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Design of a Banked Texture Cache for Graphic Processing

Unit
Student : Che-Wei Kang Advisor : Dr. Jyh-Jiun Shann

Institute of Computer Science and Engineering
National Chiao-Tung University

Abstract

In modern Graphic Processing Unit (GRPW), téexture filter needs several texels (element of
texture) to compute the final color in screen. -The requested texels of texture filtering may be
in different cache lines or discontinuous position of a cache line. This makes finishing one
filtering may have to access texture multiple times. Multiple cache access causes the process
time longer. However, multiple cache access also causes the dissipation of access power high.
At this thesis, we proposed a banked texture cache which is according to bilinear filtering and
texture placement. We design two kinds of data bank. The two kinds of data bank are
interleaved data bank and continuous data bank. And we also design tag bank to reduce the
cost of multiple tag comparison. The banked texture cache can fetch the requested texels of
bilinear filtering in one cache access. Compare with wide bus design, banked texture cache
can reduce 50% of cache access times. The access energy of two kinds of texture cache are

reduced by 44% and 50% with 1280x1024 resolution due to less cache access times.
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Chapter 1 Introduction

1.1 GPU and Programmable Graphics

Render Pipeline

Graphic processing unit (GPU) is a growing of field of application specific
processor. It targets on graphics rendering, which display the two-dimensional (2D)
viewing of three-dimensional (3D) space. Complexity of modern GPU becomes more
complex due to users’ increasing demands for 3D scene realism improvement [1].

Programmable graphics pipeline is:ithe-most popular solution for the requirements
of both performance and flexibility in computer.graphics nowadays. With the rapidly
development of computer graphics, such-as 3D games, virtual realities and digital
lives, the requirements of computer ‘graphics in-effects and performance become
higher [15]. To meet all kinds of users’ requirements, programmable graphics pipeline
have been introduced into graphics hardware and many complicated function units
have been put in. Different from fixed-functionality (non-programmable) graphics
pipeline, programmable graphics pipeline has new graphics processing units: vertex
shader unit and pixel shader unit. These two new processing units give graphics
pipeline the flexibility to deal with all kinds of computation requirements while
retaining the capability of complicated computation.

Fig. 1-1 is the programmable graphics render pipeline, we discuss the render
pipeline in several parts, which are vertex processing, rasterization, pixel processing

and depth processing.
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Vertex
Processing

V.S, ——
Prog. |

N

Triangle Setup &
Rasterization A

A
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|

Pixel
Processing
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Texture Unit

!
Depth
Processing

i

Fig. 1-1 Programmable graphics render pipeline

Table 1-1 shows the input, output and.operations of each stage to give a concept of

the graphics pipeline. Then we introduce the detail operations of each stage in the

follow sub-sections.

Stage

Input

Output

Operation

\ertex Processing

Vertices with 3D
coordinates

\ertices positioned
in the 2D scene

Transforms 3D vertex
in world space to 2D
vertex on scene

Triangle Setup &

Triangles assembled

Fragments

Interpolates each

Rasterization by vertices triangle into numbers
of fragments
Pixel Processing | Fragments Pixel with final Colors each fragment

color

according to its
information

Depth Processing

Pixel with final color
value

Image composed
of “finalized’ pixel

Uses frame buffer
storing pixels which
will be showed in

screen

Table 1-1 Input, output and operation of each stage




1.1.1 Vertex Processing

Vertex processing is supported by vertex shader in GPU [4]. Vertex shader performs
mathematics operations on the vertex data for objects by the vertex shader programs.
Vertex data are the 3D coordinate values (which are x, y and z) for the vertex and an
object consists of three vertexes. Vertex shader does several transformations and
normalizations, which are model-view transformation, projection transformation,
Clipping, perspective division and viewport mapping. After the transformations and
normalizations, the 3D based objects will be transformed into normalized 2D based
objects on screen which all the coordinate values are in the interval 0 and 1. Then
vertex processing sends the normalized 2D coordinate values to rasterization which

will be introduced at next section.

1.1.2 Triangle Setup & Rasterization

Rasterization receives the data from vertex processing, then produces the fragments
which are in the primitive. It uses horizontal scan line onto the primitive to produce

fragments, which is showed below Fig. 1-2.

Fig. 1-2 Horizontal scan line into primitive



1.1.3 Pixel Processing

Pixel processing is supported by pixel shader. Pixel shader receives fragments from
rasterization stage and does computations for the fragments. Each fragment will be
colored according to the pixel shader code, including texture mapping which we will
introduce in section 1.2. After pixel processing, the fragments with final color will be

sent to depth processing.

1.1.4 Depth Processing

Using frame buffer to store the pixel color which will be display on the screen. In
this stage, z value of every pixel is‘compared with.z value which has the same screen
address (means has the same-X,.y values) of Z-Buffer. Z-Buffer is a buffer of
screen-size using to store the nearestiz value-of-every pixel [5]. If z value of the pixel
is smaller than the value of the Z-Buffer, Z-Buffer is updated by the z value and frame
buffer is updated by the new color. After depth processing, screen display the colors

which are stored in frame buffer.

1.2 Texture Mapping and Texture Filtering

At this section, we will introduce an important technique in GPU which is called
texture mapping. We also introduce two techniques used in texture mapping in the

subsections which are called mip-map and texture filtering.



1.2.1 Texture Mapping

Before introducing texture mapping, we introduce texture at first. Texture is a 2D
bit-map object and its width and height are powers of two. The max size of texture
supported in modern GPU is 4096. Element of texture is called texel, it is consist of
four components which are red (R), green (G), blue (B), and alpha (A). R, G, and B
are the value of color. A is the value of transparency. Each component is 1 byte, is
means that each texel is four bytes. An example is shown in Fig. 1-3. As Fig. 1-3
shows, width and height of the texture are eight. It means that size of the texture is 4x

8x8=256 bytes.

-
i

Fig. 1-3 A texture, its width and height are all eight

Texture mapping is a relatively efficient means to reduce computations for realistic
scenes without the tedium of modeling and rendering every 3D detail of a surface [2,
3]. It is a process in which a texture is applied to an object in the 3D world, as shown
in Fig. 1-4. X and y are pixel coordinates. U and v are texture coordinates.

The number of required triangles is increased and thus the number of calculations is
increased due to realize realistic images or a very complex image. The number of
polygons should be reduced because the computing power of the given system is not

enough to perform the required calculations in time. So quality degradation in terms
-5-



of scene complexity is introduced but in some cases this degradation is not tolerable.
Hence, to have more realistic images with less geometric data, texture mapping has
been used commonly in 3D computer graphics.

Fig. 1-5 shows an example that a texture is mapped onto an object. The object (a
ball) which a texture (a world map) is mapped onto the object shown on screen is a

globe.

Pixel in screen Texel in texture

Fig. 1-4 Concept of texture mapping

Screen-space Texture Scene shown on
triangle screen

Fig. 1-5 A texture mapping example [6]

1.2.2 Texture Filtering

Due to the absence of no one-to-one mapping between texels and pixels, an
interpolation calculation is necessary for high quality mapping. Higher quality
requires computation intensive interpolation to generate a final pixel value from many
texel values.

Commonly used texture filtering algorithms in current 3D games are bilinear

filtering (Bi), trilinear filtering (Tri), and anisotropic filtering (Ani). There is a



tradeoff between operation complexity and image quality among various texture
filtering algorithms. Both trilinear and anisotropic support the mip-map technique.
Mip-map is a technique to reduce the artifacts which arise from the use of a single
bitmap image while the level of detail of an object decreases with an increase in the
distance. It is made by an original-size texture with level-of-detail 0 (LOD 0), then
iteratively resample it to make a quarter-sized texture with LOD i (i>0). The number
of LOD depends on application designer. In Fig. 1-6, there are three LODs for
mip-map. The original size of texture (LOD 0) is 8x8, the size of LOD 1 is 4x4, and

the size of LOD 2 is 2x2.

Screen Original Texture
X U _,LoDo LOD1 LOD?2

[ [

k 4

fiot

B o] Li

Fig. 1-6 Concept of texture filtering and mip-map

The final value of filtering is weighted average of several color values of texels.
The value of bilinear is weighted of four texels that are closest to the center of the
pixel being textured. Trilinear filtering is to choose two adjacent mip-maps which are
most closely match the size of the pixel being textured. First, use bilinear filter to
produce a texture value from each mip-map. Second, do linear average of theses two
results from bilinear filtering. An example is in Fig. 1-5, two mip-maps are LOD 0
and LOD 1. The final color value is weighted average of the values which are after

doing bilinear filtering of LOD.


http://tw.dictionary.yahoo.com/search?ei=UTF-8&p=quarter

If we need to do texture mapping for a plane which is at an oblique angle to the
camera, traditional filters (bilinear/trilinear) don’t have sufficient horizontal resolution
and extraneous vertical resolution. Anisotropic is a method of enhancing the image
quality of textures on surfaces that are far away and steeply angled with respect to the
camera. The final color value of n:1 anisotropic is an average of the values of n
trilinears results. The value n is called anisotropic ratio, the ratio of horizontal
direction to vertical direction, is defined by game designer. The value may be 2, 4, 8,
or 16. We use n=2 as example and shown in Fig. 1-7. Table 1-2 is comparison of three

types filtering algorithms.

LOD i

LOD i+1

Fig. 1-7 Concept of anisotropic filtering

Filtering Type # of Mip-map | # of Texel / Mip-map # of Texel
Bi 1 4 4
Tri 2 4 8

n:1 Ani, n=2,4,8,16 2 4n 8n

Table 1-2 Comparison of bilinear, trilinear, and anisotropic filtering algorithms




1.3 Texture Unit

Texture unit supports texture mapping operation in GPU. Texture unit is composed
of an address translation, texture cache, and texture filter, as shown in Fig. 1-8.
Process of texture unit is that texture unit receives texture coordinate (u, v). Then
address translation translates the texture coordinate (u, v) of texel into real address,
then sends the address to texture cache to fetch texel. This action may active several
times. After all the requested texels are sent to texture filter, texture filter will compute
the final color value according to the filter type and weight then sends the color value

to pixel shader.

Filter information | Xture Unit
I v
(u,v) |,| Address [address|Texture | texel [Texturef 1, Color of
Translation Cache Filter pixel

¥ £

Texture Memory

Fig. 1-8 Texture Unit

1.4 Motivation

The texture filtering algorithms in modern GPU always need several texels. In
traditional single port texture cache, it may need several times of cache access. This is
wasteful of processing time and access power.

The power dissipation of cache on modern processor is an important part [7]. For
example, power dissipation of on-chip D-cache in the StrongARM110 is 16% of its

total power [8]. On the other hand, if the texture cache has multi-port, we can fetch
-9-



the requested in one cache access. But the overhead of multi-port cache is too heavily.

1.5 Objective

Design a banked texture cache which is according to bilinear filtering. Other
complex filtering algorithms can be seen as several times of bilinear filtering.
Trilinear filtering can be seen as two times of bilinear filtering and N:1 anisopostic
filtering can be seen as 2N times of bilinear filtering. The banked texture can fetch the
requested texels of bilinear filtering in one cache access if there is no cache miss. The
performance of our banked texture cache is the same as multi-port texture cache but
the cost is lower than multi-port texture cache.

We use the characteristic of bilinear filtering which needs 2x2 texels to separate the
original texture cache into four banks. Cache line size of each bank is quarter of

original cache line size.

1.6 Thesis Origination

The origination of follow sections in this thesis is: Chapter 2 introduces background
of texture placement and a related work. Chapter 3 introduces our banked design,
including two kinds of data bank design and banked tag design. Experiment results

are shown in chapter 4. Discussion and conclusion are made in chapter 5.
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Chapter 2 Background

In this chapter, we will introduce the texture placement methods which our
banked texture cache rests on. The texture placements which we will introduce are 4D
placement, 6D placement, and recursive Z (RZ) placement. We will introduce how

they map the texture in memory and the address translation equations.

2.1 Texture Placement

Texture placement is to map the 2D based texture in texture memory (can see as
map 2D object on 1D). The representation of texture maps in memory is important to
the cache behavior because it effects where texture data is placed in the cache [9].
Placement also effects complexity of address translation logic. Texture placement can
be separated into two kinds which aré non-tile based and tile based. Non-tile based
placement method is linear and tile based placement methods are 4D, 6D and RZ.

At this section, we will introduce the tile based placement methods which we use
for our banked texture cache. These placements methods are 4D, 6D [9], and

Recursive Z (RZ) [10].

2.1.1 Texture Placement Method: 4D

4D placement is a tile based placement, texels that are within a square region of 2D
image are order consecutively in memory. The tile sizes for width and height are equal
and are powers of two. An illustration of 4D placement is shown in Fig. 2-1, which

the tile size is 4x4. The left part is the 2D based texture, and the arrowed line means
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the order of texel. The right part is texels (tiles) placement order in texture memory.

u D
(g8 1 _
v > i A tile
:
v
I I 4 v~
N ' 4 N
Texture Memory

Fig. 2-1 A 4D placement example with 4x4 tile size

The address translation equation is-shown in.Fig. 2-2. Its concept has two steps.
First step is to calculate the tile:start address which the requested texel is in it. Second

is to calculate the texel address by-adding offset in.the tile to tile start address

bw, bh: tile width and height in texels
Ibw =log,(bw), Ibh = log,(bh)
bs =log,(bw*bh)

Following variables are a function of the Mip Map level
rs: log,(width of texture array in texels*bh)

tu, tv: texel u-coordinate and v-coordinate

bx, by: block coordinate

sX, sy: sub-block coordinate i texels

base: starting address of 2D texture array

bx =tu >> lbw, by = tv >> Ibh
Block address = base + [(by << rs) + (bx << bs)]<<2
sx = tu & (bw-1), sy =tv & (bh-1)

~

Texel address = Block address + [(sy << Ibw) +sx]<<2

Fig. 2-2 Address translation equation of 4D placement
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2.1.2 Texture Placement Method: 6D

6D placement is also a tile based placement which is like 4D placement. The
difference between 4D placement and 6D placement is that 6D placement has
two-level tile. The limits of two-level tile width and height are the same as tile width
and height of 4D placement. But the second level tile size has to be bigger than first
level tile size. An illustration of 6D placement with first level tile size is 8x8 and
second level tile size is 4x4 is shown in Fig. 2-3. The left part is the 2D texture, and
the red line means the order of texel in memory. The right part is the order of texels in

the memory.

D) \
(L ! First level
. 1 tile
M } Second level
1 tile
I V4 W S
~ N \ Lt
Texture Memory

Fig. 2-3 6D placement example with 4x4 1st level tile and 8x8 2nd level tile

The address translation of 6D placement is like 4D placement. The difference
between these two placements is that 6D placement has two level tiles, so 6D
placement has to calculate tile start address two times. First step is to calculate the
second level tile start address which the requested texel is in. Second step is to
calculate the first level tile start address which the requested texel is in by adding tile
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offset to second level tile start address. At last, calculate the offset by adding the intra

second level tile offset to the second level tile start address. The equation is shown in

Fig. 2-4.
bw, bl fust level block width and height in texels bx=tu>> Ibw, by =tv >> Ibh
Ibw = log,(bw), Ibh = log,(bh) Block address = base + [(by << rs) + (bx << bs)] << 2
bs =log,(bw*bh) shx = (tu — (bw*bx)) >> slbw
shbw, sbh: second level block width and height in texels  sby = (tv — (bh*by)) >> slbh
slbw = log,(sbw), slbh =log,(sbh) Sub Block address =
shs=log.(sbw*sbh) Block address + [(shy << srs) + (shx << shs)] << 2

sx = tu & (sbw-1), sy =tv & (sbh-1)
Following variables are a function of the Mip Map level
rs: log,(width of texture array m texels*bh) Texel Address =

tu, tv: texel u-coordmate and v-coordinate Sub Block address + [(sy << slbw) + sx] << 2

bx, by: block coordinate
base: starting address of 2D texture array

srs: log2(bw*sbh)

shx, sby: sub-block coordmate

sx, sy: 1ntra sub-block coordmate i texel

Fig. 2-4 Address translation equation of 6D placement

2.1.3 Texture Placement Method: Recursive Z (RZ)

Recursive Z placement can be seen as multi-level tile placement. Each first level
tile has four texels. Each second level tile has four first level tiles (16 texels). From
this rule, we can know that each third level tile has four second level tiles (64 texels)
and so on.

Fig. 2-5 shows an illustration of RZ placement. The first level tile is shown as the
smallest “Z” in Fig. 2-5. The second level tile is shown as middle “Z” in Fig. 2-5. The
third level tile is shown as the biggest “Z” in Fig. 2-5. Using this rule can map the

order of texels in texture into memory.
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Fig. 2-5 RZ placement example

The address translation of RZ is shown in Fig. 2-6. The concept of RZ placement is
bit interleaved by texture coordinate. (u, v). /As Fig. 2-6 shows, there are three cases of
texture, which are width is equal-to height (case 1), width is smaller than height (case
2), and width is bigger than height (case 3). In case 1, assume width and height of
texture have n valid bits (Ex: the"valid bits of 128-are 7). The valid bits of offset are
2n bits which are made by the bits of u direction and v direction interleaved. The
interleaved method is that u direction offers a bit then v direction offers a bit and
repeats until the u and v direction valid bits are use over. Case 2 and case 3 are like
case 1, but the difference is that the bits interleaved until the small value bit length
then the other bits in offset are offer by the leaved bits of big value. If the bits length

of texture width and height are n and m, the valid bits of offset are m+n bits.
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tw, th: mip mapping width and height

tu, tv: texel u-coordimate and v-coordinate
base: starting address of 2D texture array
tufi]: i-th bit of tu

tv[i]: 1-th bit of tv

Case 1: tw=th which has n valid bits
offset =00... .. 00tv[n]tu[n].. tv[3]tu[3] tv[2]tu[2] tv[1]tu[1] tv[0]tu[0]

Case 2: tw > th which tw is n bits, th is m bits
offset =00... . 00tu[n]tu[n-1]tu[n-2]. ... tv[m]tu[m].. tv[3]tu[3] tv[2]tu]2] tv[1]tu]1] tv]O]tu[0]

Case 3: tw < th which tw is n bits, th is m bits
offset =00... .. 00tv[m]tv[m-1Jtv[m-2]...... tv[n]tu[n].. tv[3]tu[3] tv[2]tu[2] tv[1]tu[1] tv[0]tu[O]

Texel address = base +( offset << 2)

Fig. 2-6 Address translation equation of RZ placement
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Chapter 3 Design

In this chapter, we will introduce our design of banked texture cache. We will
introduce two kinds of design which are interleaved data bank and continuous data

bank. Then, we will introduce the banked tag which is to reduce to access port in tag.

3.1 System Overview

At this section, we introduce the differences between traditional texture cache and
banked texture cache. We discuss them in two parts, which are data array and tag array.
In data array, our design is to separate data array,into four data banks (DBO~DB3).
The cache line size of each data-bank is quarter of original cache line size and number
of lines is the same as original texture_cache, In tag array, banked texture cache
separates the tag array into four tag banks (TBO~TB3). The number of line of each tag
bank is quarter of original tag array.

We will introduce two kinds of data bank designs at section 3.2 and section 3.3. Tag

bank design will be introduced in section 3.4

[ R N R N Y LRy
.

- -

L R R R N

: Tég :
: | Array Data Array
sTexture Cache e
To Filter
Fig. 3-1(a)
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Banked Texture Cache

%0--0--0--0--0--0--0--0--0--0--:{F:btolnot-.otoota.t..n.on.

To Filter

Fig. 3-1(b)

Fig. 3-1 Origination of the texture cache: (a) original texture cache (b) banked texture
cache

3.2 Data Bank Design,v1: Continuous Data

Bank

The concept of reducing access power in continuous data bank is by less data bank
access. The proposed data bank design v1 is shown in Fig. 3-2. From Fig. 3-2 we can
find that the requested texels may be in one, two or four data banks. To get the
requested texels in all cases, the column select is outside each data bank and the
inputs of each column select is interleaved from each data bank.

The extra circuit has two parts which are address control and word select. Address
control is to send correct addresses to correct data bank and gate needless access
which will be introduced in section 3.2.2. Word select is to produce the select signal

for each column select which will be introduced in section 3.2.3.
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To Filter

Because the line size of each data bank is quarter of original cache line size, so the
data bank id field of address is the highest two bits of line offset field. The data bank

id field in address is shown in Fig. 3-3. The lowest two bits of address are word offset.

Data Bank id
Texel Address | Tag Indexi

5

Line offset

Fig. 3-3 data bank id field in address

From Fig. 3-3, we find that texels in data bank is separate a line data into four parts

by address. Fig. 3-4 is the illustration which shows the address mapping in cache. A
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is the block start address and S is the cache lines size in texel.

A Block Data  |4HS—1[4HS2|4HSS s A+2|4+1] A

L HS-1 * A+35 55 6 o A+ (S -1 * A
To DB3 To DB2 To DBA1 To DBO

Fig. 3-4 address mapping in data bank

Fig. 3-5 is an example of address mapping in continuous data bank. The texture
placement method is RZ placement and cache line size is 64 bytes (16 texels). Fig.
3-5(a) is the texel mapped address with, RZ placement. The number above in each
texel is the address and the number helow is the. line offset binary code of each
address. In the line offset binary code, the italic and boldface is the data bank id. Fig.
3-5 (b) is the address mapping ‘in.data bank.“Use the rule shown in Fig. 3-4, texels
with address 0, 1, 2, 3 have the same ‘data‘bank id are placed the same data bank
(DBO0), and texels with address 4, 5, 6. 7 are placed in the same data bank (DB1) and

SO on.

u
0 1 4 5

0000]0001{0700]0101
2 3 6 7

0010]0011{0710]0111
8 9 |12 ] 13

71000]7001]7700{7701)
10 [ 11 | 14 | 15

101017011171110{17111
Texel mapped address

Fig. 3-5(a)
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A Block Data |15|14|13(12[{11{10|9 |8 |7 |6|5|4|3|2(1|0

15[14[13[12 111(198 7(154 3(2]1]0

To DB3 To DB2 To DB1 To DBO

Fig. 3-5(b)

Fig. 3-5 Example of address mapping in data bank: (a) Texel mapped address with RZ
placement (b) address mapping in data bank

3.1.2 Address Control

Because in continuous data bank, we find that the requested texels may be in 1, 2,
or 4 data banks. To send addresses to data.bank in all cases is the function of address
control. Address control is to check the addresses and send the only one address to its
corresponded data bank. We use four comparators to compare the data bank field of
the four addresses.

Address control consists of comparators, ‘priority encoders and multiplexers. The
four comparators send the results of comparison to a priority encoder. The priority
produces an address select signal and a data bank enable signal. The select signal is
sent to multiplexer for selecting the address to the data bank. The address control
circuit is shown in Fig. 3-6. The input of each comparator B; is the data bank id of the
address which is from AT;. And the inputs of each multiplexer are the addresses from

the AT
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Address Control
11

| Priority Encoder || Priority Encoder || Priority Encoder || Priority Encoder |
Ay A, A A, A, A, A A, A, A, A A Ay A, A A
‘flll |f111 ‘flll ‘5111
4-1 MUX /N, 4-1 MUX/ 4-1 MUX /N 4-1 MUX /
2 —/ Y —/ VN /11 Py !
32 32 32 32
DB3 EN DB2 EN DB1 EN DBO EN

Fig. 3-6 Address control: A; is the address from AT; and B; is the data bank id of A;

We use the control of DBO as example. The data bank field of each address is
compared with binary signal “00”. If the data bank field matches the binary signal, the
result is “1” otherwise is “0”. The results of.the comparators are as inputs of priority
encoder, the priority encoder accords to. the priority truth table to produce a select
signal to multiplexer. The data bank ene;ble signal-is also produced from priority
encoder. If one of the inputs isnot “0”, the bank enable signal is “1”. It means that
there is address will be sent to DBO." Otherwise, all inputs are “0” means that no
address will be sent to DBO.

The priority encoder circuit is shown in Fig. 3-7, and Table 3-1 is the truth table of

the priority encoder.

Fig. 3-7 Circuit of priority encoder
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XS X2 Xl Xo Y1 Yo EN

Table 3-1 Truth table of priority encoder

3.1.3 Word Select

Before introducing word select; we introduce how texels in cache line to be inputs
of multiplexers first. In our design, we wantto design that the requested texels is from
each multiplexer. So we let the cache data-be-the/inputs of multiplexers interleaved.
Assume that texture placement tile ‘'size IS NxN and texel address is A. Texel
should be sent to the multiplexer with number A[log, (N) + 3][3], and the position in
the multiplexer is the remain bits of line offset field. Use this rule can let the requested
2x2 texels be in each multiplexer individually.

The function of word select is to produce select signals for outside data bank
multiplexers. The signals are the positions of the requested texels in each multiplexer.
The inputs of word select are line offset fields of texel addresses. Then separate each
line offset field into two parts which are select signal for outside data bank
multiplexer S, and select signal MUX,. These two fields depend on tile size,
MUX, is Aflog,(N)+3][3] and S, isremain bits of line offset field. Use MUX,

as the select signal and S, as the inputs of multiplexers. The reason is that texels
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placed in cache are continuous, but we design the outside bank column select which

its input are interleaved. So, the MUX, and S, are like the data bank id and offset
in bank field in interleaved data bank design respectively. The MUX, and S, for
other tile size are also mapped to the data bank field and offset field in interleaved
data bank. The word select circuit is shown in Fig. 3-8. There are four multiplexers
and each output of the multiplexer is the select signal for outside data bank cache

column select.

e RS,
I MUX,

To MUX3 To MUX2 To MUX1 To MUXO
Fig. 3-8 Word select

Use tile size is 2x2 as example. Use the'cache data to outside data bank rule,
MUX, is Al[log,(2) +3][3] (A[4][3]) and other bits of line offset field is S, . Fig,

3-9shows MUX,; fieldand S, field in address with tile size 2x2.

— MUX,

.......

Fig. 3-9 Sj and MUX; in address with tile size 2x2

3.1.4 Discussion of Continuous Data Bank

In continuous data bank design, we find that in some tile size and cache line size
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parameters will happen the requested texels are in same data bank but in different
cache lines. A conflict example is shown in Fig. 3-10. Tile size of texture placement is
2x2 and cache line size is 64 byte. If the requested texels addresses of bilinear are 2, 3,
16, and 17, conflict happens. The four addresses are all mapped in DBO but the texels
with address 2, 3 are in a cache line, texels with address 16, 17 are in another cache
line.

Conflict situations happen in the wrong texture placement tile size and cache line
size parameters. Especially in large cache line size, conflict situation may happen in

each texture placement tile size.

Conflict
15|14]|13]12 11|10]19 (8 71615|4 Sj2|1]o

ol TaTs14TaTizlial  [31]30[29[28] [27]26[25[24]  [23]22[21[20]  [19]18[iZ]i6

6|7 |10[11]14]15
20|21[24]25]|28|29
18]19]22[23)26[27[30)31

Texel mapped address

} [ [ —
-1 rlwux/ -1 rl\nwg/ -1 rinws/ -1 rlmwg/

Fig. 3-10 An conflict situation in continuous data bank

Address control is complex due to several access situations. The requested texels of
bilinear filtering may be in one, two, or four data banks. Address control is designed
to control each situation, so the circuit is complex.

Another problem is that we design the cache data (texels) are inputs of outside data
bank multiplexers interleaved, output bit of each data bank is equal to the line size of
data bank. It means that the dynamic energy consumption of each data bank is high. If
the requested texels are in two or four data banks, the dynamic energy of per access is

high than original design.
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3.2 Data Bank Design v2 (Interleaved Data

Bank)

In data bank design v1, there are some access situation cases. These access cases
make the address control complex. And the output bit of each data bank is wide. In
data bank design v2, we want to design a simpler data bank and the address control is
also simpler.

Basic idea of interleaved data bank is that the requested texels of bilinear filtering
are in different data banks. Output bit of each data bank is one texels. This concept of
interleaved data bank is that from [11], Igehy proposed a texture data organization
which use 6D placement. We follow this conceptto design our interleaved data bank.
The proposed data bank v2 is shown Fig. 3-11: The extra circuit called address control
is to switch the texel addresses to.the-correct corresponded data bank, we will
introduce it at section 3.2.2.

Fig. 3-12 shows that the texels are interleaved mapped in data bank. The left part is
the texture and number is the coordinate of texels. The right part is the texels mapped
data bank number. We can find that in each 2x2 tile, texels in the tile are from
different data banks, so that one bilinear filtering can fetch the four texels from four
data banks in one cache access. The difficulty of interleaved data bank is that how we
map the texels in data bank interleaved by addresses. To do that, we analyze each
texture placement methods introduced in chapter 2 and to find the mapping method to

map texels in data bank, which will be introduced at next section.
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To Filter
Fig. 3-11 Data bank design v2: interleaved data bank

|

u
v|110,0(1,012,0]3,0 v o111
0111,1]121[31 213
0,211,2122(32 Q11101
0,311,3]123(33 21311213
Texture Texel mapping in data bank

Fig. 3-12 texel mapping in data bank

3.2.1 Address Mapping in Cache

For mapping address to cache, the mapping rule is like the rule introduced in data
bank design v1. Consider the texture placement tile size which is NxN, the texel
with address A is in data bank A[log,(N)+3][3] and position in data bank is the

remain bits of line offset.
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First, we use texture placement tile size 2x2 (Ex: 4D_2x2, 6D_NxN_2x2, RZ) as
example. Texel which its address is A, the data bank id is A[log,(2)+3][3]
( A[4][3]) and offset in data bank is the remainder bits of line offset. The data bank id

and offset in data bank field in texel address are shown in Fig. 3-13

S— . D L ] = - 1g g [o!
Texel Address | Tag 'ndeX!

d Puiad

Fig. 3-13 Data bank id and offset in data bank field in address with 2x2 tile size

Use this rule to map a texture in cache. An example is shown in Fig. 3-14, texture
placement method is RZ and cache line size is 64 bytes. The number above is the
address of texel and number below isthe binary code of the address. We find that use
the boldface and italic numbers:of binary-code as data bank id, each texel in 2x2 tile

can be placed in different data banks.

u

0 1 4 5

0000]0007]0100{0101
2 3 6 7

0070]0077]0170{0171
8 9 |12 | 13

1000]1001{1100{1101
10 | 11 [ 14 ] 15

1070i1077|1110|1111
Texel mapped address

Fig. 3-14 Texel mapping in interleaved data bank which tile size is 2x2 and cache line
size is 64 byte

Fig. 3-15 is the address mapping in cache which is following the example shown in
Fig. 3-14. Texels which addresses are 0, 4, 8, and 12 are placed in the same data bank

(DBO0) because they have the same data bank id (00). Texels which addresses are 1, 5,
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9, and 13 are placed in the same data bank (DB1) because they have the same data

bank id (01), so are other texels.

A Block Data |15[14[13[12]|11]10[ 9|8 |7 [6[5|4]3[2[1]0]

|15|117|3| |14|1C$6|2| [13] 9$5|1 | |12|8$4|0|

To DB3 To DB2 To DB1 To DBO

Fig. 3-15 Address mapping in interleaved data bank, which tile size is 2x2 and cache
line size is 64 bytes

We use tile size is 4x4 as another example. From the mapping rule, texel with
address A is at data bank A[log, (4) +3][3] (A[5][3]) and the position in data bank
is the remainder bits of line offset: Fig. 3-16 shows the data bank id and position in

data bank field in address which-texture placement.tile size is 4x4.

Data Bank id

Position in the Data Bank

Fig. 3-16 Data bank id and offset in data bank field in address with 4x4 tile size

The concept is that u direction of texture coordinate place four texels then v
direction of texture coordinate place one texel. It can be seen as that the u direction
offers two bits then v direction offers one bit. So, we can use this concept to place
each 2x2 tile of texture in data bank interleaved which texture placement tile size is 4x
4. The data bank id is the boldface and italic number of the binary code of address in

the Fig. 3-17.
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u

0 1 2 3

0000]0007]0010]0011
4 5 6 7

0700]0707]0710{0711
8 9 |10 | 11

1000]1001|1010{1011
12 113 | 14 | 15

11001101711110(11711
Texel mapped address

Fig. 3-17 Texel mapping in interleaved data bank with 4x4 tile size

Fig. 3-18 shows an example of address mapping in data bank which is following
the example shown in Fig. 3-17. Assume cache line size is 64 bytes (16 texels). Texels
with address is 0, 2, 8, and 10 are placed in the same data bank (DBO0). The texels with
address 1, 3, 9, and 11 are placed in the same data bank (DB1) and so on. From Fig.
3-18 we can find that the requested texels are in. different data banks for each 2x2

texels.

A Block Data [15]14[13[12[11]10] 9|8 |7 [6]|5[4]|3[2]1]0]
115[13| 75| [14|12[6]4]| |11]9]|3[1][10/8]2]0]

\ 4 v v v
To DB 3 To DB 2 To DB 1 ToDBO

Fig. 3-18 Address mapping in interleaved data bank, which tile size is 4x4 and cache
line size is 64 bytes

Use the rule to find other tile size interleaved mapping method. Tile size is 8x8 uses
third and fifth bits of address to be data bank id and so on.

The constraint of the interleaved data bank is that the cache line size has to be the
smallest tile size at least. If the cache line size is small than tile size, the data in a line
are not continuous. For example, if cache line size for tile size is 4x4 is 16 bytes, it
means that a line is texels with address O, 1, 4, 5 and the next line is texels with
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address 2, 3, 6, 7. At this situation, if cache is missed, memory may have to transmit

several times. This makes miss plenty be worse.

3.2.2 Address Control

The function of address control in data bank design v2 is to switch the address to
corresponded data bank. It receives addresses from the address translation array and
then switches the addresses to the corresponded data bank. There are four cases which
are address mapping data bank of bilinear filtering, shown in Fig. 3-19. First, see the
above part, four texels masked by square are the requested texels of bilinear filtering.

The below part is address control how to switch the addresses to the corresponded

data bank.
Of1(0]1 01101 O]11[{0]1 0[1[0]1
B 2 | 3 2 . 3 S 2 | 3  E
0[1]0]1 0]1(0]1 O 0|1 0 [FIB[0Y 1
213[2]3 2|3]|2]8 2]13]2]|5 2]13]2]8
Texel mapped in data bank
from AT3 3

from ATO from AT3

from ATO from AT

.............. | s H

ToDB3 -

- ToDBO ToDB3 + +« ToDBO To DB3 - « ToDBO

Fig. 3-19 Cases of switching address to corresponded data bank.

By analysis of the four cases, we find the situation that the address from ATi is sent
to DBj (i and j are 0~3), and the address from ATj is sent to DBi. It can be seen as two
of the four addresses change its address. So we use four 4-1 multiplexer to implement

address control and the select signal is the data bank field of the address from the
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corresponded AT. The implementation circuit of address control is shown in Fig. 3-20.

from AT2 from AT2 from AT1 from ATO
* from ATO |from AT2 * °  from ATO|from AT3 ° * from ATO from AT3 * * from ATO

LTy
.

: Router

----------------------------------------------------------------------------------------------------------

To DB3 To DB2 To DB1 To DBO

Fig. 3-20 Address control in data bank design v2

3.2.3 Discussion of Interleaved Data Bank

The effect of accessing four data banks in one cache access is waste of dynamic
power. But output bit of each data bank is one texels. The energy consumption
between these two data bank designs depends on bilinear filtering access parameters.
If requested texels are in one data bank-in-data-bank design v1, the access energy in
data bank design v1 is less than data bank design v2. On the other hand, if requested
texels are in different data banks, the access energy in data bank design v1 is larger

than data bank design v2.

3.3 Banked Tag

In the two designs which are introduced above, each data bank is only one access
port. But there is still multi-port in tag, because accessing four data banks needs four
tag data. Like multi-port in data bank, this makes area of tag be larger. We use the
characteristic of bilinear filtering to design banked tag which each tag bank is only
one access port. Banked tag can apply in interleaved data bank or continuous data

bank, shown in Fig. 3-21. Banked tag design can apply with data bank design v1 and
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also can apply with data bank design v2.

Banked Texture Cache:

, I : I + AS.AQ ,A1 "AO g

TBO

TB1

k| Data Bank

E TB2

= o TB3 3
To Filter

Fig. 3-21 Proposed banked tag design

Banked tag design is to separate ariginal:tag intofour banks. Its placement is very
like interleaved data bank which using two bits of index field as tag bank id and other
bits as tag index field, shown in Fig. 3-22. It means that tag of line 0 is placed in tag
bank 0 (as TBO in Fig. 3-21), tag of line 1 is placed in tag bank 1 (as TB1 in Fig. 3-21),
tag of line 2 is placed in tag bank 2 (TB2), tag of line 3 is placed in tag bank 3 (TB3),

and so on.

Index

—
Texel Address i Tag : .

Index in each tag bank ] — Tag Bank id

Fig. 3-22 Tag index field and tag bank id in address

The best situation of banked tag happens at the requested texels are in one cache
line, the banked tag only needs to access one tag bank. Otherwise, the worse situation

is the requested texels are all in different cache lines.
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The difficulties of banked tag are the same as the difficulties of address control in
continuous data bank, which are how to control the tag indexes to the corresponded
tag bank and send one tag index to tag bank. Tag control in Fig. 3-21 is designed to do

these works.

3.3.1 Tag Control

Tag control implementation is very like address control introduced in continuous
data bank. The difference between tag control and address control are their inputs.
Input of tag control is the index fields of addresses. The TB; is the tag bank id in Fig.

3-23 of address from AT;. Tl; is the tag index in Fig. 3-23 of address from AT;.

“00” then the results are as inputs-to prior n to produce a select signal to

multiplexer and an enable sig I N for-tag bank 0 (TB0). The multiplexer is

Priority Encoder Priority Encoder Priority Encoder Priority Encoder

Fig. 3-23 Tag control
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3.3.2 Tag Compare

Modification in tag compare is due to banked tag. Because the tag may be from
each tag bank, there must be a multiplexer to select the correct tag data for comparing.
And the select signal is the tag bank id of the address. The modified circuit of tag

comparison is shown in Fig. 3-24.

ff'l'a;i?, Indexﬁ‘é ?Taga Indexﬁé E:-Tagl Inclex|§ :fTagrr Indexr.é

TB3 TB2 TB1 TBO TB3 TB2 TB1 TBO TB3 TB2 TB1 TBO TB3 TB2 TB1 TBO
S S S O S S S Y S A S |
4-1 MUX 4-1 MUX 4-1 MUX 4-1 MUX
3 5 TB, TB,
.

Fig. 3-24 Circuit of modified tag-comparison

3.3.3 Discussion of Banked Tag

We find that in some tile size of texture placement and cache line size parameters,
the 4D placement and the 6D placement may happen conflict situation in banked tag
design. That is due to row-major placing tiles of 4D placement and 6D placement. A
conflict example is shown in Fig. 3-25. In this example, placement method is 4D with
tile size is 2x2 and cache line size is 4 texels. As Fig. 3-25 shows, four texels mapping
in a line and the number above is the line index. The number below is the binary code
of the line index, and the boldface and italic number is the tag bank id. Conflict
situation happens when bilinear filtering accesses the mask block. Because two of the
requested texels are in a line and the other two are in another line, but tags of the two
lines are in the same tag bank. To avoid this situation, we check the tile size and cache
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line size which the pair will not happen conflict situation.
In RZ placement, this situation will not happen. It is because that the line index is

not the same in adjacent tiles with any cache line size.

doo] 1do7 [ 100 1d7]
e

Fig. 3-25 A conflict situation of banked tag

3.4 Cache Miss Replacement

Our replacement mechanism+is that‘when-a-data bank is missed, the bank texture
cache will replace the same line of each.data bank. This is because our design the tag
is not duplicated.

Even tag is duplicated, we still use the mechanism. In interleaved data bank, texels
are interleaved placed in data bank. In continuous data bank, texels are interleaved as
inputs of the outside data bank column select. If cache only replaces the line of the
data bank when cache miss happen, it may need several transmission from memory to
cache because the addresses of texels in the data bank are not continous.

According to these two reasons, we think this mechanism is better. A replace
example is shown in Fig. 3-26. As Fig. 3-26(a) shows, DBO and DB2 happen cache

miss, the cache replace all the same line of each data bank (Fig. 3-26(b)).
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Address : | Address :  Address : : Address

hit hit
miss! miss!
DB3 DB2 DB1 DBO
Fig. 3-26(a)
Address i i Address i | Address : | Address
hit hit
DB3 DB2 DBl DBO
Fig. 3-26(b)

Fig. 3-26 Cache miss replacement _exé'mp"le:. (@) Cache miss happen (b) Replace all the
same line of each data bank
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Chapter 4 Experiment Result

4.1 Simulation Environment

Our simulation environment has two parts, which are software simulation and
hardware simulation. Software simulation is to analyze the banked texture cache
efficiency, like access count, bank access count, etc. Hardware simulation is to

analyze the cache access timing and cache area.

4.1.1 Software Simulation Environment

Software simulator is a trace-driven :C++. simulator which is according to our
design. The input of the simulator is the trace from-modified ATILA simulator [12]
which is a cycle-based GPU simulator. We dump the requested texture coordinate
from ATILA to be input of our simulator. Our benchmark is Quake4 [13] which is an
OpenGL standard game and resolution is 1280x1024 which is general resolution in
modern monitor. The output of simulator is total access count and other information

of the banked texture cache.

4.1.2 Hardware Simulation Environment

The hardware has two parts, which are cache simulation and extra circuit
simulation. In cache simulation, we use CACTI 4.2 [14] to simulate the access timing,
cache area, and access power of cache. In extra circuit simulation, we use the

hardware describe language called verilog to simulate the extra circuit of our design.
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The design is synthesized by synopsis design compiler with TSMC 0.13 um process.

4.2 Software Simulation Result

At first, we decide the texture placement method and cache size. We choose the
texture placement is RZ placement, because it is suitable for all banked designs
without conflict situations and the cache miss rate of RZ placement is lowest in all
texture placement methods. We decide the cache size is 16KB, which is general size

for modern GPU.

4.2.1 Cache Access Count

In traditional design, the bus-width of texture cache and texture filter is 4 bytes (1
texel). In other designs, we assume the -bus-width of texture cache to texture filter is
16 bytes (4 texels). In wide bus ‘design, .we assume the texture cache can send
continuous four texels to texture filter. Multi-port texture cache has four access ports
which can fetch four texels in one cache access.

At first, we analyze the cache configuration is suitable for each design. Access
count of each design is shown in Fig. 4-1. Fig. 4-1(a) is access count statistics of
traditional design, Fig. 4-1(b) is access count statistics of wide bus design, and Fig.
4-1(c) is access count statistics of multi-port and banked designs. We can find that the
access count in line size 64 bytes is low enough and cost is not high in each design.
After deciding the line size, we decide set-associative by using Fig. 4-1 and Fig. 4-2.
Fig. 4-2 shows that the access energy of each line size. In Fig. 4-1, access count in
2-way set-associative of each design is low enough and the access energy of 2-way

set-associative is not high. So, we decide the cache configuration is that cache size is
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16KB, line size is 64bytes, and set-associative is 2-way set-associative. The cache

configuration is show in Table 4-1.

Traditional Access Count

3.2E+08
3.2E+08

3.2E+08
—— 32 bytes

—=— 64 bytes
128 bytes

3.2E+08

Access Count

3.1E+08

3.1E+08

3.1E+08
1-way 4-way 8-way fully

Set-associative

Wide Bus Access Count

1.7E+08
1.7E+08
1.7E+08
1.7E+08
1.7E+08
1.7E+08
1.6E+08
1.6E+08
1.6E+08
1.6E+08

—— 32 bytes
—=— 64 bytes
128 bytes

Access Count

1-way 4-way 8-way fully

Set-associative

Fig. 4-1(b)
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Access Count

8.1E+07
8.0E+07
8.0E+07
8.0E+07
8.0E+07
8.0E+07
7.9E+07
T.9E+07
7.9E+07
T.9E+07

1-way

Multi-port, banked designs Access Count

4-way 8-way

Set-associative

fully

—— 32 bytes
—=— 64 bytes
128 bytes

Fig. 4-1(c)

Energy(nl))

Access Energy

1-way W 4-way 8-way
Set-associative

full

—— 3)bytes
G 64b§te; P

L ¥
~

—— ]128bytes

Fig. 4-2 per access energy of each line size with 16KB texture cache
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Cache Size 16 KB

Line Size 64 bytes

Set-associative 2-way

Table 4-1 Cache configuration applied in our designs

The result is shown in Fig. 4-3. Banked texture cache and multi-port texture cache
can reduce about 75% cache access which base line is traditional design. That is

because that the requested texels can be fetched in one cache access without cache

misS.
Access Count
3.5E+08 100%
90%
3.0E+08 0%
‘g 2.5E+08 0% o
Q 60% &
O 2.0E+08 s0% £ B Access Count
% 0 ()
S 1.5E+08 40% 5 | —* Percentage
< 1.0E+08 %82//0 &
0
5.0E+07 10%
0.0E+00 0%
> $ & > N\
. Q(b‘ S Q Q Q
& RN @5 \Qq& \Qq&
Designs

Fig. 4-3 Cache access count comparison with traditional as baseline

Fig. 4-4 is like Fig. 4-3, but the difference is that base line is wide bus design. We
can find that our two kinds of banked designs and multi-port design can reduce about
50% access count. That is because that the percentage of requested texels in different

cache line and discontinuous position of one cache line takes a large part.
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Access Count

1.8E+08 100%

1.6E+08 1 90%

1.4E+08 1 80%
2 1.2E+08 ] 28;70 S
S 1.0E+08 50(; %J B Access Count
2 150% 2
S 8.0E+07 4 40% § —e— Percentage
O —
< 6.0E+07 1 309 L

4.0E+07 -4 20%

2.0E+07 1 10%

0.0E+00 0%

wide bus multi-port banked v1 banked v2
Designs

Fig. 4-4 Cache access count comparison with wide bus as baseline

4.2.2 Total Access Energy -

At first, we discuss the access energy of per'access in each design, shown in Fig.
4-5. We use texture cache with wide bus design as baseline. Because the access count
of traditional design is higher than other designs. Another reason is that bus width
between texture cache and texture filter is 4 bytes in traditional design which is
different from other designs. From Fig. 4-5, we can find that the access energy of
wide bus design and multi-port design have no extra circuit energy. Access energy of
multi-port design is much higher than other designs. Access energy of data bank
design v1 (continuous data bank) has three cases which are access one data bank (as
Banked v1-1 in Fig. 4-5), two data banks (as Banked v1-2 in Fig. 4-5), and four data
banks (as Banked v1-4 in Fig. 4-5). If only access one data bank, the access energy is
less than base line. If accesses two or four data banks in one access, the access energy

is higher than base line. The access energy of data bank design v2 (interleaved data
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bank) is higher than traditional design due to four banks access in one access.

Energy / Per Access

094-2 I W 066900

04
035
0.3
025
0.0 F O cache
0.15 566
0.1 -

0.05 POGKOO I T W 060978
0 1 06§82

wide bus multi-port banked banked banked banked
vl-1 v1-2 v1l-4 v2

B extra circuit

Energy (n))

Designs

Fig:4-5 Energy.of per access

Our designs are to reduce Oynamic energy by less cache access. The energy
equation is AccessEnergy = (C + M)*E. Cis access count, M is cache miss count,
and E is energy of per access.

Use the energy equation to compute the total access energy. The result of total
access energy is shown in Fig. 4-6. As Fig. 4-6 shows, banked v1 (continuous data
bank) takes about 44% of access power than base line and banked v2 (interleaved data
bank) takes about 50% of access power than base line. Why the saved power of
banked v1 is less than the saved power of banked v2? This is because the percentage
of access one data bank of total access is too less. We analyze the percentage of data
bank access of banked v1, accessing one data bank takes about 20%, 50% for
accessing two data banks, and 30% for accessing four data banks. The power

dissipation of banked v1 depends on number of data bank accessed. We discuss this at
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the chapter 5 (5.1 Discussion).

Total Access Energy

350%
300% |
250%
200%
150%

308.63%

Percentage

100.00%

1009
’ 56.97% 50.99%

50% F

O% | | |
Wide Bus Multi-port Banked vl Banked v2

Design

Fig. 4-6 Total cache access energy of one frame

4.3 Hardware Simulation/Result

Our hardware simulation goal is to check the access timing and area of out design.
We show the simulation results in two parts, which are timing comparison and area

comparison.

4.3.1 Timing Comparison

Before see the result of timing comparison, we see the cache configuration of each
design first. The cache configuration is shown in Table 4-2. In the # of bank field,
single port design and multi-port design have only one data array, so they are seen as

one bank. In the last filed, output bit of single port is 128 bits. This is due to the bus
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width of cache to texture filter. Output bit of banked vl is also 128 bits due to the

requested texels may be in one bank, so output width of each bank has to satisfy it.

Design name | #of bank | Access port/per bank | Output bits / Access port
Wide Bus 1 1 128
Multi-port 1 4 32
Banked v1 4 1 128
Banked v2 4 1 32

Table 4-2 bank number, access port of each design

We separate the access time of cache into data access and tag access. The data
access time is shown in Fig. 4-7,"whichwide design is base line. From the Fig. 4-7,
we can find that data array access time of banked design is smaller than original cache.
This is due to the small cache line size of each‘data bank. In banked v1 and banked v2,
the extra time is due to address control.i The extra circuit delay doesn’t cause the
access time in data access longer. But in banked v2, the delay of extra circuit is long
due to the complex address control. The last part is the multi-port texture cache,

which its access time is long due to multi-port overhead.
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Delay of Data Access

1.8
1.6
1.4
1.2

B Data Array
O Address Control

Delay(ns)

0.8
0.6
04 r
0.2

Wide Bus Multi-port Banked v1 Banked v2

Fig. 4-7 Delay of data access time

Fig. 4-8 shows the tag access ti_mé of each deéign. In banked v1 and banked v2, the
extra time is tag control and _mul'tipléiée'r' before ‘tag compare. The last part is

multi-port texture cache, which the access-time-of tag is longer than other design.

Dalay of Tag Access
2.5
2
2 15 O Tag MUX
E; B Tag Array
ol 1 O Tag Control
0.5
0
Wide Bus Multi-port Banked v1 Banked v2

Fig. 4-8 Delay of tag access
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Fig. 4-9 shows the total access time of each design. From the Fig. 4-9 we find that
the access time of banked v1 is only a little long than single port texture cache. But
compare to the GPU (shown in Table 4-3) which has the same process (0.13 um),

cache access time of our designs is still in one cycle.

Delay of Cache Access
2.5
2
% L3 1 E Data Total
g.f L B Tag Total
0.5 |
0
Wide Bus Multi-port Banked v1 Banked v2
Design
Fig. 4-9 Delay,of cache access
GPU name Core clock frequency Cycle time
ATI Radeon X800 520 MHz 1.92 ns
Geforce 6800 400 MHz 2.5ns

Table 4-3 clock frequency of GPU which its process 0.13 um

4.3.2 Area Comparison

The area comparison of each design is show in Fig. 4-10. The extra circuit of

banked texture is not much. The maximum area of extra circuit in the banked design
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is address control in banked v1 and in banked v2. This is because that one component
in them is 32-bit 4-1 multiplexer. There are four 32-bit 4-1 multiplexers in the banked
design, so the address control in the two kinds of banked design take a large part of

extra circuit.

Area Comparison

2000000

1900000 |

1800000 f B Extra Circuit

1700000 B8 Cache

Area (um”2)

1600000 |

1500000 ’_\

Wide Bus Multi-port Banked v1 Banked v2

M Extra Circuit 0 0 7957.404113 | 7034.019347
O Cache 1910336.347 | 22390103.66 | 1876057.497 | 1561803.895
Design

Fig. 4-10 Area‘comparison of each design

Although the address control in design v1 and in design v2 takes a large part of
extra circuit, but the percentage of the extra circuit in each banked design doesn’t take
a large part. As Fig. 4-11 shown, the percentage of extra circuit in banked v2 is only
0.45% and in banked v1 is only 0.43%. The extra circuit of banked v1 is larger than
extra circuit of banked v2. As Fig. 4-10 shown, extra circuit area of banked v1 is

seven thousand um? and extra circuit area of banked v1 is almost eight thousand um?.
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0.46%
0.45%
0.45%
0.44%
0.44%
0.43%
0.43%
0.42%
0.42%
0.41%

Area Percenatge of Extra Circuit

Banked v1 Banked v2
Design

Fig. 4-11 Percentage of extra circuit of banked texture cache
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Chapter 5 Discussion and Conclusion

5.1 Discussion

At this section, we compare each design access time, cache area, and access power
then discuss them. The cache figure of each design is shown in Fig. 5-1. We compare

five texture cache designs, which are list in Fig. 5-1(a) ~ Fig.5-1(e).

Address

Tag Data
Array Array

i*l 28

Texels

Fig. 5-1 (a)

Address Address Address Address

Tag Tag Tag Tag
Array — Array — Array Array

Texel Texel

A

Fig. 5-1 (b)
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Address Address Address Address
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;39 DB3 DB2 DB1 DBO
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I SR 59 A S A A T
N AR AN DAY P
32 32 32 32
Texel Texel Texel
Texel
128
Fig. 5-1 (¢)

Address Address Address Address

83| [te2]]| pB3 DB2 DB1 DBO
I S S S O Sy O S A e R N A
N /N /N /N /

32 32 32 4. 32
Texel Texel

Texel

Texel

T128
Fig. 5-1 (d).~

Address Address Address Address

B3 T|32| DB3 DB2 DB1 DBO

Fig. 5-1 (e)

Fig. 5-1 block of each cache design: (a) One data array, output is 128 bits (b)
Interleaved data bank with four tag arrays, output of each bank is 32bits (c)
Interleaved data bank with share tag, output of each bank is 32bits (d) Interleaved data
bank with banked tag, output of each bank is 32 bits (e) Continuous data bank with
banked tag, output of each bank is 128 bits
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We use number 1~5 to be performance, small number means better (time is short or
area is small). On the other hand, big number means worse (time is long or area is
large). We can find that banked v2 with banked tag which is design (e) has small area
and low access power. But the access of design (e) depends on the number of data
bank accessed. If the requested texels are in one data bank, the access power is lowest.

If the requested texels are in four data banks, the access power is highest.

Design Name | Access time | Cache area | Power / per access
(a) 4 3 2
(b) 3 4 5
(©) 5 5 4
(d) 1 1 3
(e 2 2 1*

Table 5-1 Comparisen-of each cache design

In larger cache lines, the percentage of the requested texels in one data bank is
larger. We consider larger cache line size for banked v2 for less data bank access. But
in banked v2, the output bit of each bank is equal to the line size. It means that the

dynamic power of each bank will be high.

5.2 Conclusion

In this thesis, we proposed two kinds of banked texture cache design. We discuss
each situation of access cache, especially banked v1. Because there are four access
situations of banked v1, which are accessing one data bank, two data banks, and four

data banks. We find that access power will be saved if the requested texels are in one
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data bank.

In these two banked designs, the average access power of per access is higher than
traditional design. But the total dynamic energy is saved by less cache access. Our
designs can reduce about 53% of cache access times. Due to the less cache access,

banked texture cache can reduce about 50%.
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Appendix

Test frame from Quake4 with 1280x1024 resolution
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