

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

繪圖處理器之材質貼圖下有效率之材質記憶體系統

設計

The efficient texture memory system design for texture

mapping in GPU

研 究 生：張 辰 瑋

指導教授：鍾 崇 斌 博士

中 華 民 國 九 十 六 年 八 月

繪圖處理器之材質貼圖下有效率之材質記憶體系統

設計

The efficient texture memory system design for texture

mapping in GPU

研 究 生：張 辰 瑋 Student： Chen-Wei Chang

指導教授：鍾 崇 斌 博士 Advisor：Dr. Chung-Ping Chung

國 立 交 通 大 學
資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis
Submitted to Institute of Computer Science and Engineering

College of Computer Science
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of

Master
In

Computer Science

July 2007

Hsinchu, Taiwan, Republic of China

中華民國 九十六 年 七 月

 ii

 iii

 iv

 v

 i

繪圖處理器之材質貼圖下有效率之材質記憶體系統

設計

學生：張辰瑋 指導教授：鍾崇斌 博士

國立交通大學資訊科學與工程研究所 碩士班

摘 要

材質貼圖於現今繪圖處理器架構中是一常見普遍的技術。此技術除了處理材質過濾

外，還必須先執行其他前置運算：座標產生，位置轉換及材質像素的查詢。此部分運算

於整體執行時間中有相當比例，且隨著材質過濾複雜程度上昇而上昇。

在這篇論文中，我們以材質記憶體放置法為切入點改善在三種可能且常見材質快取

記憶體的支援下，此部分所需的時間（拿取材值像素的平均時間），而此材質記憶體放

置法是以材質快取記憶體命中率，位置轉換所需時間，及平均查詢快取記憶體次數為目

標來達成目標。

由結果顯示，新的材質放置法於三種可能且常見快取記憶體支援下可改善約略 2~9%

的平均拿取材值像素時間。

 ii

The efficient texture memory system design for texture

mapping in GPU

Student：Chen-Wei Chang Advisor：Dr, Chung-Ping Chung

Institute of Computer Science and Engineering
National Chiao-Tung University

Abstract

Texture mapping is a common rendering technique in current Graphic Processing Unit

architecture. In order to have better synthesized picture, many texture data will be referenced

and accessed. We found that the technique may take significant part of total scene execution

time on preliminary operations to access these referenced data. The operations could be

coordinate generation, address translation and texels look up. And the time is increased as

filtering algorithms are more complex.

In this thesis, we are going to improve this part of time (average texels access time of

texture filtering) by proposing new texture placement under three possible and common

texture cache supports. And the placement is target to achieve the goal by improving the

texture cache hit rate, average cache access counts and address translation time.

As the result shows that the new placements could gain 2~9% upgrade in average texels

access time of texture filtering under the three common texture cache support in current GPU

architecture.

 iii

Contents
摘 要 .. I

ABSTRACT.. II

CONTENTS...III

LIST OF FIGURES ..V

LIST OF TABLES... VII

CHAPTER 1 INTRODUCTION ...- 1 -

1.1 MOTIVATIONS.. - 2 -
1.2 OBJECTIVES... - 3 -
1.3 ORGANIZATION ABOUT THIS THESIS... - 3 -

CHAPTER 2 BACKGROUND AND RELATED RESEARCH..- 4 -

2.1 GPU RENDERING FLOW ... - 4 -
2.2 THE TEXTURE MAPPING TECHNIQUES.. - 5 -

2.2.1 The textures ..- 6 -
2.2.2 Texture mapping process flow within Texture Unit..- 6 -

2.2.2.1 Address translation ...- 8 -
2.2.2.2 Texture filtering ..- 9 -

2.3 RELATED RESEARCH ... - 13 -
2.3.1 Nonblock placement ...- 13 -
2.3.2 4D placement..- 14 -
2.3.3 6D placement..- 16 -

CHAPTER 3 DESIGN..- 18 -

3.1 DESIGN OVERVIEW.. - 18 -
3.2 TEXTURE PLACEMENT ... - 19 -

3.2.1 Recursive Z placement (RZ)...- 19 -
3.2.2 Different placement policies...- 21 -

3.2.2.1 Recursive Z with U (RZU) ...- 21 -
3.2.2.2 Recursive Z with Flipped-U (RZFU)..- 22 -
3.2.2.3 Recursive Z with Snake (RZS) ...- 23 -

3.2.3 Address translation idea of RZ ...- 24 -
3.2.4 Address translation of other placements ...- 29 -
3.2.5 Address translation logic implementation...- 29 -

3.3 THREE POSSIBLE TEXTURE CACHE SUPPORTS... - 34 -

 iv

3.3.1 Baseline texture cache support ...- 34 -
3.3.2 Texture cache support 1 ..- 34 -
3.3.3 Texture cache support 2 ..- 34 -

3.3.3.1 Possible design of texture cache support2 ..- 35 -
3.3.3.1.1 Case identifier ..- 35 -
3.3.3.1.2 Coordinate generator ..- 38 -
3.3.3.1.3 Texels router ...- 39 -

CHAPTER 4 EXPERIMENT AND RESULTS ..- 43 -

4.1 EXPERIMENT GOAL, ENVIRONMENT AND METHODOLOGY .. - 43 -
4.2 EXPERIMENT RESULTS ... - 44 -

4.2.1 Results of address translation time ...- 45 -
4.2.2 Results under baseline texture cache ..- 45 -
4.2.3 Results under texture cache support 1 ..- 47 -
4.2.4 Results under texture cache support 2 ..- 50 -

CHAPTER 5 CONCLUSION ..- 52 -

5.1 CONCLUSION... - 52 -
5.2 FUTURE WORK... - 52 -

REFERENCE..- 53 -

APPENDIX..- 54 -

A.1 THE TIME DELAY OF MUX.. - 54 -
A.2 THE SPEC OF CURRENT GPU ARCHITECTURE .. - 54 -

 v

List of Figures
FIGURE 2-1-1 RENDERING PIPELINE OF GPU.. - 4 -
FIGURE 2-2-2-1 THE TEXTURE UNIT AND TEXTURE MAPPING PROCESSING FLOW.. - 7 -
FIGURE 2-2-2-1-1 THE CONCEPT OF ADDRESS TRANSLATION.. - 8 -
FIGURE 2-2-2-2-1 THE MIPMAPS AND DATA STRUCTURE OF A TEXEL .. - 10 -
FIGURE 2-2-2-2-2 THE CONCEPT OF BILINEAR FILTERING ... - 11 -
FIGURE 2-3-1-1 NONBLOCK PLACEMENT AND ADDRESS TRANSLATION EQUATION ... - 13 -
FIGURE 2-3-1-2 ACCESS CONDITION OF NONBLOCK PLACEMENTS ... - 14 -
FIGURE 2-3-2-1 4D PLACEMENT AND ADDRESS TRANSLATION EQUATION .. - 14 -
FIGURE 2-3-2-2 ACCESS CONDITION OF 4D PLACEMENT .. - 15 -
FIGURE 2-3-3-1 THE RELATED WORK OF 6D PLACEMENT ... - 16 -
FIGURE 3-2-1-1 RECURSIVE Z PLACEMENT... - 19 -
FIGURE 3-2-1-2 CROSS TILE CONDITION IN RZ AND 4D/6D.. - 20 -
FIGURE 3-2-1-3 MULTIPLE CACHE LINES CONDITION IN RZ AND 4D/6D... - 20 -
FIGURE 3-2-2-1-1 RECURSIVE Z WITH U PLACEMENT.. - 21 -
FIGURE 3-2-2-2-1 RECURSIVE Z WITH FLIPPED-U V1 .. - 22 -
FIGURE 3-2-2-2-2 RECURSIVE Z WITH FLIPPED-U V2 .. - 22 -
FIGURE 3-2-2-3-1 RECURSIVE Z WITH SNAKE PLACEMENT.. - 23 -
FIGURE 3-2-2-1 DEFINITION OF TERMS... - 24 -
FIGURE 3-2-2-2 THE CASE I OF ADDRESS TRANSLATION ... - 24 -
FIGURE 3-2-2-3 EXAMPLE OF ADDRESS TRANSLATION CASE I. ... - 25 -
FIGURE 3-2-2-4 THE CASE II OF ADDRESS TRANSLATION .. - 26 -
FIGURE 3-2-2-5 EXAMPLE OF ADDRESS TRANSLATION CASE II ... - 27 -
FIGURE 3-2-2-6 THE CASE III OF ADDRESS TRANSLATION... - 28 -
FIGURE 3-2-2-7 EXAMPLE OF ADDRESS TRANSLATION CASE III.. - 28 -
FIGURE 3-2-2-8 SUMMARY OF RZ ADDRESS TRANSLATION FUNCTION.. - 29 -
FIGURE 3-2-5-1 CONCEPT OF ADDRESS TRANSLATION UNIT.. - 30 -
FIGURE 3-2-5-2 GLOBAL VIEW OF ADDRESS TRANSLATION LOGIC .. - 31 -
FIGURE 3-2-5-3 ONE CELL OF COMMON FIELD GENERATOR .. - 32 -
FIGURE 3-2-5-4 COMMON FIELD GENERATOR WITH N CELLS .. - 32 -
FIGURE 3-2-5-5 DIFFERENTIAL FIELD GENERATOR ... - 33 -
FIGURE 3-3-3-1-1 TEXTURE CACHE SUPPORT 2 .. - 35 -
FIGURE 3-3-3-1-1-1 MULTIPLE CACHE LINES CONDITIONS ... - 36 -
FIGURE 3-3-3-1-1-2 OPERATION OF CASE IDENTIFIER... - 36 -
FIGURE 3-3-3-1-1-3 OVERVIEW OF CASE IDENTIFIER.. - 38 -
FIGURE 3-3-3-1-2-1 OPERATION OF COORDINATE GENERATOR ... - 39 -
FIGURE 3-3-3-1-3-1 TEXELS ROUTER ... - 40 -

 vi

FIGURE 3-3-3-1-3-2 OPERATION OF OFFSET GENERATOR .. - 41 -
FIGURE 3-3-3-1-3-3 BOOLEAN EQUATION OF OFFSET2... - 41 -
FIGURE 3-3-3-1-3-4 BOOLEAN EQUATION OF ENABLE SIGNAL ... - 42 -
FIGURE 4-2-1-1 ADDRESS TRANSLATION TIME OF DIFFERENT PLACEMENTS ... - 45 -
FIGURE 4-2-2-1 MISS RATE IN BASELINE TEXTURE CACHE.. - 46 -
FIGURE 4-2-2-2 CONFLICT MISS UNDER DIRECT MAPPING WITH 4D PLACEMENT.. - 47 -
FIGURE 4-2-2-3 AVERAGE TEXELS ACCESS TIME OF BILINEAR FILTERING IN BASELINE TEXTURE CACHE SUPPORT - 47

-
FIGURE 4-2-3-1 AVERAGE CACHE ACCESS COUNTS IN TEXTURE CACHE SUPPORT 1... - 48 -
FIGURE 4-2-3-2 MISS RATE IN TEXTURE CACHE SUPPORT 1... - 49 -
FIGURE 4-2-3-3 AVERAGE TEXELS ACCESS TIME OF BILINEAR FILTERING IN TEXTURE CACHE SUPPORT 1 - 49 -
FIGURE 4-2-4-1 AVERAGE CACHE ACCESS COUNTS IN TEXTURE CACHE SUPPORT 2... - 50 -
FIGURE 4-2-4-2 MISS RATE UNDER TEXTURE CACHE SUPPORT 2 ... - 51 -
FIGURE 4-2-4-3 AVERAGE TEXELS ACCESS TIME OF BILINEAR FILTERING IN TEXTURE CACHE SUPPORT2 - 51 -

 vii

List of Tables
TABLE 2-2-2-2-1 SUMMARY OF TEXTURE FILTERING ALGORITHMS... - 12 -
TABLE 2-3-1 SUMMARY OF THREE PLACEMENT ALGORITHMS... - 17 -
TABLE 3-2-4-1 SUMMARY OF LEAST SIGNIFICANT FOUR BITS OF ADDRESS AMONG PLACEMENTS....................... - 29 -
TABLE 3-3-3-1-3-1BOOLEAN EQUATION OF OFFSET FIELD ... - 42 -

 - 1 -

 Chapter 1 Introduction

In Three-Dimensional (3-D) computer graphics, texture mapping is a common and one

of the successful techniques in high quality image synthesis. It is responsible for rendering the

3-D scene by adding detail, surface texture, pattern, surface normal or color to a 3-D object

and become more and more complex due to the requirement of 3-D scene realism and special

effect [1][2].

Basically, in order to have quality of synthesized image, more texels data will be

referenced, and more computation will be invoked. We found that the complex texture

mapping technique may take a significant part of scene total execution time on the

preliminary operations. The operations are accessing the required referenced texels data in the

texture memory system for texture filtering. They contain address calculations, coordinate

generations and texel look ups for those required texels in the texture memory system. Thus,

whether the texture memory system is well design or not may affect the average texels access

time of texture filtering.

In this thesis, we are going to improve the average texels access time of texture filtering

under three possible and common texture cache supports. In order to achieve the objective,

We are going to improve texture cache hit rate, average cache access counts and address

translation time by proposing the new placement for saving the average texels access time of

texture filtering.

 - 2 -

1.1 Motivations

Texture placement, placing the texture in the texture memory, is what we consider the

most important and fundamental solution, as the following reasons.

1. Texture placement will affect the texture cache hit rate.

2. Texture placement will affect average cache access counts.

3. Texture placement will affect the address translation complexity.

In first reason, since the texture placement is the decision of how to place the texture in

the texture memory, if the placement is well design, the cache hit rate could be improve and

average texels access time will also be improve. If not, it may introduce cache hit rate loss

and increase average texels access time of texture filtering.

The third reason, due to some complex texture mapping techniques, i.e. bilinear filtering,

need more than one texel data, the required texels maybe scatter over many texture cache

lines, i.e. 2, 4, cache lines, according to the placement algorithm. Moreover, it will also affect

the continuousness of required texels within a cache line.

The second reason, if the placement has regular property, it can be translated through

some fast bit-wise logic circuit. If not, the address translation time will increase due to the

abnormality of placement and also increase average texels access time of texture filtering.

If we have the hardware support to help us to retrieve the required texels in the same

cache line, we may retrieve them in one cache access. If not, we may have to access them in

another cache access. However, if we do not have such hardware support, the continuousness

factor could be an important cause. If the required texels are within a cache line and

continuousness, we can retrieve them by using wider bus or a common technology, burst

mode. If they are not continuous, we may retrieve them in another time of cache access.

 - 3 -

1.2 Objectives

We are going to propose the new texture placement that is how to place the texture in the

texture memory. And the placement is aim to save the average texels access time of texture

filtering under three possible texture cache supports by improving the three aspects:

1. The placement could improve the texture cache hit rate.

2. The placement could be easy to translate through some easy ideas.

3. The placement could improve the average cache access counts.

1.3 Organization about this thesis

 In Chapter 2, we explain the graphic processing flow and texture mapping techniques. In

Chapter 3, proposed the new placement concept, the address translation idea, possible fast

address translation logic circuit and we will list the three possible and common texture cache

supports. In Chapter 4, we will describe our experiment goal, environment and methodology;

evaluate average texels access time of texture filtering under three kinds of possible texture

cache support. In Chapter 5, there are discussion, future work and conclusion.

 - 4 -

Chapter 2 Background and Related

research

In section 2.1, we will give a brief concept of rendering pipeline in Graphic Processing

Unit (GPU). And we’ll find that our research is focus on pixel processing, the third pipeline

stage. In section 2.2, we are going to explain the texture mapping techniques which include

the topic of the texture data structure, and the responsible function unit, called texture unit and

processing flow of texture mapping. Finally, some related research will be study.

2.1 GPU rendering flow

The rendering flow in current GPU can be roughly divided into four parts which are

vertex processing, rasterization, pixel processing, depth processing based on its pipeline stage,

as shown in figure 2-1-1.

Geometry processing

Triangle setup and Rasterization

Pixel processing

Depth processing

To frame buffer for display

Texture
memory
system

vertices

triangle

rasterize

color

(x,y)

z

view point

texture mapping

Figure 2-1-1 rendering pipeline of GPU

In figure 2-1-1, the vertex processing is done in vertex shaders. The majority works in

them is performing vertex’s coordinate translations. These translations actually is a serial of

 - 5 -

coordinate translations from vertex’s local coordinate to global environment coordinate and

finally translate to view point coordinate.

After vertex processing, the following stage is triangle setup and rasterization. Triangle

setup is responsible for assembling primitive according to their view point coordinate. That is

finding three vertices which are valid to be assembled into a triangle (primitive). Based on the

primitive, rasterization is responsible for interpolating this primitive. In another word,

rasterization interpolate each primitive into some fragments. Thus, we obtain the fragments,

pixels before output to frame buffer are called fragments.

The pixel processing is done in pixel shaders. Its majority work is coloring each

fragment with the texture which is usually stored in the texture memory system, i.e. memory,

cache, through the dedicate function units, texture units.

The final processing is depth processing. Since the are many fragments have the same x,

y coordinate in the screen but are different in z coordinate, we are target to find out which

fragment will not be covered (closest to the view point) and will be final displayed on the

screen. Thus, the works in depth processing is simply comparison the depth value (Z value) of

each fragment which has the same x, y and pass these fragments to frame buffer for display

on the screen.

2.2 The Texture mapping techniques

Texture mapping technique usually invokes multiple textures or MIP maps as samples

and also invokes the other techniques, such as bilinear interpolations or trilinear interpolations

to produce different amounts of realism. Moreover, the major process of the whole texture

mapping is done in special function units in the stage of pixel processing, called texture unit.

We will introduce them respectively as following organization:

In section 2.2.1, we will first give an overview of texture data structure.

In section 2.2.2, we will introduce the processing flow of texture mapping within the

 - 6 -

texture unit which is responsible for coloring the fragment. And it contains coordinate

generation, address translation, texels look up and texture filtering.

2.2.1 The textures

Texture is simply a data structure which is used as color reference in pixel shader and

can be viewed as a picture or bitmap image. Its dimensions are usually restricted to power of

2 for hardware implementation. Moreover, the width and the height of the texture can be

different [4].

A pixel of a texture, call a texel, is a basic cell of a texture and is usually made up of four

components, which is R (Red), G (Green), B (Blue), A (Alpha) respectively. And each

component is usually one byte width. However, with the High Dynamic Range (HDR)

introduced in DirectX 10, a texels can be up to 16 bytes, which each component is up to 4

bytes for more precision

Textures are usually stored in the off-chip large texture memory and on-chip fast texture

cache for quickly retrieval in GPU. When the pixel shader needs to paint the fragment, it

needs the color information in the textures, thus goes to the texture storage to get the required

texels for that fragment.

2.2.2 Texture mapping process flow within Texture Unit

Texture mapping is done within the texture unit. The texture unit is usually in the Pixel

shader, since it is responsible for color the fragment according to the filtering type. The

processing flow can be roughly classified into four operations, as shown in figure 2-2-2-1.

From Sampler State FIFO [14], we know the required information of how to color the

fragment. The information may contain texture filtering type, texture coordinates, base texture

address of the required texture, etc.

 - 7 -

texture mapping
information form
Sampler state FIFO

Address Generation

Texture filter

Texture storages

Back to pixel shader

address

final color

Coordinate generation

Address translation

texture coordinate

fractions,
filtering type

Texture unit

filtering type,
texture information

the retrieved texel

translate the coordinate
to texture address

Base on the address
look up required texel

Final color of the fragment
is filtered by texture filter

Generate the texture coordinates
for the filtering

processing flow
Figure 2-2-2-1 the texture unit and texture mapping processing flow

After we have the information, the coordinate generator will generate the required

texture coordinates based on the filtering type. These texture coordinates may be further

translated into texture addresses by the following address translation unit. These translated

addresses will be used to look up the required texel in the texture cache next to the texture

unit. The texture cache is a fast SRAM storage space, it store the texels information, and can

be any traditional cache configuration. After we have retrieved the required texels, we can

perform the texture filtering algorithm based on the filtering type, texels, and other

information in the texture filter. The final color will be sent back to the pixel shader.

In current high-end graphic card, there are multiple texture units in the pixel shader for

performance issue [11]. Moreover, most of the texture units also have multiple texture address

units and texture filters which allow processing more filtering algorithms or more complicated

filtering algorithm in parallelism [11]. Texture units are allowed to generate the final color of

filtering algorithm per cycle.

As mentioned in chapter one, we are target to save average texels access time of filtering.

The average texels access time may contain the time spending on coordinate generation,

address translation and cache look up.

 - 8 -

2.2.2.1 Address translation

In GPU processor, the texel is indexed through texture coordinates, i.e. u, v, coordinates,

But in texture memory system, texture is indexed through texture memory address. Since the

indexing methods are different between GPU processor and memory system;, thus we need a

special function unit which is target to perform the address translation, as shown in figure

2-2-2-1-1.

Indexing in pixel shader

2mw =

2nh =

u

v

Indexing in texture memory

Base

Figure 2-2-2-1-1 the concept of address translation.

The address translation could be viewed as a translation function with texture

coordinates (i.e. u, v), texture dimensions, base address of texture as input and generate the

translated address as output [4].

Thus, the complexity of address translation may relate to the texture placement algorithm.

If the placement is well design, the address translation could be easy to translate. If not, the

address translation complexity could be complicated.

 - 9 -

2.2.2.2 Texture filtering

Texture filtering is the method used to obtain the color for a fragment by using the colors

of nearby texels in some texture. In another words, it is an attempt to find a value at some

point by giving a set of discrete samples at nearby points. Thus, texture filtering is a kind of

process that for any given fragment, it goes to loop up some required texels, and calculated

the final color for that fragment.

Since one fragment may not usually correspond exactly to one texel, there can be

different types of correspondence between a fragment and the texel/texels depend on the

position of the textured surface relative to the viewer.

For example, one fragment is exactly the same as one texel of the texture, that is one to

one mapping. Closer than that, the texels are larger than fragments. Texels are needed to be

scaled up appropriately, known as texture magnification. Farther away, each texel is smaller

than a fragment, that is one to many. In this case an appropriate color has to be picked based

on the covered texels, via texture minification.

Because the different correspondence between fragments and texels mentioned before,

that may necessitate reading all of entire texels and combining their values to correctly

determine the fragment color. This process would be a potentially expensive operation.

Mipmapping technique is introduced in [12]. It can avoid this by pre-calculating, recursively

sampling the texture and storing it in a quarter down to a single texels. As the textured surface

moves farther away, the texture being applied switches to the pre-sampled size. Different sizes

of the mipmap are referred to as 'levels', with Level 0 being the largest size (used closest to

the viewer), and increasing levels used at increasing distances. As shown in figure 2-2-2-2-1,

we have an example of how the mipmaps looks like.

The filtering method can be roughly classified according to the image quality and

computation complexity.

The first one is nearest neighbor interpolation. It is the fastest and crudest filtering

 - 10 -

method - it is only look up the closest texels’ color for the mapped fragment. While fast, this

results in a large number of artifacts, thus image quality is the worst.

The second one is nearest neighbor with mipmapping. According to the fragment’s Z

value, we select the two closest mipmaps first. For each mipmap, by applying Nearest

neighbor interpolation, we got two selected texels. Finally, the final color for that fragment is

the result of weighted average of those two texels. This reduces the aliasing and shimmering

significantly, but does not help with blockiness.

4 bytes

the original texture, LOD0

2ww =

2hh =

12ww −=

12hh
22ww −

−=

LOD1

=

22hh −=

LOD2

1
1

LODN

""

Figure 2-2-2-2-1 the mipmaps and data structure of a texel

The third on is bilinear filtering. In this method the four closest texels on a nearest

mipmap level to the fragment center are chosen, and final color for that fragment is the color

of weighted average among them. Figure 2-2-2-2-2 shows the concept of bilinear filtering

algorithm. Bilinear filtering is almost invariably used with mipmapping; though it can be used

without, it would suffer the same aliasing problems as nearest neighbor. Moreover, bilinear

filtering is the basic component of the following filtering method. And they can be viewed as

several pieces of bilinear filtering

 - 11 -

T1T2T3T4 1f1f

2f

final filtered color

the 4 required texels of a bilinear filtering

the mapped
fragment

1f

2f

Figure 2-2-2-2-2 the concept of bilinear filtering

The fourth one is trilinear filtering. It can be treated as a weighted average of two pieces

of bilinear filtering. For each of two closest mipmap levels, perform the bilinear filtering. And

the final color for that mapped fragment is the color which is the weighted average of the two

bilinear filtering results. Of course, closer than Level 0 there is only one mipmap level

available, and the algorithm reverts to bilinear filtering.

The final one is anisotropic filtering. It is the highest quality filtering available in current

consumer 3D graphics cards. If we need to color a plane which is at an oblique angle to the

camera, bilinear or trilinear filtering would give us insufficient horizontal resolution and

extraneous vertical resolution. Anisotropic is a method of enhancing the image quality of

textures on surfaces that are far away and steeply angled with respect to the camera. The final

color of that mapped fragment is the color which is the “trilinearly” average of the n pieces of

trilinear filtering results. The value n called anisotropic ratio, horizontal direction to vertical

direction, is defined by application.

Finally, we summarize a table of texture filtering methods as shown below.

 - 12 -

Filtering Type
of

MipMap

of

Texel /

MipMap

of

Texels

(# of Bi)

Filtering Algorithm

nearest neighbor

interpolation
1 1 1(0)

Apply color of the closest texel respect to that

fragment center

nearest neighbor

with

mipmapping

2 1 2(0)
Weighted average of two nearest neighbor

interpolation.

Bilinear 1 4 4(1)
Weighted average among nearest four texels on the

closest mipmap.

Trilinear 2 4 8 (2)
Weighted average of two bilinear filtering which are

on two closest mipmaps respectively.

n:1 Anisotropic

n=2,4,8,16

2

4n

8n (2n)

Weighted average of n trilinear filtering which are on

two closest mipmaps respectively.

Table 2-2-2-2-1 summary of texture filtering algorithms

 - 13 -

2.3 Related Research

2.3.1 Nonblock placement

Traditionally, texture is placed in the texture memory by using row-major concept, as

shown in figure in 2-3-1-1. This is also known as Nonblock placement.

traditional non-blocked (row-majored) placement

2ww =

2hh =

base

A
B
C

A

C

B

2

Address translation equation :
[log]

where is the translated address
 is the base address of the texture
 , is texture coordinate
 is texture width

A base u v w
A

base
u v
w

= + + <<

Address transltion equation

 texture memory layout

Figure 2-3-1-1 Nonblock placement and address translation equation

The concept of placement is straightforward and intuitional. Address translation is also

straightforward. However, since texture filtering have spatial locality, that is the required

texels of a bilinear filtering is in a 2 by 2 region, and the required texels of next bilinear

filtering is usually closed to the current one, Nonblock placement could be considered as a

non-efficiency placement due to the long texture’s width and always row-major.

Among these four required texels, the upper and lower two will in two adjacent rows

respectively, as shown in figure 2-3-1-2. However, if the row of texture is very long, the

required texels will be separated far away in the texture memory.

Moreover; when the cache line size is smaller or equal to the size of a single row data

structure, the required texels which are in two adjacent rows will be placed in two different

cache lines. Thus the upper/lower two required texels will be in different cache lines and for

those texels in the same cache line, they are continuous.

 - 14 -

A texture

row-major

The required texels
of a bilinear filtering
are in two adjacent
rows

Figure 2-3-1-2 access condition of Nonblock placements

2.3.2 4D placement

texture memory layout

Base

2

2

Address translation equation :
 = [log ()]

 [log ()]
 where , the base address of the texture
 is texture width

Tile address base bv w bw
bu bw bw

base
w

+ << ∗ +
<< ∗

2

2

 is texture height
 , is texture coordinate
 , is tile coordinate
 = log
 = log

h
u v
bu bv
bu u bw
bv v bw

>>
>>

2

 = & (1)
 = & (1)

 = [log ()]
 where is translated address
 , is sub coordinate within a tile
 i

su u bw
sv v bw

A Tile address su sv bw
A
su sv
bw

−
−

+ + <<

s tile width
w2 2A 2 * 2 tileh

One level tile based (4D) placement

1 22w ww +=

1 22h hh +=

22ww =

22hh =

A texel

Address translation equation

Figure 2-3-2-1 4D placement and address translation equation

4D placement [4] is also known as tile-based placement, as shown in figure 2-3-2-1. The

concept of 4D placement is row-majored and one level tile-based: original texture is divided

into some squared tiles and inter/intra-tile is row-major.

Since texture filtering has spatial locality, the placement which place the texels in a form

of group could get better cache performance. This is because the required texels of a filtering

may be fall into a 4D tile and they are placed in the texture memory nearby according to the

tile size.

However, since inter-tile is also the row-major, the required four texels of bilinear

filtering will have strongly chances to cross two adjacent tiles in the column or four different

 - 15 -

row-major

The required texels
cross two vertical tiles

tiles, shown in figure 2-3-2-2. Thus these required texels may be placed separately in texture

memory and may introduced conflict miss in direct mapping cache. In [4], they say when the

size which is texture width multiplies tile width is multiple of cache size and cache line size is

multiple of tile size, conflict misses will occur due to the upper and lower tile will have the

same cache index number. By padding the unused tile to form another new column, the

problem can be solved. However, texture memory spaces will waste.

Tile B

Tile C Tile D

Tile A

The required texels
cross four different tiles

Figure 2-3-2-2 access condition of 4D placement

Moreover, if cache line size is equal to the tile size, for those four requited texels in the

same cache line, they are two and two continuous or all continuous due to 4*4 tile size. If two

texels are in the same cache line, they are continuous like Nonblock placement or

discontinuous due to the two texels are placed on different rows in the tile.

The address translation of 4D placement proposed in [4] invokes many arithmetic

operations, such as ADD operation. Due to texture address is 32-bits or 64-bits [4] in current

GPU architecture, the ADD operation may have long carry propagation according to the

hardware implementation. Thus, the propagation could be the critical path of the address

translation.

 - 16 -

2.3.3 6D placement

w2 2A 2 * 2 tileh

Two level tile based (6D) placement

1 2 32w w ww + +=

1 2 32h h hh + +=

2 32w ww +=

2 32h hh +=

32ww =

32hh =

A texel

w3 3A 2 * 2 tileh

Figure 2-3-3-1 the related work of 6D placement

6D placement [4] is known as two-level tile-based placement, as shown in figure 2-3-3-1.

The original texture is divided into some squared larger tiles and inter-larger tile is row

majored. Within a larger tile, 4D placement is applied to it.

The placement is proposed to improve the conflict miss which occurs in 4D placement.

Unlike the padding unused tiles to form a new column, 6D placement will not waste the

memory space. However, the address translation idea proposed in [4] is still following the

concept of 4D placement. It invokes arithmetic operations, such as ADD operation.

Finally, we have a table 2-1 to summarize the three placement algorithms in term of

address translation time, cache hit rate, average cache access counts based on cache lines and

average cache access counts based on cache lines and continuousness. We expect the address

translation time of Nonblock is better than 6D placement. The cache hit rate of 6D is better

than Nonblock placement. Average cache access counts based on cache lines of 6D/4D

placement is better than Nonblock placement. Finally, average time of cache access based on

cache lines and continuousness of 6D/4D placement is better than Nonblock placement.

 - 17 -

 Nonblock 4D 6D

Placement concept Row/column-major
One level tile based +

row/column major
Two level tile based +

row/column major

Address
translation

concept
Base + offset

Base + level1 tile
offset + offset within

a l1 tile (*)

Base + level 2 tile
offset + level1 tile

offset + offset within
a l1 tile (*)

Address
translation time

better medium worse

Cache
performance, hit

rate (**)
98.893/99.018 (%) 99.3139/98.7078 (%) 99.558/99.728 (%)

Average cache
access counts

based on cache
lines (**)

2.194/2.099 2.078/1.909 2.078/1.909

Average cache
access counts

based on cache
lines and

continuousness
(***)

2.194/2.107 2.408/2.408 2.408/2.408

(*) Waste memory space when texture height is smaller than tile width.
(**) Direct mapping, 8K, cache line size is 32/64 bytes.
(***) Direct, 8K, line size is 32/64 bytes, burst mode support with max data length is 16

bytes
Table 2-3-1 summary of three placement algorithms

 - 18 -

Chapter 3 Design

3.1 Design Overview

Our design can be roughly divided into two topics: the first one is focus on the new

placement algorithm that is how to place the texture in the texture memory. The second one is

focus on the possible texture cache supports in the GPU.

In the placement topic, motivated by the related work proposed in [4], we will propose

the new texture placement algorithm by using the recursive concept. The new placement is

called Recursive Z placement, and can be viewed as multi-level row-major placement which

is extended from 4D/6D placement. Later on, we will try to further improve the RZ placement

in term of the continuousness of required texels with in a cache line. We have two main ideas.

The first one is motivated from shape. We can try another shape instead of Z shape. The other

is motivated from tile size. We can try larger base tile size instead of 2*2 to gain more

continuousness.

After we have the placement, we should develop the address translation idea of these

placements. The idea should be easy. And the logic should also easy to implement. It may use

bit-wise logic operations to accomplish the translation.

In the possible texture cache support topic, we list three possible texture cache supports

in current GPU architecture which are baseline texture cache support, texture cache support1

and texture cache support2. The baseline texture cache support and texture cache support 1

are common in current texture cache. And our design is focus on texture cache support 2

which can retrieve the required texels of bilinear filtering in the same cache line.

 - 19 -

3.2 Texture placement

In the section, we will design the new placement algorithm. That is how to place the

texture in the texture memory. The new placement algorithm will be design in three aspects

which are cache hit rate, average cache access counts and address translation time. Finally, we

will propose a possible logic implementation for the address translation idea.

3.2.1 Recursive Z placement (RZ)

Our new placement is called Recursive Z placement. The placement strategy is placing

the texel in the recursive z scan line, as shown in figure 3-2-1-1. In the term of iteration, we

have the base case (1*1) which only invokes one texel. The next case (2*2) is iteratively

integrated with the four previous cases by using Z shape placement Recursive Z can also be

viewed as multi-level row-major placement which is extended from 4D/6D placement

proposed in [4].

Figure 3-2-1-1 recursive z placement

Since the required texels of bilinear filtering has spatial locality, that is bilinear filtering

itself is a form of 2*2 region and the required texels of current bilinear filtering is close to the

next one, tile-based placement can avoid placing texels continuously along one u/v direction,

i.e. row-major/column-major, like Nonblock placement. Thus, the required texels of filtering

may not be separated far away.

RZ placement can also avoid row-major of inter-tile like 4D/6D placement. In figure

 - 20 -

3-2-1-2, the required texels of filtering can be cross two/four tiles/Z in RZ/4D/6D. If we have

four required texels, say A, RZ can place them more closely than inter-tile is row-major

(4D/6D). B, C is the same, too. However, if we have D/E/F, RZ may be worse than 4D/6D

placement. But, as mention before, filtering have spatial locality. We expect RZ placement

have better cache performance in average.

A B

C D

FE

A B

C D

E F

Figure 3-2-1-2 cross tile condition in RZ and 4D/6D

RZ placement can also improve average cache access counts compare to the 4D/6D

placement. For a given cache line size, RZ placement can fit those texels which are in that

cache line size into the square-liked region. But, row-major of inter-tile may fit them into the

rectangular-liked region. In figure 3-2-1-3, if we have cache line size is cable of 4 tiles/Z, we

will not cross another cache line when access A or B texels in RZ placement. But, it may will

in 4D/6D placement.

A B

C D

E F

Figure 3-2-1-3 multiple cache lines condition in RZ and 4D/6D

 - 21 -

3.2.2 Different placement policies

Under some texture cache system with burst mode technology support, texture cache

support1, it may retrieve the required texels of bilinear filtering in one cache access if they are

all continuous. It can be done by sending the start address of the required texels and the data

offset for the required texels in continuousness. If they are discontinuous, the cache may not

retrieve them in one cache access. Thus, the consideration of continuousness is also

important.

3.2.2.1 Recursive Z with U (RZU)

Although the required four texels within a base 2*2 Z-shape and 2*2 u-shape are all

continuousness, if the required texels are crossing two z or two u in horizontal/vertical,

U-shape could be potentially have more benefits than z-shape. This is because the U shape

has three directions of continuousness benefits. But the z-shape only has two. Thus, we may

change the z-shape to the u-shape.

0 3

1 2

4 6

5 7

8 11

9 10

12 14

13 15

Figure 3-2-2-1-1 Recursive Z with U placement

RZU placement is obtained by changing the 2*2 Z-shape to 2*2 u-shape as shown in

figure 3-2-2-1-1. And the placement policy between 2*2 tile is the same as RZ placement. It is

also the multi-level tile-based like RZ placement. Thus, we expect the cache hit rate is equal

to RZ placement under three kinds of cache support.

By changing z-shape to u-shape, we may have the required four texels of bilinear

filtering as shown the red circle in figure 3-2-2-1-1 continuous, but may texels 1/2/8/11

 - 22 -

discontinuous. But, in average, we may improve the average cache access counts under

texture cache support 1. However, the average cache access counts may equal to RZ in texture

cache support 2.

3.2.2.2 Recursive Z with Flipped-U (RZFU)

We can further improve the RZU by flipping the lower U over in order to have the

bottom of the upper and lower U edge to edge, as shown as red circle in figure 3-2-2-2-1.

However, we may have texels covered by blue circle discontinuous as shown in figure

3-2-2-2-1. And we can also try to flip the upper two U over as shown in figure 3-2-2-2-2.

However, by doing this, we may have some required texels discontinuous.

Figure 3-2-2-2-1 Recursive Z with Flipped-U v1

1 2

0 3

5 6

4 7

8 11

9 10

12 15

13 14

Figure 3-2-2-2-2 Recursive Z with Flipped-U v2

RZFU1/2 placement can also be viewed as the multi-level tile-based like RZ placement.

Thus, we expect the cache hit rate is equal to RZ placement under three kinds of cache

support. Whether the average cache access counts under texture cache support 1 of RZFU1 is

better than RZFU2 may dependent on the probability. If the required four texels are always

 - 23 -

happen to red circle in figure 3-2-2-2-1, the RZFU1 could be better. If the required four texels

are always happen to blue circle in figure 3-2-2-2-2, the RZFU2 could be better. The average

cache access counts may equal to RZ in texture cache support 2.

3.2.2.3 Recursive Z with Snake (RZS)

In section of 3-2-2-1 and 3-2-2-2, we improve the RZ placement by changing z-shape to

u-shape. In this section, we improve the RZ placement by changing base 2*2 tile size to larger

n*n tile size. We found that the larger tile size we choose, the probability of required four

texels of bilinear filtering crossing two/four tiles is lower. If the required four texels of

bilinear filtering cross two/four tiles, the discontinuous may occur. Another reason for larger

tile size is that we have more placement policy within the larger tile size.

We propose a new placement, called Recursive Z with snake. The snaked-tile can be

viewed as row-major instead the direction of odd row and we take 4*4 snaked tile size as

example shown in figure 3-2-2-3-1. And the placement policy between 4*4 snaked-tile is also

the same as RZ placement.

Figure 3-2-2-3-1 Recursive Z with Snake placement

However, we can not increase our base tile size unlimited. The larger snaked tile size we

have, the placement within that tile is more like Nonblock placement. The spatial locality of

required four texels of bilinear filtering may decrease. Thus, it may affect cache hit rate.

 - 24 -

3.2.3 Address translation idea of RZ

The address translation can be viewed as a translation function with inputs,

and generates the output, , , , ,m n U V B A , which are dimension of texture’s width and

texture’s height, u coordinate, v coordinate, base address of the texture and the translated

address as defined in figure 3-2-2-1. So, we are going to find a RZ function which is

(, , , ,)A RZ m n U V B=

Texture's width is 2 2 , ,
Texture's height is 2 2 ,
The u-coordinate is , 0
The v-coordinate is , 0
The translated address is 2
The base address of texture is 2

m d

n d

s

s

Wn m d N
Hn n N
U U Wn
V V Hn

A
B

= ≤ ∈

= ≤ ∈
≤ ≤
≤ ≤

≤

≤

Figure 3-2-2-1 definition of terms

There are three cases in RZ, which are m equal to n, m smaller than n, and m larger than

n, respectively. However, the main concept of these cases is the same, that is recursive

translation.

The first case is m equal to n, that is texture’s width is equal to texture’s height. As

shown in Figure 3-2-2-2, the base case only invokes one texel, and the translated address

. A is 0

0A = 1 0 0 0A a a v u= =

0u
0v 0 1

0

1

3 2 1 0 1 1 0 0A a a a a v u v u= =

1 0u u
1 0v v 00 01 10 11

00

01

10

11

1 0 0 0a a v u=

0u
0v 0 1 0 1

0

1

0

1

3 2 1 1a a v u=

1u
1v 0 0 1 1

0

0

1

1

Base case iteration IIiteration I Most significant 2 bitsLeast significant 2 bits
Figure 3-2-2-2 the case I of address translation

In iteration I, the translated address, , could be found by using Karnaugh Map. Thus 1 0a a

 - 25 -

0v1 0a a could be , which and are the least significant bit of U and V, respectively. 0 0v u 0u

 In iteration II, we first focus on the least significant 2 bits of each translated address. And

we found that each of the bit pattern in dotted rectangle is corresponding to the bit patterns

found in the iteration I. Thus, we can suggest that the least significant 2 bits of translated

address in iteration II may equal the bit pattern in iteration I, that is . 0 0v u

 We now look at the most significant 2 bits of each translated address. And we can also

use Karnaugh Map to translate . The result shows that 3 2a a 3 2 1 1a a v u= . So the translated

address of iteration II, .The bit pattern can be view as the form which is

iteratively cross interleaving each u and v coordinate bit, respectively. In the term of recursive

concept, the translated address bit pattern of base case is the subset in iteration I. And the

translated address bit pattern of iteration I is also the subset in the iteration II, iteration II is

the subset in iteration III, etc.

3 2 1 0 1 1 0 0 is a a a a v u v u

Now, we can suppose that when the texture is 8 by 8, the translated address

is by cross interleaving each least significant 3 bits of u and v coordinate.

5 4 3 2 1 0a a a a a a

2 2 1 1 0 0v u v u v u

2

2

Example: (3,3,4,7,)
 3
 4 100
 7 111

Rz B
m n
U
V

= =
= =
= =

U
V
=
=

'A = 1 1 1 0 1 0

1 0 0
1 1 1

4
7

=
=

(' 2)A A B= << +

Figure 3-2-2-3 example of address translation case I.

For example, since we are going to translate the pair of (4, 7), all we need to do is cross

interleaving each least significant 3 bits of u and v coordinate, respectively. In figure 3-2-2-3,

the result of cross interleaving is 58.

However, texture filtering may sample the texture with n by m dimension which is not

equal , but is power of 2, respectively. The translation idea mentioned before may need to

 - 26 -

modify slightly. In figure 3-2-2-4, the texture’s width is larger than texture’s height. This is

. In the case, since texture’s height is shorter than texture’s width, for any texel, we do

not have enough v-coordinate bits to cross interleave with u-coordinate bits. On the other

words, after perform cross interleaving, some u-coordinate bits are left. These left bits should

be followed by the cross interleaved result, in order to obtain the correct translated address.

m n>

0010

3 2 1 0 2 1 0 0A a a a a u u v u= =

0011

1000 1001

2 1 0u u u
0v 000 001

0000 0001 0101

0111

1101

1010 1011

0100 1100

0110 11111110

010 011

0

1

iteration II

100 101 110 111

0

0A =

00

1 0 0 0A a a v u= =

01

10 11

0u
0v 0 1

0

1

Base case iteration I

10

1 0 0 0a a v u=

11

00 01

0u
0v 0 1

00 01 01

11

01

10 11 11

00

10

00

10

0 1

0

1

0 1 0 1

Least significant 2 bits

00

3 2 2 1a a a u u=

00

10 10

2 1u u
00 00
00 00 01

01

11

10 10

01 11

01 1111

01 01 10 10 11 11

Most significant 2 bits

Figure 3-2-2-4 the case II of address translation

In figure 3-2-2-4, we have 3 u-coordinate bits and 1 v-coordinate bit to cross interleave

for translated address. After cross interleaving, we have a part of translated address

equal to . However, the translated address should have four bits to index the required

texel. The part of address, , we do not assign them yet. So, we focus on the most

significant 2 bits of the translated address. The bit pattern of each texel is exactly the same as

the unused 2 u-coordinate bits, .

1 0a a

0 0v u

3 2a a

2 1u u

 - 27 -

U
V
=
=

'A = 1 11 0 10

9
3

=
=

(' 2)A A B= << +

1 100
1 1

2

2

Example: (4,2,9,3,)

 9 1001
 3 0011

Rz B
m n
U
V

>
= =
= =

Figure 3-2-2-5 example of address translation case II

For example, since we are going to translate the pair of (9, 3) and m is larger than n, we

should need to cross interleave 2 bits of u and v, respectively. And the left 2 bits, , should

be followed by the cross interleaved result. In figure 3-2-2-5, the result of cross interleaving is

43.

3 2u u

The conclusion is that, when the texture’s dimension is not equal, the cross interleaving

is still work, but the remaining coordinate bits should be followed by the cross interleaved

result. In this case, the two bits should be followed by the cross interleaved result in order to

obtain the correct translated address.

Moreover, in terms of recursive concept, the inequality of two dimensions means

incompletely recursive texture. The iteration of placement will break when the short side is

met. So, the recursive bit pattern will be limited when the coordinate bits of shorter side is

exhausted.

The final case is shown in figure 3-2-2-6. That is texture’s width is smaller than texture’s

height. After we cross interleave them, the left v-coordinate bits, , should be followed by

the cross interleaved result, say , in order to obtain the correct translated address.

2 1v v

0 0v u

 - 28 -

0A = 1 0 0 0A a a v u= =

0u
0v 0 1

0

1

Base case iteration I

3 2 1 0 2 1 0 0A a a a a v v v u= =

iteration II

0u
2 1 0v v v 0 1

000

001

010

011

100

101

110

111

2 1 0v v v

00

00

01

01

10

10

11

11

0u
0v 0 1

0

1

0

1

0

1

0

1

1 0 0 0a a v u= 3 2 2 1a a v v=

Least significant 2 bits Most significant 2 bits

Figure 3-2-2-6 the case III of address translation

2

2

Example: (2,4,3,9,)

 3 11
 9 1001

Rz B
m n
U
V

<
= =
= =

V
U
=
=

'A = 1 110 10

9
3

=
=

(' 2)A A B= << +

1 0 10
11

Figure 3-2-2-7 example of address translation case III

For example, since we are going to translate the pair of (3, 9) and m is larger than n, we

should need to cross interleave 2 bits of u and v, respectively. And the left 2 bits, , should

be followed by the cross interleaved result. In figure 3-2-2-7, the result of cross interleaving is

39.

3 2v v

So far as here, the translated address mentioned before is not the final address we are

going to use. This is because we did not take base address of the texture as a consideration. So

the translated address will be added with base address and be left shifted 2 bits for 4 bytes a

texel. Final address is (' 2)A B<< +

Finally, we have a figure 3-2-2-8 to summarize the address translation idea under three

 - 29 -

cases.

1 1 2 2 1 1 0 0

1 2 1 1 1 1 1 0 0

1 2 1 1 1 1 1 0

Address translation of Recursive Z :
case I (,)
 '

case II (,)
 '

case III (,)
 '

r r r r

m m m m n n

n n n n m m

Wn Hn m n r
A v u v u v u v u

Wn Hn m n
A u u u u v u v u v u

Wn Hn m n
A v v v v v u v u v

− − − −

− − + − −

− − + − −

= = =
=

> >
=

< <
=

"

" "

" " 0

Final address (' 2) , for one texel is 4 bytes
Thus we have address translation function (, , , ,)

u

A A B
A Rz m n U V B

= << +
=

Figure 3-2-2-8 summary of RZ address translation function

3.2.4 Address translation of other placements

Since the inter-tile placement policy of RZU, RZFU1/2 and RZS is identical to the

Recursive Z placement, the difference of address translation among these placements could be

the least significant bits. We summarize a table to list the difference of translated address bit

pattern among these placements.

Recursive Z Recursive Z with U

3a

2a

0a

1a

0u

0v

1u

1v

Recursive Z with Snake

0u

0 0v u⊕

1u

1v

0 1v u⊕

0 0v u⊕

0v

1v

Recursive Z with Flipped U 1/2

0u

0 0 1 0 0 1u v v u v v⊕ ⊕ ⊕ ⊕

1u

1v

Table 3-2-4-1 Summary of least significant four bits of address among placements

3.2.5 Address translation logic implementation

Since texture mapping is a time consuming operation in current graphic processing unit,

the new address placement’s algorithm should not take too much time to obtain the required

 - 30 -

address. In [4], the address translation time of Nonblock and 4D and 6D may take long time

to translate, since they may invoke arithmetic operations, such add operation, and the

propagation path in add operation may up to 32 bits or 64 bits, due to texture address is 32

bits of 64 bits and hardware implementation of Adder. We are going to use bit-wise logic

operations to translate the address, Since there is the regularity in the Recursive Z. And we

expect that the address translation time is short.

In the pervious section, no matter what translation case it is, the translated address can be

viewed as combination of common address field and differential address field, as shown in

figure 3-2-5-1. The common field only invokes the bit pattern which is cross interleaved form

some bit toggles of U and V coordinate. And the Differential field invokes only U or V

coordinates or simply zero. The combination invokes bit-wise OR operations.

1 1 1 1 0 0

1 1 1 1 0 0

1 2 1

 differential field : 0
 common field :

 differential field : 0
 common field : 0

r r

r r

m m n n

v u v u v u
v u v u v u

u u u u

− −

− −

− − +

"
"

"

1 1 1 1 0 0

1 2 1 1 1 1 1 0 0

1 2 1

1 1 1 1 0

 differential field : 0
 common field : 0

n n

m m n n n n

n n m m

m m

v u v u v u
u u u u v u v u v u

u u u u
v u v u v u

− −

− − + − −

− − +

− −

"
" "

"
" 0

1 2 1 1 1 1 1 0 0 n n m m m mu u u u v u v u v u− − + − −" "

Bit-wise OR

Bit-wise OR

Case I ()m n r= =

Case III ()m n<

Case II ()m n>

Bit-wise OR

Figure 3-2-5-1 concept of address translation unit

The address translation unit can be roughly divided into three parts based on the concept

of combination mentioned in figure 3-2-5-1, which are common field generator, differential

field generator and additional operations as shown in figure 3-2-5-2.

 - 31 -

'A
the translated
address

coordinate and
other information

Figure 3-2-5-2 global view of address translation logic

Common field generator is responsible for the generation of the bit pattern by cross

interleaving some bit toggles of each coordinate. Differential field generator is responsible for

the generation of the bit pattern by concatenating the bit toggles which are not cross

interleaved. The obtained two filed are then combined by bit-wise OR operations. Finally, the

additional operations are responsible for left shift and add the base address.

In common field generator, what we concern about is how many least significant bit

toggles of each U, V coordinate should we cross interleave? Intuitively, by comparing m with

n and choosing the smaller one, we have the number of bit toggles that should be cross

interleaved of each coordinate. For example, if m=7 and n=3, there are three least significant

bit toggles of each coordinate we should cross interleave. As a result, the common field

generator could have a compare and select logic as shown in figure 3-2-5-3 and a flexible

cross interleaving logic which can perform cross interleaving operation under any number of

least significant bit toggles.

Comparator
?1:0m n≥

m

n

4

4

4 4

m n

0 1
mux 4

Figure 3-2-5-3 compare and select logic

The compare and select logic is the comparator combined with a 2 to 1 mux. The logic

can tell us the smaller one, say m or n. Thus, we know how many bit toggles we should cross

interleave. And the result is passed to the flexible cross interleaving logic. It could be

 - 32 -

0 0

implemented in a form of mux. However, the mux can be the critical path in common field

generator. How about use the concept of integration by smaller and unique cell to implement

the common field generator? If we can design a cell which can cross interleave the two inputs,

one bit toggle from U and the other from V, by a control signal, we can concatenate many of

them of form our the common field generator.

The control signal for each cell is generated through an encoder which can encode the

output from compare and select logic, i.e. if we have the output form compare and select logic,

say 3, that is we should cross interleave least significant three bits form U and V, thus the

encoder will generate the enable bit pattern, . Based on the enable bit pattern, we should

cross interleave from each significant three bit toggles of U and V, i.e. and .

2111

2u u∼ 2v v∼

nunv

nc1nc +

Ci

nmv nmu

1

1

If 1

else
 00

n n n n

n n

ci
c c v u

c c

+

+

=
=

=

Figure 3-2-5-3 one cell of common field generator

Figure 3-2-5-3 represents the one cell of common field generator. The control signal, ,

is from the corresponding bit position in enable bit pattern. Figure 3-2-3-4 shows the common

field generator which is obtained by integrating n cells.

Ei

""

0c1c

0u0v

2c3c

1u1v

2 4nc −2 3nc −

1nu −1nv −

2 2nc −2 1nc −

nunv
nE 1nE − 1E 0E

cross interleave

Figure 3-2-5-4 common field generator with n cells

 - 33 -

The differential field generator is responsible for generation the differential field of the

translated address under any given m and n. For example, if we have m=7 and n=3, the

differential field can be obtained by setting bit toggles to zero and left shifting 3 bits,

like .

2 1 0u u u

5 4 3000000u u u"

So what we concern about is the differential field is from most significant bit toggles of

U or V and How many bit toggles will be used and their bit position? Since we have known

who the smaller one is(m or n), by using the result, we can select the desired coordinate

. And we also have the enable bit pattern generated from the encoder. (m n?U:V)≥

Thus, we can use the information to generate the differential field. In figure 3-2-5-5, the

comparison result is used to select the desired coordinate (U or V) by using another 2 to 1

mux. After that the selected result, say A and the result from enable encoder, say B, is passed

to the Bit filter. It can set the unnecessary bit field of B to zero. Finally, the left shifter can

left shift any number of bit of based on the smaller one value of m or n . 'B

enable
encoder

16 16

v u

0 1

4 4

m n

0 1

mux
Bit filter
B&(~A)

16 32
differential field

B

A

exten c to 32 bits
and left shift bitsx

x
4

16

16
c

Comparator
?1:0m n≥

m

n

4

4 mux 4

Figure 3-2-5-5 differential field generator

For example, if we still have m=7 and n=3, the input A, B to the bit filter is coordinate U

and bit pattern form enable encoder. The bit filter will filter out the least three

significant bit of coordinate U. the left shift will left shift 3 bits based on the pattern .

The differential field could be like .

2111

2111

5 4 3000000u u u"

 - 34 -

3.3 Three possible texture cache supports

Although, the average texels access time of bilinear filtering is affected by the texture

placement, it is also affected by the hardware design (texture unit/texture cache). We have

three possible texture cache supports in different hardware cost. And each of them has

different texels retrieval capability.

3.3.1 Baseline texture cache support

The baseline texture cache support is straightforward. The texture cache can retrieve one

required texel data with a address request. In this kind of system, only the address translation

time and texture cache miss rate will affect the average texels access time of bilinear filtering.

This is because every address request can only retrieve one texel data to the texture filter.

Thus, average cache access counts of bilinear filtering are always four.

3.3.2 Texture cache support 1

 The texture cache support 1 is a common texture cache with burst mode support. The

burst mode technique is done by sending a start address and the maximum required data offset;

the receiver can get the required data as soon as possible. Since the required texels of bilinear

filtering are four, the maximum data offset length is 16 bytes. In the other words, if the

required texels are adjacent to each other within a cache line, the cache can retrieve all of the

required texels in one cache access. Under the texture cache support, the average cache access

counts may affected by whether the required four texels are adjacent to each other.

3.3.3 Texture cache support 2

Since the required texels of bilinear filtering could be potentially in the same cache line,

for those texels in the same cache line, we can retrieve them in one cache access no matter

whether they are continuous or not. This kind of texture cache support is more flexible than

the previous one. Thus, we can retrieve more required texels in one cache access. However,

for those texels are not in the current been accessed cache line, we still have another cache

 - 35 -

access to get them.

3.3.3.1 Possible design of texture cache support2

Base on the concept mentioned in 3.3.3, we need case identifier, texels router and the

modified coordinate generator to accomplish the task.(Shown in figure 3-3-3-1-1) Each of

them is describe in the following sections.

n n

(A,case#,
LSB[u],LSB[v])

1 1(m,n,u ,v ,B)

case #

Texture unit

coordinate
generator

cases identifier

texture filter

n n(m,n,u ,v ,B) Address
translation
unit

1 1(u ,v)

Texture cache

cache line buffer

address
low order
bits of
coordinate
and case #

mux1 mux2 mux3 mux4

2-4 decoder

E1E2E3E4

offset2
offset3
offset4

E1 E2 E3 E4

offset1 offset2 offset3 offset4

case #

texel4texel3texel2texel1

offset
generator

Figure 3-3-3-1-1 Texture cache support 2

3.3.3.1.1 Case identifier
Since the required texels of bilinear filtering is a form of 2 by 2 texels, these four texels

can be potentially in one, two, four cache lines. We can identify the case condition through

coordinate , as shown in figure 3-3-3-1-1. In figure 3-3-3-1-1, w supposes that cache

line size is 64bytes (16 texels) and the condition can be roughly classified into 4 types.

1 1(,)u v

Case I is the required texels are fall into a single cache line. Case II is two of the required

texels in the row are fall into a cache line, and the other two are fall into another cache line.

Case III is two of the required texels in the column are fall into a cache line, and the other two

are fall into another cache line. Case IV is four required texels are in different cache lines.

case III case IVcase II

cache line with 16 texels

case I

the required texels
of bilinear filtering

1 1(u ,v) 1 1(u +1,v)

1 1(u ,v +1) 1 1(u +1,v +1)

 - 36 -

Figure 3-3-3-1-1-1 multiple cache lines conditions

 Since we know the placement algorithm and cache configuration, i.e. RZ placement,

cache line size, the case condition can be obtained though identification of coordinate .

The identification is easy and straightforward. If we have RZ placement and cache line size is

16 texels, the 16 texels can be shown as the 16 white squares in the figure 3-3-3-1-1-1. We

can partition the 16 texels into 4 regions; say A, B, C and D, as shown in figure 3-3-3-1-1-1.

1 1(,)u v

1 1

1 1

1 1

f (u %3 0 and v %3 0)
 case IV
else if (u %3 0 and v %3 0)
 case III
else if (u %3 0 and v %3 0)
 case II
else
 case I

i = =

= ≠

≠ =

(1,0)(0,0)

(0,1) (1,1)

(2,0) (3,0)

(2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,3) (1,3) (2,3)

A B

(3,3)

assume cache line size is 64 bytes (16 texels)

C D

Figure 3-3-3-1-1-2 operation of case identifier

If the is fall into region A, the other three coordinates will also in the same

cache line. Thus it could be case I, all required texels are in the same cache lines. If the

 is fall into region B, it is the case III, two texels in the column are in the same cache

line, the other two texels are in the other cache line. The worst case is fall into region

D; all required texels are in different cache lines.

1 1(,)u v

1 1(,)u v

1 1(,)u v

The identification algorithm is shown in the figure 3-3-3-1-1-2. If both and mod

3 are equal to 0, region D. If but not mod 3 are equal to 0, region B. If not but

mod 3 are equal to 0, region B. If neither nor mod 3 are equal to 0, region A. The

mod operation can be implemented through Bit-wise logic AND operation of two lower order

bits of coordinate and , i.e. mod 3 is equal to 0 can be implemented through the

1u 1v

1u 1v 1u 1v

1u 1v

1u 1v 1u

 - 37 -

result of AND and is equal to 0. Thus all we need is low order two bits of coordinate

 and to identify the case conditions. Since we have total four cases, we can encode the

cases by using 2 bits signal. 00 means case I. 01 means case II. 10 means case III. 11means

case IV.

1
1u 1

0u

1u 1v

However, the texture dimension can be any magnitude of power of two. That is the

texture height/width can be smaller or equal to 2. In these cases, the 16 texels which are in the

cache line will not be square-like region any more in the texture. It could be the rectangular

with narrow width or wider height dimension. As a result, the identification algorithm in

figure 3-3-3-1-1-2 should be modified. The values A, B which is the magnitude mod A

and mod B in figure 3-3-3-1-1-2 should be changed based on the texture dimension.

1u

1v

In the original, the 16 texels are in the 4*4 rectangular, the magnitude of A should be 3,

and B should be 3, as shown in figure 3-3-3-1-1-2. However, if the texels are in a form of

16*1 rectangular, A should be 15, B should be 0. If they are in a form of 1*16 rectangular, A

should be 0, A should be 15. If 8*2, A should be 7, B should be 1. If 2*8, A should be 1, A

should be 7.

Thus we have the prefix operation which can tell the case identifier what the magnitude

of A and B should the identifier use. And there are five cases if cache line size is 64 bytes

(16texels). Which are corresponding to 4*4, 8*2, 2*8, 16*1 and 1*16 rectangular. The

classification can be done through the m, n which is power of width and height, respectively.

By comparing m and n, we know the case and can enable one of the five enable signals. And

the enabled case can perform future case identification based on the coordinate . The

overview of case identifier can be shown in figure 3-3-3-1-1-3.

1 1(,)u v

 - 38 -

case identifier of 4*4

case identifier of 8*2

case identifier of 16*1

case identifier of 1*16

case identifier of 2*8

enable

enable

enable

enable

enable

2 1 0 0(,)u u u v

1 0 1 0(,)u u v v

0 2 1 0(,)u v v v

3 2 1 0()u u u u

3 2 1 0()v v v v

enable of 4*4

enable of 8*2

enable of 2*8

enable of 16*1

enable of 1*16

3 2 1 0 3 2 1 0(,)u u u u v v v v

m

n region
identifier

OR and encode

0s

1s

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

Figure 3-3-3-1-1-3 overview of case identifier

3.3.3.1.2 Coordinate generator
 The coordinate generator is responsible for generate the required coordinates based on

the filtering types and one of the coordinate, say . Since the required texels of filtering

can be potentially in the same cache line, we can only generate the coordinate of explicit

texels. For those implicit texels, we choose not to generate them, i.e. if we have case I, we

only generate coordinate as explicit texel, for the other three texels, say

, (, and , can be viewed as implicit texels and not to generate

these coordinates.

1 1(,)u v

1 1(,)u v

1 1(1,)u v+ 1 1 1)u v +)1 1(1, 1u v+ +

We modified the original coordinate generator. As a result, the generator can generate the

coordinates based on the case condition obtained from the case identifier. Based on these

cases, the generator may generate one, two or four coordinate pairs. The obtained coordinates

 - 39 -

)

are then sending to the queue for further address translation.

The algorithm of coordinate generator is shown in figure 3-3-3-1-2-1. In figure

3-3-3-1-2-1, if we have case I, the generator will do nothing but the original coordinate

. If case II, the generator will generate the other coordinate . If case III, it

will generate the other coordinate

1 1(,)u v 1 1(, 1)u v +

1 1(1,u v+ . If case IV, it will generate the other three

coordinates , and1 1(1,u v+))1 1(, 1)u v + 1 1(1, 1u v+ + .

1 1

1 1

1 1

f (caseI)
 need coordinate (u ,v)
else if (case II)
 need coordinate (u ,v)
 (u ,v +1)
else if (case III)
 need coordinate (u

i

1 1

1 1

1 1

1 1

1 1

1

,v)
 (u +1,v)
else //case IV
 need coordinate (u ,v)
 (u ,v +1)
 (u +1,v)
 (u +1,v1+1)

(,)u v (1,)u v+

(, 1)u v + (1, 1)u v+ +

Figure 3-3-3-1-2-1 operation of coordinate generator

3.3.3.1.3 Texels router
In order to retrieve those implicit texels, we need to generate extra information to notify

the cache to retrieve them back to the texture filter in one time of cache access. Thus we have

texels selector and offset generator to accomplish the task, as shown in figure 3-3-3-1-3-1. For

those implicit texels, offset generator will generate the corresponding offset field of those

texels in the same cache line. These offsets information will be sent to the texels selector for

further selection.

Texels selector is worked as four independent muxs, i.e. mux1, mux2, mux3, mux4, as

shown in figure 3-3-3-1-3-1. Each of them is responsible for selecting the desired texel from

the cache line buffer based on the offset field and enable signal. The offset fields are

 - 40 -

generated from the offset generator which is based on the case condition and low order bits of

coordinate of the explicit texel. And the enable signal of each mux is from enable generator.

The line buffer size is based on the cache line size and the input of the mux is line buffer size

divided by four for one texel is four bytes. Thus the delay of texels selector is dependent on

the mux. We show the Mux delay in Appendix A.1

Texture cacheaddress

cache line buffer
low order
bits of
coordinate
and case #

mux1 mux2 mux3 mux4

enable generator

E1E2E3E4

offset2
offset3
offset4

E1 E2 E3 E4

offset1 offset2 offset3 offset4

case # Texel router

offset
generator

texel4texel3texel2texel1

Figure 3-3-3-1-3-1 texels router

The offset generator is responsible for extra information. This information is used to

notify the texels selector to select the implicit texels. The input to the offset generator is case

number, low order bits of coordinate of explicit texels and region case number. For example,

if we have case one with coordinate (1,1) of explicit texel, the offset generator will generate

the other three offsets, 6, 9, 12 which are correspond to coordinates (1,2), (2,1) and (2,2).

As shown in figure 3-3-3-1-3-2, if case I, we will generate the offset2, offset3 and offset4

which is sending to the mux2, mux3 and mux4. And the offset1 is implicit in the texture

address. If case II, we will generate offset2. if case III, we will generate offset3. if case IV, the

output of offset generator are don’t care.

 - 41 -

if (case I)
 generate offset2, offset3, offset4

else if (case II)
 generate offset2
else if (case III)
 generate offset3
else // case IV
 do nothing

1 1(,)u v 1 1(1,)u v+

1 1(, 1)u v + 1 1(1, 1)u v+ +

Figure 3-3-3-1-3-2 operation of offset generator

 The Boolean equation of offset2/3/4 can be obtained by using Karnaugh Map. As shown

in figure 3-3-3-1-3-3, offset2 can be obtained through low order bits of coordinate of explicit

texels, say under cache line size is 16 texels and fitted in 4*4 square-liked region.

If we have explicit the texel of coordinate , the offset2 should be the 1, If we have

coordinate , the offset2 should be the 3. If we have coordinate , the offse2 should be

6. After we have enumerated all the cases from to , a Karnaugh Map can be

obtained like in figure 3-3-3-1-3-3. Thus, we have the Boolean equation of offset2 shown in

the figure.

1 0 1 0(,u u v v)

(0,0)

(0,1) (1,1)

(0,0) (3,3)

1 0u u
1 0v v

00 01 10 11

00

01

10

11

offset2

1 1 0 0 0offset2= v u u v u⊕

Figure 3-3-3-1-3-3 Boolean equation of offset2

However, the 16 texels which are in the same cache line may be fitted into the

8*2/2*8/16*1/1*16 rectangular-liked region due to the dimension of the texture. We can use

the same methodology to obtain the Boolean equations for them. We summarize a table to

enumerate the Boolean equations in table 3-3-3-1-3-1.

The enable generator is responsible for enable signal of column mux selector. Inputs are

 - 42 -

case conditions and outputs are enable signals to the corresponding mux. As shown in figure

3-3-3-1-3-4, if case I, enable 1 is set. If it is case II, enable 2/3 is set. If it is case III, enable

1/3 is set. If it is case IV, enable 1/2/3/4 is set.

offset4

offset3

offset2

4*4 region 8*2 region 2*8 region

16*1 region 1*16 region

1 0 1 0 0 0 v v u u v u⊕ ⊕

1 0 1 0 0 v v u v u⊕

1 1 0 0 0 v u u v u⊕ 1 2 0 1 2 1 0 0 0() u u u u u u u v u⊕ + ⊕

2 1 0 0 u u v u

1 2 0 1 2 1 0 0 0() u u u u u u u v u⊕ + ⊕

2 1 0 0 v v v u

1 2 0 1 2 1 0 0 0() v v v v v v v v u⊕ + ⊕

1 2 0 1 2 1 0 0 0() v v v v v v v v u⊕ + ⊕

3 2 1 0 3 2 1 0

2 1 0 2 0 1 1 0 0

()+

() ()

u u u u u u u u

u u u u u u u u u

+ +

+ + ⊕

3 2 1 0 3 2 1 0

2 1 0 2 0 1 1 0 0

()+

() ()

v v v v v v v v

v v v v v v v v v

+ +

+ + ⊕

offset4

offset3

offset2

Table 3-3-3-1-3-1Boolean equation of offset field

case label 1 0encode s s 1E 2E 3E 4E

I

II

III

IV

00

01

10

11 1

1

1

1

1

1

0

0

1

0

1

0

1

0

0

0

1 1E =

2 1E S=

3 0E S=

4 1E S S= 0

Figure 3-3-3-1-3-4 Boolean equation of enable signal

 - 43 -

Chapter 4 Experiment and Results

4.1 experiment goal, environment and methodology

We are going to know the average texels access time of bilinear filtering under three

different possible texture cache supports mentioned in section 3.3. That is how many

performance improvements we have under three different kinds of texture cache support.

We trace the texture coordinate pattern form the Alila simulator which is proposed in

[10]. The simulator architecture is based on the design of ATI GPU’s architecture and support

OpenGL based benchmarks, i.e. Doom3[19], Quake4[20], the 3-D based computer games.

The texture coordinate pattern is recorded in the file when the Atila is rendering frames of the

Doom3/Quake4. The screen resolution we have could be 640*480/1240*1028/1600*1200

pixels.

After we have the trace, we also implement the L1 texture cache and the pipelined

address translation unit which are referenced from ATI GPU architecture environment [10].

The input to the simulator we implement is the trace we obtain mentioned before. Thus, we

can obtain the cache hit rate, average cache access counts and average texels access time of

bilinear filtering under three different kinds of texture cache support.

The configuration of L1 texture cache is referenced from research [7]. In [7], they say

direct mapping and 8K texture cache is sufficient to cache the required texels of bilinear

filtering. If the cache misses, the system will stall and we use a linear equation to describe the

miss penalty: Miss penalty = constant + (cache line size) / (bus width between texture cache

and texture memory) * (cycle/per byte). And we have the constant is 100 cycles and bus width

between texture cache and memory is 8 bytes which is a common configuration in the current

GPU architecture.

 - 44 -

For the address translation unit design of related work and RZ-based placements, we use

Verilog [17] to describe the equation proposed in [4] and designs in section 3-2. And we use

Max Plus II [16] to perform functional verification. Currently, most desktop graphic cards’

texture size does not exceeded in 4096 * 4096 texels. Thus, we select 16 bits for texture

dimension and coordinate. And texture address is 32 bits for most GPU architecture.

Moreover; In order to obtain the address translation time, we synthesize the address

translation unit by Design compiler [18] and choose the TSMC 130nm technology as the

parameter, since it is a reliable technology for many years and there are many consumer

products of ATI and Nvidia using the technology. The clock rate using 130nm die processing

technology can up to 400 MHz, as shown in appendix A.2. Thus, the cycle time could be 2.5

ns.

Finally, we assume that we can divide the address translation unit into stages perfectly

according to the address translation time divided by cycle time and the address queue size

between address translation unit and L1 texture cache is infinity.

4.2 Experiment results

In section 4.2.1, we obtain the time result of address translation of different placement

algorithms, which include the Nonblock/4D/6D/RZ-based placements. In section 4.3.2, we

show the result of the cache miss rate and average texels access time of bilinear filtering

under baseline texture cache. In section 4.3.3 and 4.3.4, we show the result of the cache miss

rate, average cache access counts and average texels access time of bilinear filtering under

texture cache support1/2.

 - 45 -

4.2.1 Results of address translation time

address translation time

0

5

10

15

20

25

nonblock 4D 6D RZU RZFU RZS

placement

ns

Figure 4-2-1-1 address translation time of different placements

As shown in figure 4-2-1-1, the address translation time of RZ-based placement is better

than address translation concept proposed in [4]. This is because their address translation

concept is the summation of multi-level offsets instead of bit-wise logic operations, i.e.

Bit-wise ADD, OR or Shifter.

The difference of translated address bit pattern between RZU/RZFU and RZ or RZS and

RZ placement could be only least significant two or three or four bits. Although these

difference could be complicated than RZ placement, the address translation time spend on

them can be hided by the critical path which is the time spend on generation of differential

field address. Thus, the address translation time of RZU, RZFU and RZS is equal to RZ

placement.

4.2.2 Results under baseline texture cache

In [4], they indicates that for a given cache line size, the lowest miss rate is happen to the

placement algorithm which tile size is most fit the line size, i.e. tile size is 4 by 4 texels under

cache line size is 64 bytes, and they also mention that the level one tile size of 6D placement

 - 46 -

should fit the cache size. Thus, we have 4D4 and 6D32_4 placement as the configuration of

related works. 4D4 means the 4D placement with tile size is 4 by 4 texels. 6D32_4 placement

means level one tile size is 32 by 32 texels and level two tile size is 4 by 4 texels for the cache

configuration.

miss rate under baseline texture cache support

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

nonblock 4D4 6D32_4 RZ RZU RZS4

placement

m
is

s
ra

te
,
%

Figure 4-2-2-1 miss rate in baseline texture cache

In figure 4-2-2-1, the miss rate of 4D4 placement may even worse than Nonblock

placement. This is because when the size which texture width multiply the tile width is

multiple of cache size and cache line size is multiple of tile size and the required four texels of

bilinear filtering are crossing over two adjacent vertical tiles or different four tiles as shown in

figure 4-2-2-2, 4D placement will have serious conflict misses. However, 6D and

Recursive-based placement can eliminate it

Figure 4-2-2-1 shows that the miss rate of RZ-based placement is improved ~0.02%

compare to 6D32_4 placement, ~1.18% compare to 4D4 placement and ~0.57%compare to

Nonblock placement in the baseline texture cache support.

 - 47 -

"" / 1s l −

0

0

0 ""

0 "" ""

"" ""

m

n

cache index
2

f is multiple
of cache size and
 is multiple of

conflict miss will occur

i m r
s

l r

∗
/ 1s l −

/ 1s l −

/ 1s l −

2tile size is
cache line size is

r
l

r

Figure 4-2-2-2 conflict miss under direct mapping with 4D placement

average texels access cycles of bilinear filtering under baseline texture cache support

0

2

4

6

8

10

12

nonblock 4D4 6D32_4 RZ RZU RZS4

placement

cy
cl

es

1

1.5

2

2.5

no
rm

al
iz

e

average texels access cycles of bilinear filtering under baseline texture cache support normalize to RZ

Figure 4-2-2-3 average texels access time of bilinear filtering in baseline texture cache

support

Figure 4-2-2-3 shows that the average texels access time of bilinear filtering of RZ-based

placement is improved ~2% compare to 6D32_4 placement, ~101% compare to 4D4

placement and ~49%compare to Nonblock placement under baseline texture cache support.

4.2.3 Results under texture cache support 1

Under texture cache support 1, the placement which places the required texels

continuous in the same cache line can improve the average cache access counts. In figure

4-2-3-1 shows that RZU can improve ~6% of average counts by changing z-shape to u-shape

 - 48 -

and improve ~22% of average counts compare to RZ placement, ~8% of average counts

compare to 4D/6D placement by using 4*4 snaked-tile size. However, Nonblock placement

could be the best. This is because the required four texels of bilinear filtering are almost

always two and two continuous and rarely discontinuous.

average cache access counts of bilinear filteing under texture cache support 1

0

0.5

1

1.5

2

2.5

3

nonblock 4D4 6D32_4 RZ RZU RZS4

placement

co
un

ts

Figure 4-2-3-1 average cache access counts in texture cache support 1

However, in figure 4-2-3-1, we only know the average cache access counts. We don’t

know how many portion of the average counts is cache miss and how many portion of it is

cache hit.

Figure 4-2-3-2 shows the cache miss rate, total cache access counts and hit counts under

the texture cache support 1. The blue bar shows the total cache access counts, red bars shows

the miss counts and yellow bars shows the miss rate under texture cache support 1. Although

the average cache access counts of bilinear filtering of Nonblock is best, the miss rate is

worse than 6D/RZ-based placement. Thus, the average texels access cycle of bilinear filtering

may not be the best. On the contrast, the miss rate of RZ placement is best, but the total cache

access count is worse than the other placement. The average texels access cycle of bilinear

filtering may not be the best, too.

 - 49 -

Miss rate under texture cache support 1

0

20000000

40000000

60000000

80000000

100000000

120000000

nonblock 4D4 6D32_4 RZ RZU RZS4

placement

co
un

ts

0

0.5

1

1.5

2

2.5

m
is

s
ra

te
, %

total cache access counts hit counts miss rate

Figure 4-2-3-2 miss rate in texture cache support 1

average texels access cycles of bilinear filtering under texture cache support 1

0

1

2

3

4

5

6

7

8

9

nonblock 4D4 6D32_4 RZ RZU RZS4

placement

cy
cl

es

1

1.5

2

2.5

3

no
rm

al
iz

e

average texels access cycles of bilinear filtering under texture cache support 1 normalize to RZS4

Figure 4-2-3-3 average texels access time of bilinear filtering in texture cache support 1

Figure 4-2-3-3 shows the average cache access counts of RZS4 is best and can improve

~9% compare to 6D32_4 placement, ~164% compare to 4D4 placement and ~74%compare to

Nonblock placement under texture cache support 1. And we also notice that by changing

z-shape to u-shape in RZ, we can improve ~5% of average texels access cycles of bilinear

filtering of RZU placement compare to RZ placement. And by changing 2*2 z-tiled size to

4*4 snaked-tile size in RZ, we can improve ~19% of average texels access cycles of bilinear

 - 50 -

filtering of RZS4 placement compare to RZ placement

4.2.4 Results under texture cache support 2

Under texture cache support 2, the placement which places the required texels within the

same cache line can improve the average cache access counts. In figure 4-2-4-1 shows that

under cache line size is 64 bytes, the average cache access counts of bilinear filtering of

4D/6D/RZ-based placement could be the same. And improve ~11% compare to Nonblock

placement. The average cache access counts of them are the same due to cache line size 64

bytes can place 4*4, 16 texels like a square-like in the texture.

average cache access counts of bilinear filteing under texture cache support 2

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

nonblock 4D4 6D32_4 RZ RZU RZS4

placement

co
un

ts

Figure 4-2-4-1 average cache access counts in texture cache support 2

Figure 4-2-4-2 shows the cache miss rate, total cache access counts and hit counts under

the texture cache support 2. And the blue bar shows the total cache access counts, red bars

shows the miss counts and yellow bars shows the miss rate under texture cache support 2.

Although the average cache access counts of bilinear filtering of Nonblock is worse then 4D

placement, but the miss rate is better than 4D placement. Thus, the average texels access cycle

of bilinear filtering could be better than 4D placement.

And the figure also shows that RZ-based placement can improve ~0.05% on miss rate

 - 51 -

compare to 6D32_4 placement, ~2.47% compare to 4D4 placement and ~1.03% compare to

Nonblock placement under texture cache support 2.

Miss rate under texture cache support 2

58000000

60000000

62000000

64000000

66000000

68000000

70000000

72000000

74000000

76000000

nonblock 4D4 6D32_4 RZ RZU RZS4

placement

co
un

ts

0

0.5

1

1.5

2

2.5

3

3.5

m
is

s
ra

te
, %

total cache access counts hit counts miss rate

Figure 4-2-4-2 miss rate under texture cache support 2

average texels access cycles of bilinear filtering under texture cache support 2

0

1

2

3

4

5

6

7

8

9

nonblock 4D4 6D32_4 RZ RZU RZS4

placement

cy
cl

es

1

1.5

2

2.5

3

no
rm

al
iz

e

average texels access cycles of bilinear filtering under texture cache support 2 normalize to RZ

Figure 4-2-4-3 average texels access time of bilinear filtering in texture cache support2

Finally, under texture cache support2, figure 4-2-4-3 shows the RZ-based placement can

improve ~3.5% of average texels cycle of bilinear filtering compare to 6D32_4 placement,

~101% compare to 4D4 placement and ~49%compare to Nonblock placement under texture

cache support 2.

 - 52 -

Chapter 5 Conclusion

5.1 Conclusion

 In this thesis, we propose the new placements which is target to improve the average

texels access time of bilinear filtering by improving cache hit rate, address translation time,

average cache access counts under three kinds of possible texture cache support.

In the baseline texture cache support, by using recursive concept, we can improve the

spatial locality of the required four texels of bilinear filtering. Thus, the miss rate of RZ-based

placement is improved and the average texels access cycle of bilinear filtering is improve

~2% compare to 6D placement.

In texture cache support 1, by changing shape and tile size and also adapt the recursive

concept, we can not only improve the miss rate but also the average cache access counts of

bilinear filtering. Thus, the average texels access cycle of bilinear filtering is improved ~ 9%

compare to 6D placement.

Finally, although the average cache access counts of 4D/6D/RZ-based is the same, 2, we

can still take the advantage of recursive concept to improve the hit rate. The average texels

access cycle of bilinear filtering is improved ~ 3.5% compare to 6D placement.

5.2 Future work

 Since the bilinear filtering may have spatial locality, in fully associative cache, LRU

replacement policy may have chance to be improved by using the other strategies. We found

that the locations/addresses of the currently required four texels of bilinear filtering in the

texture maybe far away than previous required four. And the addresses of required four texels

of the next bilinear filtering maybe close to the previous nearby region. Thus, time strategy in

LRU can be changed by using distance strategy in the replacement to gain more cache

performance benefits.

 - 53 -

Reference

[1] Foley J, van Dam A, Feiner SK, Hughes JF, “Computer graphics: principles and practice”,

2nd ed. Reading MA: Addison-Wesley, 1990

[2] Watt A, “3D computer graphics”, 3rd Edition. Addison-Wesley: Harlow, England. 2000.

[3] Hennessy JL, Patterson DA. “Computer architecture: a quantitative approach”,

3rd edition. Morgan Kaufmann: San Francisco. 2003.

[4] Ziyad S. Hakura and Anoop Gupta, “The design and analysis of a cache architecture for

texture mapping”, 24th International Symposium on Computer Architecture, 1997.

[5] Michael Cox, Narendra Bhandari and Michael Shantz ,“Multi-level texture caching for 3D

graphics hardware”, ACM/IEEE International Symposium on Computer Architecture, 1998.

[6] Homan lgehy, Matthew Eldridge and Kekoa Proudfoot, “Prefetching in a texture cache

architecture”, Eurographics/SIGGRAPH Workshop on Graphics Hardware, 1998.

[7] Igehy H, Eldridge M, Hanrahan, P, “parallel texture caching”, SIGGRAPH/Eurographics

Workshop on Graphics Hardware. 1999.

[8] Se-Jeong Park, Jeong-Su Kim, Ramchan Woo, Se-Joong Lee, Kang-Min Lee, Tae-Hum

Yang, Jin-Yong Jung and Hoi-Jun Yoo, “A reconfigurable multilevel parallel texture cache

memory with 75-GB/s parallel cache replacement bandwidth”, journal of solid-state circuits,

vol. 37, no. 5, may 2002.

[9] Chun-Ho Kim and Lee-Sup Kim, “Adaptive selection of an index in a texture cache”, the

IEEE International Conference on Computer Design, 2004.

[10] Victor Moya del Barrio, Carlos González, Jordi Roca, Agustín Fernández, “ATTILA: a

cycle-level execution-driven simulator for modern GPU architectures”, 2006 IEEE

International Symposium on Performance Analysis of Systems and Software.

[11] Chris Y. Chung, RaviA. Managuli and Yongmin Kim, “Design and evaluation of a

multimedia computing architecture based on a 3D graphics pipeline”,

 - 54 -

IEEE ,Application-Specific Systems, Architectures and Processors, 2002.

[12] Williams L, “Pyramidal parametrics” ,Computer graphics and interactive techniques.

1983.

[13] J. Chittamuru, J. Euh, and W. Burleson, "An Adaptive Low Power Texture Mapping

Architecture", IEEE Mid West Symposium On Circuits and Systems 2002

[14] Microsoft, Microsoft DirectX9 Software Development Kit, Microsoft Corporation.

[15] John Montrym, Henry Moreton, “NVIDIA GeForce 6800”, NVIDIA Corporation

[16] MAX+PLUS II Development Tools manuals,

http://www.altera.com/literature/lit-mp2.jsp

[17] Verilog design guide, http://www.doulos.com/knowhow/verilog_designers_guide/

[18] Synopsys, design vision, http://www.synopsys.com/sps/sps.html

[19] Benchmark, Doom3, http://www.doom3.com/

[20] Benchmark, Quake4,

Appendix

A.1 The time delay of mux
 1-1 2-1 4-1 8-1 16-1 32-1 64-1 128-1 256-1 512-1 1024-1 2048-1

Time
(ns)

0 0.09 0.14 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.05

A.2 The spec of current GPU architecture

Die processing

technology
Clock rate Cycle time

Nvidia GeForce 6800

Ultra
130nm 400Mhz 2.5ns

ATI Radeon 9600 130nm 325Mhz ~3ns

ATI Radeon 9600Pro 130nm 400Mhz 2.5ns

http://www.doulos.com/knowhow/verilog_designers_guide/
http://www.doom3.com/

	Chapter 4 Experiment and Results
	Chapter 5 Conclusion
	Reference

