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Abstract

To satisfy high-performance computing demands-indeno embedded devices, current
embedded processors architectures  either- providegroe with possibility to define
instruction set extension (ISE) or to'increase rutdion issue width. In general, both
approaches are regarded as different; if we cagtiate both approaches to execute ISE(S)
and original instruction(s) in parallel, then fuethexecution time can be saved. Most ISE
exploration algorithms, however, are unlikely toused in the multiple-issue processor due to
the lack of two important considerations: (1) foultiple-issue processor, not all operations
locate on the critical path; if operations locatmg the non-critical path are grouped as ISE,
then it results in unnecessary waste of silicora;a(2) the critical path may change after
generating a new ISE in multiple-issue processorcdnform to these considerations, in this

paper, we propose an ISE exploration algorithnmiattiple-issue processor.
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Chapter 1

Introduction

1.1 Instruction Set Extension

Recently, more and more applications are dramaticaiving up the performance demands
on embedded system design. Instruction set exterfkxk) is an effective way to meet the
growing efficiency demands for both circuit and ehein embedded applications. Since
several instruction patterns are executed frequentimost applications, grouping these
instruction patterns into the ISEs is an effectiagy of improving the performance. ISEs are
realized by using application specific.functionalnité (ASFU) within the execution stage of

pipeline.

Register File
i i}

EEE -

Main Memory

Figure 1.1.1: The diagram of CPU core and ASFU

1.2 Physical Constraints

Instruction Set Architecture (1SA) For mat
ISA format usually imposes two kinds of constraiots ISEs. The first is the input/output
register number of ISEs. This is due to instructfammnat limitation or number of register file

read/write ports. The other constraint is the nuntfdSEs. Generally speaking, the number
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of ISEs can't exceed number of unused opcode.

Total Silicon Area

The total silicon area restricts extra area usedQyF.

1.3 Why ISE in Multi-Issue Architecture

Recently, next-generation digital entertainment andbile communication devices are
driving the need for high-performance processingtems. In order to satisfy this demand,
current embedded processors architectures eitlo@rder designer with possibility to define
customized instruction set extension (ISE) [4, 5768, 9, 10, 11, 12 and 13] or increase

instruction issue width [2 and 3].

Using ISE and increasing issue width are usuallgstered as different approaches to
accelerate application(s) execution. Since sevesailction patterns are executed frequently
in most applications, grouping these instructiotiggas as new instruction, i.e. instruction in
ISE, and realizing this new instruction on the agtion specific functional units (ASFU)
would have benefit in execution time reduction. Ebe sake of simplicity, we call
instruction(s) in ISE as ISE(s) hereafter. On theephand, extending issue width increases
the opportunity of executing instructions in paghlAt this point, the questions have emerged:
is there opportunity to reduce the execution tinyecbmbining both approaches, i.e. by

deploying ISE in multiple-issue processor?

The answer is yes. Because even the issue widthhamdivare resources are infinite,
performance is still severely limited by data dejency. For example, consider the DFG

shown in figure 1. If the issue width and hardwasources are infinite, this DFG still spends

-2-



at least four cycles to execute. However, using iSE compress the execution time of
operations which locate on the critical path. Tisatncreasing issue width cannot reduce the
execution time of operations having data dependdmnatyusing ISE can. Hence, using ISE
can be considered as complementary approach fezasiong issue width to reduce execution
time. Fig. 1, in which QN representdN-th cycle (e.g. C1 is first cycle), illustrates ghi
argument. Note that in Fig. 1, we do not take tegisead/write port constraint into account,
and ISE cannot directly access memory (i.e., nd/&tare instructions are packed into ISE).
Extending issue width lets independent operatiotec@te simultaneously (e.g. comparing
single-issue with 2-issue in Fig. 1). On the othand, using ISE is to pack operations which
locate on the critical path into a new instruct{erng. comparing without ISE to with ISE in
Fig. 1) and to execute this new instruction in st taardware (i.e. ASFU). Therefore, if we
combine these two approaches, i.e:" deploying ASEirtiple-issue processor, then more

performance improvement can be achieved.

Sinele-i Single-issue i 2-issue
DFG Single-ssue “with-ISE . £1sSue with ISE

2 Cl ! 2 C1
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Figure 1.3.1: ISE exploring results for differenttatectures



1.4 Why New I SE Exploration algorithm for Multi-lssue

Architecture

Current ISE exploration algorithms [4, 5, 6, 7, ®dal3] only consider the legality of
operations, but do not consider the location ofrafpens. (A legal operation means that after
encapsulating this operation into ISEISE X will not violate any predefined constraints.) In
order to reduce execution time, ISE exploration thmagk operations locating on the critical
path into ISE(s). In other words, encapsulatingratens which locate on the non-critical
path into ISE(s) hardly gains any performance immpnoent and wastes silicon area. However,
current ISE exploration algorithms‘overlook thisgioCurrent ISE exploration algorithms
are, therefore, unlikely to be used in the multigkue processor. To illustrate this argument,
we schedule two results shown in Fig. 1.3.1. férst is-to schedule the result of “single-issue
with ISE” on a 2-issue processor (case. 1), andm.dacxme is also to schedule the result of
“2-issue with ISE” on a 2-issue processor (caseObyiously, case 2 has shorter execution
cycle and consumes less silicon area than casé dedrly demonstrates the benefit of
considering the location of operations. In addition multiple-issue processor, the critical
path may change after generating a new ISE. Thisses that instructions must be
rescheduled after generating a new ISE to idethigycritical path again. To summarize the
above two points, identifying the critical patheissential for exploring ISE in multiple-issue
processor. That is, designing an ISE exploratigorghm for multiple-issue processor must

consider instruction scheduling.

1.5 Motivation

Instruction set extension could improve processofgpmance efficiently. However, current
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researches for ISE exploration algorithms consiohdy single issue architecture processor.
For multiple-issue architecture, only composingdperations located on the critical path as

ISE can reduce execution time.

1.6 Objective

Design an ISE Exploration algorithm by consider tiperations in critical path to generate

ISEs to reduce execution time in multiple-issudaectures.



Chapter 2

Relative Wor ks and Background

2.1 ReativeWorks

ISE design flow comprises application profiling,skta block selection, ISE (candidate)
exploration, ISE (candidate) merging, ISE selectasnwell as hardware sharing, and ISE
replacement. After application profiling, basic th¢s) is selected as the input of ISE
exploration based on their execution time. ISE epgilon explores legal instruction pattern
as ISE candidate, which have to conform-to preéeficonstraints [4, 5, 6, 7, 8 and 13], e.g.
pipestage timing, instruction set-architecture (}Sérmat, silicon area and register file. In
ISE merging stage, the algorithm merges theBSiio ISEA, if ISE B is a subgraph of ISE.
After executing ISE merging, ISE selection choocasesnany ISEs as possible to attain the
highest performance improvement under predefinedtcaints [9, 10, 11, 12 and 13], such as
silicon area and ISA format. To achieve higher hae utilization, hardware sharing is also
performed at this stage (ISE selection). Stricggaking, the results of both ISE (candidate)
exploration and ISE (candidate) merging are ISHlickte(s). But for the sake of simplicity,
ISE candidate is sometimes called ISE. In additi@tause we only focus on ISE exploration
in this paper, the algorithms of other steps dob®otddressed, and these can be referred in
the [8, 9, 10, 11, 12 and 13].

Pozzi [4] proposed an algorithm to examine all giedSE candidates such that it can obtain
an optimal solution. This maps the ISE search spgageh as a basic block, to a binary tree,
and then discards some portion of the tree thdatas predefined constraints. Nevertheless,

this algorithm is highly computing-intensive, soedanot process a larger search space. For
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instance, if a basic block has operations, and each operation has only one haedwa
implementation option, then it ha8 gossible ISE patterns (legal or illegal). Notallye ISE
candidate may consists of one or multiple legal gaEern(s). Whem = 100 (the standard
case), then the number of possible ISE patterr&3®%s Obviously, this number of patterns
cannot be computed in a reasonable time. To dexitb&scomputing complexity, heuristic
algorithms derived from genetic algorithm [4], Kigiman-Lin (KL) [5], greedy-like algorithm
[6] and ant colony optimization algorithm [8] haw®en developed. An Integer Linear
Programming formulation of the ISE exploration wa®sented in [7]: in this case, the
enumeration of subgraphs is implicit in the forntiaia’s constraints, and the worst-case
complexity is still exponential. Nevertheless, algorithms [4, 5, 6, 7 and

8Jonly consider the legality of operations whenlexpg ISE

2.2 Background — Ant Colony Optimization (ACO) Algorithm

Why Ant Colony Optimization Algorithm 2

In order to indicate which part of a'DFG is goi@he ISE; the implementation of nodes
should be decided. If we only consider the situatibat there is only single hardware
implementation option of a node, then there willepossible ISE patterns (legal or illegal)
that N is the DFG size. When N is 100 (it's a uguahse), the combinations is emphatic
2191 Obviously, this is a NP-hard problem. For the sakan efficiently solution, the way of

evolutionary computation which is operative to maayisting NP-hard problems is

considered.

There are many computation models belong to ewaaty computation, like genetic,
simulated annealing, etc. One of them named “Arlo@oOptimization” is thought to be the
easiest one to map to the problem. The selectioongnthe models is processed by the
difficulty of the mapping to the problem. An intwié¢ and easier mapping usually brings a

-7-



simple and effective design of the algorithm.

One of the concepts of ACO is the selection a patbng many choices (one or two or more)
to get the shortest path. | think the selection mgnmany different implementation options of
each node is just like that. This is the main raabat ACO outperforms other models. The
only problem is how do the nodes “communicate”doleother. The merit computation in the

design takes it into account.

Basic | dea of Ant Colony Optimization Algorithm

Ant Colony Optimization algorithm [1 and 2] is insgd by the behavior of ants in finding
paths from the colony to food and has been extehsivsed to solve many optimization
problems. Initially, ants wander randomly and layd pheromone on the paths have been
passed through. The density of-the pheromone detesnthe probability of which path the
next ant will pass through. Since-the pheromongenaes with the time, a shortest path gets
marched over faster and thus has theshigher deml’s.ityeromone. After a period of time, i.e.
several iterations, more and more ants choose hlbdest path such that the density of
pheromone on this path grows increasingly. Finghch ant almost chooses the shortest path

and the pheromones of other paths evaporate ttyreeso.

Figure 2.2.1 is an example. Suppose 50 ants areeiant colony. Now they are going to find
food. There are two paths to get food. One is twooger than the other. Att = 1, there is no
pheromone on both paths. The ants choose pathsegiihl probability. Suppose 25 ants
choose one path, and 25 ants choose another. @ieasas one unit of pheromone on the
path. But the pheromone evaporates 5 units aftet.tSo the paths ant passed has 25 -5 =20
pheromone. At t = 2, ants start again. After t =w2, can see the pheromone on each path
segment. Next time, the right hand side path welldhosen by ants with higher probability

-8-



than the left hand side path.

Ant Colony (50 ants)

10

D=10

Food
Before Sart (t=0)

Ant Colony

A 25ants
25 ants - ’
Food

Go (t=2)

D = Distance, P = Pheromc

Ant Colony

*, 25 ants

Food
Go (t=1)

Ant Colony

25 ants
P=45-40

P=20-15

P=45-40

P=25-20 25 ants

Food

Evaporation (t=2)

25 ant

Ant Colony

P=25-20

Food
Evaporation (t=

P=25-20

1)

Ant Colony

Food

After (t=2)

Figure 2.2.1: An example of-ant behavior
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Chapter 3

| SE Exploration

In this paper, the purpose of ISE exploration isfital frequently executed instruction
patterns as ISE candidates and evaluates all ingpitation options of each operation in ISE
candidates to minimize the execution time with k&#ison area. The input and output of ISE
exploration algorithm are BBs and ISE candidatesval as their implementation option,
respectively. Implementation option(s) of an operatrepresents its implementation

method(s), and can be roughly divided into two gaties, hardware and software.

The flow of ISE exploration is briefly describedfaows: each input BB is first transformed
to data flow graphs (DFG), and an implementatiotioop(IO) table which represents all
implementation options for an operation is appentedach operation in DFG. In this
extended DFG, ISE exploration algorithm is repdstedecuted until no ISE candidate can
be found. Note that ISE exploration algorithm oakplores one ISE candidate at each round.
A round usually consists of multiple iterationsitidly, ISE exploration algorithm chooses
one implementation option in each operation acogrdio a probability valuepj. The
probability value |§) is a function of pheromone and merit values. Theaning of
pheromone is the same with the pheromone in the AQOrithm, i.e. how many times an
implementation option is chosen in previous itenagi The merit value represents the benefit
of one implementation option being chosen. Aftekimg a choice, the pheromone value is
updated. And then, the algorithm evaluates implaatem option of each operation in DFG,
I.e. calculates their merit value, according to ahhimplementation option is chosen in its

neighboring ones at previous iteration. Above psscare iteratively performed until the
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probability valuesf) of all operations in DFG have exceeded a preddfitnreshold value,

P_END.

3.1 |ISE Design flow

The ISE design flow, as illustrated in Figure B,2omprises application profiling, basic
block selection, ISE (candidate) exploration, ISfandidate) merging, ISE selection and
hardware sharing as well as ISE replacement artduat®n scheduling. After application
profiling, basic block(s) is selected as the inpUtSE exploration based on their execution
time. ISE exploration explores legal instructionttpan as ISE candidate, which have to
conform to predefined constraints [4, 5, 6, 7, 8 &8], e.g. pipestage timing, instruction set
architecture (ISA) format, silicon area:and regisile. If only one ISE is explored, then the
algorithm directly enters final stage (ISE replaeeiand instruction scheduling); otherwise,
the algorithm goes to next stage (ISE merging)SE merging stage, the algorithm merges
the ISE B into ISE A, if ISE B is a subgraph of I8E To avoid unnecessary performance
degradation, the merging process is performedeffthlowing conditions are satisfied: (1)
the execution cycle of ISE B is equal or largenttaat of the identical subgraph (identical to
ISE B) in ISE A, and (2) ISE A and ISE B do not brecuted simultaneously. After
generating ISE candidates, ISE selection choosemaas/ ISEs as possible to attain the
highest performance improvement under predefinedtcaints [9, 10, 11, 12 and 13], such as
silicon area and ISA format. To achieve higher ten@ utilization, hardware sharing is also
performed at this stage. Hardware sharing is tegasient of a hardware resource to more
than one operation within different ASFUs. Samehw8E merging, hardware sharing also
follows the same rules as described above to guaibrmance degradation. Finally, the ISE
replacement is performed to discover all instrucipatterns (i.e. subgraphs) in the DFG that

match selected ISEs, prioritizes these matchesregpldces the matches with ISEs. Strictly
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speaking, the results of both ISE candidate exptoraand ISE candidate merging are ISE
candidate(s). But for the sake of simplicity, ISkhdidate is usually called ISE. Hence, in this
paper, we use ISE to replace ISE candidate. Intiaddibecause we only focus on ISE
exploration in this paper, the algorithms of otktps would not be addressed, and these can

be referred in the [8, 9, 10, 11, 12 and 13].

Application(s)
v
Application Profiling

/

Basic Block Selection

i Basic Block(s)

ISE (Candidate)
Exploration

ISE

ISE (Candidate)
Merging

i ISE Candidate(s)

ISE Selection and
Hardware Sharing

. ISE(s)
ISE Replacement

A

Figure 3.1.1: ISE design flow

3.2 Howtoapply ACO algorithm to I SE exploration

ISE exploration in multiple-issue processor is tm@se an implementation option for
each operation and determine the execution ordepefation. Exploring ISE in a DFG can
be viewed as a search in the space of possibkasitile solutions. Here, the solution means a

-12 -



set of ISE candidate found in a DFG. To apply AGgbathm, the search space is organized
as a search tree. A path from root to leaf in #ach tree is considered as one of possible or
feasible solutions. After constructing the searele,twe place ant colony and food at root and
leaf of search tree, respectively, and let antsentidcision (choose an implementation option,
and select one succeeding operation if need) lbyelevel to construct the solutions.
Selecting the shortest path from ant colony to foad be viewed as similar to choosing the
best implementation option (hardware or softwamj determining the optimal execution
order for all operations.

Figure 4 is an example to illustrate above concépe leaf hand of Fig. 4 shows the
dependence of O1, O2 and O3, the search tree isteigém@t the right hand of Fig. 4. In this
example, we assume that there are three operatmamely O1, O2 and O3, and each
operation has two hardware (H1 a_n'&-HZ'). 'and__- twowso# (S1 and S2) implementation
options. Since the possible exec_L;ti.on' o'rdié:r._:folraiiiI&_Ol, 02 and O3 are ©102->03 and
01->03->02, respectively, there _e'_xisg two:i;ua;_hs aﬁ_ér chmpene implementation option at

O1.

ol Ant colony

% Food

Figure 3.2.1: Apply ACO to ISE exploration

-13 -



Chapter 4
| SE Exploration in Multiple-Issue
Architecture

The input and output of ISE exploration algorithme aelected basic block(s) and ISE
candidate(s) as well as its (their) hardware imgletation options, respectively. Figure
4.0.1 is an example. Before exploring ISE, a bakick must be transformed to a data flow
graph (DFG). DFG is represented by a directed acgcaphG(V,E) whereV denotes a set of
vertices, andE represents a set of directed edges. Every verte¥ is an assembly
instruction, called an “operation” or “node’” hereafin basic block. Each edge ) € E from
operationu to operatiorv signifies that t.he execution of operatiwneeds the data generated

by operatioru.

ISE exploration aims to determine which implemeaataoption should be used by which

operation. As mentioned early, if the operatiormatmg on the non-critical path are packed
into ISE, then there does not only not improve granfance, but also waste silicon area. To
avoid this situation, the algorithm must identifjniesh operation locates on the critical path

before starting to encapsulate operations into ISE.

Exploring ISE in multiple-issue architecture isassign each operation in DFG a time slot
and an implementation option such that executior tis minimal, and under that, consumes
less silicon area. In Fig. 4.0.1, we assume thatigbhue width of processor is two, and that
each operation has only one hardware/software mmgheation option. After exploring,

operation 3 and 5 as well as operation 6, 7 andd®se hardware implementation option,
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while other operations select software one. IS& sset of connected/reachable operations that
all use hardware implementation option. In Fig..4.Ghere are two ISEs in which one

consists of operation 3 and 5; another one inclogesation 6, 7 and 8.

Input Output

1

3
v
5 6 7
\/ I T " !
3 : : normal instruction
I

|
|

|

. . |

. : load/store instruction,
|

|

|

Figure 4.0.1: Example of ISE exploration

The process of the proposed ISE exploration ‘algorits to iterate the following steps
until no ISEs in a DFG can be explored: |
Step 1: Identify the critical path using instruction schédg and explore ISE to
reduce the length of the critical path.
Step 2: Evaluate the result of this iteration and calculdtee benefit of all

implementation options of operations for next itiera

To explain this process, an example is depictdajure 4.0.2. All assumptions are same with
Fig.4.0.1. In step 1, the algorithm identifies tiréical path (2>4->6->8 and 24->7->8)

by scheduling instructions, and packs legal openat(6, 7 and 8) into ISE. After generating
a new ISE (consists of 6, 7 and 8), all implemeotabptions of operations are evaluated.
However, this process is not shown in Fig. 4.0&2n8& with step 1, in step 2, the algorithm

also schedules all instructions (including ISE a&odmal instructions) to distinguish which

-15 -



path is critical, and then encapsulates the omersit(3 and 5) locating the critical one into
ISE. After that, evaluation process is performedimagin step 3, since no valid operation can
be found, the algorithm is terminated. The valig@mion means that packing this operation

into ISE can have performance gain.

DFG Step 1 Step 2
1 9 1 9 C1
_______ QS_
3 31 c2
: Xl A
5 6 7
{5 -
8 m NN N
Id | |
5 ('x\ c4 5 5§ c4 \ : normal instruction i
3 I
---------- \\§- R :.  load/store instruction,|
§ § :. :ISE |
Y8 oF e !
Fhenndd -

Figure 4.0.2: Example of ISE exploration
4.1 Implementation Option

The implementation option represents the way tccebeean operation. An operation
usually has multiple implementation options, whicén be divided into two categories,
namely hardware and software. If an operation sapsulated into ISE, it means that this
operation deploys the hardware implementation optim the contrary, if not encapsulated,
this operation is executed in the processor comcaBse of different speed and area
requirements, most operations usually have mulhplelware implementation options.

To represent all implementation options for an apen, a table, called implementation
option (10) table, is added to every operation. lEaatry in the 10 table comprises three
fields, namely implementation option, delay andaafEhe name of implementation option is
shown in implementation option field. The delay anda denote the execution time and the

extra silicon area cost of one implementation opticespectively. A new grapls’ is
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generated after the 10 table is adde¢tdrigure 4.1.1 shows an example@f, consisting of

two operations, A and B.

Implementation options | Delay Area
<:> Software 1 0
Hardware - 1 0.4 900

Hardware - 2 0.2 2000

Implementation options | Delay Area

Software - 1 1 0
<:> Software - 2 2 0
Hardware 0.5 600

Figure 4.1.1: An example &"

4.2 Formulation for | SE Exploration

ISE exploration explores ISE candidatesGih An ISE candidate iG" is a subgrapls
C G'. The proposed ISE exploration can be-formulateflbsys.

| SE exploration: Considering a grapis”, obtain subgrapl8< G*, and evaluate the
implementation options of vertax='Sto minimize the execution cycle count while redgci
the silicon area as many as possible under thewolif constraints:

1. IN(S) < Nin,

2. OUT(®) < Nout

3. Sis convex,

4. Load and store operationlsS.

IN(S (OUT(9) is the number of input (output) values used égated) by a subgragh
(i.e. an ISE). The user-defined valueg &hd N denote the read and write ports limitations
of the register file, respectively. For a feasilistruction scheduling, an ISE must observe
the convex constraint that the ISE’s output camooinect to its input via other operations not
grouped in subgrap8 (i.e. ISE). In other words, if no path exists fr@roperatioru= S to

another operatiove S involving a operationwllS, then S is convex. To conform to the
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limitation of load-store architecture, the load astdre operations are forbidden from being

grouped into ISE.

4.3 |SE Exploration Algorithm

As mentioned above, the proposed algorithm expli8&siteratively until no ISEs in a DFG
can be found. The algorithm, therefore, would beqgmmed for several rounds (a round
comprises all steps in figure 4.3.1); except fat lmund, each round would produce at least
one ISE. The kernel of each round (step 2 to step ®ig. 4.3.1) would be executed
repeatedly until convergence is achieved. Execuhirgteps rounded by

gray rectangle once is called one jteration:
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DFG

v
! Initial Trail and Merit
for all implementation options of each node
‘ 2 Initial Ready-Matrix -~

v

3 Choose an implementation option from
Ready-Matrix by cp

Perform Operation-Scheduling ‘

v

‘ & Update Ready-Matrix ‘

‘ 7 Update Trail ‘
8 Perform Hardware-Grouping, and

compute Merit

YES

‘ 10 Execute Make-Convex ‘

v

11 Can not find new ISE?

YES
ISE candidate(s)

Figure 4.3.1: ISE exploration flow

At each iteration, the proposed algorithm initiaflglects one implementation option from
Ready-Matrix with respect to a chosen-probabilitg)( which depends on trail and merit
values. Ready-Matrix is a data structure whicheig/\similar with ready list in list scheduling.

Figure 4.3.2 is an example of Ready-Matrix; “*” meano this implementation option.
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Operation 1 Operation 2 Operation 3
SW-1 0.04 0.4 0.03
SW-2 0.02 * 0.03
HW-1 0.21 0.04 0.09
HW-2 * 0.04 0.15

Figure 4.3.2: An example of Ready-Matrix

The meaning of trail is the same with the pheromartee ACO algorithm, i.e. the number of
valid chosen times of an implementation option ievpus iterations. The valid chosen time
is counted only when choosing this implementatiptiom can reduce the execution time.
Here, the trail value of hardware and software enm@ntation optiorj of operationx is
denoted bytraily ww.j andtraily sw respectively. The merit value is defined as taedfit of
one implementation option being selected, and dbisined using the merit function, which
is described in detail later. The=merit value of ha@rdware and software implementation
option j of operationx is represented bgerit qw.j andmerit sw,; respectively. The chosen
probability of an operatior is derived-with:

a xtrail +(1-a)xmerit+ AxSP

{axtrail +(1-a)xmerit + 1 x SB

All implementation options in Ready-Matrix

cp=

(1)

wherea and/l is utilized to determine the relative influence todil as well as merit and

scheduling priority (SP), respectively, and

cp=1 2)

All implementation option in Ready-Martix

The value of SP used in this paper is computedrdoaptothe number of child operations;
however, this value can also be obtained by otha&yswe.g. calculating the mobility of
operation. In addition, merit and SP have othermmags. Merit is mainly used to choose one
implementation option for operations; while SP ésponsible for selecting one operation
among all ready ones. (An operation is ready iflajpendencies for this operation have been
resolved.) Since the difference in merit valuesMeen operations may be large, picking an
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operation to schedule among ready ones is unfaudyg such values. To overcome this
problem, the merit values of operation must be mdized after performing merit

computation (step 8 in Fig. 4.3.1).

After selecting an implementation option, the aijon schedules the operation which has
this chosen implementation option. The schedulimcgss (Operation-Scheduling) will be
described in later. Then, executing following pss®s to update Ready-Matrix: (1) remove
the operation which has the chosen implementatpiom, and (2) add the operation if all
dependencies for this operation have been resoMezlalgorithm repeatedly executes step 3
to 6 until all operations are scheduled. After gflerations are scheduled, the algorithm
updates trail values according to execution tineg #hen computes merit value of all
implementation options of each operation in DEGusyng merit function. Each round is
repeatedly performed until the end condition idilfatl, i.e. until converge. The end condition
is that for all operations in DFG, the selectedbaituility (sp) of one of implementation
options exceeds P_END, which is a predefinéd tlolelsivalue and is very close to

100%. The selected -probabilitys) of an operation is derived from:

a xtrail +(1-a)xmerit ©)
a xtrail +(1-a)xmerit

All implementation options in one operation

Sp=

, and

> sp=1 @

All implementation option in one operation

Noticeably, there are some differences betwseiEq. 3) andcp (Eg. 1). The sum in the
denominator of Eq. 3 is only over all implementat@ptions in one operation; while, fop
(Eq. 1), the sum in the denominator is over all langentation options in Ready-Matrix. A

larger P_END has a higher opportunity of obtainandpetter result, but typically takes a
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longer time to converge. An implementation optioithvthe chosen-probabilitysf) larger
than P_END is called a taken implementation optAm.ISE is a set of connected/reachable
nodes (i.e. operations) all of which have takendiare implementation option. After
convergence, the algorithm executes Make-Convdettevery ISE candidate comply with
the convex constraint. But, if an ISE has conformedthe convex constraint, then the
algorithm will skip this step. Make-Convex repedyativides the ISE candidate that does not
conform to the convex constraint into smaller onesil all smaller ISE candidates can

comply with convex constraint.

In following paragraph, we describe the severalcpsses/steps used in the proposed
algorithm, including Operation-Scheduling, Trail d#te, Hardware-Grouping and merit
calculation (Merit Function). Here, a DFG is assdrt® havek (k > 0) operations, each with
n (n > 0) software implementation' option(s) and{(m > 0) hardware implementation

option(s).

Operation-Scheduling

Operation-Scheduling is used to assign one operabio one time slot under several
constrains, including issue-width, number of registead/write ports, number of function
units and operation dependency. Assigning an dperaising software implementation
option is just like statically scheduling instructs in multiple-issue processor. Here, we
assume that operatiorcurrently needs to schedule, and the steps oftbaschedule it are
depicted at figure 4.3.3. In Fig. 4.313T'S andCTS denote the latest scheduled time slot of
parent operations of and current scheduled timé alooperationi, respectively; here,
constraints are issue width, number of functiortsuand number of register read/write ports.
Note that which function unit (i.e. software implemtation option) would be used by
operation has known at previous step.
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CTS=LTS +1;
While (violate constraints &TS)
CTS ++;
Assign the function unit and the time slot to opierai;
Update the resource usageCats;

Figure 4.3.3: Operation-Scheduling for software lengentation option

To schedule an operation using hardware implementafption is similar with software one,
but it still exits differences. The main difference that it is possible to pack several
operations using hardware implementation optioaria cycle, but it is impossible to do that
for ones using software implementation option. Fegu.3.4 shows the algorithm of
Operation-Scheduling used for hardware implemesratiption. In Fig. 4.3.4LP; presents
the parent scheduled BTS; constraints used here are issue width and numbeggister

read/write ports.

If (LP; uses software implementation option)
CTS=LTS +1;
While (violate constraints &TS)
CTS ++;
Assign the time slot to operation
Update the resource usagecats;
Else
CTS=LTS;
While (cannot pack operatidrwith other operations into ISE @fTS)
CTS ++;
Assign the time slot to operation
Update the resource usageCats;

Figure 4.3.4: Operation-Scheduling for hardwarelenpentation option

Trail Update

Trail is updated according to the scheduling resfileach iteration. The algorithm of tralil
update is displayed in figure 4.3.5. HEf& T, and TET, 4 are the execution time of current
and previous iteration, respectivety; p2, p3, paandps are positive constant values and called
evaporating factor as well as very similar to tlvapeoration rate in ACO. If the execution
time is shorter than or equal to previous itergtisn means that the selection of
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implementation option and the decision of executioder have benefit for execution time
reduction. Then, the trail value of the chosen snpgntation option is raised (increasmg

a positive constant value, while those of otheesraduced (decreasipg). On the other hand,
if the execution time is larger than previous itiena, it means that either or both the selection
of implementation option and the decision of exerubrder are improper. Hence, the trail
values of selected implementation option have toldeased withs, while those of others
are increased with,. In addition, since the longer execution time neause by unfit
execution order, the all implementation optionghaf operation, which has higher execution

order than previous iteration, are also reducebltfaatps).

If (TEThew= TETo0)
For software implementation optior{i=0 ton) of operatiorx (x=1 tok) in DFG
If (the implementation option is selected)
trail sw.i= trail c sw-i+ p1;
Else
trail sw-i= trail x sw-i— p2;
For hardware implementation optigifj=0 tom) of operatiorx (x=1 tok) in DFG
If (the implementation option is selected)
traiIX,HW,j = trail xHW- t p1;
Else
trail X, HW-j = trail X, HW-j —p2;
TETo = TEThew
Else
For software implementation optior{i=0 ton) of operatiorx (x=1 tok) in DFG
If (the implementation option is selected)
trail sw-i= trail x sw-i—pa;
Else
trail sw.i= trail x sw-i+ pa;
If (execution order of operationis earlier than previous one)
trail, sw.i= trailx sw.i—ps,
For hardware implementation optiptfj=0 tom) of operatiorx (x=1 tok) in DFG
If (the implementation option is selected)
trail X, HW-j = trail X, HW-j —pP3;
Else
traiIX,HW_J- = trail xHW T P4
If (execution order of operationis earlier than previous one)
traiIX,HWi = trailx,HWi —Ps;

Figure 4.3.5: The algorithm of trail update

Hardware-Grouping

Hardware-Grouping checks whether the operatiean be grouped with its reachable nodes
(i.e. operations) as a virtual ISE candidate, amcunsively groups operatiox with its
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reachable nodes, which have chosen hardware imptati@n option in previous iteration, as
a virtual ISE candidate, i.e. a virtual subgrafh. The result of Hardware-Grouping of
operation x using hardware implementation optignis denoted as/S nw; HW-MAX
represents the implementation option having maximedcution time reduction in an
operation. SignificantlyyS is the set of alvS nwj (i.e. vS={ vSnw- |] = 1 ton}). Using
v§ Hw- Hardware-Grouping measures the execution timesdicdn area of/S qw.. Notably,
the execution time ofS ww.j is the critical path time S nw., and the silicon area o8 yw.

is the sum of silicon areas 0§ .

Operation ChOi‘.:e in Implementation
previous ) Delay Area
ID iteration Option
1 o software 1 0
software 1 0
? o hardware 0.4 600
software 1 0
° o hardware 0.4 600
4 o software 1 0
o software 1 0
5 hardware 1 0.6 400
hardware 2 0.3 1000
software 1 0
° o hardware 0.3 500
software 1 0
! o hardware 0.2 300

Hardware grouping of operation #5

Figure 4.3.6: Examples of Hardware-Grouping

Figure 4.3.6 depicts the working of the Hardwarewping function. The table in Fig. 4.3.6
lists the delay and area of each implementatiomoopdf all operations, and specifies the

chosen implementation option in the previous selactn both the top and bottom left of Fig.
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4.3.6, nodes grouped by a dotted line are trested\artual ISE candidate. For operation #2,
Hardware-Grouping groups operation #2 and #3 agwal/ISE candidate, i.e.S, as shown

in the top left of Fig. 11. Because operation #B ¢vas one hardware implementation option,
vS has one evaluation result, namelyg ; (execution time = 0.8, silicon area = 1200). The
bottom left of Fig. 13 is another example, in whidardware-Grouping groups operation #5
and other nodes, are #2, #3, #6 and #7, as aM8kacandidate, i.etS. Since operation #5
has two hardware implementation option& has two evaluation results, namels |
(execution time = 1.7, silicon area = 2400) ar®J, (execution time = 1.4, silicon area =

3000).

Merit Function

The merit function is divided two parts that areedigo calculate software and hardware
implementation option, respectively. T.he merit. \@almerit, sy, of software implementation
optioni of operatiorx is derived with:

merit swi = merik swix ET(X,SW-) 3)
whereET(x,SW-) is the time of executing operatiaron implementation option (i.e. function

unit) i.

In hardware part, the merit function consists afrfoases, critical path (case 1), size checking
(case 2), constraints violation determination (&sand performance as well as area benefits
calculating (case 4). Figure 14 shows the merittion algorithm of hardware. As mentioned
above, only packing the operation locating on thical path can have benefit in execution
time reduction. Hence, initially, in case 1, thgaalthm adjusts the merit value according to
the locality of operation. Then, in case 2, thedatgm determines whethsize(vg), which is

the number of operation W, is equal to 1. Notably, this work assumes thatywperation

iIs one-cycle delay in original processor specifarat If a multiple-cycle delay is assumed,
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then case 1 should be tailored to fit this situatith size(v®) = 1, thenvs only has one
operation x such that the performance cannot be improved. eftws, the algorithm
multiplies the merit value of every hardware impétation option by a constafi§ie (0 <

Psize< 1) to lower the chance of it being chosen. THeuwation of the merit function is then

terminated. If no, then goto case 3.

Case 3 verifies whethetS violates input/output port and/or convex constaiff yes, then
the merit value of each hardware implementatiomoopts multiplied by constamtc and/or
PBeonvex(0 < fio < 1 and 0 LBeonvex< 1), reducing the opportunity for selecting thedweare
implementation option, as in case 2. The calcutatibthe merit function is then terminated.
Since operatiorx may have chance to be grouped in an ISE candiatbe following
iterations, the algorithm only divides the meritueaof each hardware implementation option
by a constant. If the algorithm -does not allew fgwssibility of operatiorx becoming an
operation in an ISE candidate, the optimal solutitay also be excluded. If no, then enter

case 4.

In case 4, the merit value of hardware implemewadiption] (merit, nw., ] > 0) in operation
X is computed according to (1) the speedup thabeaachieved byS nw., and (2) the silicon
area utilized bwS nw The execution cycle reduction and silicon arethefvirtual subgraph
VS Hw- IS represented bgycle_savinguww, and Areg ww., respectively. The main criterions
used in case 4 are followings:

(1) If vSonw. can improve the performance, then all hardwardeampntation options
must have larger merit value than the software ane€, the merit value is direct
proportion to the execution time reduction.

(2) If v& locates on the critical path, the execution tiniev& should be as short as

possible to improve performance.
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(3) If v§ locates on the non-critical path, the executioretofvS should be as close to
maximal allowable execution cycle (Max_AEC) as jassto save silicon area.
The Max_AEC is the difference between the earfpestsible execution time of first
operation inv§ and the leatest possible execution time of figtration invS.
Restated, there does not have any performanceiildbg, execution time o¥S is
equal to or shorter than Max_AEC. Figure 15 is aangle. In this example,
Max_AEC of ISE (consists of operation 8, 9, 10 atjlis three cycles.

(4) If two hardware implementation options have samép®ance improvement, then

the one using less silicon area should have langeit value than another.

Accordingly, in case 4, the algorithm first multgd the merit value amplementation option
j by cycle_savinguw, Then, if vScilocates on critical path, the algorithm continues
determine whether the execution time of impleménttabptionj (i.e. ET(vS.nw-)) is equal to
the maximal execution cycle reduction-achieved/8y(i.e. ET(VS nw-vway)- If yes, then the
algorithm adjusts the merit value aceerding. to rtmao of Area nw-max to Areg nw.. Here,
Area nw-max represents the largest silicon area consumedSaylf no, then the merit of
implementation optionj is divided by the difference betweent+ 1IET(VS hwy) and
ET(v& nw-may- On the other hand, S, does not locate on critical path, the algorithrasus

similar method described as above to compute thé wadue.
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Case 1. (Critical path)
If (operatiorx locates on the critical pathND operatiorx has hardware implementation option
merit pw. = Merit pw. + fee
Case 2. (The size oS is equal to 1)
If (sizgvs) == 1)
merit, pw.j = Merit pw.j X Psize
Case 3. (Violate constraints, and the sizewd; is larger than 1)
If (vS violates in/out constraint)
Merit; ww. = Merit X Sio;
If (v§ violates convex constraint)
Merit = Merit . X Bconvex
Case 4. (Conform with constraints, and the sizev§f is larger than 1)
If (vS observes infout and convex constraiidD sizgvs) > 1)
/I Performance improvement check
METit - = Merit qwj X cycle_savingnw.;
/I Hardware usage check
If (vS locates on the critical path)
If (E_T(VS<,HW-1) == ET(VS, hw-max)
merit . = Merit yw, X (Area pw-max Ared nw.);
Else
merit yw.j = merit pw, + (1 + ET(VSchw-) — ETIVS hw-may);
Else
If (ET(vSihwy) = Max_AEC)
Merit pw.j = Merit hw.j X (Area nw-max+ Area hw.);
Else

merit . = merit pw + (1 + ET(VS hwy) “Max_AEC);

Figure 4.3.7: Algorithm of the merit'calculationiwrdware implementation option

o

!
| : normal instruction
!

!
!
!
: . : load/store instruction:
!
!
!

Figure 4.3.8: Example of maximal allowable exeautiycle (Max_AEC)
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4.4 TheComplexity Analysisof | SE Exploration Algorithm

Since the proposed ISE exploration algorithm isteated until converge, it is very difficult
to know how many iterations must be performed ketmmvergence. In this paper, hence, we
just analyze the complexity of each step in ISEl@gpion flow rather than whole algorithm.
The complexity of step 1, 7 and 8 (only merit cotagion) areO(k(n+m)), wherek (k > 0) is
number of operation in the DFG and each operatasinhn > 0) software implementation
option(s) andn (m > 0) hardware implementation option(s). Hardware«ing (also in step
8) is to check the relation between operations.hEggeration in DFG must execute this
process and for an operation, up Kooperations should be checked. The complexity of
Hardware-Grouping therefore @&(k%). Step 3, 4, 5 and 6 are used to schedule opesatmd
these steps are derived from the .idea of list ‘adiegl The complexity of this process is
therefore same with list scheduling, i@k?). Apart from the above steps, the complexity of
other steps ar®(k). Based on the-aboye analysis, the complexityeteting one iteration is

o).
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Chapter 5

Experimental Results

5.1 Experimental setup

The Portable Instruction Set Architecture (PISAR][1which is a MIPS-like ISA, was
employed to evaluate the proposed ISE exploratigorihm and the previous one [8].
Severn benchmarks, including CRC32, FFT, adpcntobitt, blowfish jpeg and dijkstra,
were used in this simulation. Each benchmark waspded by gcc 2.7.2.3 for PISA with -O0
and -O3 optimizations. For both ISE explorationoailpms, six cases were evaluated that
includes 2-issue with 4/2 and 6/3, 3-issue with.&iél 8/4, as well as 4-issue with 8/4 and

10/5. (e.g. 6/3 represents that number of readvenite@ ports of register file are 6 and 3,

respectively)
Table 5.1.1: Hardware implementation option setting
Operation| Delay (ns)| Area (unf) | Operation| Delay (ns)| Area (unf)
agg_ 4.04 926.33 :r?éji 1.58 214.31
addi
addu or
addiu 2.12 2075.35 ori 1.85 214.21
sub 4.04 926.33 Xor 4.17 375.1
subu 2.14 2049.41 XOfri 2.01 565.14
mult 5.77 84428 I
multu 5.65 79778.1 SS”V
nor 2.00 250.00 Sl
slt | 3.00 400.00
sl 2.64 1144 Ssrr;
sltu srav
sltiu 1.01 2636

In this simulation, we assume that: (1) the CPWeadsrsynthesized in 0.13 pum CMOS

technology and executes in 100MHz; (2) the issudttware from 2 to 4; (3) the read/write
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ports of register file are 4/2, 6/3, 8/4 and 10&spectively; and (4) the execution cycle of all
instructions in PISA is one cycle, i.e. 10 (ns)bléal lists the hardware implementation
option settings (delay and area) of instruction®I8A. Significantly, only instructions that
can be grouped into ISEs are listed in table 1s@lsettings were either obtained from [Name
author] [14], or modeled by Verilog and synthesizaedh Synopsys Design Compiler.

Additionally, we also assumed both works considpegtage timing constraint.

Because of the heuristic nature of the ISE explamadlgorithm, the exploration was repeated
5 times within each basic block, and the best temmlong the 5 iterations was chosen. As
mentioned before, the results of ISE exploratiom @nly ISE candidates. However, without
performing ISE merging and selection, these resaltéot be viewed as the final ones. In this
paper, therefore, we adopt a greedy method totskd&qs). After merging ISEs, the ISE
selection algorithm ranks ISE candidates accordngheir performance improvemery
using rank order, ISE selection algerithm-then @esoas many ISEs as possible under
predefined constraints, such as number_of ISESI sbn area. Finally, we replace the
instruction pattern(s) in the program(s) with ISE@nd schedule the code again to obtain
execution time. In this paper, both approaches testmpe ISE design flow, as shown in Fig. 3,

and use same ISE selection algorithm.

The parameters adopted in this work and their nmggnare listed below.

¢« the relative influence of merit and trail

¢ A the relative influence of scheduling priority (S#hd merit as well as trail.

¢ o, 2, 03 Pnandps: the evaporating factor in trail update.

¢ fcpandpsize the tendency to choose hardware implementatitioron a node.
¢ Jfio: the decay speed when the input/output constiawiblated.

¢ Bconvex the decay speed when the convex constraint lateib.
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A largea makes the algorithm converge slowly, while a smadl on the contrary. Restated, a
largea obtains a solution slowly, and a smalbbtains a poor solution, but quicks, 0, 0,

P4 and ps has same characteristic with fcp andfsize determine the chance of an operation,
which does not fit in with criterions of ISE select, being packed into ISE again at
following iterations. Similar withBcp andfsize fio andBconvexalso decide the opportunity of

an illegal operation being encapsulating into Ig&i@a at following iterations.

In this experiment, the initial merit value of theftware and hardware implementation option
was 100 and 200, respectively; the initial trailueaof all implementation options were O;
P_END was 99%. The probability value adopied 0.25, the evaporating factgx, o, 0s, o4
andps are 4, 2, 2, 2 and 0.4, respectively, and thetrherction hadbcp = 0.9, andbsize= 0.7,

ﬁ|o = 0.8 an$C0nveX= 0.4.

5.2 Experimental results

Figures 16 and 17 depict the average execution rizaiection under silicon area and number
of ISEs constraints, respectively. Each bar in Hi§.comprises several segments, which
indicate different silicon area constraints, aré@1 40000, 80000, 160000 and 32000¢;um
while, the segments in Fig. 17 means number of I18Es1, 2, 4, 8, 16 and 32 ISEs. The first
word of each label on X axis in both Figs. 16 antl iddicates which ISE exploration

algorithm is adopted. “MI” and “SI” denote the poged ISE exploration algorithm and that
of Wu [8], respectively. The symbols in parenthesésach label on the X-axis are the
number of register file read/write ports in ussues width, and which optimization method
(-O0 or -0O3) is used. For instance, (4/2, 2IS, @®&ans that the register file has four read
ports as well as two write ports, issue width i® ®nd that the O3 optimization method is
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employed.

Obviously, under same silicon area constraint, ptwposed algorithm exhibits better
execution time reduction than [8] in all casesFlg. 16, for both algorithms, O3 exhibits
better execution time reduction than OO0 in cased$f This is because O3 often uses various
compiler optimization techniques. Some of thesénepies (like loop unrolling, function
inlining, etc.) remove branch instructions, andréase the size of basic blocks. The bigger
basic block usually has a larger search space, thatht has a greater opportunity to obtain
the ISEs, which have more execution time reductitowever, O0 exhibits better execution
time reduction than O3 in cases of 3IS. Possibggalnse O3 increases instruction-level
parallelism, most instructions are executed on AkUsh that less performance improvement
is achieved in O3. In 4IS, since the issue widthaige enough, instruction-level parallelism
can be easily attained, even without any compifgim@zation techniques. The performance
gap between O0 and O3 is therefore inot-obvious.Higlepicts the execution time reduction
for different number of ISEs. Same with Fig. 169.F_;l7 also has similar results. In all cases,

our proposed algorithm significantly outperformanh8].
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Figure 5.2.2: Execution time reduction for differemmber of ISEs
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The comparison between the proposed algorithm &hdh[silicon area cost and execution
time reduction is illustrated in figure 18. In Fi, we clearly observe that most of execution



time reduction is dominated by several ISEs, eglgdirst ISE. In other words, the number
of ISE is not entirely proportional to the execuatitme reduction. This is because for most
programs, their execution time is usually concaattan small number of basic blocks, i.e.
hot basic blocks. Hence, although increasing thebar of ISEs can boost performance, but

considerable silicon area cost must be incurred.

‘+ MI(Area) —— SI(Area) —+— MI(Time) —— SI(Time)‘
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400000 —a
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150000 r

Execution Time Reduction (%)

100000

1 5.00%
50000 -
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1 2 i 8 16 32

Figure 5.2.3: Silicon area cost v.s. execution tretkiction
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Chapter 6

Conclusion

The proposed ISE generation algorithm can sigmitigareduce execution time for the
multiple-issue processor. Previous studies in IS@lagation only take the legality of
operation into account. However, in multiple-isguiecessor, only considering the legality of
operation cannot gain much execution time reducéiod may waste silicon area. To avoid
such situation, this work considers not only thgalégy of but also the locality of operations.
Experiment results demonstrate that when only @te ik used, the proposed design can
reduce execution time by up to 17.17%, 12.9%.and24 (max., min. and avg., respectively)
as compared with the multiple-issue processor. withsing ISE. Furthermore, under same
area constraint our approach has 11.39%; 2.87% d%d6 (max., min. and avg.) of further
reduction in execution time over the previous ohe[8

Additionally, we recommend addressing several ssaduture work. First, because we
put emphasis on exploring ISE rather than on detengy the scheduling priority, this paper
adopts only simple way (i.e. number of child opierat) to determine the scheduling priority.
However, many studies shown that different schedupriority functions would result in
different results, i.e. different critical path. &gting different priority functions to identify the
critical path would be interesting to study. Secotiet problem [16 and 17] consisting of
hardware-software partitioning, hardware desigrcepxploration and scheduling is similar
with our work. (hardware-software partitioning. determining hardware or software
implementation options, hardware design space exfibm ~ selecting an implementation
option, and scheduling- identifying the critical path) Hence, by a slighbdification, the

proposed ISE exploration algorithm can be adoptetis problem.
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