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An Asynchronous MP3 Decoder Design with Balsa

student : Hao-Wei Lo Adyvisors : Dr. Chang-Jiu Chen

Abstract

MP3 is one of the most popular digital audio compression standards, and it is applied to
many handset electronic products, especially PDAs and mobile phones. Because all of these
products are portable, they demand speed to market, low power consumption and better

composability, therefore, modularity becomes more and more important.

I designed and implemented a processing flow. of an asynchronous MP3 decoder, which
is suitable for pipeline architecture, called PAMP3. The PAMP3 is divided into 8 stages that
are Synchronizer&Huffman, Requantizet, Reordering, Anti-alias, IMDCT, BUFF, FilterBank
and PCM_out. I successfully passed.the behavior simulation and synthesized the design with
the Synplify synthesis tool and the Synopsys Design Compiler tool. Finally, I made a

discussion about the synthesis results.

Therefore, I made an attempt to implement a complex circuit with Balsa in ways of
asynchronous circuit design, and the design flow of using CAD tools to design an

asynchronous circuit is confirmed.
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Chapter 1: Introduction

1-1Motivations

A digital system is usually organized by many subsystems, and these subsystems
exchange information with each other. To guarantee the validity of data exchanged, the whole
system needs to be synchronized on each transaction. The synchronization method is use of a
global clock. The global clock is limited by the longest execution time of subsystems and it
causes the worst case performance in the pipeline architecture. In addition, the global clock
also causes higher power consumption. Therefore, the clock distribution is increasingly

becoming a costly problem.

A number of asynchronous circuit design methodologies and implementations have been
proposed and developed [7], for-example, asynchronous ARM RISC processor (AMULET],
AMULET2e, AMULET?3) [8] [14] |15} in University of Manchester and Lutonium processor

in CalTech [3].

The MP3 is one of the most popular digital audio compression standards [6] [13], and it
is applied to many handset electronic products, especially PDAs and mobile phones. Because
all of these products are portable, they demand speed to market, low power consumption and

better composability; therefore, modularity becomes more and more important.

We used the advantages of the asynchronous circuit design to implement a MP3 decoder
with the pipeline method and the asynchronous design to increase its modularity and reduce

power consumption.



1-2 Asynchronous circuit design

Synchronous circuit design is the major design method recently, because of being used
widely, and it has a complete design flow and tools. The system clock may cause problems in
designing a large high clock frequency chip, and that’s why the asynchronous design becomes
more and more important. There are some advantages in the asynchronous circuits while
comparing with synchronous circuits. The first major problem of synchronous circuits is the
clock skew, while asynchronous circuits don’t need the clock. Second, synchronous circuits
are limited as worst case performance, while asynchronous are not. Third, asynchronous
circuits have no clock signal; therefore, the power consumption can be reduced. It also almost
attains zero power dissipation when there is no useful work to do. Forth, asynchronous circuit
has better modularity. It is easier t0 connect every component with the same communication
protocol. Finally, an asynchronous design has-a low EMI(Electromagnetic Influence) problem

because of no clock distribution.

But asynchronous circuits still have'some challenges over synchronous circuits. First,
asynchronous circuits without clock signals need more control signals and thus the area cost
may be increased. Second, there are few CAD tools to support asynchronous designs and tests.
Therefore, it makes asynchronous circuit design harder and it also causes longer designing
time. These are the major challenges of asynchronous circuit designs. The advantages and

challenges of asynchronous circuit design are shown in Table 1.



Advantages challenges
Low power consumption Overhead( Area, Speed, Power)
Average-case instead of worst-case Hard to design
performance
Elimination of clock skew problems Few CAD tools
Component modularity and reuse Lack of tools for testing
Low EMI

Table 1: The advantages and challenges of asynchronous design

In asynchronous circuits, the major communication method between two components is
by handshaking. There are two main types of control signaling protocol in the asynchronous
circuit designs: two-phase and four-phase...The active signal of a two-phase handshake
protocol can be a falling or rising edge. After-an activity, the control signal doesn’t need to be
reset to zero. The two-phase handshake protocol is 'shown in Figure 1. When the data of the
sender is ready, the sender changes the request signal state (0 -> 1, 1 -> 0). Then the receiver
changes its acknowledged signal and gets the data at the same time, and the handshake is
completed. The periods between a request and an acknowledgement are the handshake itself,
and the periods between an acknowledgement and the next request are an idle phase. The data

transition must obey the setup time and the holding time constrain.

The other type of handshake protocol is a four-phase. It is different from the two-phase
protocol; the active signal must be a rising edge. It means the handshake signal must be reset
after an activity. The four-phase handshake protocol is shown in Figure 2. When the data of
the sender is ready, the sender pulls up the request signal, Req. Then, the receiver will pull up
the acknowledge signal, Ack, and the data at the same time. At the end, the sender will push

down the Req, and the receiver will push down the Ack. The handshake is completed.



REQ :

ACK

DATA | EX R KRR

Setup time Hald time

Figure 1: The two-phase handshake protocol

Request
. Re s
Acknowledge a Ll
Sender Receiver Ack o~ N |
Data :} Data X

Figure 2:-The Four-phase handshake protocol

1-3 Balsa Synthesis Tool

Balsa is an asynchronous hardware description language & synthesis tool developed by
the Advanced Processor Technologies Group of the Manchester University [5] [12]. Balsa
synthesis tool can compile the Balsa HDL into handshake components (breeze file) with
one-to-one mapping. It is relatively easy for an experienced user to explore the architecture of
the circuit that results from the original description. We can describe the behavior of our
design with Balsa HDL, and then compile it into the most popular hardware description

language such as Verilog HDL. An overview of the Balsa design flow is shown in Figure 3.
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Balsa uses CSP-based constructs to express RTL design descriptions in terms of channel
communications and fine grain concurrent and sequential process decompositions. A Balsa
description (.balsa file) is translated into an implementation in a syntax directed fashion.
Balsa uses one-to-one mapping between the language circuits and the intermediate handshake
circuits. After translating, it will be a file (.breeze file) in a language with networks of
handshake components. Balsa-netlist can generate CAD native netlist files, and then these
netlist files can be fed into commercial CAD tools. Finally, the CAD tools synthesize the
netlist to the layout. Three commercial CAD systems are currently supported: Compass

Design Automation tools from Avant, Xilinx Alliance FPGA design tools and Cadence Design

Framework 1.

Figare 3."The Balsa Design Flow

» Timing / Power



Balsa supports three back-end technologies: signal rail (bundled data), dual rail, 1-of-4.
The bundled-data back-end should be faster and smaller, but needs more careful post-layout
timing validation. The dual rail and 1-of-4 schemes are larger and slower, but they could be

more robust to layout variations.

1-4 Organization of this thesis

In the following chapters, the related work will be introduced, such as the processing
flow of a MP3 decoder, the overview of pipeline architecture and the basic Balsa back-end.
Then, the fully MP3 decoder design of the pipelined asynchronous MP3 will be illustrated in
chapter 3. In chapter 4 and 5, the implementation, verification and results will be illustrated.

Finally, a brief conclusion and futtire work-are discussed in chapter 6.



Chapter 2: Related works

2-1 Introduction to MP3

The compression technology supported by MPEG (Moving Picture Expert Group) is
widely used in various current multimedia applications, for example, network multimedia

streamings, online music stores, digital televisions, and portable devices.

In the MPEG-1 standard, the compression of an audio signal can be categorized to three
layers, MPG Layer 1, MPEG Layer 2, and MPEG Layer 3. These layers are different in codec
complexity and compressed audio quality. Layer 1 forms the basic algorithms and is suitable
for the bit rate above 128 Kbps per channél. LLayer 2 targets the bit rates around 128 Kbps per
channel and provides additional coding of bit allocations, scalefactors and samples. Layer 3 is
the most complex, but it offers the best audio quality. A common CD music is about 44.1KHZ
in frequency and 16 bits in sampling,“So 1t consumes around 10 MB of storage space per
minute. MP3 music only needs 1 MB storage space per minute. The compression rate of the
MP3 music is 10 ~ 12 times the compression rate of a common CD music. The comparisons

between the three layers of MPEG-1 are shown in Table 2.



Layer I

Layer I1

Layer 111

Analysis/Transform

32 sub-bands

32 sub-bands

32 sub-bands

Psychoacoustics model | Model 1 Model 1 Model 2

Bit Rate 32~448 kbps 32~384 kbps | 32~320 kbps

Sample Frequency 32,44.1,48 KHZ

Quantize Uniform Uniform Non-uniform

Samples per frame 384 samples 1152 1152 samples
samples

Table 2: The comparisons between the three layers of MPEG-1

2-1-1 Frame format

All MP3 files are divided into smallerfragments called frames. Each frame stores 1152
audio samples divided into two granules‘of' 576 samples each and lasts for 26 ms. The frame
structure of a MP3 can be divided into five parts as shown in Figure 4. Each header of the
MP3 frames is 32 bits, includes some information about this frame, Sync word, ID, Layer,
CRC, Sampling frequency, etc. The side information of each frame will be used in the

following parts: the Huffman decoder and the scalefactor decoder. The main data part of the

frame consists of scale factors, Huffman coded bits and ancillary data.




Frame1 Frame2

Main data

CRCas) | Side info(7,32 bytes)

granuleO granulel

Left channel | Right channel

Left channel | Right channel

Huffman code Huffman code

Figure 4: The frame structure of a MP3 file

2-1-2 Side information and Maln dé’ga

The side information sectiori'"_contaiﬂs thenecessary information to decode the main data.
This section is 17 bytes long in the single channel mode and 32 bytes long in the dual channel

mode.

The main data section contains the coded scale factor values and the Huffman coded
frequency lines. Its length depends on the bitrate and the length of the ancillary data. The
length of the scalefactor part depends on whether scale factors are reused, and also on the

window length (sort or long).

The first 9 bits of side information is a point tag which points out the main data
beginning address in the current frame. Because the MP3 is encoded in the Huffman encoding,
the lengths of the audio data after Huffman encoding are not all the same. In order to increase
the space utility rate, the bit reservoir technology is used as shown in Figure 5. Therefore, the
main data beginning address of each frame is not always after the side information of itself.

9



Frame 2 data Frame 3 data
Frame 1 data begin begin begin

Header & Header &
Side info Side info

Header &
Side info

Header &
Side info

Frame 1

<€— Frame?2 ->
< Frame 3 -

Frame O data Frarme 1 data. Frame 2 data Frame 3 data

Figure 5: The bit reservoir technology

2-1-3 Huffman decoding

There are two parts in the main data section, the scalefactor part and the Huffman data
part. The size of the Huffman data part can be known by the side information and the scale
factors. The big values of the side information are the spectral values coded with different
Huffman code tables. These frequencies range from zero to the Nyquist frequency and are
divided into five regions (See Figure 6). The rzero region contains pairs of quantized values
that equal to zero and represents the highest frequencies. The countl region contains
quadruples of quantized values that equal to -1, 0 or 1. Finally, the big_values region contains
pairs of values, and the maximum of these values in the range are constrained to 8191 (13

bits). The big_values field indicates the size of the big_values region, and the maximum value

10



is 288.

scalefac

bigvalue*2 + count1*4

bigvalue*2

big_value

countl

rzero

Part23_length

576

>4

Regron 6%

Part2_length

0,1,2

Figure 6: The five regions of Huffman data.

The Huffman decoding flow is shown in Figure 7.
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completed?

Huffman decoding
completed




Figure 7: The Huffman decoding flow

2-2 The MP3 processing flow

The MPEG/Audio layer 3 decoding process has three main parts [10]: the bitstream

decoding, the inverse quantization and the frequency-to-time mapping as shown in Figure 8

Bitstream Inverse Frequency to

E‘ncode_bd Decoding ——» | Quantization | — | time mapping |, PCM audio
bitstream output

Figure 8: The MP3 decoding process

The bitstream data is fed into the decoder;-The bitstream decoding block receives header
and error detection if error-check (CRC error detection code) is applied in the encoder. The
bitstream data are unpacked to recover the various pieces of information, and the inverse
quantization block reconstructs the quantized version of the set of mapped samples. Finally,
the frequency-to-time mapping block transforms these mapped samples back into a uniform

PCM.

2-2-1 Bitstream decoding

There are four phases in the bitstream decoding part, which are the header decoding, the
side information decoding, the scale factor decoding, and the Huffman data decoding. First,

the bitstream decoder synchronizes one header address of a frame, and then it receives header

12



and side information data into buffer for usage in later phases. Third, the scale factor decoding
phase decodes the scale factor data that is needed in re-quantization. Fourth, the Huffman data
phase receives 576 factor values which are computed by MDCT and the quantization to do an

ascending power sort. The bitstream decoding block is shown in Figure 9.

Huffman code | Huffman decoder | Magnitude & Sign
| bits ; >
Synchronization
; (header / side i
information Huffman Huffman ;
Encoded: decoder) Information,|  information i
bitstream Scale Factars
Scale Factor Scale Factor
| Information | decoder i

Bitstream decoder

Figure 9: The bitstream decoding block

2-2-.2 Inverse quantization

There are three parts in the inverse quantization block: the re-quantization, the reordering
and the joint-stereo processing. The re-quantization part covers the Huffman decoded values
back to their spectral values using a power law. For each output value Y from Huffman
decoder, Y*3is calculated. So, it needs the scale factors and Huffman values that were

decoded before. The following is the re-quantization formula:

13



413 % »(025*C)

XI'i = iSi (1

The factor “C” in the equation consists of the global gain and the scalefactor band
information from the side information and the scale factors. The value, is;, means the Huffman
decoded value at buffer index 1, and the input to the next processing block at index i is called

Xr(i).

Reordering

In order to make the Huffman decoding more efficient, we must reorder the frequency
value from MDCT and quantization. This part is only used in short block windowing. Because
the three window samples in the same frequency of each subband are put together into one
window during the Huffman encoding, and they must be converted back to the original order.

The reordering method is shown:n Figure 10-

al|bl|cl|a2(b2|c2|a3 b3|c3|ad b4 [c4 |ad D5 |5 |a6 |b6|ch

Low High Low High Low High
al|a2|ad|ad|ad|ab|b1|b2|b3 |b4 b5 b6 |cl |c2 |c3 [cd |cB|ch

Figure 10: The reordering method

Join stereo processing

The MP3 decoding does not only support the mono or dual mode channel mode

14



decoding, but also support stereo mode channel mode decoding.

2-2-3 The Frequency to time mapping block

The frequency to time mapping block can be divided to three phases such as alias
reduction, IMDCT, ploy-phase synthesis filter bank (Figure 11). The purpose of this block is

converting the decoded re-quantization frequency domain values to the time domain values.

Frequency to time mapping

Alias IMDCT & Poly-phase
! reduction | overlapping > synthesis i
E ] i
PCM signal

Figure 11: The frequency to time mapping block

Alias Reduction

The alias reduction is required to negate the aliasing effects of the poly-phase synthesis
filter bank during encoding. It is used in the long block. There are eight butterfly calculations
for each sub-band as shown in Figure 12. The x(i) is the frequency value that is processed by

a reorder module, and the cs and the ca are the constants that can be found in standard tables.

15
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Figure 12: The alias reduction

IMDCT

The IMDCT (Inverse Modified. Discrete Cosme Transform) transforms the frequency
lines to poly-phase filter subband samples. The analytical expression of the IMDCT is as

shown as below where n is 12 for short blocks and 36 for long blocks.

e
Il
[\/] 1 |

X, cos(7(2i+1+5)(2k+1)  fori=0to n-1

a

-
]

2)

In long blocks, the input of IMDCT is formed with 18 frequency lines, and then the
IMDCT produces 36 outputs. In a serial of three window blocks, the input of the IMDCT is

formed with 6 frequency lines, every block produces 12 outputs.
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After the IMDCT process, the result X; must multiply with the function of windowing. And

the function of windowing depends on the block type different shapes of windows used.

1. Block type=10

r.'-|_-.

zj=x; sinfz (i+3))

2. Block type=1

x sin(Z(i+2))

X

r sin(Z(i- 18+<))

0

Z|=

3. Block type =3

0

x sin(Z(i-6++))
x sin(=(i+3))

4. Block type=2

2 =y sinE(i+7))

for i=0 to 35
(3)

fori=0to 17
fori=18 10 23

for i=24 to 29
for i=30 to 35

(4)

fori=0to 5
for i=6 to 11

for i=12 to 17

fori=18 to 35
(5)

for i=0 to 11, for j=0 to 2
(6)
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0 fori=0to 5
(1) —
vy for i=6 to 11
y-n_l 4 ytiz_:-p fori=12 to 17
Yi= P for i=18 to 23
},'13_3' . for i=24 to 29
0 for i=30 to 35

(7)

After windowing, the results must be overlapped and added with the previous block.
Half of the block of the 36 values is overlapped with the second half of the previous block.

The second half of the actual block is stored to be used in the next block as shown in Figure

13.

Figure 13: The overlapping of the IMDCT

Poly-phase Synthesis

The poly-phase synthesis (filterbank) block transforms the 32 subband blocks of 18
time-domain samples in each granule to 18 blocks of 32 PCM samples. This block can be
divided to four parts: moving, DCT, matrix multiply and overall adding. The flow of

poly-phase synthesis is shown in Figure 14.

In the synthesis operation, the 32 subband values are transformed to the 64 values V
vector via the DCT computation. The V vector is pushed into the FIFO buffer, and a new

vector, U vector, is created from the FIFO. Finally, the U vector is multipled with the constant
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D window to get the W vector, and these 16 W vectors are added with each other. The final 32

samples become a PCM vector.

0 _
0
- V vector
D — DCT — DICT
—>
31 —
/ 63
— 16 V vector M ving
— FIFO FIFO = 1024
N samples
| ‘ ol U vector » |
0 L l l i 511
e : : D wind ; | Matrix
R WIncow ' Mulltiply
0 511
vy '
| | I | W vector : |
0 L l i l 511
0

LU 0 -, e

Figure 14: The flow of poly-phase synthesis

2-3 Overview of Pipeline Architecture

The pipeline architecture is used widely in microprocessor designs. It can increase the

throughput due to the parallel processing of instructions. In Figure 16, every stage of the
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synchronous pipeline must be controlled by a global clock. The period of the global clock is
set to the slowest pipeline stage. However, each stage of the asynchronous pipeline can be
processed at its own speed. Some instructions even can bypass the stages that aren’t processed,
such as instructions 3 and 4 in Figure 15. The instruction 3 doesn’t need to be processed in the
WB stage, and the instruction 4 doesn’t need to be processed in the EXE stage. In the
synchronous pipeline, these instructions still need to wait a complete clock cycle time before
moving to the next stage. But in the asynchronous pipeline, these instructions can be

processed quickly (bypassing) to the next stage.

T1 T2 T3 T4 T5 T6 T7
1 IF D EXE WB
2 IF 1D EXE WB
3 IF D EXE
4 IF ID WB

1 IF KIDREXER WB
. WB
2 IF 1D | EXER{WER |
3 F K& D KEXER
4 IF KD K ws
f
EXE

Figure 15. Synchronous Pipeline V.S. Asynchronous Pipeline
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2-4 Balsa back-End

The Balsa back-end can be used to generate gate level netlists for supported CAD
systems [1] [2]. In this section, we will describe some basic cells for the Xilinx FPGA

generated by Balsa and some handshake components in the Balsa synthesis system.

2-4-1 Basic Elements

There are many basic cells generated by Balsa for the Xilinx FPGA, including AND, OR,
NOR, XOR, NAND, BUF, XNOR, INV, FD (D-type flip-flop), FDC and FDCE. The most
important cell for a asynchronous circuit'is the'Muller C-element as shown in Figure 16. It
can hold the past state. When both of the iaputs azre 1, the output is set to 1. When both of the
inputs are 0, the output is set to 0. When other conditions happen, the output is not changed. A
Muller C-element is a fundamental. component that is extensively used in asynchronous

circuits.
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Figure 16: The Muller C-element, (a) symbol (b) true table (c) gate-level implementation
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Figure 17: The NC2P-element (a) symbol (b) true table (c) gate-level implementation
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Figure 17 shows the NC2P element. When the input, 10, is equal to 0, the output, q, is set
to 1. When the i0 and il are both 1, the output is set to 0. For other input conditions, the

output is not changed.

Ar N
Ba MNC2P )
Ar— —— Br T ‘ A

§ o
Aa — > F—— Ba / _’>°_ Aa
(@) -
— __D— Br
(b} -
Ar
Aa s h
Br
Ba A N

(c)
Figure 18: The S-element (a) symbol (b) gate-level implementation (c) handshaking

protocol

Figure 18 shows the S-element. "‘An S-element performs a series of handshake. It has 4
inputs including two request/acknowledge handshake pairs, ‘Ar’/’Aa’ and ‘Br’/’Ba’. It is
composed by NC2P, NOR and AND gates. In the Balsa system, it usually replaces the
“inverter of C element” with a NC2P element, because the behavior of a NC2P element is
much like a C element. Hence, it can reduce the number of gates because an “inverter of C
element” uses 3 AND gates, 1 OR gate and 1 INV, but a NC2P element uses 2 AND gates, 1

NOR gate and 1 INV.
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2-4-2 Handshake Components

There are 40 handshake components in the Balsa system. Each handshake component is

constructed by a gate level implementation. In the following section, we will illustrate some

of them.
activate
[activate_or inp_0r>
BUF
[inp_0a } out_0r>
np out BUF
out_Oa’> activate_0Oa>
BUF
| inE 0d 3120;; / Inul Dd§31fD >
BUF

(@)
()

Figure 19: The Fetch Component (a)’handshake component (b) gate-level
implementation

Figure 19 shows the Fetch compoenent. | This component is used to transfer data from

input channels to variables, from variables to output channels, and from variables to variables.

Figure 20 and Figure 21 are the sequence and concurrent components. The sequence
components control the output signals in sequence, and the concurrent component controls the

output signals in parallel.
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activateOut Or
activate Or

activateOut_1r

(2)

activateOut_1la
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: B B activateOut_Or
activateOut_Oa 1 a c —
Activate Oa
—

(b)

Figure 20: The Sequence Component (a) handshake component (b) gate-level

implementation

activateOut_Or
activate_Or

activateOut_1r

(@)

0 0 Activate Oa
: e >
Adivae Or a1

activateOut_0a, activateOut_la 4>—\— il

[ — Ba Br

activateOut_1r, activateOut Or
—

(b)

Figure 21: The Concurrent Component (a) handshake component (b) gate-level

implementation
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Figure 22 is a variable component which is composed by the FD (D-type flip-flop) gate.
The Balsa system will map the “variable “description to this component when translating
handshake component files (.breeze). Data is stored if the signal write Or is set, and data is

read when the signal read Or is set.

write
Read[O] ( a)
Write Or FD Write Oa
— > > >

D Q Read_0d
Write 0d

>
Read_Or Read 0a
— > -

(b)

Figure 22: The variable Component (a) handshake component (b) gate-level

implementation
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2-5 Concluding Remarks

In this chapter, we introduce the MP3 (MPEGI1 Layer 3) architecture. The frame structure of a
MP3 file contains 5 parts, Header, CRC, Side information, Main data, Ancillary. This process
flow of the MP3 operates in the sequence as the above structure. It can be divided into three
main parts: the bitstream decoding, the inverse quantization and the frequency-to-time
mapping. We then introduce the concepts of asynchronous pipeline. Finally we illustrate the
Balsa back-end. Balsa synthesis system is composed of about 40 components, which can be

translated into gate-level netlists.
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Chapter 3: The Design of the PAMP3

This chapter describes the design of the PAMP3. The PAMP3 consists of eight main
parts, the synchronizer&Huffman, the requantizer, the reorder, the anti-alias, the IMDCT, the
BUFF, the filterbank and the PCM out. These eight parts work in parallel with the
communication channel connected in between them. In the following section, we will
introduce the top view of the PAMP3 in the first, and then describe the eight main

components.

3-1 The architecture of the PAMP3

The architecture view of the: PAMP3 is shown in. Figure 23. All of the operations can be
completed in the eight stages,”and then'the PAMP3 outputs a serial of PCM data. The
synchronizer&Huffman stage takes'the MP3 music ‘data from the Main Memory and puts the
header, the side information and the main data into the buffers. The buffers are used as the
source and the information of the decoding scale factors and the decoding Huffman data. The
requantizer stage is responsible for decoding inverse quantization. It converts the Huffman
decoded values back to their spectral values using a power law. The reorder stage and anti
alias stage reorders the frequency value from the MDCT and the quantization, and reduces the
aliasing effects of the poly-phase synthesis filter bank during its encoding process. The
IMDCT stage and the filterbank stage decode the IMDCT and the poly-phase synthesis but
here they are implemented in a different way. The BUFF stage holds the data until all of the
samples are completed, then the BUFF stage outputs data to the next stage. The PCM_out

stage checks the channel mode before outputting data.
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Figure 23: The architecture view of the PAMP3

The following code is the top level'process,of the PAMP3. Every component is connected by

internal channels.
procedure pamp3_decoder(
input mem_out : 64 bits;
input mem_boundary : 20 bits;
output mem_reset : bit;
output mem_addr : 20 bits;

output data_out : 16 bits

scale_huffman_top(mem_out, mem_boundary,mem_reset, mem_addr,
index,freql,nonzero,global_gain,subgain,scale,
preflag,scale_l,scale_s,t It s,data) |
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requantization(index,freql,global_gain,subgain,scale,preflag,nonzero,

data,scale_l,scale_s,t_s,t I,req_index_out,freq2,req_out) ||
reorder(req_index_out,freq2,req_out,reorder_out,order_index) ||
alias_reduction(order_index,reorder_out,alias_out,index_out) ||
imdct_top(index_out,alias_out,imdct_out,ch_in) ||
imdct_filterbank(ch_in,imdct_out,filterbank_in,ch_out) ||
filterbank_top(ch_out,filterbank_in,pcm_in,pcm_ch) ||
pcm_out(pcm_ch,pcm_in,data_out)

end

3-2 The synchronizer&Huffman stage

This stage contains three “‘buffers and ‘three modules: the synchronizer, the
SCALE&HUFFMAN and the BUFF_RW_ARBITOR. The three buffers are the header buffer,
the side information buffer and the main data buffer. The synchronizer module retrieves the
data from the main memory and decodes the header data and side information data into two
buffers. After decoding the header and the side information, the synchronizer sends the side
information data and some header data to the SCALE&HUFFMAN module. Then, the
synchronizer writes the main data fetched from the main memory into the main data buffer.
While the synchronizer is writing the data, the SCALE&HUFFMAN module also reads the
data from the main data buffer to decode the scale factors and the Huffman data. Therefore,
the BUFF_RW_ARBITOR controller arbitrates the two control signals that are read and write,
from the synchronizer and the SCALE&HUFFMAN modules at the same time, and checks
whether the buffer data is valid. The SCALE&HUFFMAN module does the scale factor
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decoding and the Huffman decoding. We use the direct table lookup method for Huffman
decoding. All the data of the Huffman tables are stored in the ROM, which can be read by the

SCALE&HUFFMAN module.

The Figure 24 shows the modules of the Synchronizer& HUFFMAN stage. After the
SCALE&HUFFMAN module decodes one value (13 bits) from the data, it immediately
transfers the value to the next stage. This is convenient because the next stage does not need

the SCALE&HUFFMAN module to decode the entire 576 values before processing.

Synchronizer & Huffman

|
BUFF_RW_ARBITOR dat |
AN Length,reset |
vplid
|
ta
|
data |
Main synchronjzer A 4 N |
Data \sideinfo Data (14 bits)
Buffer buff i >

SCALE & HUFFMAN

| scale factor table

) 1 / | data

Read, addr ata

Huffman
Tables

Figure 24: The Synchronizer& HUFFMAN stage

3-3 The re-quantizer stage

The re-quantizer stage (Figure 25) contains four modules: requant_ctrl, fras 1, fras s and

fras. The requant ctrl module controls the other modules to compute the output data. The
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fras_| module and fras_s module mainly calculate the right side of the multiply sign in eq(1)
according to the conditions of long block and short block. The fras module mainly calculates
the right side of the equation in eq(1) using the input data, “ISi”, and value, “a”, that were
calculated before. Because the value of the 4/3 power calculation is very difficult, a ROM is
designed to store all the value of the 4/3 power for future usage. Finally, the requant ctrl

module outputs a value whenever the fras module completes its calculation.

The input data of the requantizer stage, ISi, is 14-bits data is used in the process of
looking up the table. After decoding the input, the output data of the requantizer stage,
req_out, is a 32-bits data. The format of this output data is represented by a integer of 4 bits

and a decimal of 28 bits.

P43_Table
Requantizer
j ------- 1
1 1
1 1
. , fras_| !
Sideinfo , tabld data - a Réq_out
——>| Bufrer0 | fras .
1 1
E ' ™ fras_s o E
ISi :, 5 Bufrer 1 1\ E
1 1
! 1
1

Figure 25: the Requantizer stage

3-4 The reorder stage and anti-alias stage

The reorder stage (Figure 26) immediately assigns the correct position of the input data
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according to the frequency mode of the side information. The order_ctrl controls the receiving
and the output of a buffer (576 x 32 bits). The output methods are according to the block type
of the current frame. In the long block type, the output value can be sent out directly. Because
the anti-alias stage performs eight butterfly multiplications for every two subbands ( 2 x 18
values). In the short and mixed block type, a counter is set to count the received data of
current frame, and the reordered outputs are sent out when the counter equals to a specified
number. The specified number means that 18 reordered values have been received. (Only

support for MP3 streams with 44.1kHz sample frequency is implemented.)

Reorder

| |
| |
1 buffer 1
|

I
reorder out

; (32 bits) I

Index

req_out (3R bits)

i

|
|
|
IIndex, freq
|
|

\4

vV V

reorder_ctrl

Figure 26: The reorder stage.

The anti-alias stage (Figure 27) uses two register banks (2*18*32 bits) to store two
subbands from the reorder stage and performs an 8-butterfly multiplication as shown in
Figure 28. After doing the 8 butterfly multiplication, the anti-alias stage outputs the first half
of the results (18*32 bits) to the next stage. Then, the anti-alias stage moves the remaining
half of the results forward to one of the previous register banks while waiting for the new 18

reordered values from the previous stage.
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Figure 27: The anti-alias stage.
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Figure 28: The register banks of the anti-alias stage.

3-5 The IMDCT stage

The IMDCT stage does the inverse modified discrete cosine transform, the windowing

and the overlapping processes. In the IMDCT processing, we use the method created by
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Szu-Wei Lee [16] to implement. Figure 29 shows the computational flow of Szu-Wei Lee’s
algorithm. The N-point inverse MDCT is converted to a N/2-point DCT-1V first, then it is
converted to a N/2-point SDCT-II. Finally, a N/2-point SDCT-II can be divided to two
identical N/4-point SDCT-IIs. Therefore, this algorithm can be simplified into 3-point and
9-point SDCT-II modules, which compute the inverse MDCT for a MPEG layer III. In this
algorithm, the total of the multiplications and the additions are only 43 and 115 when the

length N = 36.

N/4-point

: SDCT-II
N-point inverse N/2-point N/2-point
MDCT DCT-IV SDCT-II
N/4-point N/4-point

|:> DCT-IV |:> SDCT-II

Figure 29: The IMDCT processing flow of Szu-Wei Lee‘s algorithm.

According to the previous algorithm, 5 sub-stages were constructed for the pipeline
architecture in the IMDCT stage as shown in Figure 30. These sub-stages are
scaling&butterfly, SDCT-II, post-process, windowing and overlapping. The first three
sub-stages are the computing flow in the Szu-Wei Lee’s algorithm. The others execute
multiplication between the inputs and the long or short window table data and then overlap
between the inputs and the previous frame. The input values from the anti-alias stage are
multiplied by constants and then they pass through a butterfly addition with each other in the
scaling&butterfly sub-stage. The SDCT-II sub-stage is decomposed into two blocks, the
N/4-point SDCT-II and the N/4-point DCT-1V. The first half of the outputs from the previous
sub-stage performs the N/4-point SDCT-II immediately. The second half implement the

reordering process first and then perform the N/4-point SDCT-II. The 3-point and 9-point
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SDCT-II can be used directly. The 3-point SDCT-II requires one multiplication and 5
additions, and the 9-point SDCT-II requires 8 multiplications and 36 additions. After the
post-processing sub-stage, 36 outputs of the IMDCT processing will be created. In the
windowing sub-stage, the windowing cntrl controller controls the multiplying process
( mult_long_short) between the data of the window table and the input from the last sub-stage.
The data will differ according to long or short block types. Finally, the overlap sub-stage
performs the overlapping between half of the data from the current block and the data from

the previous block in the overlapping memory and then outputs 18 overlapped data to the next

stage.

Overlapping
Memory
NN
cos [T(2k +1)/2N dpta  kw,adar
0 :
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27 : SDCT Il /|\ , o : i 1>
—>i : \ 2 ' ' 2 " 2
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butterfly SDCT Il post-processing windowing overlap

Figure 30: the sub-pipeline of the IMDCT stage

The following code is the top level process of the IMDCT stage. The whole IMDCT stage is

decomposed into 5 sub-stages of the sub-pipeline.
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procedure imdct_top(
input index : 10 bits ;
array 0 .. S-1 of input data_in : data_type ;
array 0 .. S-1 of output data_out : data_type ;

output ch_out : 3 bits

imdct_stagel(index,data_in,regl,index1) ||
imdct_stage2(index1,regl,reg2,index2) ||
imdct_stage3(index2,reg2,reg3,index3)i]
IMDCT_windowing(index3,reg3;index_out,imdct_over) ||
IMDCT _overlap(index_out,imdct_over,data_out,ch_out)

end

3-6 The BUFF stage

The outputs of the IMDCT stage are 18 time-domain samples, but the inputs of the
poly-phase filterbank stage are 32 subband samples. The BUFF stage (Figure 31) is needed to
buffer the inputs from the IMDCT stage until receiving the 576 samples. Then, the output of
the BUFF stage delivers 32 subband samples in the buffer to the poly-phase filterbank stage.
The pipeline architecture must work abidingly during the data buffering. Therefore, the buffer
is divided into two blocks and the two blocks are read and written in turn. During the buffer(0

is being written, data is from the output of the IMDCT stage, and the bufferl is being read
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data to output to the filterbank stage; the process continues until receiving the 576 samples. In
the next 576 samples, the buffer0 is being read data to output to the filterbank stage and the

bufferl is being written data from the output of the IMDCT stage, and so on.

__|Buffer 0

data_in ! A !
: Buffer 1 i
mode&channeli i mode&channel
(3 bits) : Buff contrl ! (3 bits)

Figure 31:'The BUFF stage

3-7 The poly-phase filterbank stage

The poly-phase filterbank converts the time domain samples from the IMDCT transform
in each subband to PCM samples. As mentioned in the previous chapter, the poly-phase
synthesis filterbank can be decomposed into four parts, moving, DCT, matrix multiply and
overall adding. The Konstantinides’ algorithm [9] and the B.G. Lee’s algorithm [4] are both
used to find a good implementation of the 32-point DCT. The 32 subband samples are the
inputs of the DCT and then they are converted by the B.G. Lee’s algorithm. Finally, by using a
symmetric way as shown in the Konstantinides’ algorithm (Figure 32), the previous 32-point

results become 64-point final results. Figure 33 shows the 8-point DCT using B.G. Lee’s
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algorithm [11].

32 subband samples
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Figure 32: The DCT simplification of Konstantinides’ algorithm
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Figure 33: The 8-point DCT simplification of B.G. Lee’s algorithm [11]
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This pipeline stage is divided into 7 sub-stages as shown in Figure 34. The first 6
sub-stages perform the 32-point DCT by the previous method. The remaining 1 sub-stages
perform the FIFO moving, window table multiplying and final scaling. The B.G. Lee’s fast
DCT algorithm is recursive, and for a 32-point DCT. It requires only 80 multiplications and
209 additions. Therefore, the first 5 sub-stages are recursively integrating the 32-point
subband samples into smaller units. Then the next sub-stage performs the similar
post-processing part as shown in the Figure 34. The windowing cntrl controller in the
windowing sub-stage controls the inputs from the previous sub-stage to do data copying as
shown in Figure 33. Then the controller pushes the inputs into the FIFO and performs
multiplication between the data from the FIFO and the constants from the window table ROM.
After overall adding, the windowing cntrl outputs the 32 PCM data to perform scaling.

Finally, the windowing and scaling sub-stage outputs 32 scaled PCM data to the next stage.

Window table
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Hie
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The DCT of synthesis filterbank windowing and scaling

Figure 34: the sub-pipeline of the synthesis filterbank stage
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The following code is the top level process of the poly-phase filterbank stage.

procedure filterbank_top(
input ch : 3 bits ;
input data_in : data_type ;
output data_out :16 bits;

output ch_out : 3 bits

filterbank_butterfly_5(ch,data_in,regl,chl) ||
filterbank_butterfly 4(chl,regl,reg2,ch2) ||
filterbank_butterfly 3(ch2,reg2,reg3,ch3)-||
filterbank_butterfly_2(ch3,reg3,reg4,ch4) ||
filterbank_butterfly 1(ch4,reg4,reg5,ch5) ||
filterbank_GHmake(ch5,reg5,reg6,ch6) ||
filterbank_windowing(reg6, ch6, data_out,ch_out)

end

3-8 The PCM_out stage

Because the MP3 decoding can be divided into a mono channel mode or a dual channel
mode, the output of the PCM out stage is a 16-bits PCM data according to the mode bits

transferred from the previous stage. When the mode bits are equal to 0 or 2, this stage must
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store the entire 576 samples of one channel until the data of the other channel is received and
then the stage outputs the data by turns of channel 0 and channel 1. When the mode bits are
equal to 3, this stage inputs and then outputs directly. When the mode bits equal to 1, it means
the mp3 music compressed in the joint-stereo mode. In this article, the joint-stereo decoding is

not discussed because it won’t be really implemented.
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Chapter 4: Implementation and Verification

This chapter contains three parts. First, our design flow for the asynchronous implementation
on FPGA is illustrated and some implementation issues are descripted. Finally, the behavior

simulation is illustrated.

4-1 The Design Flow

The PAMP3 core is modeled with the Balsa language, and then it is compiled into a
network of handshake components (.breeze file) by the balsa-c compiler. Each of these
components has one mapping gate-level implementation. Using the “balsa-netlist” tool can
generate the gate-level implementationssin the-Verilog for the Xilinx or other target synthesis
tools. And the balsa provides a Verilog simulation tool, balsa-verilog-sim. It supports some
open sources or commercial Verilog simulatiors: Icarus Verilog, Synopsys VCS, Cadence

NC-Verilog , Cadence Verilog-XLyModel Technoloegies Modelsim and Cver.

The balsa-verilog-make-builtin-lib tool can generate the balsa built-in functions into a library
and register the library in the specified Verilog simulator. Then the gate-level simulation can

be performed to verify the PAMP3 using the Balsa tool.

Figure 35 describes the FPGA design flow of Balsa. The Verilog netlist generated by the
balsa-netlist is converted into a netlist of basic gates in the synthesis of the design flow.
However, the synthesis tool may optimize the hazard-free circuits and buffers generated by
the basa-netlist. The constraint “keep hierarchy” or “syn_hier” is added to avoid the logic
minimization. The “keep hierarchy” is used for the Xilinx synthesis tool, and the “syn_hier” is
used for the Synplify synthesis tool. Then the synthesized netlists are mapped to the target
device using a technology-mapping algorithm. The placement and the routing algorithm, map

the logic blocks from the netlists to the physical locations on an FPGA, and determine how to
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interconnect the logic blocks using the available routing. The final output of the design flow is

the FPGA programming file.
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|
|
|
|
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Balsa-c |
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|
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|
|
|
|
|
|

Timing Simulation
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o file /

Figure 35: The Balsa and FPGA design flow
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4-2 Implementation Issues

Four-phase bundle-data protocol is chosen to implement the handshake circuit instead of
the dual-rail encoding in order to reduce the area cost. The Balsa provides some technologies
for implementations. The circuits are implemented using the Xilinx standard cells: AND, OR,
INV and FD when choosing the Xilinx ISE technology. Other target synthesis tools must
choose the “example” technology, and the basic cell with the standard cell in the target

synthesis tool needs to be modified.

The synthesis tools could perform the logic minimization during synthesizing. It would
break some buffers or redundant circuits that are used to ensure hazard-free. These buffers and
circuits can’t be minimized directly. Thetefore, the constraint “keep hierarchy” is added to

avoid the logic minimization when'using the Xilinx synthesis tool.

The Balsa RAMs and the- ROMs are only modeled to perform the Balsa behavior
simulation. They can’t be implemented in the Verilog, because they are built-in functions
written in C. Therefore, the block RAM on the FPGA should be used in the FPGA

implementation.

4-3 Verification

The behavior simulation for the PAMP3 (pipelined asynchronous MP3) can be
performed in the Balsa and the Modelsim. The simulation environment is shown in Figure 36.
The outputs from PAMP3 are written into a file by using a Balsa builtin function, and the
output file (PCM format) can be played by audio softwares such as GoldWave as shown in
Figure 37. An open source software MP3 decoder, AMP mp3 decoder, and a simple decoder

that are written by us, OfMP3 (Observer for MP3 decoder), are used to compare the output of
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each stage with the PAMP3 as shown in Figure 38. If the results are not equal, the design
needs to be remodified. If the results are equal, the design is correct. The memory model is
the predefined procedure in the Balsa as shown in Figure 39. The total size of the memory is
8M bytes. The MP3 data are loaded from a binary file during the initialization process.
Whenever an addressing arrives at the memory model from the memory address channel, the
memory outputs the data. When the PAMP3 core is writing data, it sets the signal rNw and

sends out the address and the data.

: ) |
i PAMP3(Balsa) z ;
1 J 1
o ) |
! + ] O
B 3 TN
1 =3 :
l | < Yes
i Builtin Fucntion i £ Correc
! (balsa) ' t
i -
O P85
. 9 )
i Opensource E
MP3 ] ! software Mp3 !
data | | decoder - !
(binary l amp3 !
file) e e .'

Figure 36: PAMP3 behavior simulation enviroment
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BalsaMemoryRAM( { 20, --addr width
64}, --data width
< BalsaMemoryNew(), --direct expression to port connection
RAM_addr, RAM_rNw, RAM_write_data, RAM_read_data)

Figure 39: The Balsa memory model
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Chapter 5: The Results

5-1 Simulation Result

In the Balsa simulation, all kinds of the channel modes and the block types have been
simulated using the verification method as Figure 37. Because the simulation in the Balsa
system costs much time, the specified characteristic test files are simulated first such as short
block, long block, mixed block, single channel and dual channel. Then, we used some MP3
music with fewer frames to confirm the entire PAMP3 correctness. Finally, a MP3 music with

more than 1000 frames is used to simulate the performance of the PAMP3.

5-2 Area cost

In the VLSI design flow, we used:the Synopsys Design Compiler to synthesis our design
with TSMC 0.13pm process. Table 3 shows the cell area of the two kinds of multipliers, array
adder algorithm and booth algorithm. Multipliers are the main computation components in the
MP3 processing. Therefore, we compared how the two different kinds of multipliers affected
the area cost of MP3 decoder. The total area cost with booth multipliers is as shown in Table 4.

The filterbank stage and the IMDCT stage are the most dominant stages of the whole design.

Multiplier cell area
Array adder 33577.964
Booth 219986.607

Table 3: The Cell Area Cost of two kinds of multipliers (umz)
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Different synthesis tools were used, Xilinx XST and Synplicities Synplify Pro during the
FPGA implementation. Only the Synplify Pro was able to synthesize the project successfully
because of some problems of the Xilinx XST. Table 5 shows the slice and the gate count of

each stage.

stages Total cell area
Synchronizer&Huffman 2139331.75( 17.4%
Requantizer 409842.311  3.3%
Reorder 476468.65 3.9%
Anti-alias 1080126.87]  8.8%
IMDCT (with Buff) 3630446.63] 29.5%
FilterBank (with PCM_ out) 4563784.111 37.1%
Total 12300000.32[ 100.0%

Table 4: The Cell’/Area Cost of Every Part of PAMP3 (um?)

stages Slice Gate count
Synchronizer&Huffman 45,903 607,630 19.4%
Requantizer 6,244 98,947 3.2%
Reorder 11,685 157,309 5.0%
Anti-alias 16,758 255,366 8.1%
IMDCT (with Buff) 46,743 877,597 28.0%
FilterBank (with PCM_ out) 72,045 1,138,104 36.3%
Total 199,378 3,134,953( 100.0%

Table 5: The FPGA Cost of Every Part of PAMP3

The area overhead mainly comes from the handshake circuit in each handshake
component. During handshake components translation, the networks of the handshake

components are created by one-to-one mapping without any simplifications. In the complex
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circuits, the connections between these networks cost very much. The circuits of the
completion detection on the control path need large C elements. Numbers of registers are used
during computation and save the frame information during the process of PAMP3. In Balsa
system, the registers need more handshake components to be implemented. For example,
every bit of all the ports need complete detection in the CallMUX implementation that
multiplexes a writing port into registers as shown in Figure 40. The three 10-bit ports module
was very cost-consuming and in a MP3 processing, the module would use more ports and be
more complex. There are two main reasons that the filterbank stage is the most dominant
stage of the whole design. First, the filterbank stage is divided into more sub-stages than the
IMDCT stage. Second, it controls the bigger FIFO buffer to perform multiplication and

overall addition.

, FinputCount (‘ al].\-'lll_\’
( parameter width : cardinal:
parameter inputCount : cardinal;
array inputCount of passive input inp : width
bits:
active output out : width bits )

!

out

#[ [out ! inpg | ... [ out !* 10Dy, omme1 1]

module BrzCallMux_10_3 (
inp_Or, inp_Oa, inp_0d, inp_1r, inp_1a, inp_1d,

inp_2r, inp_2a, inp_2d, out_Or, out_0a, out_0d
);

NAND3 10 ( out_0d[0], nwayMuxOut_0n[0], nwayMuxOut_1n[0], nwayMuxOut_Zn[O]);output complete

L. detecti
NAND3 19 ( out_0d[9], nwayMuxOut_0n[9], nwayMuxOut_1n[9], nwayMuxOut_2n[9]); etection

NAND2 110 (nwayMuxOut_0n[0], inp_0d[0], nwaySelect_0n[0]);

NAND?2 119 (nwayMuxOut_0n[9], inp_0d[9], nwaySelect_0n[0]); .
o input complete

detection
NAND?2 139 (nwayMuxOut_2n[9], inp_2d[9], nwaySelect_0n[2]);
c2 143 (inp_0a, inp_0r, out_0a);
c2 144 (inp_1a, inp_1r, out_0a); hole module
c2 145 (inp_2a, inp_2r, out_0a); complete
OR3 146 (out_Or, inp_Or, inp_1r, inp_2r); detection

endmoudle

Figure 40: The CallMux handshake component (three 10-bit ports)
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There are timing issues in the Xilinx back-end with certain combinations of handshake
components. The Advanced Processor Technologies Group will address these problems and
fix them in the future release. Therefore, synthesis is accomplished now, and the Balsa model

of PAMP3 can be used directly when the next version of Balsa is released.
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Chapter 6: Conclusions

In this thesis, we designed a pipelined architecture in the asynchronous MP3 decoder in
Balsa, which is an asynchronous design language and synthesis tool. We used an OfMP3
decoder to verify the output of each stage of the PAMP3. And the final outputs of the PAMP3
can be played by the audio software. All functions can be executed correctly except the
Joint-Stereo channel mode. We used the Synopsys Design Compiler with TSMC 0.13um
process and the Xilinx ISE to synthesis our design. There are timing issues in the Xilinx
back-end with certain combinations of handshake components. The Advanced Processor

Technologies Group will address these problems and fix them in the future release.

We implement a MP3 decoder model .with Balsa in ways of an asynchronous circuit
design. Although the area cost is & little large; the design flow of using CAD tools to design

an asynchronous circuit is confirmed.
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