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國立交通大學資訊科學與工程研究所 碩士班 

摘要摘要摘要摘要    

為了滿足現代嵌入式裝置高效能的需求，現代的嵌入式處理器提供了延伸指令集(ISE) 

供設計者定義，或是增加指令的配送寬度。通常來說這兩種方法被視為是不同的，假使

我們能結合兩種方法: 執行延伸指令集並讓指令同時執行，就可以節省更多的執行時

間。然而大多數的延伸指令集探索演算法，並不大適用於多發射架構下，那是由於缺乏

兩個重要的考量: (1) 在多發射處理器的架構下，並不是所有指令都在關鍵路徑上，如

果將不是在關鍵路徑上的指令包成 ISE，那便會浪費額外的面積 (2) 在多發射處理器架

構下，產生一道新的 ISE 後，關鍵路徑可能會改變。為了要滿足這些考量，我們提出了

一個 ISE Exploration 的演算法。實驗結果顯示，在多發射處理器的環境下，使用一道

ISE 和不使用 ISE 相比，我們的方法可以達到 17.17%, 12.9% 和 14.79% (最大，最小和

平均) 的執行時間縮減。再者，我們的方法在相同的面積限制下和之前的研究相比，提

高了 11.39%,2.87%和 7.16%(最大，最小和平均)的執行速度。 
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Abstract 

To satisfy high-performance computing demands in modern embedded devices, current 

embedded processors architectures either provide designer with possibility to define 

instruction set extension (ISE) or to increase instruction issue width. In general, both 

approaches are regarded as different; if we can integrate both approaches to execute ISE(s) 

and original instruction(s) in parallel, then further execution time can be saved. Most ISE 

exploration algorithms, however, are unlikely to be used in the multiple-issue processor due to 

the lack of two important considerations: (1) for multiple-issue processor, not all operations 

locate on the critical path; if operations locating on the non-critical path are grouped as ISE, 

then it results in unnecessary waste of silicon area; (2) the critical path may change after 

generating a new ISE in multiple-issue processor. To conform to these considerations, in this 

paper, we propose an ISE exploration algorithm for multiple-issue processor.  
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Chapter 1 

Introduction 

1.1 Instruction Set Extension 

Recently, more and more applications are dramatically driving up the performance demands 

on embedded system design. Instruction set extension (ISE) is an effective way to meet the 

growing efficiency demands for both circuit and speed in embedded applications. Since 

several instruction patterns are executed frequently in most applications, grouping these 

instruction patterns into the ISEs is an effective way of improving the performance. ISEs are 

realized by using application specific functional  units (ASFU) within the execution stage of  

pipeline. 

 

 

Figure 1.1.1: The diagram of CPU core and ASFU 

1.2 Physical Constraints 

Instruction Set Architecture (ISA) Format 

ISA format usually imposes two kinds of constraints on ISEs. The first is the input/output 

register number of ISEs. This is due to instruction format limitation or number of register file 

read/write ports. The other constraint is the number of ISEs. Generally speaking, the number 
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of ISEs can’t exceed number of unused opcode. 

 

Total Silicon Area 

The total silicon area restricts extra area used by ASUF. 

 

1.3 Why ISE in Multi-Issue Architecture  

Recently, next-generation digital entertainment and mobile communication devices are 

driving the need for high-performance processing solutions. In order to satisfy this demand, 

current embedded processors architectures either provide designer with possibility to define 

customized instruction set extension (ISE) [4, 5, 6, 7, 8, 9, 10, 11, 12 and 13] or increase 

instruction issue width [2 and 3]. 

  

Using ISE and increasing issue width are usually considered as different approaches to 

accelerate application(s) execution. Since several instruction patterns are executed frequently 

in most applications, grouping these instruction patterns as new instruction, i.e. instruction in 

ISE, and realizing this new instruction on the application specific functional units (ASFU) 

would have benefit in execution time reduction. For the sake of simplicity, we call 

instruction(s) in ISE as ISE(s) hereafter. On the other hand, extending issue width increases 

the opportunity of executing instructions in parallel. At this point, the questions have emerged: 

is there opportunity to reduce the execution time by combining both approaches, i.e. by 

deploying ISE in multiple-issue processor? 

  

The answer is yes. Because even the issue width and hardware resources are infinite, 

performance is still severely limited by data dependency. For example, consider the DFG 

shown in figure 1. If the issue width and hardware resources are infinite, this DFG still spends 
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at least four cycles to execute. However, using ISE is to compress the execution time of 

operations which locate on the critical path. That is, increasing issue width cannot reduce the 

execution time of operations having data dependency, but using ISE can. Hence, using ISE 

can be considered as complementary approach for increasing issue width to reduce execution 

time. Fig. 1, in which C-N represents N-th cycle (e.g. C1 is first cycle), illustrates this 

argument. Note that in Fig. 1, we do not take register read/write port constraint into account, 

and ISE cannot directly access memory (i.e., no load/store instructions are packed into ISE). 

Extending issue width lets independent operations execute simultaneously (e.g. comparing 

single-issue with 2-issue in Fig. 1). On the other hand, using ISE is to pack operations which 

locate on the critical path into a new instruction (e.g. comparing without ISE to with ISE in 

Fig. 1) and to execute this new instruction in a fast hardware (i.e. ASFU). Therefore, if we 

combine these two approaches, i.e. deploying ISE in multiple-issue processor, then more 

performance improvement can be achieved. 

  
Figure 1.3.1: ISE exploring results for different architectures 
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1.4 Why New ISE Exploration algorithm for Multi-Issue 

Architecture  

Current ISE exploration algorithms [4, 5, 6, 7, 8 and 13] only consider the legality of 

operations, but do not consider the location of operations. (A legal operation means that after 

encapsulating this operation into ISE X, ISE X will not violate any predefined constraints.) In 

order to reduce execution time, ISE exploration must pack operations locating on the critical 

path into ISE(s). In other words, encapsulating operations which locate on the non-critical 

path into ISE(s) hardly gains any performance improvement and wastes silicon area. However, 

current ISE exploration algorithms overlook this point. Current ISE exploration algorithms 

are, therefore, unlikely to be used in the multiple-issue processor. To illustrate this argument, 

we schedule two results shown in Fig. 1.3.1. First one is to schedule the result of “single-issue 

with ISE” on a 2-issue processor (case 1), and second one is also to schedule the result of 

“2-issue with ISE” on a 2-issue processor (case 2). Obviously, case 2 has shorter execution 

cycle and consumes less silicon area than case 1. It clearly demonstrates the benefit of 

considering the location of operations. In addition, in multiple-issue processor, the critical 

path may change after generating a new ISE. This causes that instructions must be 

rescheduled after generating a new ISE to identify the critical path again. To summarize the 

above two points, identifying the critical path is essential for exploring ISE in multiple-issue 

processor. That is, designing an ISE exploration algorithm for multiple-issue processor must 

consider instruction scheduling. 

1.5 Motivation 

Instruction set extension could improve processor performance efficiently. However, current 
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researches for ISE exploration algorithms consider only single issue architecture processor. 

For multiple-issue architecture, only composing the operations located on the critical path as 

ISE can reduce execution time. 

 

1.6 Objective 

Design an ISE Exploration algorithm by consider the operations in critical path to generate 

ISEs to reduce execution time in multiple-issue architectures. 
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Chapter 2 

Relative Works and Background 

2.1 Relative Works 

ISE design flow comprises application profiling, basic block selection, ISE (candidate) 

exploration, ISE (candidate) merging, ISE selection as well as hardware sharing, and ISE 

replacement. After application profiling, basic block(s) is selected as the input of ISE 

exploration based on their execution time. ISE exploration explores legal instruction pattern 

as ISE candidate, which have to conform to predefined constraints [4, 5, 6, 7, 8 and 13], e.g. 

pipestage timing, instruction set architecture (ISA) format, silicon area and register file. In 

ISE merging stage, the algorithm merges the ISE B into ISE A, if ISE B is a subgraph of ISE A. 

After executing ISE merging, ISE selection chooses as many ISEs as possible to attain the 

highest performance improvement under predefined constraints [9, 10, 11, 12 and 13], such as 

silicon area and ISA format. To achieve higher hardware utilization, hardware sharing is also 

performed at this stage (ISE selection). Strictly speaking, the results of both ISE (candidate) 

exploration and ISE (candidate) merging are ISE candidate(s). But for the sake of simplicity, 

ISE candidate is sometimes called ISE. In addition, because we only focus on ISE exploration 

in this paper, the algorithms of other steps do not be addressed, and these can be referred in 

the [8, 9, 10, 11, 12 and 13]. 

Pozzi [4] proposed an algorithm to examine all possible ISE candidates such that it can obtain 

an optimal solution. This maps the ISE search space, such as a basic block, to a binary tree, 

and then discards some portion of the tree that violates predefined constraints. Nevertheless, 

this algorithm is highly computing-intensive, so does not process a larger search space. For 
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instance, if a basic block has N operations, and each operation has only one hardware 

implementation option, then it has 2N possible ISE patterns (legal or illegal). Notably, one ISE 

candidate may consists of one or multiple legal ISE pattern(s). When N = 100 (the standard 

case), then the number of possible ISE patterns is 2100. Obviously, this number of patterns 

cannot be computed in a reasonable time. To decrease the computing complexity, heuristic 

algorithms derived from genetic algorithm [4], Kernighan-Lin (KL) [5], greedy-like algorithm 

[6] and ant colony optimization algorithm [8] have been developed. An Integer Linear 

Programming formulation of the ISE exploration was presented in [7]: in this case, the 

enumeration of subgraphs is implicit in the formulation’s constraints, and the worst-case 

complexity is stil l exponential. Nevertheless, all algorithms [4, 5, 6, 7 and  

8]only consider the legality of operations when exploring ISE 

 

2.2 Background ──── Ant Colony Optimization (ACO) Algorithm 

Why Ant Colony Optimization Algorithm？？？？ 

In order to indicate which part of a DFG is going to be ISE; the implementation of nodes 

should be decided. If we only consider the situation that there is only single hardware 

implementation option of a node, then there will be 2N possible ISE patterns (legal or illegal) 

that N is the DFG size. When N is 100 (it’s a usually case), the combinations is emphatic 

2100！Obviously, this is a NP-hard problem. For the sake of an efficiently solution, the way of 

evolutionary computation which is operative to many existing NP-hard problems is 

considered. 

 

There are many computation models belong to evolutionary computation, like genetic, 

simulated annealing, etc. One of them named “Ant Colony Optimization” is thought to be the 

easiest one to map to the problem. The selection among the models is processed by the 

difficulty of the mapping to the problem. An intuitive and easier mapping usually brings a 
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 simple and effective design of the algorithm. 

 

One of the concepts of ACO is the selection a path among many choices (one or two or more) 

to get the shortest path. I think the selection among many different implementation options of 

each node is just like that. This is the main reason that ACO outperforms other models. The 

only problem is how do the nodes “communicate” to each other. The merit computation in the 

design takes it into account. 

 

Basic Idea of Ant Colony Optimization Algorithm 

Ant Colony Optimization algorithm [1 and 2] is inspired by the behavior of ants in finding 

paths from the colony to food and has been extensively used to solve many optimization 

problems. Initially, ants wander randomly and lay down pheromone on the paths have been 

passed through. The density of the pheromone determines the probability of which path the 

next ant will pass through. Since the pheromone evaporates with the time, a shortest path gets 

marched over faster and thus has the higher density of pheromone. After a period of time, i.e. 

several iterations, more and more ants choose the shortest path such that the density of 

pheromone on this path grows increasingly. Finally, each ant almost chooses the shortest path 

and the pheromones of other paths evaporate to nearly zero. 

 

Figure 2.2.1 is an example. Suppose 50 ants are in the ant colony. Now they are going to find 

food. There are two paths to get food. One is twice longer than the other. At t = 1, there is no 

pheromone on both paths. The ants choose paths with equal probability. Suppose 25 ants 

choose one path, and 25 ants choose another. One ant leaves one unit of pheromone on the 

path. But the pheromone evaporates 5 units after t = 1. So the paths ant passed has 25 – 5 = 20 

pheromone. At t = 2, ants start again. After t = 2, we can see the pheromone on each path 

segment. Next time, the right hand side path will be chosen by ants with higher probability 



 

 - 9 - 

than the left hand side path. 

 

Figure 2.2.1: An example of ant behavior 
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Chapter 3 

ISE Exploration 

In this paper, the purpose of ISE exploration is to find frequently executed instruction 

patterns as ISE candidates and evaluates all implementation options of each operation in ISE 

candidates to minimize the execution time with less silicon area. The input and output of ISE 

exploration algorithm are BBs and ISE candidates as well as their implementation option, 

respectively. Implementation option(s) of an operation represents its implementation 

method(s), and can be roughly divided into two categories, hardware and software. 

 

The flow of ISE exploration is briefly described as follows: each input BB is first transformed 

to data flow graphs (DFG), and an implementation option (IO) table which represents all 

implementation options for an operation is appended to each operation in DFG. In this 

extended DFG, ISE exploration algorithm is repeatedly executed until no ISE candidate can 

be found. Note that ISE exploration algorithm only explores one ISE candidate at each round. 

A round usually consists of multiple iterations. Initially, ISE exploration algorithm chooses 

one implementation option in each operation according to a probability value (p). The 

probability value (p) is a function of pheromone and merit values. The meaning of 

pheromone is the same with the pheromone in the ACO algorithm, i.e. how many times an 

implementation option is chosen in previous iterations. The merit value represents the benefit 

of one implementation option being chosen. After making a choice, the pheromone value is 

updated. And then, the algorithm evaluates implementation option of each operation in DFG, 

i.e. calculates their merit value, according to which implementation option is chosen in its 

neighboring ones at previous iteration. Above process are iteratively performed until the 
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probability values (p) of all operations in DFG have exceeded a predefined threshold value, 

P_END. 

 

3.1 ISE Design flow 

 The ISE design flow, as illustrated in Figure 3.3.1, comprises application profiling, basic 

block selection, ISE (candidate) exploration, ISE (candidate) merging, ISE selection and 

hardware sharing as well as ISE replacement and instruction scheduling. After application 

profiling, basic block(s) is selected as the input of ISE exploration based on their execution 

time. ISE exploration explores legal instruction pattern as ISE candidate, which have to 

conform to predefined constraints [4, 5, 6, 7, 8 and 13], e.g. pipestage timing, instruction set 

architecture (ISA) format, silicon area and register file. If only one ISE is explored, then the 

algorithm directly enters final stage (ISE replacement and instruction scheduling); otherwise, 

the algorithm goes to next stage (ISE merging). In ISE merging stage, the algorithm merges 

the ISE B into ISE A, if ISE B is a subgraph of ISE A. To avoid unnecessary performance 

degradation, the merging process is performed if the following conditions are satisfied: (1) 

the execution cycle of ISE B is equal or larger than that of the identical subgraph (identical to 

ISE B) in ISE A, and (2) ISE A and ISE B do not be executed simultaneously. After 

generating ISE candidates, ISE selection chooses as many ISEs as possible to attain the 

highest performance improvement under predefined constraints [9, 10, 11, 12 and 13], such as 

silicon area and ISA format. To achieve higher hardware utilization, hardware sharing is also 

performed at this stage. Hardware sharing is the assignment of a hardware resource to more 

than one operation within different ASFUs. Same with ISE merging, hardware sharing also 

follows the same rules as described above to avoid performance degradation. Finally, the ISE 

replacement is performed to discover all instruction patterns (i.e. subgraphs) in the DFG that 

match selected ISEs, prioritizes these matches and replaces the matches with ISEs. Strictly 
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speaking, the results of both ISE candidate exploration and ISE candidate merging are ISE 

candidate(s). But for the sake of simplicity, ISE candidate is usually called ISE. Hence, in this 

paper, we use ISE to replace ISE candidate. In addition, because we only focus on ISE 

exploration in this paper, the algorithms of other steps would not be addressed, and these can 

be referred in the [8, 9, 10, 11, 12 and 13]. 

 

 

Figure 3.1.1: ISE design flow 

3.2 How to apply ACO algorithm to ISE exploration 

ISE exploration in multiple-issue processor is to choose an implementation option for 

each operation and determine the execution order of operation. Exploring ISE in a DFG can 

be viewed as a search in the space of possible or feasible solutions. Here, the solution means a 



 

 - 13 - 

set of ISE candidate found in a DFG. To apply ACO algorithm, the search space is organized 

as a search tree. A path from root to leaf in the search tree is considered as one of possible or 

feasible solutions. After constructing the search tree, we place ant colony and food at root and 

leaf of search tree, respectively, and let ants make decision (choose an implementation option, 

and select one succeeding operation if need) level by level to construct the solutions. 

Selecting the shortest path from ant colony to food can be viewed as similar to choosing the 

best implementation option (hardware or software) and determining the optimal execution 

order for all operations. 

Figure 4 is an example to illustrate above concept. The leaf hand of Fig. 4 shows the 

dependence of O1, O2 and O3, the search tree is depicted at the right hand of Fig. 4. In this 

example, we assume that there are three operations, namely O1, O2 and O3, and each 

operation has two hardware (H1 and H2) and two software (S1 and S2) implementation 

options. Since the possible execution order for operation O1, O2 and O3 are O1�O2�03 and 

O1�O3�02, respectively, there exist two paths after choosing one implementation option at 

O1.  

O1

S1 S2 H1 H2

O2

S1 S2 H1 H2

O3

S1 S2 H1 H2

O3

S1 S2 H1 H2

O2

S1 S2 H1 H2

Ant colony

Food

O1

O2 O3

 
Figure 3.2.1: Apply ACO to ISE exploration 
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Chapter 4 

ISE Exploration in Multiple-Issue 
Architecture  

The input and output of ISE exploration algorithm are selected basic block(s) and ISE 

candidate(s) as well as its (their) hardware implementation options, respectively.  Figure 

4.0.1 is an example. Before exploring ISE, a basic block must be transformed to a data flow 

graph (DFG). DFG is represented by a directed acyclic graph G(V,E) where V denotes a set of 

vertices, and E represents a set of directed edges. Every vertex v∈V is an assembly 

instruction, called an “operation” or “node” hereafter in basic block. Each edge (u,v)∈E from 

operation u to operation v signifies that the execution of operation v needs the data generated 

by operation u.  

 

ISE exploration aims to determine which implementation option should be used by which 

operation. As mentioned early, if the operations locating on the non-critical path are packed 

into ISE, then there does not only not improve performance, but also waste silicon area. To 

avoid this situation, the algorithm must identify which operation locates on the critical path 

before starting to encapsulate operations into ISE.  

 

Exploring ISE in multiple-issue architecture is to assign each operation in DFG a time slot 

and an implementation option such that execution time is minimal, and under that, consumes 

less silicon area. In Fig. 4.0.1, we assume that the issue width of processor is two, and that 

each operation has only one hardware/software implementation option. After exploring, 

operation 3 and 5 as well as operation 6, 7 and 8 choose hardware implementation option, 
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while other operations select software one. ISE is a set of connected/reachable operations that 

all use hardware implementation option. In Fig. 4.0.1, there are two ISEs in which one 

consists of operation 3 and 5; another one includes operation 6, 7 and 8.  
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Figure 4.0.1: Example of ISE exploration 

 

The process of the proposed ISE exploration algorithm is to iterate the following steps 

until no ISEs in a DFG can be explored: 

Step 1: Identify the critical path using instruction scheduling and explore ISE to 

reduce the length of the critical path.  

Step 2: Evaluate the result of this iteration and calculate the benefit of all 

implementation options of operations for next iteration.  

 

To explain this process, an example is depicted in figure 4.0.2. All assumptions are same with 

Fig.4.0.1. In step 1, the algorithm identifies the critical path (1�4�6�8 and 1�4�7�8) 

by scheduling instructions, and packs legal operations (6, 7 and 8) into ISE. After generating 

a new ISE (consists of 6, 7 and 8), all implementation options of operations are evaluated. 

However, this process is not shown in Fig. 4.0.2. Same with step 1, in step 2, the algorithm 

also schedules all instructions (including ISE and normal instructions) to distinguish which 
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path is critical, and then encapsulates the operations (3 and 5) locating the critical one into 

ISE. After that, evaluation process is performed again. In step 3, since no valid operation can 

be found, the algorithm is terminated. The valid operation means that packing this operation 

into ISE can have performance gain.  
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Figure 4.0.2: Example of ISE exploration 

4.1 Implementation Option 

The implementation option represents the way to execute an operation. An operation 

usually has multiple implementation options, which can be divided into two categories, 

namely hardware and software. If an operation is encapsulated into ISE, it means that this 

operation deploys the hardware implementation option; on the contrary, if not encapsulated, 

this operation is executed in the processor core. Because of different speed and area 

requirements, most operations usually have multiple hardware implementation options.  

To represent all implementation options for an operation, a table, called implementation 

option (IO) table, is added to every operation. Each entry in the IO table comprises three 

fields, namely implementation option, delay and area. The name of implementation option is 

shown in implementation option field. The delay and area denote the execution time and the 

extra silicon area cost of one implementation option, respectively. A new graph G+ is 
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generated after the IO table is added to G. Figure 4.1.1 shows an example of G+, consisting of 

two operations, A and B. 

A

B

Implementation options Delay Area

Software - 1 1 0

Software - 2 2 0

Implementation options Delay Area

Software 1 0

Hardware - 1 0.4 900

Hardware - 2 0.2 2000

Hardware 0.5 600  
Figure 4.1.1: An example of G+ 

4.2 Formulation for ISE Exploration 

ISE exploration explores ISE candidates in G+. An ISE candidate in G+ is a subgraph S

⊆G+. The proposed ISE exploration can be formulated as follows. 

 ISE exploration: Considering a graph G+, obtain subgraph S⊆G+, and evaluate the 

implementation options of vertex v∈S to minimize the execution cycle count while reducing 

the silicon area as many as possible under the following constraints: 

1. IN(S) ≤ Nin, 

2. OUT(S) ≤ Nout, 

3. S is convex, 

4. Load and store operations  ∉ S. 

IN(S) (OUT(S)) is the number of input (output) values used (generated) by a subgraph S 

(i.e. an ISE). The user-defined values Nin and Nout denote the read and write ports limitations 

of the register file, respectively. For a feasible instruction scheduling, an ISE must observe 

the convex constraint that the ISE’s output cannot connect to its input via other operations not 

grouped in subgraph S (i.e. ISE). In other words, if no path exists from a operation u∈S to 

another operation v∈S involving a operation w∉S, then S is convex. To conform to the 
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limitation of load-store architecture, the load and store operations are forbidden from being 

grouped into ISE. 

 

 

 

4.3 ISE Exploration Algorithm 

As mentioned above, the proposed algorithm explores ISE iteratively until no ISEs in a DFG 

can be found. The algorithm, therefore, would be performed for several rounds (a round 

comprises all steps in figure 4.3.1); except for last round, each round would produce at least 

one ISE. The kernel of each round (step 2 to step 9 in Fig. 4.3.1) would be executed 

repeatedly until convergence is achieved. Executing the steps rounded by  

gray rectangle once is called one iteration.   
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Figure 4.3.1: ISE exploration flow 

 

At each iteration, the proposed algorithm initially selects one implementation option from 

Ready-Matrix with respect to a chosen-probability (cp), which depends on trail and merit 

values. Ready-Matrix is a data structure which is very similar with ready list in list scheduling. 

Figure 4.3.2 is an example of Ready-Matrix; “*” means no this implementation option.  
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Operation 1 Operation 2 Operation 3

SW-1 0.04 0.4 0.03

SW-2 0.02 * 0.03

HW-1 0.21 0.04 0.09

HW-2 * 0.04 0.15
 

Figure 4.3.2: An example of Ready-Matrix 

 

The meaning of trail is the same with the pheromone in the ACO algorithm, i.e. the number of 

valid chosen times of an implementation option in previous iterations. The valid chosen time 

is counted only when choosing this implementation option can reduce the execution time. 

Here, the trail value of hardware and software implementation option j of operation x is 

denoted by trail x,HW-j and trail x,SW-j, respectively. The merit value is defined as the benefit of 

one implementation option being selected, and it is obtained using the merit function, which 

is described in detail later. The merit value of of hardware and software implementation 

option j of operation x is represented by meritx,HW-j and meritx,SW-j, respectively. The chosen 

probability of an operation x is derived with: 

{ }
All implementation options in Ready-Matrix

(1 ) SP

(1 ) SP

trail merit
cp

trail merit

α α λ
α α λ

× + − × + ×=
× + − × + ×∑

      (1) 

where α and λ is utilized to determine the relative influence of trail as well as merit and 

scheduling priority (SP), respectively, and 

All implementation option in Ready-Martix

1cp =∑                   (2) 

The value of SP used in this paper is computed according to the number of child operations; 

however, this value can also be obtained by other ways, e.g. calculating the mobility of 

operation. In addition, merit and SP have other meanings. Merit is mainly used to choose one 

implementation option for operations; while SP is responsible for selecting one operation 

among all ready ones. (An operation is ready if all dependencies for this operation have been 

resolved.) Since the difference in merit values between operations may be large, picking an 



 

 - 21 - 

operation to schedule among ready ones is unfair by using such values. To overcome this 

problem, the merit values of operation must be normalized after performing merit 

computation (step 8 in Fig. 4.3.1).  

 

After selecting an implementation option, the algorithm schedules the operation which has 

this chosen implementation option. The scheduling process (Operation-Scheduling) will be 

described in later. Then, executing following processes to update Ready-Matrix: (1) remove 

the operation which has the chosen implementation option; and (2) add the operation if all 

dependencies for this operation have been resolved. The algorithm repeatedly executes step 3 

to 6 until all operations are scheduled. After all operations are scheduled, the algorithm 

updates trail values according to execution time, and then computes merit value of all 

implementation options of each operation in DFG by using merit function. Each round is 

repeatedly performed until the end condition is fulfilled, i.e. until converge. The end condition 

is that for all operations in DFG, the selected-probability (sp) of one of implementation 

options exceeds P_END, which is a predefined threshold value and is very close to  

100%. The se lected -probabi l i t y (sp)  o f  an operat ion i s  der ived f rom: 

All implementation options in one operation

(1 )

(1 )

trail merit
sp

trail merit

α α
α α

× + − ×=
× + − ×∑

 
(3) 

, and 

All implementation option in one operation

1sp=∑  

(4) 

Noticeably, there are some differences between sp (Eq. 3) and cp (Eq. 1). The sum in the 

denominator of Eq. 3 is only over all implementation options in one operation; while, for cp 

(Eq. 1), the sum in the denominator is over all implementation options in Ready-Matrix. A 

larger P_END has a higher opportunity of obtaining a better result, but typically takes a 
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longer time to converge. An implementation option with the chosen-probability (sp) larger 

than P_END is called a taken implementation option. An ISE is a set of connected/reachable 

nodes (i.e. operations) all of which have taken hardware implementation option. After 

convergence, the algorithm executes Make-Convex to let every ISE candidate comply with 

the convex constraint. But, if an ISE has conformed to the convex constraint, then the 

algorithm will skip this step. Make-Convex repeatedly divides the ISE candidate that does not 

conform to the convex constraint into smaller ones until all smaller ISE candidates can 

comply with convex constraint. 

 

In following paragraph, we describe the several processes/steps used in the proposed 

algorithm, including Operation-Scheduling, Trail Update, Hardware-Grouping and merit 

calculation (Merit Function). Here, a DFG is assumed to have k (k > 0) operations, each with 

n (n > 0) software implementation option(s) and m (m > 0) hardware implementation 

option(s). 

   

 

Operation-Scheduling 

Operation-Scheduling is used to assign one operation on one time slot under several 

constrains, including issue-width, number of register read/write ports, number of function 

units and operation dependency. Assigning an operation using software implementation 

option is just like statically scheduling instructions in multiple-issue processor. Here, we 

assume that operation i currently needs to schedule, and the steps of how to schedule it are 

depicted at figure 4.3.3. In Fig. 4.3.3, LTSi and CTSi denote the latest scheduled time slot of 

parent operations of and current scheduled time slot of operation i, respectively; here, 

constraints are issue width, number of function units and number of register read/write ports. 

Note that which function unit (i.e. software implementation option) would be used by 

operation i has known at previous step. 
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Figure 4.3.3: Operation-Scheduling for software implementation option 

 

To schedule an operation using hardware implementation option is similar with software one, 

but it still exits differences. The main difference is that it is possible to pack several 

operations using hardware implementation option in one cycle, but it is impossible to do that 

for ones using software implementation option. Figure 4.3.4 shows the algorithm of 

Operation-Scheduling used for hardware implementation option. In Fig. 4.3.4, LPi presents 

the parent scheduled at LTSi; constraints used here are issue width and number of register 

read/write ports. 

 

 

Figure 4.3.4: Operation-Scheduling for hardware implementation option 

 

Trail Update 

Trail is updated according to the scheduling result of each iteration. The algorithm of trail 

update is displayed in figure 4.3.5. Here, TETnew and TETold are the execution time of current 

and previous iteration, respectively; ρ1, ρ2, ρ3, ρ4 and ρ5 are positive constant values and called 

evaporating factor as well as very similar to the evaporation rate in ACO. If the execution 

time is shorter than or equal to previous iteration, it means that the selection of 

If (LPi uses software implementation option) 
 CTSi = LTSi +1; 

While (violate constraints at CTSi) 
  CTSi ++; 

Assign the time slot to operation i; 
Update the resource usage at CTSi; 

Else 
 CTSi = LTSi; 

While (cannot pack operation i with other operations into ISE at CTSi) 
  CTSi ++; 

Assign the time slot to operation i; 
Update the resource usage at CTSi; 

CTSi = LTSi +1;  
While (violate constraints at CTSi) 
 CTSi ++; 
Assign the function unit and the time slot to operation i; 
Update the resource usage at CTSi; 
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implementation option and the decision of execution order have benefit for execution time 

reduction. Then, the trail value of the chosen implementation option is raised (increasing ρ1), 

a positive constant value, while those of others are reduced (decreasing ρ2). On the other hand, 

if the execution time is larger than previous iteration, it means that either or both the selection 

of implementation option and the decision of execution order are improper. Hence, the trail 

values of selected implementation option have to be decreased with ρ3, while those of others 

are increased with ρ4. In addition, since the longer execution time may cause by unfit 

execution order, the all implementation options of the operation, which has higher execution 

order than previous iteration, are also reduced (subtract ρ5). 

 

 
Figure 4.3.5: The algorithm of trail update 

 

Hardware-Grouping 

Hardware-Grouping checks whether the operation x can be grouped with its reachable nodes 

(i.e. operations) as a virtual ISE candidate, and recursively groups operation x with its 

If (TETnew≦ TETold) 
 For software implementation option i (i= 0 to n) of operation x (x=1 to k) in DFG 
  If (the implementation option is selected) 
   trail x,SW-i = trail x,SW-i + ρ1; 
  Else 
   trail x,SW-i = trail x,SW-i – ρ2; 
 For hardware implementation option j (j= 0 to m) of operation x (x=1 to k) in DFG 
  If (the implementation option is selected) 
   trail x,HW-j = trail x,HW-j + ρ1; 
  Else 
   trail x,HW-j = trail x,HW-j – ρ2; 
 TETold = TETnew; 
Else 
 For software implementation option i (i= 0 to n) of operation x (x=1 to k) in DFG 
  If (the implementation option is selected) 
   trail x,SW-i = trail x,SW-i – ρ3; 
  Else 
   trail x,SW-i = trail x,SW-i + ρ4; 
  If (execution order of operation x is earlier than previous one) 
   trail x,SW-i = trail x,SW-i – ρ5; 
 For hardware implementation option j (j= 0 to m) of operation x (x=1 to k) in DFG 
  If (the implementation option is selected) 
   trail x,HW-j = trail x,HW-j – ρ3; 
  Else 
   trail x,HW-j = trail x,HW-j + ρ4; 
  If (execution order of operation x is earlier than previous one) 
   trail x,HW-j = trail x,HW-j – ρ5; 
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reachable nodes, which have chosen hardware implementation option in previous iteration, as 

a virtual ISE candidate, i.e. a virtual subgraph vSx. The result of Hardware-Grouping of 

operation x using hardware implementation option j is denoted as vSx,HW-j. HW-MAX 

represents the implementation option having maximal execution time reduction in an 

operation. Significantly, vSx is the set of all vSx,HW-j (i.e. vSx={  vSx,HW-j | j = 1 to n}). Using 

vSx,HW-j, Hardware-Grouping measures the execution time and silicon area of vSx,HW-j. Notably, 

the execution time of vSx,HW-j is the critical path time in vSx,HW-j, and the silicon area of vSx,HW-j 

is the sum of silicon areas of vSx,HW-j.  

 

Figure 4.3.6: Examples of Hardware-Grouping 

 

Figure 4.3.6 depicts the working of the Hardware-Grouping function. The table in Fig. 4.3.6 

lists the delay and area of each implementation option of all operations, and specifies the 

chosen implementation option in the previous selection. In both the top and bottom left of Fig. 

 
Hardware grouping of operation #5 

Hardware grouping of operation #2 

Operation 

ID 

Choice in 
previous 
iteration 

Implementation 

Option 
Delay Area 

1 ●●●● software 1 0 

 software 1 0 
2 

●●●● hardware 0.4 600 

 software 1 0 
3 

●●●● hardware 0.4 600 

4 ●●●● software 1 0 

●●●● software 1 0 

 hardware 1 0.6 400 5 

 hardware 2 0.3 1000 

 software 1 0 
6 

●●●● hardware 0.3 500 

 software 1 0 
7 

●●●● hardware 0.2 300 

 

2 

3 

4 5 

1 

7 6 

2 

3 

4 5 

1 

7 6 
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4.3.6, nodes grouped by a dotted line are treated as a virtual ISE candidate. For operation #2, 

Hardware-Grouping groups operation #2 and #3 as a virtual ISE candidate, i.e. vS2, as shown 

in the top left of Fig. 11. Because operation #2 only has one hardware implementation option, 

vS2 has one evaluation result, namely vS2,1 (execution time = 0.8, silicon area = 1200). The 

bottom left of Fig. 13 is another example, in which Hardware-Grouping groups operation #5 

and other nodes, are #2, #3, #6 and #7, as a virtual ISE candidate, i.e. vS5. Since operation #5 

has two hardware implementation options, vS5 has two evaluation results, namely vS5,1 

(execution time = 1.7, silicon area = 2400) and vS5,2 (execution time = 1.4, silicon area = 

3000). 

 

Merit Function 

The merit function is divided two parts that are used to calculate software and hardware 

implementation option, respectively. The merit value (meritx,SW-i) of software implementation 

option i of operation x is derived with: 

meritx,SW-i = meritx,SW-i × ET(x,SW-i)                 (3) 

where ET(x,SW-i) is the time of executing operation x on implementation option (i.e. function 

unit) i.  

 

In hardware part, the merit function consists of four cases, critical path (case 1), size checking 

(case 2), constraints violation determination (case 3) and performance as well as area benefits 

calculating (case 4). Figure 14 shows the merit function algorithm of hardware. As mentioned 

above, only packing the operation locating on the critical path can have benefit in execution 

time reduction. Hence, initially, in case 1, the algorithm adjusts the merit value according to 

the locality of operation. Then, in case 2, the algorithm determines whether size(vSx), which is 

the number of operation in vSx, is equal to 1. Notably, this work assumes that every operation 

is one-cycle delay in original processor specification. If a multiple-cycle delay is assumed, 
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then case 1 should be tailored to fit this situation. If size(vSx) = 1, then vSx only has one 

operation x such that the performance cannot be improved. Therefore, the algorithm 

multiplies the merit value of every hardware implementation option by a constant βSize (0 < 

βSize < 1) to lower the chance of it being chosen. The calculation of the merit function is then 

terminated. If no, then goto case 3.  

 

Case 3 verifies whether vSx violates input/output port and/or convex constraints. If yes, then 

the merit value of each hardware implementation option is multiplied by constant βIO and/or 

βConvex (0 < βIO < 1 and 0 < βConvex < 1), reducing the opportunity for selecting the hardware 

implementation option, as in case 2. The calculation of the merit function is then terminated. 

Since operation x may have chance to be grouped in an ISE candidate at the following 

iterations, the algorithm only divides the merit value of each hardware implementation option 

by a constant. If the algorithm does not allow the possibility of operation x becoming an 

operation in an ISE candidate, the optimal solution may also be excluded. If no, then enter 

case 4. 

 

In case 4, the merit value of hardware implementation option j (meritx,HW-j, j > 0) in operation 

x is computed according to (1) the speedup that can be achieved by vSx,HW-j, and (2) the silicon 

area utilized by vSx,HW-j. The execution cycle reduction and silicon area of the virtual subgraph 

vSx,HW-j is represented by cycle_savingx,HW-j and Areax,HW-j, respectively. The main criterions 

used in case 4 are followings:  

(1) If vSx,HW-j can improve the performance, then all hardware implementation options 

must have larger merit value than the software one, and the merit value is direct 

proportion to the execution time reduction. 

(2) If vSx locates on the critical path, the execution time of vSx should be as short as 

possible to improve performance. 
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(3) If vSx locates on the non-critical path, the execution time of vSx should be as close to 

maximal allowable execution cycle (Max_AEC) as possible to save silicon area. 

The Max_AEC is the difference between the earliest possible execution time of first 

operation in vSx and the leatest possible execution time of first operation in vSx. 

Restated, there does not have any performance loss, if the execution time of vSx is 

equal to or shorter than Max_AEC. Figure 15 is an example. In this example, 

Max_AEC of ISE (consists of operation 8, 9, 10 and 11) is three cycles.  

(4) If two hardware implementation options have same performance improvement, then 

the one using less silicon area should have larger merit value than another.  

 

Accordingly, in case 4, the algorithm first multiplies the merit value of implementation option 

j by cycle_savingx,HW-j. Then, if vSx locates on critical path, the algorithm continues to 

determine whether the execution time of implementation option j (i.e. ET(vSx,HW-j)) is equal to 

the maximal execution cycle reduction achieved by vSx (i.e. ET(vSx, HW-MAX)). If yes, then the 

algorithm adjusts the merit value according to the ratio of Areax,HW-MAX to Areax,HW-j. Here, 

Areax,HW-MAX represents the largest silicon area consumed by vSx. If no, then the merit of 

implementation option j is divided by the difference between 1+ ET(vSx,HW-j) and 

ET(vSx,HW-MAX). On the other hand, if vSx does not locate on critical path, the algorithm uses 

similar method described as above to compute the merit value.  
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Figure 4.3.7: Algorithm of the merit calculation of hardware implementation option 

 

M
ax
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A
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Figure 4.3.8: Example of maximal allowable execution cycle (Max_AEC) 

Case 1. (Critical path) 
 If (operation x locates on the critical path AND operation x has hardware implementation option) 
  meritx,HW-j = meritx,HW-j ÷ βCP; 
Case 2. (The size of vSx is equal to 1) 
 If (size(vSx) == 1) 

 meritx,HW-j = meritx,HW-j × βSize; 
Case 3. (Violate constraints, and the size of vSx is larger than 1) 
 If (vSx violates in/out constraint) 

meritx,HW-j = meritx,HW-j × βIO; 
 If (vSx violates convex constraint) 

 meritx,HW-j = meritx,HW-j × βConvex; 
Case 4. (Conform with constraints, and the size of vSx is larger than 1) 

If (vSx observes in/out and convex constraint AND size(vSx) > 1) 
  // Performance improvement check 
  meritx,HW-j = meritx,HW-j × cycle_savingx,HW-j; 

// Hardware usage check 
If (vSx locates on the critical path) 

If (ET(vSx,HW-j) == ET(vSx, HW-MAX)) 
  meritx,HW-j = meritx,HW-j × (Areax,HW-MAX ÷ Areax,HW-j); 

   Else 
meritx,HW-j = meritx,HW-j ÷ (1 + ET(vSx,HW-j) – ET(vSx,HW-MAX)); 

  Else 
If (ET(vSx,HW-j) ≦ Max_AEC) 

  meritx,HW-j = meritx,HW-j × (Areax,HW-MAX ÷ Areax,HW-j); 
   Else 

meritx,HW-j = meritx,HW-j ÷ (1 + ET(vSx,HW-j) –Max_AEC); 
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4.4 The Complexity Analysis of ISE Exploration Algorithm 

Since the proposed ISE exploration algorithm is terminated until converge, it is very difficult 

to know how many iterations must be performed before convergence. In this paper, hence, we 

just analyze the complexity of each step in ISE exploration flow rather than whole algorithm. 

The complexity of step 1, 7 and 8 (only merit computation) are O(k(n+m)), where k (k > 0) is 

number of operation in the DFG and each operation has n (n > 0) software implementation 

option(s) and m (m > 0) hardware implementation option(s). Hardware-Grouping (also in step 

8) is to check the relation between operations. Each operation in DFG must execute this 

process and for an operation, up to k operations should be checked. The complexity of 

Hardware-Grouping therefore is O(k2). Step 3, 4, 5 and 6 are used to schedule operations, and 

these steps are derived from the idea of list scheduling. The complexity of this process is 

therefore same with list scheduling, i.e. O(k2). Apart from the above steps, the complexity of 

other steps are O(k). Based on the above analysis, the complexity of executing one iteration is 

O(k2). 
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 Chapter 5 

Experimental Results 

5.1 Experimental setup 

The Portable Instruction Set Architecture (PISA) [12], which is a MIPS-like ISA, was 

employed to evaluate the proposed ISE exploration algorithm and the previous one [8]. 

Severn benchmarks, including CRC32, FFT, adpcm, bitcount, blowfish jpeg and dijkstra, 

were used in this simulation. Each benchmark was compiled by gcc 2.7.2.3 for PISA with -O0 

and -O3 optimizations. For both ISE exploration algorithms, six cases were evaluated that 

includes 2-issue with 4/2 and 6/3, 3-issue with 6/3 and 8/4, as well as 4-issue with 8/4 and 

10/5. (e.g. 6/3 represents that number of read and write ports of register file are 6 and 3, 

respectively) 

 

Table 5.1.1: Hardware implementation option setting 
Operation Delay (ns) Area (µm2) Operation Delay (ns) Area (µm2) 

4.04 926.33 
and 
andi 

1.58 214.31 add 
addi 
addu 
addiu 2.12 2075.35 

or 
ori 

1.85 214.21 

4.04 926.33 xor 4.17 375.1 sub 
subu 2.14 2049.41 xori 2.01 565.14 
mult 5.77 84428 
multu 5.65 79778.1 
nor 2.00 250.00 

2.64 1144 
slt 
slti 
sltu 
sltiu 1.01 2636 

sll 
sllv 
srl 
srlv 
sra 
srav 

3.00 400.00 

In this simulation, we assume that: (1) the CPU core is synthesized in 0.13 µm CMOS 

technology and executes in 100MHz; (2) the issue width are from 2 to 4; (3) the read/write 
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ports of register file are 4/2, 6/3, 8/4 and 10/5, respectively; and (4) the execution cycle of all 

instructions in PISA is one cycle, i.e. 10 (ns). Table 1 lists the hardware implementation 

option settings (delay and area) of instructions in PISA. Significantly, only instructions that 

can be grouped into ISEs are listed in table 1. These settings were either obtained from [Name 

author] [14], or modeled by Verilog and synthesized with Synopsys Design Compiler. 

Additionally, we also assumed both works consider pipestage timing constraint.  

 

Because of the heuristic nature of the ISE exploration algorithm, the exploration was repeated 

5 times within each basic block, and the best result among the 5 iterations was chosen. As 

mentioned before, the results of ISE exploration are only ISE candidates. However, without 

performing ISE merging and selection, these results cannot be viewed as the final ones. In this 

paper, therefore, we adopt a greedy method to select ISE(s). After merging ISEs, the ISE 

selection algorithm ranks ISE candidates according to their performance improvement. By 

using rank order, ISE selection algorithm then chooses as many ISEs as possible under 

predefined constraints, such as number of ISEs and silicon area. Finally, we replace the 

instruction pattern(s) in the program(s) with ISE(s), and schedule the code again to obtain 

execution time. In this paper, both approaches adopt same ISE design flow, as shown in Fig. 3, 

and use same ISE selection algorithm. 

 

The parameters adopted in this work and their meanings are listed below. 

♦ α: the relative influence of merit and trail. 

♦ λ: the relative influence of scheduling priority (SP) and merit as well as trail. 

♦ ρ1, ρ2, ρ3, ρ4 and ρ5: the evaporating factor in trail update.   

♦ βCP and βSize: the tendency to choose hardware implementation option in a node. 

♦ βIO: the decay speed when the input/output constraint is violated. 

♦ βConvex: the decay speed when the convex constraint is violated. 
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A large α makes the algorithm converge slowly, while a small α is on the contrary. Restated, a 

large α obtains a solution slowly, and a small α obtains a poor solution, but quickly. ρ1, ρ2, ρ3, 

ρ4 and ρ5 has same characteristic with α. βCP and βSize determine the chance of an operation, 

which does not fit in with criterions of ISE selection, being packed into ISE again at 

following iterations. Similar with βCP and βSize, βIO and βConvex also decide the opportunity of 

an illegal operation being encapsulating into ISE again at following iterations.  

 

In this experiment, the initial merit value of the software and hardware implementation option 

was 100 and 200, respectively; the initial trail value of all implementation options were 0; 

P_END was 99%. The probability value adopted α = 0.25, the evaporating factor ρ1, ρ2, ρ3, ρ4 

and ρ5 are 4, 2, 2, 2 and 0.4, respectively, and the merit function had βCP = 0.9, and βSize = 0.7, 

βIO = 0.8 and βConvex = 0.4. 

 

5.2 Experimental results 

Figures 16 and 17 depict the average execution time reduction under silicon area and number 

of ISEs constraints, respectively. Each bar in Fig. 16 comprises several segments, which 

indicate different silicon area constraints, are 20000, 40000, 80000, 160000 and 320000 µm2; 

while, the segments in Fig. 17 means number of ISEs, are 1, 2, 4, 8, 16 and 32 ISEs. The first 

word of each label on X axis in both Figs. 16 and 17 indicates which ISE exploration 

algorithm is adopted. “MI” and “SI” denote the proposed ISE exploration algorithm and that 

of Wu [8], respectively. The symbols in parentheses of each label on the X-axis are the 

number of register file read/write ports in use, issue width, and which optimization method 

(-O0 or -O3) is used. For instance, (4/2, 2IS, O3) means that the register file has four read 

ports as well as two write ports, issue width is two and that the O3 optimization method is 
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employed. 

 

Obviously, under same silicon area constraint, our proposed algorithm exhibits better 

execution time reduction than [8] in all cases. In Fig. 16, for both algorithms, O3 exhibits 

better execution time reduction than O0 in cases of 2IS. This is because O3 often uses various 

compiler optimization techniques. Some of these techniques (like loop unrolling, function 

inlining, etc.) remove branch instructions, and increase the size of basic blocks. The bigger 

basic block usually has a larger search space, such that it has a greater opportunity to obtain 

the ISEs, which have more execution time reduction. However, O0 exhibits better execution 

time reduction than O3 in cases of 3IS. Possibly, because O3 increases instruction-level 

parallelism, most instructions are executed on ALUs such that less performance improvement 

is achieved in O3. In 4IS, since the issue width is large enough, instruction-level parallelism 

can be easily attained, even without any compiler optimization techniques. The performance 

gap between O0 and O3 is therefore not obvious. Fig. 17 depicts the execution time reduction 

for different number of ISEs. Same with Fig. 16, Fig. 17 also has similar results. In all cases, 

our proposed algorithm significantly outperforms than [8].  
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Figure 5.2.1: Execution time reduction under different silicon area constraints 

 
Figure 5.2.2: Execution time reduction for different number of ISEs  

 

The comparison between the proposed algorithm and [8] in silicon area cost and execution 

time reduction is illustrated in figure 18. In Fig. 18, we clearly observe that most of execution 
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time reduction is dominated by several ISEs, especially first ISE. In other words, the number 

of ISE is not entirely proportional to the execution time reduction. This is because for most 

programs, their execution time is usually concentrated in small number of basic blocks, i.e. 

hot basic blocks. Hence, although increasing the number of ISEs can boost performance, but 

considerable silicon area cost must be incurred.   

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

1 2 4 8 16 32

S
ili

co
n

 A
re

a
 C

o
st

 (
µ

m
2

)

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

E
xe

cu
tio

n 
T

im
e

 R
e

d
u

ct
io

n
 (

%
)

MI(Area) SI(Area) MI(Time) SI(Time)

 
Figure 5.2.3: Silicon area cost v.s. execution time reduction 
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Chapter 6 

Conclusion 

The proposed ISE generation algorithm can significantly reduce execution time for the 

multiple-issue processor. Previous studies in ISE exploration only take the legality of 

operation into account. However, in multiple-issue processor, only considering the legality of 

operation cannot gain much execution time reduction and may waste silicon area. To avoid 

such situation, this work considers not only the legality of but also the locality of operations. 

Experiment results demonstrate that when only one ISE is used, the proposed design can 

reduce execution time by up to 17.17%, 12.9% and 14.79% (max., min. and avg., respectively) 

as compared with the multiple-issue processor without using ISE. Furthermore, under same 

area constraint our approach has 11.39%, 2.87% and 7.16% (max., min. and avg.) of further 

reduction in execution time over the previous one[8].  

Additionally, we recommend addressing several issues in future work. First, because we 

put emphasis on exploring ISE rather than on determining the scheduling priority, this paper 

adopts only simple way (i.e. number of child operations) to determine the scheduling priority. 

However, many studies shown that different scheduling priority functions would result in 

different results, i.e. different critical path. Adopting different priority functions to identify the 

critical path would be interesting to study. Second, the problem [16 and 17] consisting of 

hardware-software partitioning, hardware design space exploration and scheduling is similar 

with our work. (hardware-software partitioning ↔ determining hardware or software 

implementation options, hardware design space exploration ↔ selecting an implementation 

option, and scheduling ↔ identifying the critical path) Hence, by a slight modification, the 

proposed ISE exploration algorithm can be adopted to this problem. 
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