

hardware simulation. Software simulation is to analyze the banked texture cache 

efficiency, like access count, bank access count, etc. Hardware simulation is to 

analyze the cache access timing and cache area. 

 

4.1.1 Software Simulation Environment 

  Software simulator is a trace-driven C++ simulator which is according to our 

design. The input of the simulator is the trace from modified ATILA simulator [12] 

which is a cycle-based GPU simulator. We dump the requested texture coordinate 

from ATILA to be input of our simulator. Our benchmark is Quake4 [13] which is an 

OpenGL standard game and resolution is 1280×1024 which is general resolution in 

modern monitor. The output of simulator is total access count and other information 

of the banked texture cache. 

 

4.1.2 Hardware Simulation Environment 

  The hardware has two parts, which are cache simulation and extra circuit 

simulation. In cache simulation, we use CACTI 4.2 [14] to simulate the access timing, 

cache area, and access power of cache. In extra circuit simulation, we use the 

hardware describe language called verilog to simulate the extra circuit of our design. 



 

 - 39 - 

The design is synthesized by synopsis design compiler with TSMC 0.13 um process. 

 

4.2 Software Simulation Result 

  At first, we decide the texture placement method and cache size. We choose the 

texture placement is RZ placement, because it is suitable for all banked designs 

without conflict situations and the cache miss rate of RZ placement is lowest in all 

texture placement methods. We decide the cache size is 16KB, which is general size 

for modern GPU. 

 

4.2.1 Cache Access Count 

  In traditional design, the bus width of texture cache and texture filter is 4 bytes (1 

texel). In other designs, we assume the bus width of texture cache to texture filter is 

16 bytes (4 texels). In wide bus design, we assume the texture cache can send 

continuous four texels to texture filter. Multi-port texture cache has four access ports 

which can fetch four texels in one cache access. 

  At first, we analyze the cache configuration is suitable for each design. Access 

count of each design is shown in Fig. 4-1. Fig. 4-1(a) is access count statistics of 

traditional design, Fig. 4-1(b) is access count statistics of wide bus design, and Fig. 

4-1(c) is access count statistics of multi-port and banked designs. We can find that the 

access count in line size 64 bytes is low enough and cost is not high in each design. 

After deciding the line size, we decide set-associative by using Fig. 4-1 and Fig. 4-2. 

Fig. 4-2 shows that the access energy of each line size. In Fig. 4-1, access count in 

2-way set-associative of each design is low enough and the access energy of 2-way 

set-associative is not high. So, we decide the cache configuration is that cache size is 



 

 - 40 - 

16KB, line size is 64bytes, and set-associative is 2-way set-associative. The cache 

configuration is show in Table 4-1. 

 

Traditional Access Count

3.1E+08

3.1E+08

3.1E+08

3.2E+08

3.2E+08

3.2E+08

3.2E+08

1-way 2-way 4-way 8-way fully

Set-associative

A
cc

es
s 

C
ou

nt

32 bytes

64 bytes

128 bytes

 

Fig. 4-1(a)  

 

Wide Bus Access Count

1.6E+08

1.6E+08

1.6E+08

1.6E+08

1.7E+08

1.7E+08

1.7E+08

1.7E+08

1.7E+08

1.7E+08

1-way 2-way 4-way 8-way fully

Set-associative

A
cc

es
s 

C
ou

nt

32 bytes

64 bytes

128 bytes

 

Fig. 4-1(b) 



 

 - 41 - 

Multi-port, banked designs Access Count

7.9E+07

7.9E+07

7.9E+07

7.9E+07

8.0E+07

8.0E+07

8.0E+07

8.0E+07

8.0E+07

8.1E+07

1-way 4-way 8-way fully

-associative

A
cc

es
s 

C
ou

nt

32 bytes

64 bytes

128 bytes

2-way

Set

 

Fig. 4-1(c) 

Fig. 4-1 Access count of each design: (a) traditional design (b) wide bus design (c) 
multi-port, banked designs 

 

Access Energy

0

0.2

0.4

0.6

0.8

1

1.2

1-way 4-way 8-way full

et-associative

E
ne

rg
y(

nJ
)

32bytes

64bytes

128bytes

2-way

S

 
Fig. 4-2 per access energy of each line size with 16KB texture cache 

 
 



 

 - 42 - 

Cache Size 16 KB 

Line Size 64 bytes 

Set-associative 2-way 

Table 4-1 Cache configuration applied in our designs 

 

The result is shown in Fig. 4-3. Banked texture cache and multi-port texture cache 

can reduce about 75% cache access which base line is traditional design. That is 

because that the requested texels can be fetched in one cache access without cache 

miss. 

 

Access Count

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

tra
di

tio
na

l

wid
e b

us

m
ult

i-p
or

t

ba
nk

ed
 v

1

ba
nk

ed
 v

2

Designs

A
cc

es
s 

C
ou

nt

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Pe
rc

en
ta

g
e

Access Count

Percentage

 

Fig. 4-3 Cache access count comparison with traditional as baseline 
 

  Fig. 4-4 is like Fig. 4-3, but the difference is that base line is wide bus design. We 

can find that our two kinds of banked designs and multi-port design can reduce about 

50% access count. That is because that the percentage of requested texels in different 

cache line and discontinuous position of one cache line takes a large part. 



 

 - 43 - 

Access Count

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1.0E+08

1.2E+08

1.4E+08

1.6E+08

1.8E+08

wide bus multi-port banked v1 banked v2

Designs

A
cc

es
s 

C
ou

nt

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
er

ce
nt

ag
e(

%
)

Access Count

Percentage

 

Fig. 4-4 Cache access count comparison with wide bus as baseline  
 

4.2.2 Total Access Energy 

At first, we discuss the access energy of per access in each design, shown in Fig. 

4-5. We use texture cache with wide bus design as baseline. Because the access count 

of traditional design is higher than other designs. Another reason is that bus width 

between texture cache and texture filter is 4 bytes in traditional design which is 

different from other designs. From Fig. 4-5, we can find that the access energy of 

wide bus design and multi-port design have no extra circuit energy. Access energy of 

multi-port design is much higher than other designs. Access energy of data bank 

design v1 (continuous data bank) has three cases which are access one data bank (as 

Banked v1-1 in Fig. 4-5), two data banks (as Banked v1-2 in Fig. 4-5), and four data 

banks (as Banked v1-4 in Fig. 4-5). If only access one data bank, the access energy is 

less than base line. If accesses two or four data banks in one access, the access energy 

is higher than base line. The access energy of data bank design v2 (interleaved data 



 

 - 44 - 

bank) is higher than traditional design due to four banks access in one access. 

 

Energy / Per Access

0.00000

0.00000

0.00082
0.00082

0.00082

0.00078

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

wide bus multi-port banked

v1-1

banked

v1-2

banked

v1-4

banked

v2

Designs

E
ne

rg
y 

(n
J)

extra circuit

cache

 

Fig. 4-5 Energy of per access 
 

Our designs are to reduce dynamic energy by less cache access. The energy 

equation is EMCgyAccessEner *)( += . C is access count, M is cache miss count, 

and E is energy of per access. 

Use the energy equation to compute the total access energy. The result of total 

access energy is shown in Fig. 4-6. As Fig. 4-6 shows, banked v1 (continuous data 

bank) takes about 44% of access power than base line and banked v2 (interleaved data 

bank) takes about 50% of access power than base line. Why the saved power of 

banked v1 is less than the saved power of banked v2? This is because the percentage 

of access one data bank of total access is too less. We analyze the percentage of data 

bank access of banked v1, accessing one data bank takes about 20%, 50% for 

accessing two data banks, and 30% for accessing four data banks. The power 

dissipation of banked v1 depends on number of data bank accessed. We discuss this at 



 

 - 45 - 

the chapter 5 (5.1 Discussion). 

 

Total Access Energy

0%

50%

100%

150%

200%

250%

300%

350%

Wide Bus Multi-port Banked v1 Banked v2

Design

Pe
rc

en
ta

ge

1 0 0 .0 0%

30 8 .6 3%

56 .97 % 50 .99%

 
Fig. 4-6 Total cache access energy of one frame 

 

4.3 Hardware Simulation Result 

  Our hardware simulation goal is to check the access timing and area of out design. 

We show the simulation results in two parts, which are timing comparison and area 

comparison. 

 

4.3.1 Timing Comparison 

  Before see the result of timing comparison, we see the cache configuration of each 

design first. The cache configuration is shown in Table 4-2. In the # of bank field, 

single port design and multi-port design have only one data array, so they are seen as 

one bank. In the last filed, output bit of single port is 128 bits. This is due to the bus 



 

 - 46 - 

width of cache to texture filter. Output bit of banked v1 is also 128 bits due to the 

requested texels may be in one bank, so output width of each bank has to satisfy it. 

 

Design name # of bank Access port / per bank Output bits / Access port

Wide Bus 1 1 128 

Multi-port 1 4 32 

Banked v1 4 1 128 

Banked v2 4 1 32 

Table 4-2 bank number, access port of each design 

 

We separate the access time of cache into data access and tag access. The data 

access time is shown in Fig. 4-7, which wide design is base line. From the Fig. 4-7, 

we can find that data array access time of banked design is smaller than original cache. 

This is due to the small cache line size of each data bank. In banked v1 and banked v2, 

the extra time is due to address control. The extra circuit delay doesn’t cause the 

access time in data access longer. But in banked v2, the delay of extra circuit is long 

due to the complex address control. The last part is the multi-port texture cache, 

which its access time is long due to multi-port overhead. 

 



 

 - 47 - 

Delay of Data Access

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Wide Bus Multi-port Banked v1 Banked v2

D
el

ay
(n

s)

Data Array

Address Control

 
Fig. 4-7 Delay of data access time 

   

Fig. 4-8 shows the tag access time of each design. In banked v1 and banked v2, the 

extra time is tag control and multiplexer before tag compare. The last part is 

multi-port texture cache, which the access time of tag is longer than other design. 

 

Dalay of Tag Access

0

0.5

1

1.5

2

2.5

Wide Bus Multi-port Banked v1 Banked v2

D
el

ay
(n

s) Tag MUX

Tag Array

Tag Control

 
Fig. 4-8 Delay of tag access  

 



 

 - 48 - 

  Fig. 4-9 shows the total access time of each design. From the Fig. 4-9 we find that 

the access time of banked v1 is only a little long than single port texture cache. But 

compare to the GPU (shown in Table 4-3) which has the same process (0.13 um), 

cache access time of our designs is still in one cycle. 

 

Delay of Cache Access

0

0.5

1

1.5

2

2.5

Wide Bus Multi-port Banked v1 Banked v2

Design

D
el

ay
 (

ns
)

Data Total

Tag Total

 
Fig. 4-9 Delay of cache access 

 

GPU name Core clock frequency Cycle time 

ATI Radeon X800 520 MHz 1.92 ns 

Geforce 6800 400 MHz 2.5 ns 

Table 4-3 clock frequency of GPU which its process 0.13 um 

 

4.3.2 Area Comparison 

  The area comparison of each design is show in Fig. 4-10. The extra circuit of 

banked texture is not much. The maximum area of extra circuit in the banked design 



 

 - 49 - 

is address control in banked v1 and in banked v2. This is because that one component 

in them is 32-bit 4-1 multiplexer. There are four 32-bit 4-1 multiplexers in the banked 

design, so the address control in the two kinds of banked design take a large part of 

extra circuit. 

 

Area Comparison

1500000

1600000

1700000

1800000

1900000

2000000

Design

A
re

a 
(u

m
^2

)

Extra Circuit

Cache

Extra Circuit 0 0 7957.404113 7034.019347

Cache 1910336.347 22390103.66 1876057.497 1561803.895

Wide Bus Multi-port Banked v1 Banked v2

 
Fig. 4-10 Area comparison of each design 

 

Although the address control in design v1 and in design v2 takes a large part of 

extra circuit, but the percentage of the extra circuit in each banked design doesn’t take 

a large part. As Fig. 4-11 shown, the percentage of extra circuit in banked v2 is only 

0.45% and in banked v1 is only 0.43%. The extra circuit of banked v1 is larger than 

extra circuit of banked v2. As Fig. 4-10 shown, extra circuit area of banked v1 is 

seven thousand um2 and extra circuit area of banked v1 is almost eight thousand um2. 

 



 

 - 50 - 

Area Percenatge of Extra Circuit

0.41%

0.42%

0.42%

0.43%

0.43%

0.44%

0.44%

0.45%

0.45%

0.46%

Banked v1 Banked v2

Design

Pe
rc

en
ta

ge

 
Fig. 4-11 Percentage of extra circuit of banked texture cache 



 

 - 51 - 

Chapter 5  Discussion and Conclusion 

5.1 Discussion 

  At this section, we compare each design access time, cache area, and access power 

then discuss them. The cache figure of each design is shown in Fig. 5-1. We compare 

five texture cache designs, which are list in Fig. 5-1(a) ~ Fig.5-1(e). 

 

  
Fig. 5-1 (a) 

 

 

Fig. 5-1 (b) 



 

 - 52 - 

 
Fig. 5-1 (c) 

 
Fig. 5-1 (d) 

 

Fig. 5-1 (e) 
Fig. 5-1 block of each cache design: (a) One data array, output is 128 bits (b) 
Interleaved data bank with four tag arrays, output of each bank is 32bits (c) 

Interleaved data bank with share tag, output of each bank is 32bits (d) Interleaved data 
bank with banked tag, output of each bank is 32 bits (e) Continuous data bank with 

banked tag, output of each bank is 128 bits 



 

 - 53 - 

  We use number 1~5 to be performance, small number means better (time is short or 

area is small). On the other hand, big number means worse (time is long or area is 

large). We can find that banked v2 with banked tag which is design (e) has small area 

and low access power. But the access of design (e) depends on the number of data 

bank accessed. If the requested texels are in one data bank, the access power is lowest. 

If the requested texels are in four data banks, the access power is highest. 

 

Design Name Access time Cache area Power / per access 

(a)  4 3 2 

(b) 3 4 5 

(c)  5 5 4 

(d)  1 1 3 

(e)  2 2 1* 

Table 5-1 Comparison of each cache design 

 

  In larger cache lines, the percentage of the requested texels in one data bank is 

larger. We consider larger cache line size for banked v2 for less data bank access. But 

in banked v2, the output bit of each bank is equal to the line size. It means that the 

dynamic power of each bank will be high.  

 

5.2 Conclusion 

In this thesis, we proposed two kinds of banked texture cache design. We discuss 

each situation of access cache, especially banked v1. Because there are four access 

situations of banked v1, which are accessing one data bank, two data banks, and four 

data banks. We find that access power will be saved if the requested texels are in one 



 

 - 54 - 

data bank. 

In these two banked designs, the average access power of per access is higher than 

traditional design. But the total dynamic energy is saved by less cache access. Our 

designs can reduce about 53% of cache access times. Due to the less cache access, 

banked texture cache can reduce about 50%. 



 

 - 55 - 

Reference 

[1] Foley J, van Dam A, Feiner SK, Hughes JF, “Computer graphics: principles 

and practice”, 2nd ed. Reading MA: Addison-Wesley, 1990. 

[2] Heckbert PS, “Survey of texture mapping”, IEEE Computer Graphics and 

Applications 1986;6(11):56-67. 

[3] Lansdale RC, “Texture Mapping and Resampling for Computer Graphics”, 

Master's Thesis, University of Toronto, 1991. 

[4] Erik Lindholm, Mark J. Kligard, and Henry Moreton, "A 

user-programmable vertex engine", Proceedings of the 28th annual conference on 

Computer graphics and interactive techniques, 2001. 

[5] Cheng-Hsien Chen and Chen-Yi Lee, "TWO-LEVEL HIERARCHICAL 

Z-BUFFER FOR 3D GRAPHICS HARDWARE", IEEE International 

Symposium on Circuits and Systems, 2002. 

[6] Texture mapping http://en.wikipedia.org/wiki/Texture_mapping

[7] I. Antochi, B.H.H. Juurlink, A. G. M. Cilio, and P. Liuha.“Trading Efficiency 

for Energy in a Texture Cache Architecture”, Proc. Euromicro Conf. on 

Massively-Parallel Computing Systems (MPCS’02), 2002, Ischia, Italy, pp.189-196. 

[8] J. Kin, M. Gupta, andW. H. Mangione-Smith, "Filtering Memory References 

to Increase Energy Efficiency", IEEE Trans. on Computers, 49(1), Jan. 2000. 

[9] Ziyad S. Hakura and Anoop Gupta. “The Design and Analysis of a Cache 

Architecture for Textur Mapping”. Proceedings of the 24th International 

Symposium on Computer Architecture, 1997. 

[10] Chen-Wei Chang, “The Efficient Texture Memory System for Texture 

Mapping in GPU”, Master’s Thesis, National Chiao Tung University, 2007. 

http://en.wikipedia.org/wiki/Texture_mapping


 

 - 56 - 

[11] Homan Igehy, Matthew Eldridge, and Kekoa Proudfoot, "Prefetching in a 

Texture Cache Architecture", Proceedings of the ACM SIGGRAPH / 

EUROGRAPHICS workshop on Graphics hardware, 1998. 

[12] ATILA http://personals.ac.upc.edu/vmoya/log.html

[13] Quake4 http://www.quake4game.com/

[14] CACTI 4.2 http://www.hpl.hp.com/personal/Norman_Jouppi/cacti4.html

[15] Wei-Ting Wang, " A Run-Time Reconcigurable Texture Unit”, Master’s 

Thesis, National Chiao Tung University, 2006. 

http://personals.ac.upc.edu/vmoya/log.html
http://www.quake4game.com/
http://www.hpl.hp.com/personal/Norman_Jouppi/cacti4.html


 

 - 57 - 

Appendix 

 

Test frame from Quake4 with 1280×1024 resolution 


	摘  要
	Abstract
	 誌  謝
	 Table of Contents
	 List of Figures
	 List of Tables
	Chapter 1  Introduction
	1.1 GPU and Programmable Graphics Render Pipeline
	1.1.1 Vertex Processing
	1.1.2 Triangle Setup & Rasterization
	1.1.3 Pixel Processing
	1.1.4 Depth Processing

	1.2 Texture Mapping and Texture Filtering
	1.2.1 Texture Mapping
	1.2.2 Texture Filtering

	1.3 Texture Unit
	1.4 Motivation
	1.5 Objective
	1.6 Thesis Origination

	 Chapter 2  Background
	2.1 Texture Placement
	2.1.1 Texture Placement Method: 4D
	2.1.2 Texture Placement Method: 6D
	2.1.3 Texture Placement Method: Recursive Z (RZ)


	 Chapter 3  Design
	3.1 System Overview
	3.2 Data Bank Design v1: Continuous Data Bank
	3.1.1 Address Mapping in Cache
	3.1.2 Address Control
	3.1.3 Word Select
	3.1.4 Discussion of Continuous Data Bank

	3.2 Data Bank Design v2 (Interleaved Data Bank)
	3.2.1 Address Mapping in Cache
	3.2.2 Address Control
	3.2.3 Discussion of Interleaved Data Bank

	3.3 Banked Tag
	3.3.1 Tag Control
	3.3.2 Tag Compare
	3.3.3 Discussion of Banked Tag

	3.4 Cache Miss Replacement

	 Chapter 4  Experiment Result
	4.1 Simulation Environment
	4.1.1 Software Simulation Environment
	4.1.2 Hardware Simulation Environment

	4.2 Software Simulation Result
	4.2.1 Cache Access Count
	4.2.2 Total Access Energy

	4.3 Hardware Simulation Result
	4.3.1 Timing Comparison
	4.3.2 Area Comparison


	 Chapter 5  Discussion and Conclusion
	5.1 Discussion
	5.2 Conclusion

	 Reference
	 Appendix

