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以 Balsa 設計之非同步 MP3 解碼器

學生：羅浩暐 指導教授：陳昌居  

國立交通大學資訊科學與工程所碩士班 

 

摘要 

MP3 是最流行的音樂壓縮標準之一，被應用在很多手持式裝置上，特別是 PDA 和

手機上。因為這些裝置都是攜帶式的，都被期望有低耗電，快速研發及上市時間，以及

好的相容性，因此模組化變成越來越重要。 

我設計並且實現一個適合於管線化架構下的非同步 MP3 解碼器。這個設計被分成

八個主要的階段，Synchronizer&Huffman, Requantizer, Reordering, Anti-alias, IMDCT, 

BUFF, FilterBank and PCM_out。在行為模式下成功地通過驗證，並且以 Synplify 和 

Synopsys Design Complier 合成器轉成電路。 最後，對於合成的結果做一些討論。 

因此，在使用 Balsa 去設計一個較複雜的非同步電路上，我做了一個新的嘗試，並

且使用 CAD 工具去設計非同步電路的流程也得以確認。 
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An Asynchronous MP3 Decoder Design with Balsa

student：Hao-Wei Lo 

 

Advisors：Dr. Chang-Jiu Chen 
 

Abstract 

MP3 is one of the most popular digital audio compression standards, and it is applied to 

many handset electronic products, especially PDAs and mobile phones. Because all of these 

products are portable, they demand speed to market, low power consumption and better 

composability, therefore, modularity becomes more and more important. 

I designed and implemented a processing flow of an asynchronous MP3 decoder, which 

is suitable for pipeline architecture, called PAMP3. The PAMP3 is divided into 8 stages that 

are Synchronizer&Huffman, Requantizer, Reordering, Anti-alias, IMDCT, BUFF, FilterBank 

and PCM_out. I successfully passed the behavior simulation and synthesized the design with 

the Synplify synthesis tool and the Synopsys Design Compiler tool. Finally, I made a 

discussion about the synthesis results. 

Therefore, I made an attempt to implement a complex circuit with Balsa in ways of 

asynchronous circuit design, and the design flow of using CAD tools to design an 

asynchronous circuit is confirmed. 
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Chapter 1: Introduction 

1-1 Motivations 

A digital system is usually organized by many subsystems, and these subsystems 

exchange information with each other. To guarantee the validity of data exchanged, the whole 

system needs to be synchronized on each transaction. The synchronization method is use of a 

global clock. The global clock is limited by the longest execution time of subsystems and it 

causes the worst case performance in the pipeline architecture. In addition, the global clock 

also causes higher power consumption. Therefore, the clock distribution is increasingly 

becoming a costly problem. 

A number of asynchronous circuit design methodologies and implementations have been 

proposed and developed [7], for example, asynchronous ARM RISC processor (AMULET1, 

AMULET2e, AMULET3) [8] [14] [15] in University of Manchester and Lutonium processor 

in CalTech [3]. 

The MP3 is one of the most popular digital audio compression standards [6] [13], and it 

is applied to many handset electronic products, especially PDAs and mobile phones. Because 

all of these products are portable, they demand speed to market, low power consumption and 

better composability; therefore, modularity becomes more and more important.  

We used the advantages of the asynchronous circuit design to implement a MP3 decoder 

with the pipeline method and the asynchronous design to increase its modularity and reduce 

power consumption. 
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1-2 Asynchronous circuit design 

Synchronous circuit design is the major design method recently, because of being used 

widely, and it has a complete design flow and tools. The system clock may cause problems in 

designing a large high clock frequency chip, and that’s why the asynchronous design becomes 

more and more important. There are some advantages in the asynchronous circuits while 

comparing with synchronous circuits. The first major problem of synchronous circuits is the 

clock skew, while asynchronous circuits don’t need the clock. Second, synchronous circuits 

are limited as worst case performance, while asynchronous are not. Third, asynchronous 

circuits have no clock signal; therefore, the power consumption can be reduced. It also almost 

attains zero power dissipation when there is no useful work to do. Forth, asynchronous circuit 

has better modularity. It is easier to connect every component with the same communication 

protocol. Finally, an asynchronous design has a low EMI(Electromagnetic Influence) problem 

because of no clock distribution. 

But asynchronous circuits still have some challenges over synchronous circuits. First, 

asynchronous circuits without clock signals need more control signals and thus the area cost 

may be increased. Second, there are few CAD tools to support asynchronous designs and tests. 

Therefore, it makes asynchronous circuit design harder and it also causes longer designing 

time. These are the major challenges of asynchronous circuit designs. The advantages and 

challenges of asynchronous circuit design are shown in Table 1. 
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Advantages challenges

Low power consumption Overhead( Area, Speed, Power)

Average-case instead of worst-case 

performance

Hard to design

Elimination of clock skew problems Few CAD tools

Component modularity and reuse Lack of tools for testing

Low EMI

Advantages challenges

Low power consumption Overhead( Area, Speed, Power)

Average-case instead of worst-case 

performance

Hard to design

Elimination of clock skew problems Few CAD tools

Component modularity and reuse Lack of tools for testing

Low EMI
 

  Table 1: The advantages and challenges of asynchronous design 

 

In asynchronous circuits, the major communication method between two components is 

by handshaking. There are two main types of control signaling protocol in the asynchronous 

circuit designs: two-phase and four-phase. The active signal of a two-phase handshake 

protocol can be a falling or rising edge. After an activity, the control signal doesn’t need to be 

reset to zero. The two-phase handshake protocol is shown in Figure 1. When the data of the 

sender is ready, the sender changes the request signal state (0 -> 1, 1 -> 0). Then the receiver 

changes its acknowledged signal and gets the data at the same time, and the handshake is 

completed. The periods between a request and an acknowledgement are the handshake itself, 

and the periods between an acknowledgement and the next request are an idle phase. The data 

transition must obey the setup time and the holding time constrain.  

The other type of handshake protocol is a four-phase. It is different from the two-phase 

protocol; the active signal must be a rising edge. It means the handshake signal must be reset 

after an activity. The four-phase handshake protocol is shown in Figure 2. When the data of 

the sender is ready, the sender pulls up the request signal, Req. Then, the receiver will pull up 

the acknowledge signal, Ack, and the data at the same time. At the end, the sender will push 

down the Req, and the receiver will push down the Ack. The handshake is completed.  
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Figure 1: The two-phase handshake protocol 

 

Figure 2: The Four-phase handshake protocol 

 

1-3 Balsa Synthesis Tool 

Balsa is an asynchronous hardware description language & synthesis tool developed by 

the Advanced Processor Technologies Group of the Manchester University [5] [12]. Balsa 

synthesis tool can compile the Balsa HDL into handshake components (breeze file) with 

one-to-one mapping. It is relatively easy for an experienced user to explore the architecture of 

the circuit that results from the original description. We can describe the behavior of our 

design with Balsa HDL, and then compile it into the most popular hardware description 

language such as Verilog HDL. An overview of the Balsa design flow is shown in Figure 3. 
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Figure 3. The Balsa Design Flow 

 

Balsa uses CSP-based constructs to express RTL design descriptions in terms of channel 

communications and fine grain concurrent and sequential process decompositions. A Balsa 

description (.balsa file) is translated into an implementation in a syntax directed fashion. 

Balsa uses one-to-one mapping between the language circuits and the intermediate handshake 

circuits. After translating, it will be a file (.breeze file) in a language with networks of 

handshake components. Balsa-netlist can generate CAD native netlist files, and then these 

netlist files can be fed into commercial CAD tools. Finally, the CAD tools synthesize the 

netlist to the layout. Three commercial CAD systems are currently supported: Compass 

Design Automation tools from Avant, Xilinx Alliance FPGA design tools and Cadence Design 

Framework II. 

Balsa description 

Breeze description 
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simulation system 
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Balsa supports three back-end technologies: signal rail (bundled data), dual rail, 1-of-4. 

The bundled-data back-end should be faster and smaller, but needs more careful post-layout 

timing validation. The dual rail and 1-of-4 schemes are larger and slower, but they could be 

more robust to layout variations. 

 

1-4 Organization of this thesis 

In the following chapters, the related work will be introduced, such as the processing 

flow of a MP3 decoder, the overview of pipeline architecture and the basic Balsa back-end. 

Then, the fully MP3 decoder design of the pipelined asynchronous MP3 will be illustrated in 

chapter 3. In chapter 4 and 5, the implementation, verification and results will be illustrated. 

Finally, a brief conclusion and future work are discussed in chapter 6. 
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Chapter 2: Related works 

2-1 Introduction to MP3  

The compression technology supported by MPEG (Moving Picture Expert Group) is 

widely used in various current multimedia applications, for example, network multimedia 

streamings, online music stores, digital televisions, and portable devices. 

 In the MPEG-1 standard, the compression of an audio signal can be categorized to three 

layers, MPG Layer 1, MPEG Layer 2, and MPEG Layer 3. These layers are different in codec 

complexity and compressed audio quality. Layer 1 forms the basic algorithms and is suitable 

for the bit rate above 128 Kbps per channel. Layer 2 targets the bit rates around 128 Kbps per 

channel and provides additional coding of bit allocations, scalefactors and samples. Layer 3 is 

the most complex, but it offers the best audio quality. A common CD music is about 44.1KHZ 

in frequency and 16 bits in sampling, so it consumes around 10 MB of storage space per 

minute. MP3 music only needs 1 MB storage space per minute. The compression rate of the 

MP3 music is 10 ~ 12 times the compression rate of a common CD music. The comparisons 

between the three layers of MPEG-1 are shown in Table 2. 
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Layer I Layer II Layer III

Analysis/Transform 32 sub-bands 32 sub-bands 32 sub-bands

Psychoacoustics model Model 1 Model 1 Model 2

Bit Rate 32~448 kbps 32~384 kbps 32~320 kbps

Sample Frequency 32, 44.1, 48 KHZ

Quantize Uniform Uniform Non-uniform

Samples per frame 384 samples 1152 

samples

1152 samples

Layer I Layer II Layer III

Analysis/Transform 32 sub-bands 32 sub-bands 32 sub-bands

Psychoacoustics model Model 1 Model 1 Model 2

Bit Rate 32~448 kbps 32~384 kbps 32~320 kbps

Sample Frequency 32, 44.1, 48 KHZ

Quantize Uniform Uniform Non-uniform

Samples per frame 384 samples 1152 

samples

1152 samples

 

Table 2: The comparisons between the three layers of MPEG-1 

 

2-1-1 Frame format 

All MP3 files are divided into smaller fragments called frames. Each frame stores 1152 

audio samples divided into two granules of 576 samples each and lasts for 26 ms. The frame 

structure of a MP3 can be divided into five parts as shown in Figure 4. Each header of the 

MP3 frames is 32 bits, includes some information about this frame, Sync word, ID, Layer, 

CRC, Sampling frequency, etc. The side information of each frame will be used in the 

following parts: the Huffman decoder and the scalefactor decoder. The main data part of the 

frame consists of scale factors, Huffman coded bits and ancillary data. 
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Header(32) CRC(16) Side info(17,32 bytes) Main data AncillaryHeader(32) CRC(16) Side info(17,32 bytes) Main data Ancillary

granule0 granule1granule0 granule1

Left channel Right channelLeft channel Right channel Left channel Right channelLeft channel Right channel

Scale factor Huffman codeScale factor Huffman code Scale factor Huffman codeScale factor Huffman code  

Figure 4: The frame structure of a MP3 file 

 

2-1-2 Side information and Main data 

The side information section contains the necessary information to decode the main data. 

This section is 17 bytes long in the single channel mode and 32 bytes long in the dual channel 

mode. 

The main data section contains the coded scale factor values and the Huffman coded 

frequency lines. Its length depends on the bitrate and the length of the ancillary data. The 

length of the scalefactor part depends on whether scale factors are reused, and also on the 

window length (sort or long). 

The first 9 bits of side information is a point tag which points out the main data 

beginning address in the current frame. Because the MP3 is encoded in the Huffman encoding, 

the lengths of the audio data after Huffman encoding are not all the same. In order to increase 

the space utility rate, the bit reservoir technology is used as shown in Figure 5. Therefore, the 

main data beginning address of each frame is not always after the side information of itself.  
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Header &
Side info

Header &
Side info
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Side info
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Frame 0 Frame 1
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Frame 3

Frame 1 data begin
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Frame 3 data 

begin

Frame 0 data Frame 1 data Frame 2 data Frame 3 data
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Side info

Header &
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Header &
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Frame 1 data begin
Frame 2 data 

begin
Frame 3 data 

begin

Frame 0 data Frame 1 data Frame 2 data Frame 3 data
 

Figure 5: The bit reservoir technology 

 

2-1-3 Huffman decoding 

There are two parts in the main data section, the scalefactor part and the Huffman data 

part. The size of the Huffman data part can be known by the side information and the scale 

factors. The big_values of the side information are the spectral values coded with different 

Huffman code tables. These frequencies range from zero to the Nyquist frequency and are 

divided into five regions (See Figure 6). The rzero region contains pairs of quantized values 

that equal to zero and represents the highest frequencies. The count1 region contains 

quadruples of quantized values that equal to -1, 0 or 1. Finally, the big_values region contains 

pairs of values, and the maximum of these values in the range are constrained to 8191 (13 

bits). The big_values field indicates the size of the big_values region, and the maximum value 
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is 288. 

 

big_value count1 rzero

Part23_length
1 576

Region 0,1
0,1,2

scalefac

Part2_length

bigvalue*2
bigvalue*2 + count1*4

big_value count1 rzero

Part23_length
1 576

Region 0,1
0,1,2

scalefac

Part2_length

bigvalue*2
bigvalue*2 + count1*4

 

Figure 6: The five regions of Huffman data. 

 

The Huffman decoding flow is shown in Figure 7. 
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No
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Table_select
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Figure 7: The Huffman decoding flow 

 

2-2 The MP3 processing flow 

The MPEG/Audio layer 3 decoding process has three main parts [10]: the bitstream 

decoding, the inverse quantization and the frequency-to-time mapping as shown in Figure 8 

. 

Bitstream
Decoding 

Inverse 
Quantization 

Frequency to 
time mappingEncoded 

bitstream
PCM audio 
output

Bitstream
Decoding 

Inverse 
Quantization 

Frequency to 
time mappingEncoded 

bitstream
PCM audio 
output

 

Figure 8: The MP3 decoding process 

 

The bitstream data is fed into the decoder. The bitstream decoding block receives header 

and error detection if error-check (CRC error detection code) is applied in the encoder. The 

bitstream data are unpacked to recover the various pieces of information, and the inverse 

quantization block reconstructs the quantized version of the set of mapped samples. Finally, 

the frequency-to-time mapping block transforms these mapped samples back into a uniform 

PCM. 

 

2-2-1 Bitstream decoding 

There are four phases in the bitstream decoding part, which are the header decoding, the 

side information decoding, the scale factor decoding, and the Huffman data decoding. First, 

the bitstream decoder synchronizes one header address of a frame, and then it receives header 
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and side information data into buffer for usage in later phases. Third, the scale factor decoding 

phase decodes the scale factor data that is needed in re-quantization. Fourth, the Huffman data 

phase receives 576 factor values which are computed by MDCT and the quantization to do an 

ascending power sort. The bitstream decoding block is shown in Figure 9. 

 

Synchronization 
(header / side 
information 
decoder)

Scale Factor 
decoder

Huffman decoder

Huffman 
information

Huffman code
bits

Huffman 
Information

Scale Factor 
Information

Scale Factors
Encoded 
bitstream

Bitstream decoder

Magnitude & Sign

Synchronization 
(header / side 
information 
decoder)

Scale Factor 
decoder

Huffman decoder

Huffman 
information

Huffman code
bits

Huffman 
Information

Scale Factor 
Information

Scale Factors
Encoded 
bitstream

Bitstream decoder

Magnitude & Sign

 

Figure 9: The bitstream decoding block 

 

2-2-.2 Inverse quantization  

There are three parts in the inverse quantization block: the re-quantization, the reordering 

and the joint-stereo processing. The re-quantization part covers the Huffman decoded values 

back to their spectral values using a power law. For each output value Y from Huffman 

decoder, Y4/3is calculated. So, it needs the scale factors and Huffman values that were 

decoded before. The following is the re-quantization formula: 
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Xri = isi
4/3 * 2(0.25 * C)           (1) 

The factor “C” in the equation consists of the global gain and the scalefactor band 

information from the side information and the scale factors. The value, isi, means the Huffman 

decoded value at buffer index i, and the input to the next processing block at index i is called 

Xr(i).  

 

Reordering  

In order to make the Huffman decoding more efficient, we must reorder the frequency 

value from MDCT and quantization. This part is only used in short block windowing. Because 

the three window samples in the same frequency of each subband are put together into one 

window during the Huffman encoding, and they must be converted back to the original order. 

The reordering method is shown in Figure 10. 

 

 

Figure 10: The reordering method 

 

Join stereo processing 

The MP3 decoding does not only support the mono or dual mode channel mode 
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decoding, but also support stereo mode channel mode decoding. 

 

2-2-3 The Frequency to time mapping block 

The frequency to time mapping block can be divided to three phases such as alias 

reduction, IMDCT, ploy-phase synthesis filter bank (Figure 11). The purpose of this block is 

converting the decoded re-quantization frequency domain values to the time domain values. 

 

Alias 
reduction

IMDCT & 
overlapping

Poly‐phase 
synthesis

Frequency to time mapping

PCM signal

Alias 
reduction

IMDCT & 
overlapping

Poly‐phase 
synthesis

Frequency to time mapping

PCM signal

 

Figure 11: The frequency to time mapping block 

 

Alias Reduction 

The alias reduction is required to negate the aliasing effects of the poly-phase synthesis 

filter bank during encoding. It is used in the long block. There are eight butterfly calculations 

for each sub-band as shown in Figure 12. The x(i) is the frequency value that is processed by 

a reorder module, and the cs and the ca are the constants that can be found in standard tables. 
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Figure 12: The alias reduction 

 

IMDCT 

The IMDCT (Inverse Modified Discrete Cosine Transform) transforms the frequency 

lines to poly-phase filter subband samples. The analytical expression of the IMDCT is as 

shown as below where n is 12 for short blocks and 36 for long blocks. 

 

          (2) 

 

In long blocks, the input of IMDCT is formed with 18 frequency lines, and then the 

IMDCT produces 36 outputs. In a serial of three window blocks, the input of the IMDCT is 

formed with 6 frequency lines, every block produces 12 outputs. 
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After the IMDCT process, the result Xi must multiply with the function of windowing. And 

the function of windowing depends on the block_type different shapes of windows used. 

 

1. Block_type = 0  

                 (3) 

2. Block_type = 1 

                 (4) 

3. Block_type = 3 

          (5) 

 

4. Block_type = 2 

      (6) 
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      (7) 

 

After windowing, the results must be overlapped and added with the previous block. 

Half of the block of the 36 values is overlapped with the second half of the previous block. 

The second half of the actual block is stored to be used in the next block as shown in Figure 

13. 

 

 

Figure 13: The overlapping of the IMDCT 

 

Poly-phase Synthesis 

The poly-phase synthesis (filterbank) block transforms the 32 subband blocks of 18 

time-domain samples in each granule to 18 blocks of 32 PCM samples. This block can be 

divided to four parts: moving, DCT, matrix multiply and overall adding. The flow of 

poly-phase synthesis is shown in Figure 14. 

In the synthesis operation, the 32 subband values are transformed to the 64 values V 

vector via the DCT computation. The V vector is pushed into the FIFO buffer, and a new 

vector, U vector, is created from the FIFO. Finally, the U vector is multipled with the constant 
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D window to get the W vector, and these 16 W vectors are added with each other. The final 32 

samples become a PCM vector. 
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Figure 14: The flow of poly-phase synthesis 

 

2-3 Overview of Pipeline Architecture 

The pipeline architecture is used widely in microprocessor designs. It can increase the 

throughput due to the parallel processing of instructions. In Figure 16, every stage of the 
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synchronous pipeline must be controlled by a global clock. The period of the global clock is 

set to the slowest pipeline stage. However, each stage of the asynchronous pipeline can be 

processed at its own speed. Some instructions even can bypass the stages that aren’t processed, 

such as instructions 3 and 4 in Figure 15. The instruction 3 doesn’t need to be processed in the 

WB stage, and the instruction 4 doesn’t need to be processed in the EXE stage. In the 

synchronous pipeline, these instructions still need to wait a complete clock cycle time before 

moving to the next stage. But in the asynchronous pipeline, these instructions can be 

processed quickly (bypassing) to the next stage. 

 

 

Figure 15. Synchronous Pipeline V.S. Asynchronous Pipeline 

 



 21

2-4 Balsa back-End 

The Balsa back-end can be used to generate gate level netlists for supported CAD 

systems [1] [2]. In this section, we will describe some basic cells for the Xilinx FPGA 

generated by Balsa and some handshake components in the Balsa synthesis system.  

 

2-4-1 Basic Elements  

There are many basic cells generated by Balsa for the Xilinx FPGA, including AND, OR, 

NOR, XOR, NAND, BUF, XNOR, INV, FD (D-type flip-flop), FDC and FDCE. The most 

important cell for a asynchronous circuit is the Muller C-element as shown in Figure 16. It 

can hold the past state. When both of the inputs are 1, the output is set to 1. When both of the 

inputs are 0, the output is set to 0. When other conditions happen, the output is not changed. A 

Muller C-element is a fundamental component that is extensively used in asynchronous 

circuits. 
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Figure 16: The Muller C-element, (a) symbol (b) true table (c) gate-level implementation 
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Figure 17: The NC2P-element (a) symbol (b) true table (c) gate-level implementation 
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Figure 17 shows the NC2P element. When the input, i0, is equal to 0, the output, q, is set 

to 1. When the i0 and i1 are both 1, the output is set to 0. For other input conditions, the 

output is not changed. 

 

Figure 18: The S-element (a) symbol (b) gate-level implementation (c) handshaking 

protocol 

 

Figure 18 shows the S-element. An S-element performs a series of handshake. It has 4 

inputs including two request/acknowledge handshake pairs, ‘Ar’/’Aa’ and ‘Br’/’Ba’. It is 

composed by NC2P, NOR and AND gates. In the Balsa system, it usually replaces the 

“inverter of C element” with a NC2P element, because the behavior of a NC2P element is 

much like a C element. Hence, it can reduce the number of gates because an “inverter of C 

element” uses 3 AND gates, 1 OR gate and 1 INV, but a NC2P element uses 2 AND gates, 1 

NOR gate and 1 INV. 
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2-4-2 Handshake Components 

There are 40 handshake components in the Balsa system. Each handshake component is 

constructed by a gate level implementation. In the following section, we will illustrate some 

of them. 

 

 

Figure 19: The Fetch Component (a) handshake component (b) gate-level 

implementation 

Figure 19 shows the Fetch component. This component is used to transfer data from 

input channels to variables, from variables to output channels, and from variables to variables. 

Figure 20 and Figure 21 are the sequence and concurrent components. The sequence 

components control the output signals in sequence, and the concurrent component controls the 

output signals in parallel. 
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Figure 20: The Sequence Component (a) handshake component (b) gate-level 

implementation 
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Figure 21: The Concurrent Component (a) handshake component (b) gate-level 

implementation 
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Figure 22 is a variable component which is composed by the FD (D-type flip-flop) gate. 

The Balsa system will map the “variable “description to this component when translating 

handshake component files (.breeze). Data is stored if the signal write_0r is set, and data is 

read when the signal read_0r is set.  

 

Var Read[0]
write

(a)

(b)

FDWrite_0r Write_0a

Read_Or

Write_0d
Read_0d

Read_0a

D Q

 

Figure 22: The variable Component (a) handshake component (b) gate-level 

implementation 
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2-5 Concluding Remarks 

In this chapter, we introduce the MP3 (MPEG1 Layer 3) architecture. The frame structure of a 

MP3 file contains 5 parts, Header, CRC, Side information, Main data, Ancillary. This process 

flow of the MP3 operates in the sequence as the above structure. It can be divided into three 

main parts: the bitstream decoding, the inverse quantization and the frequency-to-time 

mapping. We then introduce the concepts of asynchronous pipeline. Finally we illustrate the 

Balsa back-end. Balsa synthesis system is composed of about 40 components, which can be 

translated into gate-level netlists. 
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Chapter 3: The Design of the PAMP3 

This chapter describes the design of the PAMP3. The PAMP3 consists of eight main 

parts, the synchronizer&Huffman, the requantizer, the reorder, the anti-alias, the IMDCT, the 

BUFF, the filterbank and the PCM_out. These eight parts work in parallel with the 

communication channel connected in between them. In the following section, we will 

introduce the top view of the PAMP3 in the first, and then describe the eight main 

components. 

 

3-1 The architecture of the PAMP3 

 The architecture view of the PAMP3 is shown in Figure 23. All of the operations can be 

completed in the eight stages, and then the PAMP3 outputs a serial of PCM data. The 

synchronizer&Huffman stage takes the MP3 music data from the Main Memory and puts the 

header, the side information and the main data into the buffers. The buffers are used as the 

source and the information of the decoding scale factors and the decoding Huffman data. The 

requantizer stage is responsible for decoding inverse quantization. It converts the Huffman 

decoded values back to their spectral values using a power law. The reorder stage and anti 

alias stage reorders the frequency value from the MDCT and the quantization, and reduces the 

aliasing effects of the poly-phase synthesis filter bank during its encoding process. The 

IMDCT stage and the filterbank stage decode the IMDCT and the poly-phase synthesis but 

here they are implemented in a different way. The BUFF stage holds the data until all of the 

samples are completed, then the BUFF stage outputs data to the next stage. The PCM_out 

stage checks the channel mode before outputting data. 
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Figure 23: The architecture view of the PAMP3 

 

The following code is the top level process of the PAMP3. Every component is connected by 

internal channels. 

procedure pamp3_decoder( 

 input mem_out : 64 bits; 

 input mem_boundary : 20 bits; 

 output mem_reset : bit; 

 output mem_addr : 20 bits; 

 output data_out : 16 bits 

) is 

. . . . . . .  

scale_huffman_top(mem_out, mem_boundary,mem_reset, mem_addr, 

index,freq1,nonzero,global_gain,subgain,scale, 

preflag,scale_l,scale_s,t_l,t_s,data)  || 
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requantization(index,freq1,global_gain,subgain,scale,preflag,nonzero, 

data,scale_l,scale_s,t_s,t_l,req_index_out,freq2,req_out) || 

reorder(req_index_out,freq2,req_out,reorder_out,order_index) || 

alias_reduction(order_index,reorder_out,alias_out,index_out) || 

imdct_top(index_out,alias_out,imdct_out,ch_in) || 

imdct_filterbank(ch_in,imdct_out,filterbank_in,ch_out) || 

filterbank_top(ch_out,filterbank_in,pcm_in,pcm_ch) || 

pcm_out(pcm_ch,pcm_in,data_out) 

end 

 

3-2 The synchronizer&Huffman stage 

This stage contains three buffers and three modules: the synchronizer, the 

SCALE&HUFFMAN and the BUFF_RW_ARBITOR. The three buffers are the header buffer, 

the side information buffer and the main data buffer. The synchronizer module retrieves the 

data from the main memory and decodes the header data and side information data into two 

buffers. After decoding the header and the side information, the synchronizer sends the side 

information data and some header data to the SCALE&HUFFMAN module. Then, the 

synchronizer writes the main data fetched from the main memory into the main data buffer. 

While the synchronizer is writing the data, the SCALE&HUFFMAN module also reads the 

data from the main data buffer to decode the scale factors and the Huffman data. Therefore, 

the BUFF_RW_ARBITOR controller arbitrates the two control signals that are read and write, 

from the synchronizer and the SCALE&HUFFMAN modules at the same time, and checks 

whether the buffer data is valid. The SCALE&HUFFMAN module does the scale factor 
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decoding and the Huffman decoding. We use the direct table lookup method for Huffman 

decoding. All the data of the Huffman tables are stored in the ROM, which can be read by the 

SCALE&HUFFMAN module. 

The Figure 24 shows the modules of the Synchronizer&HUFFMAN stage. After the 

SCALE&HUFFMAN module decodes one value (13 bits) from the data, it immediately 

transfers the value to the next stage. This is convenient because the next stage does not need 

the SCALE&HUFFMAN module to decode the entire 576 values before processing.  
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Figure 24: The Synchronizer&HUFFMAN stage 

 

3-3 The re-quantizer stage 

The re-quantizer stage (Figure 25) contains four modules: requant_ctrl, fras_l, fras_s and 

fras. The requant_ctrl module controls the other modules to compute the output data. The 
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fras_l module and fras_s module mainly calculate the right side of the multiply sign in eq(1) 

according to the conditions of long block and short block. The fras module mainly calculates 

the right side of the equation in eq(1) using the input data, “ISi”, and value, “a”, that were 

calculated before. Because the value of the 4/3 power calculation is very difficult, a ROM is 

designed to store all the value of the 4/3 power for future usage. Finally, the requant_ctrl 

module outputs a value whenever the fras module completes its calculation. 

The input data of the requantizer stage, ISi, is 14-bits data is used in the process of 

looking up the table. After decoding the input, the output data of the requantizer stage, 

req_out, is a 32-bits data. The format of this output data is represented by a integer of 4 bits 

and a decimal of 28 bits. 
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Figure 25: the Requantizer stage 

 

3-4 The reorder stage and anti-alias stage 

The reorder stage (Figure 26) immediately assigns the correct position of the input data 
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according to the frequency mode of the side information. The order_ctrl controls the receiving 

and the output of a buffer (576 x 32 bits). The output methods are according to the block type 

of the current frame. In the long block type, the output value can be sent out directly. Because 

the anti-alias stage performs eight butterfly multiplications for every two subbands ( 2 x 18 

values). In the short and mixed block type, a counter is set to count the received data of 

current frame, and the reordered outputs are sent out when the counter equals to a specified 

number. The specified number means that 18 reordered values have been received. (Only 

support for MP3 streams with 44.1kHz sample frequency is implemented.) 
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Figure 26: The reorder stage. 

 

The anti-alias stage (Figure 27) uses two register banks (2*18*32 bits) to store two 

subbands from the reorder stage and performs an 8-butterfly multiplication as shown in 

Figure 28. After doing the 8 butterfly multiplication, the anti-alias stage outputs the first half 

of the results (18*32 bits) to the next stage. Then, the anti-alias stage moves the remaining 

half of the results forward to one of the previous register banks while waiting for the new 18 

reordered values from the previous stage. 
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Figure 27: The anti-alias stage. 
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Figure 28: The register banks of the anti-alias stage. 

 

3-5 The IMDCT stage 

The IMDCT stage does the inverse modified discrete cosine transform, the windowing 

and the overlapping processes. In the IMDCT processing, we use the method created by 
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Szu-Wei Lee [16] to implement. Figure 29 shows the computational flow of Szu-Wei Lee’s 

algorithm. The N-point inverse MDCT is converted to a N/2-point DCT-IV first, then it is 

converted to a N/2-point SDCT-II. Finally, a N/2-point SDCT-II can be divided to two 

identical N/4-point SDCT-IIs. Therefore, this algorithm can be simplified into 3-point and 

9-point SDCT-II modules, which compute the inverse MDCT for a MPEG layer III. In this 

algorithm, the total of the multiplications and the additions are only 43 and 115 when the 

length N = 36. 
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Figure 29: The IMDCT processing flow of Szu-Wei Lee‘s algorithm. 

 

According to the previous algorithm, 5 sub-stages were constructed for the pipeline 

architecture in the IMDCT stage as shown in Figure 30. These sub-stages are 

scaling&butterfly, SDCT-II, post-process, windowing and overlapping. The first three 

sub-stages are the computing flow in the Szu-Wei Lee’s algorithm. The others execute 

multiplication between the inputs and the long or short window table data and then overlap 

between the inputs and the previous frame. The input values from the anti-alias stage are 

multiplied by constants and then they pass through a butterfly addition with each other in the 

scaling&butterfly sub-stage. The SDCT-II sub-stage is decomposed into two blocks, the 

N/4-point SDCT-II and the N/4-point DCT-IV. The first half of the outputs from the previous 

sub-stage performs the N/4-point SDCT-II immediately. The second half implement the 

reordering process first and then perform the N/4-point SDCT-II. The 3-point and 9-point 
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SDCT-II can be used directly. The 3-point SDCT-II requires one multiplication and 5 

additions, and the 9-point SDCT-II requires 8 multiplications and 36 additions. After the 

post-processing sub-stage, 36 outputs of the IMDCT processing will be created. In the 

windowing sub-stage, the windowing_cntrl controller controls the multiplying process 

( mult_long_short) between the data of the window table and the input from the last sub-stage. 

The data will differ according to long or short block types. Finally, the overlap sub-stage 

performs the overlapping between half of the data from the current block and the data from 

the previous block in the overlapping memory and then outputs 18 overlapped data to the next 

stage.  
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Figure 30: the sub-pipeline of the IMDCT stage 

 

The following code is the top level process of the IMDCT stage. The whole IMDCT stage is 

decomposed into 5 sub-stages of the sub-pipeline. 
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procedure imdct_top(  

  input index : 10 bits ; 

  array 0 .. S-1 of input data_in : data_type ; 

  array 0 .. S-1 of output data_out : data_type ; 

  output ch_out : 3 bits 

) is 

… … 

imdct_stage1(index,data_in,reg1,index1) || 

imdct_stage2(index1,reg1,reg2,index2) ||  

imdct_stage3(index2,reg2,reg3,index3) || 

IMDCT_windowing(index3,reg3,index_out,imdct_over) || 

IMDCT_overlap(index_out,imdct_over,data_out,ch_out) 

end 

 

3-6 The BUFF stage 

The outputs of the IMDCT stage are 18 time-domain samples, but the inputs of the 

poly-phase filterbank stage are 32 subband samples. The BUFF stage (Figure 31) is needed to 

buffer the inputs from the IMDCT stage until receiving the 576 samples. Then, the output of 

the BUFF stage delivers 32 subband samples in the buffer to the poly-phase filterbank stage. 

The pipeline architecture must work abidingly during the data buffering. Therefore, the buffer 

is divided into two blocks and the two blocks are read and written in turn. During the buffer0 

is being written, data is from the output of the IMDCT stage, and the buffer1 is being read 
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data to output to the filterbank stage; the process continues until receiving the 576 samples. In 

the next 576 samples, the buffer0 is being read data to output to the filterbank stage and the 

buffer1 is being written data from the output of the IMDCT stage, and so on. 

 

mode&channel
(3 bits)

data_in
(32 bits)

data_out
(32 bits)

mode&channel
(3 bits)

Buffer 0

Buff contrl

Buffer 1

BUFF

mode&channel
(3 bits)

data_in
(32 bits)

data_out
(32 bits)

mode&channel
(3 bits)

Buffer 0

Buff contrl

Buffer 1

BUFF

 

Figure 31: The BUFF stage 

 

3-7 The poly-phase filterbank stage 

The poly-phase filterbank converts the time domain samples from the IMDCT transform 

in each subband to PCM samples. As mentioned in the previous chapter, the poly-phase 

synthesis filterbank can be decomposed into four parts, moving, DCT, matrix multiply and 

overall adding. The Konstantinides’ algorithm [9] and the B.G. Lee’s algorithm [4] are both 

used to find a good implementation of the 32-point DCT. The 32 subband samples are the 

inputs of the DCT and then they are converted by the B.G. Lee’s algorithm. Finally, by using a 

symmetric way as shown in the Konstantinides’ algorithm (Figure 32), the previous 32-point 

results become 64-point final results. Figure 33 shows the 8-point DCT using B.G. Lee’s 
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algorithm [11]. 
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Figure 32: The DCT simplification of Konstantinides’ algorithm 

 

 

Figure 33: The 8-point DCT simplification of B.G. Lee’s algorithm [11] 
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This pipeline stage is divided into 7 sub-stages as shown in Figure 34. The first 6 

sub-stages perform the 32-point DCT by the previous method. The remaining 1 sub-stages 

perform the FIFO moving, window table multiplying and final scaling. The B.G. Lee’s fast 

DCT algorithm is recursive, and for a 32-point DCT. It requires only 80 multiplications and 

209 additions. Therefore, the first 5 sub-stages are recursively integrating the 32-point 

subband samples into smaller units. Then the next sub-stage performs the similar 

post-processing part as shown in the Figure 34. The windowing_cntrl controller in the 

windowing sub-stage controls the inputs from the previous sub-stage to do data copying as 

shown in Figure 33. Then the controller pushes the inputs into the FIFO and performs 

multiplication between the data from the FIFO and the constants from the window table ROM. 

After overall adding, the windowing_cntrl outputs the 32 PCM data to perform scaling. 

Finally, the windowing and scaling sub-stage outputs 32 scaled PCM data to the next stage. 
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Figure 34: the sub-pipeline of the synthesis filterbank stage 
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The following code is the top level process of the poly-phase filterbank stage.  

 

procedure filterbank_top( 

 input ch : 3 bits ; 

 input data_in : data_type ;  

 output data_out :16 bits; 

  output ch_out : 3 bits 

) is 

. . . . . .  

filterbank_butterfly_5(ch,data_in,reg1,ch1) ||  

filterbank_butterfly_4(ch1,reg1,reg2,ch2) || 

filterbank_butterfly_3(ch2,reg2,reg3,ch3) || 

filterbank_butterfly_2(ch3,reg3,reg4,ch4) || 

filterbank_butterfly_1(ch4,reg4,reg5,ch5) ||  

filterbank_GHmake(ch5,reg5,reg6,ch6) || 

filterbank_windowing(reg6, ch6, data_out,ch_out)  

end 

3-8 The PCM_out stage 

Because the MP3 decoding can be divided into a mono channel mode or a dual channel 

mode, the output of the PCM_out stage is a 16-bits PCM data according to the mode bits 

transferred from the previous stage. When the mode bits are equal to 0 or 2, this stage must 
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store the entire 576 samples of one channel until the data of the other channel is received and 

then the stage outputs the data by turns of channel 0 and channel 1. When the mode bits are 

equal to 3, this stage inputs and then outputs directly. When the mode bits equal to 1, it means 

the mp3 music compressed in the joint-stereo mode. In this article, the joint-stereo decoding is 

not discussed because it won’t be really implemented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 43

Chapter 4: Implementation and Verification 

This chapter contains three parts. First, our design flow for the asynchronous implementation 

on FPGA is illustrated and some implementation issues are descripted. Finally, the behavior 

simulation is illustrated.  

4-1 The Design Flow  

The PAMP3 core is modeled with the Balsa language, and then it is compiled into a 

network of handshake components (.breeze file) by the balsa-c compiler. Each of these 

components has one mapping gate-level implementation. Using the “balsa-netlist” tool can 

generate the gate-level implementations in the Verilog for the Xilinx or other target synthesis 

tools. And the balsa provides a Verilog simulation tool, balsa-verilog-sim. It supports some 

open sources or commercial Verilog simulatiors: Icarus Verilog, Synopsys VCS, Cadence 

NC-Verilog , Cadence Verilog-XL, Model Technologies Modelsim and Cver. 

The balsa-verilog-make-builtin-lib tool can generate the balsa built-in functions into a library 

and register the library in the specified Verilog simulator. Then the gate-level simulation can 

be performed to verify the PAMP3 using the Balsa tool. 

Figure 35 describes the FPGA design flow of Balsa. The Verilog netlist generated by the 

balsa-netlist is converted into a netlist of basic gates in the synthesis of the design flow. 

However, the synthesis tool may optimize the hazard-free circuits and buffers generated by 

the basa-netlist. The constraint “keep hierarchy” or “syn_hier” is added to avoid the logic 

minimization. The “keep hierarchy” is used for the Xilinx synthesis tool, and the “syn_hier” is 

used for the Synplify synthesis tool. Then the synthesized netlists are mapped to the target 

device using a technology-mapping algorithm. The placement and the routing algorithm, map 

the logic blocks from the netlists to the physical locations on an FPGA, and determine how to 
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interconnect the logic blocks using the available routing. The final output of the design flow is 

the FPGA programming file.  

 

Figure 35: The Balsa and FPGA design flow 
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4-2 Implementation Issues 

Four-phase bundle-data protocol is chosen to implement the handshake circuit instead of 

the dual-rail encoding in order to reduce the area cost. The Balsa provides some technologies 

for implementations. The circuits are implemented using the Xilinx standard cells: AND, OR, 

INV and FD when choosing the Xilinx ISE technology. Other target synthesis tools must 

choose the “example” technology, and the basic cell with the standard cell in the target 

synthesis tool needs to be modified. 

The synthesis tools could perform the logic minimization during synthesizing. It would 

break some buffers or redundant circuits that are used to ensure hazard-free. These buffers and 

circuits can’t be minimized directly. Therefore, the constraint “keep hierarchy” is added to 

avoid the logic minimization when using the Xilinx synthesis tool. 

The Balsa RAMs and the ROMs are only modeled to perform the Balsa behavior 

simulation. They can’t be implemented in the Verilog, because they are built-in functions 

written in C. Therefore, the block RAM on the FPGA should be used in the FPGA 

implementation.  

 

4-3 Verification 

The behavior simulation for the PAMP3 (pipelined asynchronous MP3) can be 

performed in the Balsa and the Modelsim. The simulation environment is shown in Figure 36. 

The outputs from PAMP3 are written into a file by using a Balsa builtin function, and the 

output file (PCM format) can be played by audio softwares such as GoldWave as shown in 

Figure 37. An open source software MP3 decoder, AMP mp3 decoder, and a simple decoder 

that are written by us, OfMP3 (Observer for MP3 decoder), are used to compare the output of 
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each stage with the PAMP3 as shown in Figure 38. If the results are not equal, the design 

needs to be remodified. If the results are equal, the design is correct. The memory model is 

the predefined procedure in the Balsa as shown in Figure 39. The total size of the memory is 

8M bytes. The MP3 data are loaded from a binary file during the initialization process. 

Whenever an addressing arrives at the memory model from the memory address channel, the 

memory outputs the data. When the PAMP3 core is writing data, it sets the signal rNw and 

sends out the address and the data.   

 

Figure 36: PAMP3 behavior simulation enviroment 
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Figure 37: Playing output in the GoldWave 

 

Figure 38: Observer for MP3 decoder 
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BalsaMemoryRAM(  { 20, ‐‐addr width
64 }, ‐‐data width 

BalsaMemoryNew(), ‐‐direct expression to port connection
RAM_addr, RAM_rNw, RAM_write_data, RAM_read_data)  

Figure 39: The Balsa memory model 
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Chapter 5: The Results 

5-1 Simulation Result 

In the Balsa simulation, all kinds of the channel modes and the block types have been 

simulated using the verification method as Figure 37. Because the simulation in the Balsa 

system costs much time, the specified characteristic test files are simulated first such as short 

block, long block, mixed block, single channel and dual channel. Then, we used some MP3 

music with fewer frames to confirm the entire PAMP3 correctness. Finally, a MP3 music with 

more than 1000 frames is used to simulate the performance of the PAMP3. 

 

5-2 Area cost 

In the VLSI design flow, we used the Synopsys Design Compiler to synthesis our design 

with TSMC 0.13μm process. Table 3 shows the cell area of the two kinds of multipliers, array 

adder algorithm and booth algorithm. Multipliers are the main computation components in the 

MP3 processing. Therefore, we compared how the two different kinds of multipliers affected 

the area cost of MP3 decoder. The total area cost with booth multipliers is as shown in Table 4. 

The filterbank stage and the IMDCT stage are the most dominant stages of the whole design. 

 

 

Table 3: The Cell Area Cost of two kinds of multipliers (μm2)  
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Different synthesis tools were used, Xilinx XST and Synplicities Synplify Pro during the 

FPGA implementation. Only the Synplify Pro was able to synthesize the project successfully 

because of some problems of the Xilinx XST. Table 5 shows the slice and the gate count of 

each stage.  

 

stages Total cell area 
Synchronizer&Huffman 2139331.75 17.4%

Requantizer 409842.31 3.3%
Reorder 476468.65 3.9%

Anti-alias 1080126.87 8.8%
IMDCT(with Buff) 3630446.63 29.5%

FilterBank (with PCM_out) 4563784.11 37.1%
Total  12300000.32 100.0%
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Requantizer 409842.31 3.3%
Reorder 476468.65 3.9%

Anti-alias 1080126.87 8.8%
IMDCT(with Buff) 3630446.63 29.5%

FilterBank (with PCM_out) 4563784.11 37.1%
Total  12300000.32 100.0%  

Table 4: The Cell Area Cost of Every Part of PAMP3 (μm2)  

 

stages Slice Gate count 
Synchronizer&Huffman 45,903 607,630 19.4%

Requantizer 6,244 98,947 3.2%
Reorder 11,685 157,309 5.0%

Anti-alias 16,758 255,366 8.1%
IMDCT(with Buff) 46,743 877,597 28.0%

FilterBank (with PCM_out) 72,045 1,138,104 36.3%
Total 199,378 3,134,953 100.0%
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Anti-alias 16,758 255,366 8.1%
IMDCT(with Buff) 46,743 877,597 28.0%

FilterBank (with PCM_out) 72,045 1,138,104 36.3%
Total 199,378 3,134,953 100.0%  

Table 5: The FPGA Cost of Every Part of PAMP3 

 

The area overhead mainly comes from the handshake circuit in each handshake 

component. During handshake components translation, the networks of the handshake 

components are created by one-to-one mapping without any simplifications. In the complex 
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circuits, the connections between these networks cost very much. The circuits of the 

completion detection on the control path need large C elements. Numbers of registers are used 

during computation and save the frame information during the process of PAMP3. In Balsa 

system, the registers need more handshake components to be implemented. For example, 

every bit of all the ports need complete detection in the CallMUX implementation that 

multiplexes a writing port into registers as shown in Figure 40. The three 10-bit ports module 

was very cost-consuming and in a MP3 processing, the module would use more ports and be 

more complex. There are two main reasons that the filterbank stage is the most dominant 

stage of the whole design. First, the filterbank stage is divided into more sub-stages than the 

IMDCT stage. Second, it controls the bigger FIFO buffer to perform multiplication and 

overall addition.  

module BrzCallMux_10_3 (  
inp_0r, inp_0a, inp_0d,  inp_1r, inp_1a, inp_1d,  

inp_2r, inp_2a, inp_2d,  out_0r, out_0a, out_0d
);
NAND3 I0 ( out_0d[0], nwayMuxOut_0n[0],  nwayMuxOut_1n[0], nwayMuxOut_2n[0]);
. . .
NAND3 I9 (  out_0d[9], nwayMuxOut_0n[9],  nwayMuxOut_1n[9], nwayMuxOut_2n[9]);
NAND2 I10 (nwayMuxOut_0n[0], inp_0d[0], nwaySelect_0n[0]);
. . .

NAND2 I19 (nwayMuxOut_0n[9], inp_0d[9], nwaySelect_0n[0]);
. . .
. . .
. . .
NAND2 I39 (nwayMuxOut_2n[9], inp_2d[9], nwaySelect_0n[2]);
c2 I43 (inp_0a, inp_0r, out_0a);
c2 I44 (inp_1a, inp_1r, out_0a);  
c2 I45 (inp_2a, inp_2r, out_0a); 
OR3 I46 (out_0r, inp_0r, inp_1r, inp_2r);

endmoudle

Output complete 
detection 

input complete 
detection

Whole module 
complete 
detection
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NAND2 I10 (nwayMuxOut_0n[0], inp_0d[0], nwaySelect_0n[0]);
. . .

NAND2 I19 (nwayMuxOut_0n[9], inp_0d[9], nwaySelect_0n[0]);
. . .
. . .
. . .
NAND2 I39 (nwayMuxOut_2n[9], inp_2d[9], nwaySelect_0n[2]);
c2 I43 (inp_0a, inp_0r, out_0a);
c2 I44 (inp_1a, inp_1r, out_0a);  
c2 I45 (inp_2a, inp_2r, out_0a); 
OR3 I46 (out_0r, inp_0r, inp_1r, inp_2r);

endmoudle

Output complete 
detection 

input complete 
detection

Whole module 
complete 
detection

 

Figure 40: The CallMux handshake component (three 10-bit ports) 
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There are timing issues in the Xilinx back-end with certain combinations of handshake 

components. The Advanced Processor Technologies Group will address these problems and 

fix them in the future release. Therefore, synthesis is accomplished now, and the Balsa model 

of PAMP3 can be used directly when the next version of Balsa is released.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 53

Chapter 6: Conclusions 

In this thesis, we designed a pipelined architecture in the asynchronous MP3 decoder in 

Balsa, which is an asynchronous design language and synthesis tool. We used an OfMP3 

decoder to verify the output of each stage of the PAMP3. And the final outputs of the PAMP3 

can be played by the audio software. All functions can be executed correctly except the 

Joint-Stereo channel mode. We used the Synopsys Design Compiler with TSMC 0.13μm 

process and the Xilinx ISE to synthesis our design. There are timing issues in the Xilinx 

back-end with certain combinations of handshake components. The Advanced Processor 

Technologies Group will address these problems and fix them in the future release.  

We implement a MP3 decoder model with Balsa in ways of an asynchronous circuit 

design. Although the area cost is a little large, the design flow of using CAD tools to design 

an asynchronous circuit is confirmed. 
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