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摘  要 

材質貼圖於現今繪圖處理器架構中是一常見普遍的技術。此技術除了處理材質過濾

外，還必須先執行其他前置運算：座標產生，位置轉換及材質像素的查詢。此部分運算

於整體執行時間中有相當比例，且隨著材質過濾複雜程度上昇而上昇。 

在這篇論文中，我們以材質記憶體放置法為切入點改善在三種可能且常見材質快取

記憶體的支援下，此部分所需的時間（拿取材值像素的平均時間），而此材質記憶體放

置法是以材質快取記憶體命中率，位置轉換所需時間，及平均查詢快取記憶體次數為目

標來達成目標。 

由結果顯示，新的材質放置法於三種可能且常見快取記憶體支援下可改善約略 2~9% 

的平均拿取材值像素時間。 
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Abstract 

Texture mapping is a common rendering technique in current Graphic Processing Unit 

architecture. In order to have better synthesized picture, many texture data will be referenced 

and accessed. We found that the technique may take significant part of total scene execution 

time on preliminary operations to access these referenced data. The operations could be 

coordinate generation, address translation and texels look up. And the time is increased as 

filtering algorithms are more complex.   

In this thesis, we are going to improve this part of time (average texels access time of 

texture filtering) by proposing new texture placement under three possible and common 

texture cache supports. And the placement is target to achieve the goal by improving the 

texture cache hit rate, average cache access counts and address translation time. 

As the result shows that the new placements could gain 2~9% upgrade in average texels 

access time of texture filtering under the three common texture cache support in current GPU 

architecture. 
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 Chapter 1 Introduction 

In Three-Dimensional (3-D) computer graphics, texture mapping is a common and one 

of the successful techniques in high quality image synthesis. It is responsible for rendering the 

3-D scene by adding detail, surface texture, pattern, surface normal or color to a 3-D object  

and become more and more complex due to the requirement of 3-D scene realism and special 

effect [1][2].  

Basically, in order to have quality of synthesized image, more texels data will be 

referenced, and more computation will be invoked. We found that the complex texture 

mapping technique may take a significant part of scene total execution time on the 

preliminary operations. The operations are accessing the required referenced texels data in the 

texture memory system for texture filtering. They contain address calculations, coordinate 

generations and texel look ups for those required texels in the texture memory system. Thus, 

whether the texture memory system is well design or not may affect the average texels access 

time of texture filtering. 

In this thesis, we are going to improve the average texels access time of texture filtering 

under three possible and common texture cache supports. In order to achieve the objective, 

We are going to improve texture cache hit rate, average cache access counts and address 

translation time by proposing the new placement for saving the average texels access time of 

texture filtering.  
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1.1 Motivations 

Texture placement, placing the texture in the texture memory, is what we consider the 

most important and fundamental solution, as the following reasons. 

1. Texture placement will affect the texture cache hit rate.  

2. Texture placement will affect average cache access counts.  

3. Texture placement will affect the address translation complexity. 

In first reason, since the texture placement is the decision of how to place the texture in 

the texture memory, if the placement is well design, the cache hit rate could be improve and 

average texels access time will also be improve. If not, it may introduce cache hit rate loss 

and increase average texels access time of texture filtering. 

The third reason, due to some complex texture mapping techniques, i.e. bilinear filtering, 

need more than one texel data, the required texels maybe scatter over many texture cache 

lines, i.e. 2, 4, cache lines, according to the placement algorithm. Moreover, it will also affect 

the continuousness of required texels within a cache line. 

The second reason, if the placement has regular property, it can be translated through 

some fast bit-wise logic circuit. If not, the address translation time will increase due to the 

abnormality of placement and also increase average texels access time of texture filtering. 

If we have the hardware support to help us to retrieve the required texels in the same 

cache line, we may retrieve them in one cache access. If not, we may have to access them in 

another cache access. However, if we do not have such hardware support, the continuousness 

factor could be an important cause. If the required texels are within a cache line and 

continuousness, we can retrieve them by using wider bus or a common technology, burst 

mode. If they are not continuous, we may retrieve them in another time of cache access. 
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1.2 Objectives 

We are going to propose the new texture placement that is how to place the texture in the 

texture memory. And the placement is aim to save the average texels access time of texture 

filtering under three possible texture cache supports by improving the three aspects:  

1. The placement could improve the texture cache hit rate. 

2. The placement could be easy to translate through some easy ideas. 

3. The placement could improve the average cache access counts.  

 

1.3 Organization about this thesis 

 In Chapter 2, we explain the graphic processing flow and texture mapping techniques. In 

Chapter 3, proposed the new placement concept, the address translation idea, possible fast 

address translation logic circuit and we will list the three possible and common texture cache 

supports. In Chapter 4, we will describe our experiment goal, environment and methodology; 

evaluate average texels access time of texture filtering under three kinds of possible texture 

cache support. In Chapter 5, there are discussion, future work and conclusion. 

 

 

 

 

 

 

 

 

 



 

 - 4 -

Chapter 2 Background and Related 

research 

In section 2.1, we will give a brief concept of rendering pipeline in Graphic Processing 

Unit (GPU). And we’ll find that our research is focus on pixel processing, the third pipeline 

stage. In section 2.2, we are going to explain the texture mapping techniques which include 

the topic of the texture data structure, and the responsible function unit, called texture unit and 

processing flow of texture mapping. Finally, some related research will be study.  

2.1 GPU rendering flow 

The rendering flow in current GPU can be roughly divided into four parts which are 

vertex processing, rasterization, pixel processing, depth processing based on its pipeline stage, 

as shown in figure 2-1-1. 

Geometry processing

Triangle setup and Rasterization

Pixel processing

Depth processing

To frame buffer for display

Texture 
memory 
system

vertices

triangle

rasterize

color

(x,y)

z 

view point

texture mapping

 

Figure 2-1-1 rendering pipeline of GPU 

 

In figure 2-1-1, the vertex processing is done in vertex shaders. The majority works in 

them is performing vertex’s coordinate translations. These translations actually is a serial of 
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coordinate translations from vertex’s local coordinate to global environment coordinate and 

finally translate to view point coordinate. 

After vertex processing, the following stage is triangle setup and rasterization. Triangle 

setup is responsible for assembling primitive according to their view point coordinate. That is 

finding three vertices which are valid to be assembled into a triangle (primitive). Based on the 

primitive, rasterization is responsible for interpolating this primitive. In another word, 

rasterization interpolate each primitive into some fragments. Thus, we obtain the fragments, 

pixels before output to frame buffer are called fragments.  

The pixel processing is done in pixel shaders. Its majority work is coloring each 

fragment with the texture which is usually stored in the texture memory system, i.e. memory, 

cache, through the dedicate function units, texture units. 

The final processing is depth processing. Since the are many fragments have the same x, 

y coordinate in the screen but are different in z coordinate, we are target to find out which 

fragment will not be covered (closest to the view point) and will be final displayed on the 

screen. Thus, the works in depth processing is simply comparison the depth value (Z value) of 

each fragment which has the same x, y and pass these fragments to frame buffer for display 

on the screen. 

2.2 The Texture mapping techniques 

Texture mapping technique usually invokes multiple textures or MIP maps as samples 

and also invokes the other techniques, such as bilinear interpolations or trilinear interpolations 

to produce different amounts of realism. Moreover, the major process of the whole texture 

mapping is done in special function units in the stage of pixel processing, called texture unit. 

We will introduce them respectively as following organization:  

In section 2.2.1, we will first give an overview of texture data structure. 

In section 2.2.2, we will introduce the processing flow of texture mapping within the 
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texture unit which is responsible for coloring the fragment. And it contains coordinate 

generation, address translation, texels look up and texture filtering.  

 

2.2.1 The textures 

Texture is simply a data structure which is used as color reference in pixel shader and 

can be viewed as a picture or bitmap image. Its dimensions are usually restricted to power of 

2 for hardware implementation. Moreover, the width and the height of the texture can be 

different [4]. 

A pixel of a texture, call a texel, is a basic cell of a texture and is usually made up of four 

components, which is R (Red), G (Green), B (Blue), A (Alpha) respectively. And each 

component is usually one byte width. However, with the High Dynamic Range (HDR) 

introduced in DirectX 10, a texels can be up to 16 bytes, which each component is up to 4 

bytes for more precision  

Textures are usually stored in the off-chip large texture memory and on-chip fast texture 

cache for quickly retrieval in GPU. When the pixel shader needs to paint the fragment, it 

needs the color information in the textures, thus goes to the texture storage to get the required 

texels for that fragment.  

 

2.2.2 Texture mapping process flow within Texture Unit 

Texture mapping is done within the texture unit. The texture unit is usually in the Pixel 

shader, since it is responsible for color the fragment according to the filtering type. The 

processing flow can be roughly classified into four operations, as shown in figure 2-2-2-1.  

From Sampler State FIFO [14], we know the required information of how to color the 

fragment. The information may contain texture filtering type, texture coordinates, base texture 

address of the required texture, etc. 
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texture mapping
information form 
Sampler state FIFO

Address Generation

Texture filter

Texture storages

Back to pixel shader

address

final color

Coordinate generation

Address translation

texture coordinate

fractions,
filtering type

Texture unit

filtering type, 
texture information

the retrieved texel

translate the coordinate
to texture address

Base on the address
look up required texel 

Final color of the fragment
is filtered by texture filter 

Generate the texture coordinates
for the filtering

processing flow  
Figure 2-2-2-1 the texture unit and texture mapping processing flow

After we have the information, the coordinate generator will generate the required 

texture coordinates based on the filtering type. These texture coordinates may be further 

translated into texture addresses by the following address translation unit. These translated 

addresses will be used to look up the required texel in the texture cache next to the texture 

unit. The texture cache is a fast SRAM storage space, it store the texels information, and can 

be any traditional cache configuration. After we have retrieved the required texels, we can 

perform the texture filtering algorithm based on the filtering type, texels, and other 

information in the texture filter. The final color will be sent back to the pixel shader.  

In current high-end graphic card, there are multiple texture units in the pixel shader for 

performance issue [11]. Moreover, most of the texture units also have multiple texture address 

units and texture filters which allow processing more filtering algorithms or more complicated 

filtering algorithm in parallelism [11]. Texture units are allowed to generate the final color of 

filtering algorithm per cycle. 

As mentioned in chapter one, we are target to save average texels access time of filtering. 

The average texels access time may contain the time spending on coordinate generation, 

address translation and cache look up.  
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2.2.2.1 Address translation  

In GPU processor, the texel is indexed through texture coordinates, i.e. u, v, coordinates, 

But in texture memory system, texture is indexed through texture memory address. Since the 

indexing methods are different between GPU processor and memory system;, thus we need a 

special function unit which is target to perform the address translation, as shown in figure 

2-2-2-1-1. 

Indexing in pixel shader

2mw =

2nh =

u

v

Indexing in texture memory

Base

 

Figure 2-2-2-1-1 the concept of address translation. 

The address translation could be viewed as a translation function with texture 

coordinates (i.e. u, v), texture dimensions, base address of texture as input and generate the 

translated address as output [4]. 

Thus, the complexity of address translation may relate to the texture placement algorithm. 

If the placement is well design, the address translation could be easy to translate. If not, the 

address translation complexity could be complicated. 
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2.2.2.2 Texture filtering 

Texture filtering is the method used to obtain the color for a fragment by using the colors 

of nearby texels in some texture. In another words, it is an attempt to find a value at some 

point by giving a set of discrete samples at nearby points. Thus, texture filtering is a kind of 

process that for any given fragment, it goes to loop up some required texels, and calculated 

the final color for that fragment.  

Since one fragment may not usually correspond exactly to one texel, there can be 

different types of correspondence between a fragment and the texel/texels depend on the 

position of the textured surface relative to the viewer. 

For example, one fragment is exactly the same as one texel of the texture, that is one to 

one mapping. Closer than that, the texels are larger than fragments. Texels are needed to be 

scaled up appropriately, known as texture magnification. Farther away, each texel is smaller 

than a fragment, that is one to many. In this case an appropriate color has to be picked based 

on the covered texels, via texture minification.  

Because the different correspondence between fragments and texels mentioned before, 

that may necessitate reading all of entire texels and combining their values to correctly 

determine the fragment color. This process would be a potentially expensive operation.  

Mipmapping technique is introduced in [12]. It can avoid this by pre-calculating, recursively 

sampling the texture and storing it in a quarter down to a single texels. As the textured surface 

moves farther away, the texture being applied switches to the pre-sampled size. Different sizes 

of the mipmap are referred to as 'levels', with Level 0 being the largest size (used closest to 

the viewer), and increasing levels used at increasing distances. As shown in figure 2-2-2-2-1, 

we have an example of how the mipmaps looks like. 

The filtering method can be roughly classified according to the image quality and 

computation complexity. 

The first one is nearest neighbor interpolation. It is the fastest and crudest filtering 
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method - it is only look up the closest texels’ color for the mapped fragment. While fast, this 

results in a large number of artifacts, thus image quality is the worst.  

The second one is nearest neighbor with mipmapping. According to the fragment’s Z 

value, we select the two closest mipmaps first. For each mipmap, by applying Nearest 

neighbor interpolation, we got two selected texels. Finally, the final color for that fragment is 

the result of weighted average of those two texels. This reduces the aliasing and shimmering 

significantly, but does not help with blockiness. 

4 bytes

the original texture, LOD0

2ww =

2hh =

12ww −=

12hh
22ww −

−=

LOD1

=

22hh −=

LOD2

1
1

LODN

""
 

Figure 2-2-2-2-1 the mipmaps and data structure of a texel  

The third on is bilinear filtering. In this method the four closest texels on a nearest 

mipmap level to the fragment center are chosen, and final color for that fragment is the color 

of weighted average among them. Figure 2-2-2-2-2 shows the concept of bilinear filtering 

algorithm. Bilinear filtering is almost invariably used with mipmapping; though it can be used 

without, it would suffer the same aliasing problems as nearest neighbor. Moreover, bilinear 

filtering is the basic component of the following filtering method. And they can be viewed as 

several pieces of bilinear filtering 
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T1T2T3T4 1f1f

2f

final filtered color

the 4 required texels of a bilinear filtering

the mapped 
fragment

1f

2f

 

Figure 2-2-2-2-2 the concept of bilinear filtering   

The fourth one is trilinear filtering. It can be treated as a weighted average of two pieces 

of bilinear filtering. For each of two closest mipmap levels, perform the bilinear filtering. And 

the final color for that mapped fragment is the color which is the weighted average of the two 

bilinear filtering results. Of course, closer than Level 0 there is only one mipmap level 

available, and the algorithm reverts to bilinear filtering. 

The final one is anisotropic filtering. It is the highest quality filtering available in current 

consumer 3D graphics cards. If we need to color a plane which is at an oblique angle to the 

camera, bilinear or trilinear filtering would give us insufficient horizontal resolution and 

extraneous vertical resolution. Anisotropic is a method of enhancing the image quality of 

textures on surfaces that are far away and steeply angled with respect to the camera. The final 

color of that mapped fragment is the color which is the “trilinearly” average of the n pieces of 

trilinear filtering results. The value n called anisotropic ratio, horizontal direction to vertical 

direction, is defined by application. 

Finally, we summarize a table of texture filtering methods as shown below.  
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Filtering Type 
# of 

MipMap 

# of 

Texel / 

MipMap 

# of 

Texels 

(# of Bi)

Filtering Algorithm 

nearest neighbor 

interpolation 
1 1 1(0) 

Apply color of the closest texel respect to that 

fragment center 

nearest neighbor 

with 

mipmapping 

2 1 2(0) 
Weighted average of two nearest neighbor 

interpolation. 

Bilinear 1 4 4(1) 
Weighted average among nearest four texels on the 

closest mipmap. 

Trilinear 2 4 8 (2) 
Weighted average of two bilinear filtering which are 

on two closest mipmaps respectively. 

n:1 Anisotropic 

n=2,4,8,16 

 

2 

 

4n 

 

8n (2n) 

Weighted average of n trilinear filtering which are on 

two closest mipmaps respectively. 

Table 2-2-2-2-1 summary of texture filtering algorithms 
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2.3 Related Research 

2.3.1 Nonblock placement  

Traditionally, texture is placed in the texture memory by using row-major concept, as 

shown in figure in 2-3-1-1. This is also known as Nonblock placement. 

traditional non-blocked (row-majored) placement

2ww =

2hh =

base

A
B
C

A

C

B

2

Address translation equation : 
[ log ]

where  is the translated address
          is the base address of the texture
         ,  is texture coordinate
         is texture width

A base u v w
A

base
u v
w

= + + <<

Address transltion equation

 texture memory layout

Figure 2-3-1-1 Nonblock placement and address translation equation 

 

The concept of placement is straightforward and intuitional. Address translation is also 

straightforward. However, since texture filtering have spatial locality, that is the required 

texels of a bilinear filtering is in a 2 by 2 region, and the required texels of next bilinear 

filtering is usually closed to the current one, Nonblock placement could be considered as a 

non-efficiency placement due to the long texture’s width and always row-major. 

Among these four required texels, the upper and lower two will in two adjacent rows 

respectively, as shown in figure 2-3-1-2. However, if the row of texture is very long, the 

required texels will be separated far away in the texture memory.  

Moreover; when the cache line size is smaller or equal to the size of a single row data 

structure, the required texels which are in two adjacent rows will be placed in two different 

cache lines. Thus the upper/lower two required texels will be in different cache lines and for 

those texels in the same cache line, they are continuous.  
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A texture

row-major

The required texels 
of a bilinear filtering
are in two adjacent
rows

 

Figure 2-3-1-2 access condition of Nonblock placements 

 

2.3.2 4D placement 

texture memory layout

Base

2

2

Address translation equation : 
  = [ log ( )]

                        [ log ( )]
       where  , the base address of the texture
                    is texture width
    

Tile address base bv w bw
bu bw bw

base
w

+ << ∗ +
<< ∗

2

2

                is texture height
                   ,  is texture coordinate
                   ,  is tile coordinate
                    = log
                    = log
             

h
u v
bu bv
bu u bw
bv v bw

>>
>>

2

       = & ( 1)
                    = & ( 1)

 =   [ log ( )]
        where  is translated address
                  ,  is sub coordinate within a tile
                   i

su u bw
sv v bw

A Tile address su sv bw
A
su sv
bw

−
−

+ + <<

s tile width
w2 2A 2 * 2  tileh

One level tile based (4D) placement

1 22w ww +=

1 22h hh +=

22ww =

22hh =

A texel

Address translation equation  

Figure 2-3-2-1 4D placement and address translation equation 

4D placement [4] is also known as tile-based placement, as shown in figure 2-3-2-1. The 

concept of 4D placement is row-majored and one level tile-based: original texture is divided 

into some squared tiles and inter/intra-tile is row-major.  

Since texture filtering has spatial locality, the placement which place the texels in a form 

of group could get better cache performance. This is because the required texels of a filtering 

may be fall into a 4D tile and they are placed in the texture memory nearby according to the 

tile size.  

However, since inter-tile is also the row-major, the required four texels of bilinear 

filtering will have strongly chances to cross two adjacent tiles in the column or four different 
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row-major

The required texels 
cross two vertical tiles

tiles, shown in figure 2-3-2-2. Thus these required texels may be placed separately in texture 

memory and may introduced conflict miss in direct mapping cache. In [4], they say when the 

size which is texture width multiplies tile width is multiple of cache size and cache line size is 

multiple of tile size, conflict misses will occur due to the upper and lower tile will have the 

same cache index number. By padding the unused tile to form another new column, the 

problem can be solved. However, texture memory spaces will waste.  

Tile B

Tile C Tile D

Tile A

The required texels 
cross four different tiles

 

Figure 2-3-2-2 access condition of 4D placement 

 

Moreover, if cache line size is equal to the tile size, for those four requited texels in the 

same cache line, they are two and two continuous or all continuous due to 4*4 tile size. If two 

texels are in the same cache line, they are continuous like Nonblock placement or 

discontinuous due to the two texels are placed on different rows in the tile. 

The address translation of 4D placement proposed in [4] invokes many arithmetic 

operations, such as ADD operation. Due to texture address is 32-bits or 64-bits [4] in current 

GPU architecture, the ADD operation may have long carry propagation according to the 

hardware implementation. Thus, the propagation could be the critical path of the address 

translation.  
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2.3.3 6D placement 

w2 2A 2 * 2  tileh

Two level tile based (6D) placement

1 2 32w w ww + +=

1 2 32h h hh + +=

2 32w ww +=

2 32h hh +=

32ww =

32hh =

A texel

w3 3A 2 * 2  tileh

 

Figure 2-3-3-1 the related work of 6D placement 

 

6D placement [4] is known as two-level tile-based placement, as shown in figure 2-3-3-1. 

The original texture is divided into some squared larger tiles and inter-larger tile is row 

majored. Within a larger tile, 4D placement is applied to it.  

The placement is proposed to improve the conflict miss which occurs in 4D placement. 

Unlike the padding unused tiles to form a new column, 6D placement will not waste the 

memory space. However, the address translation idea proposed in [4] is still following the 

concept of 4D placement. It invokes arithmetic operations, such as ADD operation.  

Finally, we have a table 2-1 to summarize the three placement algorithms in term of 

address translation time, cache hit rate, average cache access counts based on cache lines and 

average cache access counts based on cache lines and continuousness. We expect the address 

translation time of Nonblock is better than 6D placement. The cache hit rate of 6D is better 

than Nonblock placement. Average cache access counts based on cache lines of 6D/4D 

placement is better than Nonblock placement. Finally, average time of cache access based on 

cache lines and continuousness of 6D/4D placement is better than Nonblock placement.  
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 Nonblock 4D 6D 

Placement concept Row/column-major 
One level tile based + 

row/column major 
Two level tile based + 

row/column major 

Address 
translation 

concept 
Base + offset 

Base + level1 tile 
offset + offset within 

a l1 tile (*) 

Base + level 2 tile 
offset + level1 tile 

offset + offset within 
a l1 tile (*) 

Address 
translation time 

better medium worse 

Cache 
performance, hit 

rate (**) 
98.893/99.018 (%) 99.3139/98.7078 (%) 99.558/99.728 (%) 

Average cache 
access counts 

based on cache 
lines (**) 

2.194/2.099 2.078/1.909 2.078/1.909 

Average cache 
access counts 

based on cache 
lines and 

continuousness 
(***) 

2.194/2.107 2.408/2.408 2.408/2.408 

(*)     Waste memory space when texture height is smaller than tile width. 
(**)    Direct mapping, 8K, cache line size is 32/64 bytes. 
(***)   Direct, 8K, line size is 32/64 bytes, burst mode support with max data length is 16 

bytes 
Table 2-3-1 summary of three placement algorithms 
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Chapter 3 Design 

3.1 Design Overview 

Our design can be roughly divided into two topics: the first one is focus on the new 

placement algorithm that is how to place the texture in the texture memory. The second one is 

focus on the possible texture cache supports in the GPU.  

In the placement topic, motivated by the related work proposed in [4], we will propose 

the new texture placement algorithm by using the recursive concept. The new placement is 

called Recursive Z placement, and can be viewed as multi-level row-major placement which 

is extended from 4D/6D placement. Later on, we will try to further improve the RZ placement 

in term of the continuousness of required texels with in a cache line. We have two main ideas. 

The first one is motivated from shape. We can try another shape instead of Z shape. The other 

is motivated from tile size. We can try larger base tile size instead of 2*2 to gain more 

continuousness. 

After we have the placement, we should develop the address translation idea of these 

placements. The idea should be easy. And the logic should also easy to implement. It may use 

bit-wise logic operations to accomplish the translation. 

In the possible texture cache support topic, we list three possible texture cache supports 

in current GPU architecture which are baseline texture cache support, texture cache support1 

and texture cache support2. The baseline texture cache support and texture cache support 1 

are common in current texture cache. And our design is focus on texture cache support 2 

which can retrieve the required texels of bilinear filtering in the same cache line. 
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3.2 Texture placement 

In the section, we will design the new placement algorithm. That is how to place the 

texture in the texture memory. The new placement algorithm will be design in three aspects 

which are cache hit rate, average cache access counts and address translation time. Finally, we 

will propose a possible logic implementation for the address translation idea.  

 

3.2.1 Recursive Z placement (RZ) 

Our new placement is called Recursive Z placement. The placement strategy is placing 

the texel in the recursive z scan line, as shown in figure 3-2-1-1. In the term of iteration, we 

have the base case (1*1) which only invokes one texel. The next case (2*2) is iteratively 

integrated with the four previous cases by using Z shape placement Recursive Z can also be 

viewed as multi-level row-major placement which is extended from 4D/6D placement 

proposed in [4]. 

 
Figure 3-2-1-1 recursive z placement 

Since the required texels of bilinear filtering has spatial locality, that is bilinear filtering 

itself is a form of 2*2 region and the required texels of current bilinear filtering is close to the 

next one, tile-based placement can avoid placing texels continuously along one u/v direction, 

i.e. row-major/column-major, like Nonblock placement. Thus, the required texels of filtering 

may not be separated far away.   

RZ placement can also avoid row-major of inter-tile like 4D/6D placement. In figure 
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3-2-1-2, the required texels of filtering can be cross two/four tiles/Z in RZ/4D/6D. If we have 

four required texels, say A, RZ can place them more closely than inter-tile is row-major 

(4D/6D). B, C is the same, too. However, if we have D/E/F, RZ may be worse than 4D/6D 

placement. But, as mention before, filtering have spatial locality. We expect RZ placement 

have better cache performance in average.   

A B

C D

FE

A B

C D

E F

 
Figure 3-2-1-2 cross tile condition in RZ and 4D/6D 

RZ placement can also improve average cache access counts compare to the 4D/6D 

placement. For a given cache line size, RZ placement can fit those texels which are in that 

cache line size into the square-liked region. But, row-major of inter-tile may fit them into the 

rectangular-liked region. In figure 3-2-1-3, if we have cache line size is cable of 4 tiles/Z, we 

will not cross another cache line when access A or B texels in RZ placement. But, it may will 

in 4D/6D placement. 

A B

C D

E F

 

Figure 3-2-1-3 multiple cache lines condition in RZ and 4D/6D 
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3.2.2 Different placement policies  

Under some texture cache system with burst mode technology support, texture cache 

support1, it may retrieve the required texels of bilinear filtering in one cache access if they are 

all continuous. It can be done by sending the start address of the required texels and the data 

offset for the required texels in continuousness. If they are discontinuous, the cache may not 

retrieve them in one cache access. Thus, the consideration of continuousness is also 

important. 

 

3.2.2.1 Recursive Z with U (RZU) 

Although the required four texels within a base 2*2 Z-shape and 2*2 u-shape are all 

continuousness, if the required texels are crossing two z or two u in horizontal/vertical, 

U-shape could be potentially have more benefits than z-shape. This is because the U shape 

has three directions of continuousness benefits. But the z-shape only has two. Thus, we may 

change the z-shape to the u-shape.  

0 3

1 2

4 6

5 7

8 11

9 10

12 14

13 15
 

Figure 3-2-2-1-1 Recursive Z with U placement 

 

RZU placement is obtained by changing the 2*2 Z-shape to 2*2 u-shape as shown in 

figure 3-2-2-1-1. And the placement policy between 2*2 tile is the same as RZ placement. It is 

also the multi-level tile-based like RZ placement. Thus, we expect the cache hit rate is equal 

to RZ placement under three kinds of cache support.  

By changing z-shape to u-shape, we may have the required four texels of bilinear 

filtering as shown the red circle in figure 3-2-2-1-1 continuous, but may texels 1/2/8/11 
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discontinuous. But, in average, we may improve the average cache access counts under 

texture cache support 1. However, the average cache access counts may equal to RZ in texture 

cache support 2. 

 

3.2.2.2 Recursive Z with Flipped-U (RZFU) 

We can further improve the RZU by flipping the lower U over in order to have the 

bottom of the upper and lower U edge to edge, as shown as red circle in figure 3-2-2-2-1. 

However, we may have texels covered by blue circle discontinuous as shown in figure 

3-2-2-2-1. And we can also try to flip the upper two U over as shown in figure 3-2-2-2-2. 

However, by doing this, we may have some required texels discontinuous. 

 

Figure 3-2-2-2-1 Recursive Z with Flipped-U v1 

 

1 2

0 3

5 6

4 7

8 11

9 10

12 15

13 14
 

Figure 3-2-2-2-2 Recursive Z with Flipped-U v2 

RZFU1/2 placement can also be viewed as the multi-level tile-based like RZ placement. 

Thus, we expect the cache hit rate is equal to RZ placement under three kinds of cache 

support. Whether the average cache access counts under texture cache support 1 of RZFU1 is 

better than RZFU2 may dependent on the probability. If the required four texels are always 
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happen to red circle in figure 3-2-2-2-1, the RZFU1 could be better. If the required four texels 

are always happen to blue circle in figure 3-2-2-2-2, the RZFU2 could be better. The average 

cache access counts may equal to RZ in texture cache support 2.  

 

3.2.2.3 Recursive Z with Snake (RZS) 

In section of 3-2-2-1 and 3-2-2-2, we improve the RZ placement by changing z-shape to 

u-shape. In this section, we improve the RZ placement by changing base 2*2 tile size to larger 

n*n tile size. We found that the larger tile size we choose, the probability of required four 

texels of bilinear filtering crossing two/four tiles is lower. If the required four texels of 

bilinear filtering cross two/four tiles, the discontinuous may occur. Another reason for larger 

tile size is that we have more placement policy within the larger tile size. 

We propose a new placement, called Recursive Z with snake. The snaked-tile can be 

viewed as row-major instead the direction of odd row and we take 4*4 snaked tile size as 

example shown in figure 3-2-2-3-1. And the placement policy between 4*4 snaked-tile is also 

the same as RZ placement. 

 
Figure 3-2-2-3-1 Recursive Z with Snake placement 

 

However, we can not increase our base tile size unlimited. The larger snaked tile size we 

have, the placement within that tile is more like Nonblock placement. The spatial locality of 

required four texels of bilinear filtering may decrease. Thus, it may affect cache hit rate.  
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3.2.3 Address translation idea of RZ 

The address translation can be viewed as a translation function with inputs, 

and generates the output, , , , ,m n U V B A , which are dimension of texture’s width and 

texture’s height, u coordinate, v coordinate, base address of the texture and the translated 

address as defined in figure 3-2-2-1. So, we are going to find a RZ function which is 

( , , , , )A RZ m n U V B=  

Texture's width is 2 2 , ,
Texture's height is 2 2 ,
The u-coordinate is ,  0
The v-coordinate is ,  0
The translated address is 2
The base address of texture is 2

m d

n d

s

s

Wn m d N
Hn n N
U U Wn
V V Hn

A
B

= ≤ ∈

= ≤ ∈
≤ ≤
≤ ≤

≤

≤
 

Figure 3-2-2-1 definition of terms 

There are three cases in RZ, which are m equal to n, m smaller than n, and m larger than 

n, respectively. However, the main concept of these cases is the same, that is recursive 

translation.  

The first case is m equal to n, that is texture’s width is equal to texture’s height. As 

shown in Figure 3-2-2-2, the base case only invokes one texel, and the translated address 

.  A is 0

0A = 1 0 0 0A a a v u= =

0u
0v 0 1

0

1

3 2 1 0 1 1 0 0A a a a a v u v u= =

1 0u u
1 0v v 00 01 10 11

00

01

10

11

1 0 0 0a a v u=

0u
0v 0 1 0 1

0

1

0

1

3 2 1 1a a v u=

1u
1v 0 0 1 1

0

0

1

1

Base case iteration IIiteration I Most significant 2 bitsLeast significant 2 bits  
Figure 3-2-2-2 the case I of address translation

In iteration I, the translated address, , could be found by using Karnaugh Map. Thus 1 0a a
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0v1 0a a could be , which and are the least significant bit of U and V, respectively. 0 0v u 0u

 In iteration II, we first focus on the least significant 2 bits of each translated address. And 

we found that each of the bit pattern in dotted rectangle is corresponding to the bit patterns 

found in the iteration I. Thus, we can suggest that the least significant 2 bits of translated 

address in iteration II may equal the bit pattern in iteration I, that is . 0 0v u

 We now look at the most significant 2 bits of each translated address. And we can also 

use Karnaugh Map to translate . The result shows that 3 2a a 3 2 1 1a a v u= . So the translated 

address of iteration II, .The bit pattern can be view as the form which is 

iteratively cross interleaving each u and v coordinate bit, respectively. In the term of recursive 

concept, the translated address bit pattern of base case is the subset in iteration I. And the 

translated address bit pattern of iteration I is also the subset in the iteration II, iteration II is 

the subset in iteration III, etc.  

3 2 1 0 1 1 0 0 is a a a a v u v u

Now, we can suppose that when the texture is 8 by 8, the translated address  

is  by cross interleaving each least significant 3 bits of u and v coordinate.  

5 4 3 2 1 0a a a a a a

2 2 1 1 0 0v u v u v u

2

2

Example: (3,3,4,7, )
  3
  4 100
  7 111

Rz B
m n
U
V

= =
= =
= =

U
V
=
=

'A = 1 1 1 0 1 0

1 0 0
1 1 1

4
7

=
=

( ' 2)A A B= << +
 

Figure 3-2-2-3 example of address translation case I. 

For example, since we are going to translate the pair of (4, 7), all we need to do is cross 

interleaving each least significant 3 bits of u and v coordinate, respectively. In figure 3-2-2-3, 

the result of cross interleaving is 58. 

However, texture filtering may sample the texture with n by m dimension which is not 

equal , but is power of 2, respectively. The translation idea mentioned before may need to 
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modify slightly. In figure 3-2-2-4, the texture’s width is larger than texture’s height. This is 

. In the case, since texture’s height is shorter than texture’s width, for any texel, we do 

not have enough v-coordinate bits to cross interleave with u-coordinate bits. On the other 

words, after perform cross interleaving, some u-coordinate bits are left. These left bits should 

be followed by the cross interleaved result, in order to obtain the correct translated address. 

m n>

0010

3 2 1 0 2 1 0 0A a a a a u u v u= =

0011

1000 1001

2 1 0u u u
0v 000 001

0000 0001 0101

0111

1101

1010 1011

0100 1100

0110 11111110

010 011

0

1

iteration II

100 101 110 111

0

0A =

00

1 0 0 0A a a v u= =

01

10 11

0u
0v 0 1

0

1

Base case iteration I

10

1 0 0 0a a v u=

11

00 01

0u
0v 0 1

00 01 01

11

01

10 11 11

00

10

00

10

0 1

0

1

0 1 0 1

Least significant 2 bits

00

3 2 2 1a a a u u=

00

10 10

2 1u u
00 00
00 00 01

01

11

10 10

01 11

01 1111

01 01 10 10 11 11

Most significant 2 bits  

Figure 3-2-2-4 the case II of address translation 

 

In figure 3-2-2-4, we have 3 u-coordinate bits and 1 v-coordinate bit to cross interleave 

for translated address. After cross interleaving, we have a part of translated address  

equal to . However, the translated address should have four bits to index the required 

texel. The part of address, , we do not assign them yet. So, we focus on the most 

significant 2 bits of the translated address. The bit pattern of each texel is exactly the same as 

the unused 2 u-coordinate bits, . 

1 0a a

0 0v u

3 2a a

2 1u u
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U
V
=
=

'A = 1 11 0 10

9
3

=
=

( ' 2)A A B= << +

1 100
1 1

2

2

Example: (4,2,9,3, )
  
  9 1001
  3 0011

Rz B
m n
U
V

>
= =
= =

 
Figure 3-2-2-5 example of address translation case II 

 

For example, since we are going to translate the pair of (9, 3) and m is larger than n, we 

should need to cross interleave 2 bits of u and v, respectively. And the left 2 bits, , should 

be followed by the cross interleaved result. In figure 3-2-2-5, the result of cross interleaving is 

43. 

3 2u u

The conclusion is that, when the texture’s dimension is not equal, the cross interleaving 

is still work, but the remaining coordinate bits should be followed by the cross interleaved 

result. In this case, the two bits should be followed by the cross interleaved result in order to 

obtain the correct translated address. 

Moreover, in terms of recursive concept, the inequality of two dimensions means 

incompletely recursive texture. The iteration of placement will break when the short side is 

met. So, the recursive bit pattern will be limited when the coordinate bits of shorter side is 

exhausted.   

The final case is shown in figure 3-2-2-6. That is texture’s width is smaller than texture’s 

height. After we cross interleave them, the left v-coordinate bits, , should be followed by 

the cross interleaved result, say , in order to obtain the correct translated address. 

2 1v v

0 0v u
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0A = 1 0 0 0A a a v u= =

0u
0v 0 1

0

1

Base case iteration I

3 2 1 0 2 1 0 0A a a a a v v v u= =

iteration II

0u
2 1 0v v v 0 1

000

001

010

011

100

101

110

111

2 1 0v v v

00

00

01

01

10

10

11

11

0u
0v 0 1

0

1

0

1

0

1

0

1

1 0 0 0a a v u= 3 2 2 1a a v v=

Least significant 2 bits Most significant 2 bits  

Figure 3-2-2-6 the case III of address translation 

 

2

2

Example: (2,4,3,9, )
  
  3 11
  9 1001

Rz B
m n
U
V

<
= =
= =

V
U
=
=

'A = 1 110 10

9
3

=
=

( ' 2)A A B= << +

1 0 10
11

 
Figure 3-2-2-7 example of address translation case III 

 

For example, since we are going to translate the pair of (3, 9) and m is larger than n, we 

should need to cross interleave 2 bits of u and v, respectively. And the left 2 bits, , should 

be followed by the cross interleaved result. In figure 3-2-2-7, the result of cross interleaving is 

39. 

3 2v v

So far as here, the translated address mentioned before is not the final address we are 

going to use. This is because we did not take base address of the texture as a consideration. So 

the translated address will be added with base address and be left shifted 2 bits for 4 bytes a 

texel. Final address is ( ' 2)A B<< +     

Finally, we have a figure 3-2-2-8 to summarize the address translation idea under three 
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cases. 

1 1 2 2 1 1 0 0

1 2 1 1 1 1 1 0 0

1 2 1 1 1 1 1 0

Address translation of Recursive Z :
case I ( , )
   '

case II ( , )
   '

case III ( , )
   '

r r r r

m m m m n n

n n n n m m

Wn Hn m n r
A v u v u v u v u

Wn Hn m n
A u u u u v u v u v u

Wn Hn m n
A v v v v v u v u v

− − − −

− − + − −

− − + − −

= = =
=

> >
=

< <
=

"

" "

" " 0

Final address ( ' 2) ,  for one texel is 4 bytes
Thus we have address translation function ( , , , , )

u

A A B
A Rz m n U V B

= << +
=

 

Figure 3-2-2-8 summary of RZ address translation function 

 
 
 
 

3.2.4 Address translation of other placements 

Since the inter-tile placement policy of RZU, RZFU1/2 and RZS is identical to the 

Recursive Z placement, the difference of address translation among these placements could be 

the least significant bits. We summarize a table to list the difference of translated address bit 

pattern among these placements. 

Recursive Z Recursive Z with U

3a

2a

0a

1a

0u

0v

1u

1v

Recursive Z with Snake

0u

0 0v u⊕

1u

1v

0 1v u⊕

0 0v u⊕

0v

1v

Recursive Z with Flipped U 1/2

0u

0 0 1 0 0 1u v v u v v⊕ ⊕ ⊕ ⊕

1u

1v

 

Table 3-2-4-1 Summary of least significant four bits of address among placements 
 

3.2.5 Address translation logic implementation 

Since texture mapping is a time consuming operation in current graphic processing unit, 

the new address placement’s algorithm should not take too much time to obtain the required 



 

 - 30 -

address. In [4], the address translation time of Nonblock and 4D and 6D may take long time 

to translate, since they may invoke arithmetic operations, such add operation, and the 

propagation path in add operation may up to 32 bits or 64 bits, due to texture address is 32 

bits of 64 bits and hardware implementation of Adder. We are going to use bit-wise logic 

operations to translate the address, Since there is the regularity in the Recursive Z. And we 

expect that the address translation time is short.  

In the pervious section, no matter what translation case it is, the translated address can be 

viewed as combination of common address field and differential address field, as shown in 

figure 3-2-5-1. The common field only invokes the bit pattern which is cross interleaved form 

some bit toggles of U and V coordinate. And the Differential field invokes only U or V 

coordinates or simply zero. The combination invokes bit-wise OR operations.  

1 1 1 1 0 0

1 1 1 1 0 0

1 2 1

 differential field :            0
    common field : 
                             

 differential field :              0
    common field :             0 

r r

r r

m m n n

v u v u v u
v u v u v u

u u u u

− −

− −

− − +

"
"

"

1 1 1 1 0 0

1 2 1 1 1 1 1 0 0

1 2 1

1 1 1 1 0

           
                             

 differential field :              0
    common field :             0            

n n

m m n n n n

n n m m

m m

v u v u v u
u u u u v u v u v u

u u u u
v u v u v u

− −

− − + − −

− − +

− −

"
" "

"
" 0

1 2 1 1 1 1 1 0 0                             n n m m m mu u u u v u v u v u− − + − −" "

Bit-wise OR

Bit-wise OR

Case I ( )m n r= =

Case III ( )m n<

Case II ( )m n>

Bit-wise OR

 

Figure 3-2-5-1 concept of address translation unit 

The address translation unit can be roughly divided into three parts based on the concept 

of combination mentioned in figure 3-2-5-1, which are common field generator, differential 

field generator and additional operations as shown in figure 3-2-5-2.   
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'A
the translated 
address

coordinate and 
other information

 

Figure 3-2-5-2 global view of address translation logic 

Common field generator is responsible for the generation of the bit pattern by cross 

interleaving some bit toggles of each coordinate. Differential field generator is responsible for 

the generation of the bit pattern by concatenating the bit toggles which are not cross 

interleaved. The obtained two filed are then combined by bit-wise OR operations. Finally, the 

additional operations are responsible for left shift and add the base address. 

In common field generator, what we concern about is how many least significant bit 

toggles of each U, V coordinate should we cross interleave? Intuitively, by comparing m with 

n and choosing the smaller one, we have the number of bit toggles that should be cross 

interleaved of each coordinate. For example, if m=7 and n=3, there are three least significant 

bit toggles of each coordinate we should cross interleave. As a result, the common field 

generator could have a compare and select logic as shown in figure 3-2-5-3 and a flexible 

cross interleaving logic which can perform cross interleaving operation under any number of 

least significant bit toggles.  

Comparator
?1:0m n≥

m

n

4

4

4 4

m n

0 1
mux 4

 

Figure 3-2-5-3 compare and select logic 

The compare and select logic is the comparator combined with a 2 to 1 mux. The logic 

can tell us the smaller one, say m or n. Thus, we know how many bit toggles we should cross 

interleave. And the result is passed to the flexible cross interleaving logic. It could be 



 

 - 32 -

0 0

implemented in a form of mux. However, the mux can be the critical path in common field 

generator. How about use the concept of integration by smaller and unique cell to implement 

the common field generator? If we can design a cell which can cross interleave the two inputs, 

one bit toggle from U and the other from V, by a control signal, we can concatenate many of 

them of form our the common field generator.  

The control signal for each cell is generated through an encoder which can encode the 

output from compare and select logic, i.e. if we have the output form compare and select logic, 

say 3, that is we should cross interleave least significant three bits form U and V, thus the 

encoder will generate the enable bit pattern, . Based on the enable bit pattern, we should 

cross interleave from each significant three bit toggles of U and V, i.e. and .  

2111

2u u∼ 2v v∼

nunv

nc1nc +

Ci

nmv nmu

1

1

If 1
    
else
   00

n n n n

n n

ci
c c v u

c c

+

+

=
=

=

 
Figure 3-2-5-3 one cell of common field generator 

Figure 3-2-5-3 represents the one cell of common field generator. The control signal, , 

is from the corresponding bit position in enable bit pattern. Figure 3-2-3-4 shows the common 

field generator which is obtained by integrating n cells. 

Ei

""

0c1c

0u0v

2c3c

1u1v

2 4nc −2 3nc −

1nu −1nv −

2 2nc −2 1nc −

nunv
nE 1nE − 1E 0E

cross interleave

 

Figure 3-2-5-4 common field generator with n cells 
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The differential field generator is responsible for generation the differential field of the 

translated address under any given m and n. For example, if we have m=7 and n=3, the 

differential field can be obtained by setting bit toggles  to zero and left shifting 3 bits, 

like . 

2 1 0u u u

5 4 3000000u u u"

So what we concern about is the differential field is from most significant bit toggles of 

U or V and How many bit toggles will be used and their bit position? Since we have known 

who the smaller one is(m or n), by using the result, we can select the desired coordinate 

. And we also have the enable bit pattern generated from the encoder.  (m n?U:V)≥

Thus, we can use the information to generate the differential field. In figure 3-2-5-5, the 

comparison result is used to select the desired coordinate (U or V) by using another 2 to 1 

mux. After that the selected result, say A and the result from enable encoder, say B, is passed 

to the Bit filter. It can set the unnecessary bit field of B to zero. Finally, the left shifter can 

left shift any number of bit of  based on the smaller one value of m or n . 'B

enable 
encoder

16 16

v u

0 1

4 4

m n

0 1

mux
Bit filter
B&(~A)

16 32
differential field

B

A

exten c to 32 bits
and left shift  bitsx

x
4

16

16
c

Comparator
?1:0m n≥

m

n

4

4 mux 4

 

Figure 3-2-5-5 differential field generator 

For example, if we still have m=7 and n=3, the input A, B to the bit filter is coordinate U 

and bit pattern  form enable encoder. The bit filter will filter out the least three 

significant bit of coordinate U. the left shift will left shift 3 bits based on the pattern . 

The differential field could be like .  

2111

2111

5 4 3000000u u u"



 

 - 34 -

 

3.3 Three possible texture cache supports 

Although, the average texels access time of bilinear filtering is affected by the texture 

placement, it is also affected by the hardware design (texture unit/texture cache). We have 

three possible texture cache supports in different hardware cost. And each of them has 

different texels retrieval capability.     

3.3.1 Baseline texture cache support 

The baseline texture cache support is straightforward. The texture cache can retrieve one 

required texel data with a address request. In this kind of system, only the address translation 

time and texture cache miss rate will affect the average texels access time of bilinear filtering. 

This is because every address request can only retrieve one texel data to the texture filter. 

Thus, average cache access counts of bilinear filtering are always four.  

3.3.2 Texture cache support 1 

 The texture cache support 1 is a common texture cache with burst mode support. The 

burst mode technique is done by sending a start address and the maximum required data offset; 

the receiver can get the required data as soon as possible. Since the required texels of bilinear 

filtering are four, the maximum data offset length is 16 bytes. In the other words, if the 

required texels are adjacent to each other within a cache line, the cache can retrieve all of the 

required texels in one cache access. Under the texture cache support, the average cache access 

counts may affected by whether the required four texels are adjacent to each other.  

3.3.3 Texture cache support 2 

Since the required texels of bilinear filtering could be potentially in the same cache line, 

for those texels in the same cache line, we can retrieve them in one cache access no matter 

whether they are continuous or not. This kind of texture cache support is more flexible than 

the previous one. Thus, we can retrieve more required texels in one cache access. However, 

for those texels are not in the current been accessed cache line, we still have another cache 
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access to get them. 

3.3.3.1 Possible design of texture cache support2  

Base on the concept mentioned in 3.3.3, we need case identifier, texels router and the 

modified coordinate generator to accomplish the task.(Shown in figure 3-3-3-1-1) Each of 

them is describe in the following sections.  

n n

(A,case#,
LSB[u ],LSB[v ])

1 1(m,n,u ,v ,B) 

case #

Texture unit

coordinate
generator

cases identifier

texture filter

n n(m,n,u ,v ,B) Address
translation 
unit

1 1(u ,v ) 

Texture cache

cache line  buffer

address
low order 
bits of 
coordinate
and case #

mux1 mux2 mux3 mux4

2-4 decoder

E1E2E3E4

offset2
offset3
offset4

E1 E2 E3 E4

offset1 offset2 offset3 offset4

case #

texel4texel3texel2texel1

offset
generator

 

Figure 3-3-3-1-1 Texture cache support 2 

3.3.3.1.1 Case identifier 
Since the required texels of bilinear filtering is a form of 2 by 2 texels, these four texels 

can be potentially in one, two, four cache lines. We can identify the case condition through 

coordinate , as shown in figure 3-3-3-1-1. In figure 3-3-3-1-1, w supposes that cache 

line size is 64bytes (16 texels) and the condition can be roughly classified into 4 types. 

1 1( , )u v

Case I is the required texels are fall into a single cache line. Case II is two of the required 

texels in the row are fall into a cache line, and the other two are fall into another cache line. 

Case III is two of the required texels in the column are fall into a cache line, and the other two 

are fall into another cache line. Case IV is four required texels are in different cache lines. 

case III case IVcase II

cache line with 16 texels

case I

the required texels 
of bilinear filtering

1 1(u ,v ) 1 1(u +1,v )

1 1(u ,v +1) 1 1(u +1,v +1)
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Figure 3-3-3-1-1-1 multiple cache lines conditions 

 Since we know the placement algorithm and cache configuration, i.e. RZ placement, 

cache line size, the case condition can be obtained though identification of coordinate . 

The identification is easy and straightforward. If we have RZ placement and cache line size is 

16 texels, the 16 texels can be shown as the 16 white squares in the figure 3-3-3-1-1-1. We 

can partition the 16 texels into 4 regions; say A, B, C and D, as shown in figure 3-3-3-1-1-1. 

1 1( , )u v

1 1

1 1

1 1

f (u %3 0 and v %3 0)
    case IV
else if (u %3 0 and v %3 0) 
    case III
else if (u %3 0 and v %3 0)
    case II
else 
    case I

i = =

= ≠

≠ =

(1,0)(0,0)

(0,1) (1,1)

(2,0) (3,0)

(2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,3) (1,3) (2,3)

A B

(3,3)

assume cache line size is 64 bytes (16 texels)

C D

 
Figure 3-3-3-1-1-2 operation of case identifier 

If the  is fall into region A, the other three coordinates will also in the same 

cache line. Thus it could be case I, all required texels are in the same cache lines. If the 

 is fall into region B, it is the case III, two texels in the column are in the same cache 

line, the other two texels are in the other cache line. The worst case is  fall into region 

D; all required texels are in different cache lines.  

1 1( , )u v

1 1( , )u v

1 1( , )u v

The identification algorithm is shown in the figure 3-3-3-1-1-2. If both  and  mod 

3 are equal to 0, region D. If  but not  mod 3 are equal to 0, region B. If not  but  

mod 3 are equal to 0, region B. If neither  nor  mod 3 are equal to 0, region A. The 

mod operation can be implemented through Bit-wise logic AND operation of two lower order 

bits of coordinate  and , i.e.  mod 3 is equal to 0 can be implemented through the 

1u 1v

1u 1v 1u 1v

1u 1v

1u 1v 1u
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result of AND  and  is equal to 0. Thus all we need is low order two bits of coordinate 

 and  to identify the case conditions. Since we have total four cases, we can encode the 

cases by using 2 bits signal. 00 means case I. 01 means case II. 10 means case III. 11means 

case IV. 

1
1u 1

0u

1u 1v

However, the texture dimension can be any magnitude of power of two. That is the 

texture height/width can be smaller or equal to 2. In these cases, the 16 texels which are in the 

cache line will not be square-like region any more in the texture. It could be the rectangular 

with narrow width or wider height dimension. As a result, the identification algorithm in 

figure 3-3-3-1-1-2 should be modified. The values A, B which is the magnitude  mod A 

and  mod B in figure 3-3-3-1-1-2 should be changed based on the texture dimension.  

1u

1v

In the original, the 16 texels are in the 4*4 rectangular, the magnitude of A should be 3, 

and B should be 3, as shown in figure 3-3-3-1-1-2. However, if the texels are in a form of 

16*1 rectangular, A should be 15, B should be 0. If they are in a form of 1*16 rectangular, A 

should be 0, A should be 15. If 8*2, A should be 7, B should be 1. If 2*8, A should be 1, A 

should be 7.  

 

Thus we have the prefix operation which can tell the case identifier what the magnitude 

of A and B should the identifier use. And there are five cases if cache line size is 64 bytes 

(16texels). Which are corresponding to 4*4, 8*2, 2*8, 16*1 and 1*16 rectangular. The 

classification can be done through the m, n which is power of width and height, respectively. 

By comparing m and n, we know the case and can enable one of the five enable signals. And 

the enabled case can perform future case identification based on the coordinate . The 

overview of case identifier can be shown in figure 3-3-3-1-1-3. 

1 1( , )u v
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case identifier of 4*4

case identifier of 8*2

case identifier of 16*1

case identifier of 1*16

case identifier of 2*8

enable

enable

enable

enable

enable

2 1 0 0( , )u u u v

1 0 1 0( , )u u v v

0 2 1 0( , )u v v v

3 2 1 0( )u u u u

3 2 1 0( )v v v v

enable of 4*4

enable of 8*2

enable of 2*8

enable of 16*1

enable of 1*16

3 2 1 0 3 2 1 0( , )u u u u v v v v

m

n region 
identifier

OR and encode

0s

1s

# 2
# 3
# 4

# 1

# 2
# 3
# 4

# 1

# 2
# 3
# 4

# 1

# 2
# 3
# 4

# 1

# 2
# 3
# 4

# 1

 

Figure 3-3-3-1-1-3 overview of case identifier 

 
3.3.3.1.2 Coordinate generator 
 The coordinate generator is responsible for generate the required coordinates based on 

the filtering types and one of the coordinate, say . Since the required texels of filtering 

can be potentially in the same cache line, we can only generate the coordinate of explicit 

texels. For those implicit texels, we choose not to generate them, i.e. if we have case I, we 

only generate coordinate  as explicit texel, for the other three texels, say 

, ( ,  and , can be viewed as implicit texels and not to generate 

these coordinates. 

1 1( , )u v

1 1( , )u v

1 1( 1, )u v+ 1 1 1)u v + )1 1( 1, 1u v+ +

We modified the original coordinate generator. As a result, the generator can generate the 

coordinates based on the case condition obtained from the case identifier. Based on these 

cases, the generator may generate one, two or four coordinate pairs. The obtained coordinates 
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)

are then sending to the queue for further address translation.  

The algorithm of coordinate generator is shown in figure 3-3-3-1-2-1. In figure 

3-3-3-1-2-1, if we have case I, the generator will do nothing but the original coordinate 

. If case II, the generator will generate the other coordinate . If case III, it 

will generate the other coordinate 

1 1( , )u v 1 1( , 1)u v +

1 1( 1,u v+ . If case IV, it will generate the other three 

coordinates , and1 1( 1,u v+ ) )1 1( , 1)u v + 1 1( 1, 1u v+ + . 

1 1

1 1

1 1

f (caseI)
    need coordinate (u ,v )                                  
else if (case II) 
    need coordinate (u ,v ) 
                              (u ,v +1)   
else if (case III)
    need coordinate (u

i

1 1

1 1

1 1

1 1

1 1

1

,v )
                              (u +1,v )
else //case IV
    need coordinate (u ,v )
                              (u ,v +1)
                              (u +1,v )
                              (u +1,v1+1)
 

( , )u v ( 1, )u v+

( , 1)u v + ( 1, 1)u v+ +

 

Figure 3-3-3-1-2-1 operation of coordinate generator 

 

3.3.3.1.3 Texels router 
In order to retrieve those implicit texels, we need to generate extra information to notify 

the cache to retrieve them back to the texture filter in one time of cache access. Thus we have 

texels selector and offset generator to accomplish the task, as shown in figure 3-3-3-1-3-1. For 

those implicit texels, offset generator will generate the corresponding offset field of those 

texels in the same cache line. These offsets information will be sent to the texels selector for 

further selection. 

Texels selector is worked as four independent muxs, i.e. mux1, mux2, mux3, mux4, as 

shown in figure 3-3-3-1-3-1. Each of them is responsible for selecting the desired texel from 

the cache line buffer based on the offset field and enable signal. The offset fields are 
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generated from the offset generator which is based on the case condition and low order bits of 

coordinate of the explicit texel. And the enable signal of each mux is from enable generator. 

The line buffer size is based on the cache line size and the input of the mux is line buffer size 

divided by four for one texel is four bytes. Thus the delay of texels selector is dependent on 

the mux. We show the Mux delay in Appendix A.1 

Texture cacheaddress

cache line buffer
low order 
bits of 
coordinate
and case #

mux1 mux2 mux3 mux4

enable generator

E1E2E3E4

offset2
offset3
offset4

E1 E2 E3 E4

offset1 offset2 offset3 offset4

case # Texel router

offset
generator

texel4texel3texel2texel1

 

Figure 3-3-3-1-3-1 texels router 

The offset generator is responsible for extra information. This information is used to 

notify the texels selector to select the implicit texels. The input to the offset generator is case 

number, low order bits of coordinate of explicit texels and region case number. For example, 

if we have case one with coordinate (1,1) of explicit texel, the offset generator will generate 

the other three offsets, 6, 9, 12 which are correspond to coordinates (1,2), (2,1) and (2,2).  

As shown in figure 3-3-3-1-3-2, if case I, we will generate the offset2, offset3 and offset4 

which is sending to the mux2, mux3 and mux4. And the offset1 is implicit in the texture 

address. If case II, we will generate offset2. if case III, we will generate offset3. if case IV, the 

output of offset generator are don’t care.  



 

 - 41 -

if (case I) 
   generate  offset2, offset3, offset4

else if (case II) 
    generate  offset2
else if (case III)
    generate  offset3
else // case IV
    do nothing

1 1( , )u v 1 1( 1, )u v+

1 1( , 1)u v + 1 1( 1, 1)u v+ +

 

Figure 3-3-3-1-3-2 operation of offset generator 

 The Boolean equation of offset2/3/4 can be obtained by using Karnaugh Map. As shown 

in figure 3-3-3-1-3-3, offset2 can be obtained through low order bits of coordinate of explicit 

texels, say  under cache line size is 16 texels and fitted in 4*4 square-liked region. 

If we have explicit the texel of coordinate , the offset2 should be the 1, If we have 

coordinate , the offset2 should be the 3. If we have coordinate , the offse2 should be 

6. After we have enumerated all the cases from to , a Karnaugh Map can be 

obtained like in figure 3-3-3-1-3-3. Thus, we have the Boolean equation of offset2 shown in 

the figure. 

1 0 1 0( ,u u v v )

(0,0)

(0,1) (1,1)

(0,0) (3,3)

1 0u u
1 0v v

00 01 10 11

00

01

10

11

offset2

1 1 0 0 0offset2=    v u u v u⊕

 

Figure 3-3-3-1-3-3 Boolean equation of offset2 

However, the 16 texels which are in the same cache line may be fitted into the 

8*2/2*8/16*1/1*16 rectangular-liked region due to the dimension of the texture. We can use 

the same methodology to obtain the Boolean equations for them. We summarize a table to 

enumerate the Boolean equations in table 3-3-3-1-3-1. 

The enable generator is responsible for enable signal of column mux selector. Inputs are 
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case conditions and outputs are enable signals to the corresponding mux. As shown in figure 

3-3-3-1-3-4, if case I, enable 1 is set. If it is case II, enable 2/3 is set. If it is case III, enable 

1/3 is set. If it is case IV, enable 1/2/3/4 is set. 

offset4

offset3

offset2

4*4 region 8*2 region 2*8 region

16*1 region 1*16 region

1 0 1 0 0 0   v v u u v u⊕ ⊕

1 0 1 0 0   v v u v u⊕

1 1 0 0 0   v u u v u⊕ 1 2 0 1 2 1 0 0 0( )    u u u u u u u v u⊕ + ⊕

2 1 0 0 u u v u

1 2 0 1 2 1 0 0 0( )    u u u u u u u v u⊕ + ⊕

2 1 0 0   v v v u

1 2 0 1 2 1 0 0 0( )    v v v v v v v v u⊕ + ⊕

1 2 0 1 2 1 0 0 0( )    v v v v v v v v u⊕ + ⊕

3 2 1 0 3 2 1 0

2 1 0 2 0 1 1 0 0

( )+  

( ) ( )     

u u u u u u u u

u u u u u u u u u

+ +

+ + ⊕

3 2 1 0 3 2 1 0

2 1 0 2 0 1 1 0 0

( )+  

( ) ( )     

v v v v v v v v

v v v v v v v v v

+ +

+ + ⊕

offset4

offset3

offset2

 
Table 3-3-3-1-3-1Boolean equation of offset field 
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Figure 3-3-3-1-3-4 Boolean equation of enable signal 
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Chapter 4 Experiment and Results

4.1 experiment goal, environment and methodology 

We are going to know the average texels access time of bilinear filtering under three 

different possible texture cache supports mentioned in section 3.3. That is how many 

performance improvements we have under three different kinds of texture cache support.  

We trace the texture coordinate pattern form the Alila simulator which is proposed in 

[10]. The simulator architecture is based on the design of ATI GPU’s architecture and support 

OpenGL based benchmarks, i.e. Doom3[19], Quake4[20], the 3-D based computer games. 

The texture coordinate pattern is recorded in the file when the Atila is rendering frames of the 

Doom3/Quake4. The screen resolution we have could be 640*480/1240*1028/1600*1200 

pixels. 

After we have the trace, we also implement the L1 texture cache and the pipelined 

address translation unit which are referenced from ATI GPU architecture environment [10]. 

The input to the simulator we implement is the trace we obtain mentioned before. Thus, we 

can obtain the cache hit rate, average cache access counts and average texels access time of 

bilinear filtering under three different kinds of texture cache support. 

The configuration of L1 texture cache is referenced from research [7]. In [7], they say 

direct mapping and 8K texture cache is sufficient to cache the required texels of bilinear 

filtering. If the cache misses, the system will stall and we use a linear equation to describe the 

miss penalty: Miss penalty = constant + (cache line size) / (bus width between texture cache 

and texture memory) * (cycle/per byte). And we have the constant is 100 cycles and bus width 

between texture cache and memory is 8 bytes which is a common configuration in the current 

GPU architecture.  
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For the address translation unit design of related work and RZ-based placements, we use 

Verilog [17] to describe the equation proposed in [4] and designs in section 3-2. And we use 

Max Plus II [16] to perform functional verification. Currently, most desktop graphic cards’ 

texture size does not exceeded in 4096 * 4096 texels. Thus, we select 16 bits for texture 

dimension and coordinate. And texture address is 32 bits for most GPU architecture. 

Moreover; In order to obtain the address translation time, we synthesize the address 

translation unit by Design compiler [18] and choose the TSMC 130nm technology as the 

parameter, since it is a reliable technology for many years and there are many consumer 

products of ATI and Nvidia using the technology. The clock rate using 130nm die processing 

technology can up to 400 MHz, as shown in appendix A.2. Thus, the cycle time could be 2.5 

ns. 

Finally, we assume that we can divide the address translation unit into stages perfectly 

according to the address translation time divided by cycle time and the address queue size 

between address translation unit and L1 texture cache is infinity. 

 

4.2 Experiment results 

In section 4.2.1, we obtain the time result of address translation of different placement 

algorithms, which include the Nonblock/4D/6D/RZ-based placements. In section 4.3.2, we 

show the result of the cache miss rate and average texels access time of bilinear filtering 

under baseline texture cache. In section 4.3.3 and 4.3.4, we show the result of the cache miss 

rate, average cache access counts and average texels access time of bilinear filtering under 

texture cache support1/2. 
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4.2.1 Results of address translation time 
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Figure 4-2-1-1 address translation time of different placements 

As shown in figure 4-2-1-1, the address translation time of RZ-based placement is better 

than address translation concept proposed in [4]. This is because their address translation 

concept is the summation of multi-level offsets instead of bit-wise logic operations, i.e. 

Bit-wise ADD, OR or Shifter.  

The difference of translated address bit pattern between RZU/RZFU and RZ or RZS and 

RZ placement could be only least significant two or three or four bits. Although these 

difference could be complicated than RZ placement, the address translation time spend on 

them can be hided by the critical path which is the time spend on generation of differential 

field address. Thus, the address translation time of RZU, RZFU and RZS is equal to RZ 

placement. 

 

4.2.2 Results under baseline texture cache 

In [4], they indicates that for a given cache line size, the lowest miss rate is happen to the 

placement algorithm which tile size is most fit the line size, i.e. tile size is 4 by 4 texels under 

cache line size is 64 bytes, and they also mention that the level one tile size of 6D placement 
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should fit the cache size. Thus, we have 4D4 and 6D32_4 placement as the configuration of 

related works. 4D4 means the 4D placement with tile size is 4 by 4 texels. 6D32_4 placement 

means level one tile size is 32 by 32 texels and level two tile size is 4 by 4 texels for the cache 

configuration. 
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Figure 4-2-2-1 miss rate in baseline texture cache 

In figure 4-2-2-1, the miss rate of 4D4 placement may even worse than Nonblock 

placement. This is because when the size which texture width multiply the tile width is 

multiple of cache size and cache line size is multiple of tile size and the required four texels of 

bilinear filtering are crossing over two adjacent vertical tiles or different four tiles as shown in 

figure 4-2-2-2, 4D placement will have serious conflict misses. However, 6D and 

Recursive-based placement can eliminate it  

Figure 4-2-2-1 shows that the miss rate of RZ-based placement is improved ~0.02% 

compare to 6D32_4 placement, ~1.18% compare to 4D4 placement and ~0.57%compare to 

Nonblock placement in the baseline texture cache support. 
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Figure 4-2-2-2 conflict miss under direct mapping with 4D placement 
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Figure 4-2-2-3 average texels access time of bilinear filtering in baseline texture cache 

support 

Figure 4-2-2-3 shows that the average texels access time of bilinear filtering of RZ-based 

placement is improved ~2% compare to 6D32_4 placement, ~101% compare to 4D4 

placement and ~49%compare to Nonblock placement under baseline texture cache support. 

 

4.2.3 Results under texture cache support 1 

Under texture cache support 1, the placement which places the required texels 

continuous in the same cache line can improve the average cache access counts. In figure 

4-2-3-1 shows that RZU can improve ~6% of average counts by changing z-shape to u-shape 
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and improve ~22% of average counts compare to RZ placement, ~8% of average counts 

compare to 4D/6D placement by using 4*4 snaked-tile size. However, Nonblock placement 

could be the best. This is because the required four texels of bilinear filtering are almost 

always two and two continuous and rarely discontinuous.  
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Figure 4-2-3-1 average cache access counts in texture cache support 1 

However, in figure 4-2-3-1, we only know the average cache access counts. We don’t 

know how many portion of the average counts is cache miss and how many portion of it is 

cache hit.  

Figure 4-2-3-2 shows the cache miss rate, total cache access counts and hit counts under 

the texture cache support 1. The blue bar shows the total cache access counts, red bars shows 

the miss counts and yellow bars shows the miss rate under texture cache support 1. Although 

the average cache access counts of bilinear filtering of Nonblock is best, the miss rate is 

worse than 6D/RZ-based placement. Thus, the average texels access cycle of bilinear filtering 

may not be the best. On the contrast, the miss rate of RZ placement is best, but the total cache 

access count is worse than the other placement. The average texels access cycle of bilinear 

filtering may not be the best, too. 
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Figure 4-2-3-2 miss rate in texture cache support 1 
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Figure 4-2-3-3 average texels access time of bilinear filtering in texture cache support 1 

Figure 4-2-3-3 shows the average cache access counts of RZS4 is best and can improve 

~9% compare to 6D32_4 placement, ~164% compare to 4D4 placement and ~74%compare to 

Nonblock placement under texture cache support 1. And we also notice that by changing 

z-shape to u-shape in RZ, we can improve ~5% of average texels access cycles of bilinear 

filtering of RZU placement compare to RZ placement. And by changing 2*2 z-tiled size to 

4*4 snaked-tile size in RZ, we can improve ~19% of average texels access cycles of bilinear 



 

 - 50 -

filtering of RZS4 placement compare to RZ placement 

 

4.2.4 Results under texture cache support 2  

Under texture cache support 2, the placement which places the required texels within the 

same cache line can improve the average cache access counts. In figure 4-2-4-1 shows that 

under cache line size is 64 bytes, the average cache access counts of bilinear filtering of 

4D/6D/RZ-based placement could be the same. And improve ~11% compare to Nonblock 

placement. The average cache access counts of them are the same due to cache line size 64 

bytes can place 4*4, 16 texels like a square-like in the texture.  
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Figure 4-2-4-1 average cache access counts in texture cache support 2 

Figure 4-2-4-2 shows the cache miss rate, total cache access counts and hit counts under 

the texture cache support 2. And the blue bar shows the total cache access counts, red bars 

shows the miss counts and yellow bars shows the miss rate under texture cache support 2. 

Although the average cache access counts of bilinear filtering of Nonblock is worse then 4D 

placement, but the miss rate is better than 4D placement. Thus, the average texels access cycle 

of bilinear filtering could be better than 4D placement.  

And the figure also shows that RZ-based placement can improve ~0.05% on miss rate 
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compare to 6D32_4 placement, ~2.47% compare to 4D4 placement and ~1.03% compare to 

Nonblock placement under texture cache support 2.  
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Figure 4-2-4-2 miss rate under texture cache support 2 
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Figure 4-2-4-3 average texels access time of bilinear filtering in texture cache support2 

Finally, under texture cache support2, figure 4-2-4-3 shows the RZ-based placement can 

improve ~3.5% of average texels cycle of bilinear filtering compare to 6D32_4 placement, 

~101% compare to 4D4 placement and ~49%compare to Nonblock placement under texture 

cache support 2. 
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Chapter 5 Conclusion 

5.1 Conclusion 

 In this thesis, we propose the new placements which is target to improve the average 

texels access time of bilinear filtering by improving cache hit rate, address translation time, 

average cache access counts under three kinds of possible texture cache support.  

In the baseline texture cache support, by using recursive concept, we can improve the 

spatial locality of the required four texels of bilinear filtering. Thus, the miss rate of RZ-based 

placement is improved and the average texels access cycle of bilinear filtering is improve 

~2% compare to 6D placement. 

In texture cache support 1, by changing shape and tile size and also adapt the recursive 

concept, we can not only improve the miss rate but also the average cache access counts of 

bilinear filtering. Thus, the average texels access cycle of bilinear filtering is improved ~ 9% 

compare to 6D placement. 

Finally, although the average cache access counts of 4D/6D/RZ-based is the same, 2, we 

can still take the advantage of recursive concept to improve the hit rate. The average texels 

access cycle of bilinear filtering is improved ~ 3.5% compare to 6D placement. 

5.2 Future work  

  Since the bilinear filtering may have spatial locality, in fully associative cache, LRU 

replacement policy may have chance to be improved by using the other strategies. We found 

that the locations/addresses of the currently required four texels of bilinear filtering in the 

texture maybe far away than previous required four. And the addresses of required four texels 

of the next bilinear filtering maybe close to the previous nearby region. Thus, time strategy in 

LRU can be changed by using distance strategy in the replacement to gain more cache 

performance benefits.  
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Appendix 

A.1 The time delay of mux  
 1-1 2-1 4-1 8-1 16-1 32-1 64-1 128-1 256-1 512-1 1024-1 2048-1

Time 
(ns) 

0 0.09 0.14 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.05 

 

A.2 The spec of current GPU architecture 

 
Die processing 

technology 
Clock rate Cycle time 

Nvidia GeForce 6800 

Ultra 
130nm 400Mhz 2.5ns 

ATI Radeon 9600 130nm 325Mhz ~3ns 

ATI Radeon 9600Pro 130nm 400Mhz 2.5ns 
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