ERAIL B2 4 FTREE T G oo 2 TR ks

2p 2L
F

The efficient texture memory:system design for texture

mapping in GPU

R AIEE2Z M RER T 5 oo F 2 ¢ et it

2 21
F
The efficient texture memory system design for texture

mapping in GPU

Moy o4 iRk I# Student © Chen-Wei Chang

¥ 2 ¢ #L Advisor ¢ Dr. Chung-Ping Chung

R = sl ~ ¥
FoaofoF & ' o
FioAn R
A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
In

Computer Science
July 2007

Hsinchu, Taiwan, Republic of China

PENE 4 LA & =

O BIRBEKRE
A = i

MO EETEES
A A EE T Bt 30 PR 7k R 3§ ;23
BT 3% 3@ 3L

WEATERIMHMEVBB TAXEZIH T BH A MRS

The efficient texture memory system design for texture

mapping in GPU

SRR ERAE - EERZ B GFERT -

ogR: (F ft e

% L EER

. P

0¥
5
SR T Cia é%i Ei
AT 1

Fr

% R B At F +t A =—+E& H

B X X @ K £
ﬁﬁf%iéi%%ﬁ%ﬁﬁ&ﬁ%

(RERBAEUNEARXELAZREM)

$ﬁﬁ%nhﬁ?%m x ABAAVBRILZBALENHERIRAR
B G &x3i3t > LEEE 2 LHMEBIGFALEM BT

.
%x%%_@gﬁi%zﬁﬁ%ETﬁﬁizﬁﬁﬁ%%f%ﬂﬂ

B s

AN AEE LA?F?@ ‘ﬁfﬁa‘-ﬁ#ﬁ@ﬂ RBAELREER S RPARLE
%%-%%#ﬁ i aRHk, 28% ﬁu#&%ﬁ%m
MRz B @iiﬁkﬁ‘*&méﬂiﬁ’&\k%%‘ th‘é‘§4%7FFf€i&i’k B Fa] £
RBL 0 BAEA ﬁ#i%m&%%&f%%% FTUHRAA HEEHEES
R GEEN BEFETELERE KT >~ TR -

wb

A X BRI N2 S0 R BFR

i‘—#s:&é‘ffﬂﬁé‘k%%%@i&?ﬁ]i% W FERR 10l £ 8 A 31 82K

¥ 9 48 P 49 2 B 2R 101 &8 A 31 82FH

W 2XTFREXREE TR

¥ H A RRHE

% \l\
)
T Nk

REEL: 0T

+ERE b & % A 3| 8

B x X @ K 2
L PN P E L3 £ L k]

(REBRBAFITHEXETFHREEIREAM)

$a@i%k%zﬁm i ARANB LT BALENALETRAL
fro 462293t mo 95 BRERE Dﬂ%mH@fﬂmz X o

WXAEE N BAREBSIHEBE TAREZMEREE RSN
15 EH4% e

[EI-N
$A%%$%ﬁ’m#$@ ﬁ@ﬁ%lnixkﬁsﬁﬂﬁﬁéﬁmr*
BAEFE S 2BE AERBRETHSHMAEZ B BIRBRE

B £4E4T Lxéfni“\'&fﬁ% FRAHNRE ﬁ’.‘%i’ﬁ&f%/\ﬁﬁﬁ% HEN FAFE
TR B RFIEP

WX AHAAGEENE B R T HFEHORT HERMERFR TR E) M
Zz— > WIS CHBEHXEE F A
CEA R

¥ OH A RRME
7§j~%
mERL o 1Y

vERA 9 & ¥ A 3 A

: GESCEY
HEILHEXETTFHELERMHEE
(REIEALEITHERSG XA ETZE)
ID:GT009455600

AEHEEMRBZGXARBALBILIZBRE T MAHMLATREATAT 95
FEER Z SHRFALEMZEH

WXAB EERIEB M EHRE T AR ZIH T O A& st
BRI EER

B ML MABA S LI e (2H%) » FEBE - fa#
BEEZ 6 0 AMRHR -~ TR SRR s - AR S AL X
ALEFHXER > EFBHACZ EIRXRBXEFHR LKL T X
REFHFENBAEEHRE2 g Lk - HME - TRRFIE -

ORAANEEARTZRERE BIE - FREFIP LIRS BREEHRERMRL
I -

BHEAN D RRHE
REE 13
RERL: 5 e

RE Y£% B2l 8

BB ESE B2 M RER T F s 2 M R kA

L

34\:%
-y

B3 R RIR R A L

Rzl FFAPFEIF Y T ML

I

MRS B RAIE B R £ F L F henphiivo 2 s 0 AL H Bk
o B FARNGFHER D EEY A RARSI R B M AR o A EE

WEMPEERY 5 ApF 0 A FEH e R BA P8 o

N~

bithhe P A PR TR EE L B L bz BTN F AR TR
R DL IET o e A Rl (£ B Bl h T BEERE) At ¢ e
EZAMBFEEREREAY o R ERETFTET 2 TR GRSk P

DA I A
d SRR TOAOPEREZ AT F AP RBMAET T e d g0 2-9%

T B E R PR o

The efficient texture memory system design for texture

mapping in GPU

Student : Chen-Wei Chang Advisor : Dr, Chung-Ping Chung

Institute of Computer Science and Engineering
National Chiao-Tung University

Abstract

Texture mapping is a common rendering technique in current Graphic Processing Unit
architecture. In order to have better synthesized picture, many texture data will be referenced
and accessed. We found that the technique may take significant part of total scene execution
time on preliminary operations to-access these referenced data. The operations could be
coordinate generation, address translation and texels look up. And the time is increased as
filtering algorithms are more complex:

In this thesis, we are going to improve this part of time (average texels access time of
texture filtering) by proposing new texture placement under three possible and common
texture cache supports. And the placement is target to achieve the goal by improving the
texture cache hit rate, average cache access counts and address translation time.

As the result shows that the new placements could gain 2~9% upgrade in average texels
access time of texture filtering under the three common texture cache support in current GPU

architecture.

BB B o [
ABSTRACT ..ottt b bbb st b e e e s e R b e st R Ao Rt R Rt R R oAt R bRt e R b e Rt e R et e Rt Rt e Rt et b nearens 1
(@10 AV I = I 5 T OSSPSR i
LIST OF FIGURESooictiitice sttt ettt ettt s et e s bt s b et s et et e s e et et e se b et es s et et es s e ne st en s se e enee \Y
LIST OF TABLES ...ttt sttt b et et s b et et e s b et te st et e be st et e te st eneateneens VIl
CHAPTER 1 INTRODUCTION ...ttt be e b e sa st sa b se s abesaensanennenes -1-
N\ oy 1Yy [0 TP UPRTPRP -2-
A O 1= o A= T PRSP UPRTPRP -3-
1.3 ORGANIZATION ABOUT THIS THESIS . .tttttttitrtestitesirtesiseesireesseesststesssssstseesssessssesssseesssesssssssssesssesssnesssesssnes -3-
CHAPTER 2 BACKGROUND AND RELATED RESEARCH........c.coci it -4-
2.1 GPU RENDERING FLOW ..t1utttiutetsitestesstessssessbessssessstessssessstessssesssteessseesstessssessssessssessssessssessnsessssessssesnsnes -4 -
2.2 THE TEXTURE MAPPING TECHNIQUESufiueiereseiiurrerrssesaafonssereeeeesiiiisssseeesessiossssssessessimissssseesessimssssssssesnn -5-
2. 2.1 TRE TEXIUES «.cvvevveveieereeieeeeseesegdtanni s fireisFon rot isnnaneabiae e sadbhressenseseessessesssassnseessessessessessessenssnnsessessensens -6-

2.2.2 Texture mapping process flow within Texture Unit.....7 .o oo -6-
2.2.2.1 AAAress tranSIAtioNecue iiesheneees e b sidaiisnsannsssios e eesihes¥esseesaesseessesseessesseessesseessesseessesssessessesssessnssessenns -8-

2.2.2.2 TeXUIE TIIEIING ..o i e -9-

2.3 RELATED RESEARCH ..1iuviiiiiieiteesiiiesineesesesbe it s e iTi8oad btk s e sttt e asteensbaessteessbeessteessbeeasteessbeesnbeesnbeesnteesnsesans -13-
2.3.1 NONDIOCK PIACEMENTcuiiiiii ettt st et s b e teereena et e beseesrearas -13-

B o] - Tor=T 04T o L SRS -14 -

B G T N o] - To=T 04 T=T o L SRS -16 -
CHAPTER 3 DESIGN ..ottt sttt b et sb et et e s b et e te s b e e e teeb e e ebesbe s eteabe e ateabeseetesbeeas -18 -
3.1 DESIGN OVERVIEW. ...0iiiutieitttesiteesittesiteestttessaeesssesssseesssessssessssessssessssassstessssessssessssessssessssessnsessssesssessnsensns -18-
3.2 TEXTURE PLACEMENT ...tttittteitteestttestteestttessseesssessssesssseessseesssessssessssessseeesssessnsessssessstessssessnsesssesssessnsensns -19-
3.2.1 RecUrSIVE Z PIACEMENT (RZ).....cceiieiuieieeieie ettt e ettt sttt et st e teareenae e e beseesrenns -19-

3.2.2 Different placement POIICIES........civiiiieicic e e e e e srenras -21-
3.2.2.1 Recursive Z WIth U (RZU) ..ottt bbb sbe s -21-

3.2.2.2 Recursive Z With FHPPed-U (RZFU).....cc.ooiiiiiiiee ettt -22-

3.2.2.3 Recursive Z With SNAKE (RZS)ouiiiiieieei e bbbt -23-

3.2.3 Address translation idea 0T RZc.coveiiiiiiiii e re s -24 -

3.2.4 Address translation of other PIaCEMENLSccviiiiiieiircie e -29-

3.2.5 Address translation 10gic impleMENtAtioN............cccviieiiiie i e -29-

3.3 THREE POSSIBLE TEXTURE CACHE SUPPORTSutttitttesstiesiteessrtessseessseesssessssessssessssessssessssesssssssssessssessnsesans -34-

Contents

3.3.1 Baseling teXture CaChe SUPPOIToiui ittt bbb sbe s -34-

3.3.2 TEXTUIE CACNE SUPPOIT L ..ottt bttt b e bbbt n e e bbb e -34-

3.3.3 TEXIUIE CACNE SUPPOIT 2 ...ttt bbbt bbb e bbb e -34-
3.3.3.1 Possible design of texture CaChe SUPPOIZciiiirieeeieeie et sbe e ean -35-

BRI B O I [(<Y 0 () [T R OTRRRTTR -35-

3.3.3.1.2 COOITINGLE GENEIALONeueetieteiteeteete ettt sttt aeste e e b et e st et e sbesbesee e eseebeabeebesee et e e eneeneereseennan -38-

BRI I B 1=] 3 (010 (=T (TR ORRRTRR -39 -
CHAPTER 4 EXPERIMENT AND RESULTS ..ottt et -43 -
4.1 EXPERIMENT GOAL, ENVIRONMENT AND METHODOLOGYuvviiiiiieiiiiititiieiieesssisisiiessessssssssssnssessssssssssness -43 -
4,2 EXPERIMENT RESULTS .1utttttiieiiiiiitttttieeseesiisssttessesssessbssssssesssassassssssesssassstsasssesssassbabasssesssasbbbasssessssssssbanes -44 -
4.2.1 Results of address transIation TIMEoivceiie ittt e e s bt e e s s srae e e s sbaeessbbeeeeans -45 -

4.2.2 Results under baseling tEXTUIE CACNEoocuuiii i e s be e -45 -

4.2.3 Results under texture CaChe SUPPOIT Lcuiiiiiiiieii et -47 -

4.2.4 Results under teXture CAChe SUPPOIT 2oeeiiiiiiiiiieiieeieeeee ettt ettt sb e -50 -
CHAPTER 5 CONGCLUSION ...ttt ettt ettt e et e e et e e e s sabe e e s aabae s e sabaeeessbbeeesasaeeeesnrees -52 -
LT R OTe] N (o I L] Lo N e oy i R -52-
5.2 FUTURE WORKcoiiiiniriniieensisnsveeeess il s o DI . - Wi oo oo eeveetteeieeesssseatbenesesesssensbsbenssessssnnnsbanens -52-
REFERENCE ... T e B et e e sne e e s -53-
FAYRI =1 = \\1 D]), G U, - -y wy s O . TRRRRE -54 -
AL THE TIME DELAY OF MUX uuiiiiiiiiitriiieeeesssfauh o ieiisssss st s shancsessessssssssesssssssssssssesssasssssssssesssasssssssssesssssssssssess -54 -
A.2 THE SPEC OF CURRENT GPU ARCHITECTUREciiiittttiiiie e ittt e e s s seibtbae s e s s s ebbabaa s s s s s s sabtbasssasssssssabanes -54 -

List of Figures

FIGURE 2-1-1 RENDERING PIPELINE OF GPUciiiiiiiiiiiiiie ettt snteeniba s snae s s -4 -
FIGURE 2-2-2-1 THE TEXTURE UNIT AND TEXTURE MAPPING PROCESSING FLOW......viiiuieririesieesiriesneesineesneesenees -7-
FIGURE 2-2-2-1-1 THE CONCEPT OF ADDRESS TRANSLATION. ..c.ttttittteiiriesiteesireesiseesineesseessneessesssneessessnesssesssnes -8-
FIGURE 2-2-2-2-1 THE MIPMAPS AND DATA STRUCTURE OF ATEXEL ...vvtivuvisiiiiesiiessineesienesineessesssisesssesssssssssensnens -10-
FIGURE 2-2-2-2-2 THE CONCEPT OF BILINEAR FILTERING ..1evvttitviestiesiireesieessireesseessineessessstsessssnsssnsssssssssnssssensnens -11-
FIGURE 2-3-1-1 NONBLOCK PLACEMENT AND ADDRESS TRANSLATION EQUATION ...cciciiiiiitiieieeeeeeiinrieeeeeeeseinnes -13-
FIGURE 2-3-1-2 ACCESS CONDITION OF NONBLOCK PLACEMENTS ...iiutvtiietsiireasiiessineessesssisesssessssnesssessssnssssensnens -14 -
FIGURE 2-3-2-1 4D PLACEMENT AND ADDRESS TRANSLATION EQUATIONcciiiiuriiiiieeiiiiiitieeeeeesssiisrsessessesssannes -14 -
FIGURE 2-3-2-2 ACCESS CONDITION OF 4D PLACEMENT ..ttiitttiiivtesietssireesieessineesseessiseessessstsssssesssssssssesssssssssensnens -15-
FIGURE 2-3-3-1 THE RELATED WORK OF 6D PLACEMENT ..ievviiiviastiesiireesieessireasseessiseessesssisssssessstsssssssssssssssensnens -16-
FIGURE 3-2-1-1 RECURSIVE Z PLACEMENT ...tttttttitttestetesttessteessteeessessstsasssessstsassssssstsssssssssssssnsesssssssssenssssssssensnsns -19-
FIGURE 3-2-1-2 CROSS TILE CONDITION IN RZ AND 4D/BDccoviiiieiecie et -20-
FIGURE 3-2-1-3 MULTIPLE CACHE LINES CONDITION IN RZ AND 4D/BD........cccovciviiiieieie e -20-
FIGURE 3-2-2-1-1 RECURSIVE Z WITH U PLACEMENT 4580 11 v0esteeestvtessessssresssessssnsessesssssssnsssssssesssssssessessssns -21-
FIGURE 3-2-2-2-1 RECURSIVE Z WITH FLIPPED=W VLoooiii il e -22 -
FIGURE 3-2-2-2-2 RECURSIVE Z WITH FLIPPED-U N2 . i i ottt -22 -
FIGURE 3-2-2-3-1 RECURSIVE Z WITH SNAKE PLACEMENT it tttvriee s s suveestvaassesssineessesssssssssesssssssssesssssssssensnsns -23-
FIGURE 3-2-2-1 DEFINITION OF TERMSvee fuaker s oo iiaimmamsamasaaa e« cahanssesseeessnssssensssnsessensssssenssnssssssnsensssssssensnsns -24 -
FIGURE 3-2-2-2 THE CASE | OF ADDRESS TRANSLATIONcuvevieiosteereessesssireessesssineesesssissesssssssssssssssessenssens -24 -
FIGURE 3-2-2-3 EXAMPLE OF ADDRESS TRANSLATION CASE |: 1. ioiiiiiiiiiie st -25-
FIGURE 3-2-2-4 THE CASE || OF ADDRESS TRANSLATION ...iiuvtttttesteessireessesssineessesssineessessssssssssssssssssssssssssssensnsns -26 -
FIGURE 3-2-2-5 EXAMPLE OF ADDRESS TRANSLATION CASE [....iiiiiiiiiiiiis it -27 -
FIGURE 3-2-2-6 THE CASE |11 OF ADDRESS TRANSLATION ...c.vvtttttestteesireestesssireessesssiseessessssssssssssssssssssssssssssensnens -28 -
FIGURE 3-2-2-7 EXAMPLE OF ADDRESS TRANSLATION CASE Tl ...ccoiiiiiiiiiiiiii e -28 -
FIGURE 3-2-2-8 SUMMARY OF RZ ADDRESS TRANSLATION FUNCTION ..cciuvtiiiviesiieesireesienesireesseessinessseessenssssensnens -29-
FIGURE 3-2-5-1 CONCEPT OF ADDRESS TRANSLATION UNIT c.uviitvteitttsiiieesienssireesseessineessesssssssssesssssssssessssnssssenssens -30-
FIGURE 3-2-5-2 GLOBAL VIEW OF ADDRESS TRANSLATION LOGIC ..vvviivieiiesiiviesienssireesieessinesssesssssesssessssnssssenssens -31-
FIGURE 3-2-5-3 ONE CELL OF COMMON FIELD GENERATOR ...veitvtestresiireessesssireessesssiseessesssssssssesssssssssesssssssssensnens -32-
FIGURE 3-2-5-4 COMMON FIELD GENERATOR WITH N CELLS ..eiutvtiiteisiiitesieessireesteessineessesssinessseessissssssssssnssssenssens -32-
FIGURE 3-2-5-5 DIFFERENTIAL FIELD GENERATOR ...cuuvtttttestttesittesiesssineassesssissassesssisssssesssssssssssssssssssesssssssssensnsns -33-
FIGURE 3-3-3-1-1 TEXTURE CACHE SUPPORT 2......uutiittteitrtesieessintessesssisssssessssssassssssisssssssssssssssesssssssssesssssssssensnsns -35-
FIGURE 3-3-3-1-1-1 MULTIPLE CACHE LINES CONDITIONS ...uveiitviestitsiiitesieeesineesseessineessesssinssssesssssssssessssnssssensnens -36-
FIGURE 3-3-3-1-1-2 OPERATION OF CASE IDENTIFIER ..ettttiiteteiittesteeesireessesssiresssesssisesssesssssssssssssssssssssssssssssensssns -36-
FIGURE 3-3-3-1-1-3 OVERVIEW OF CASE IDENTIFIER ...cettvtiitresitttesieeesiaeesseessisasssesssisesssesssssssssssssssssssessssnssssensnsns -38-
FIGURE 3-3-3-1-2-1 OPERATION OF COORDINATE GENERATORicitviiiuiesieresireesseessineessesssissassesssssssssessssnsssensnsns -39-
FIGURE 3-3-3-1-3-1 TEXELS ROUTER ..1itttttttestttestttastesesissessesssissassessstssssssssstsssssssssssssssssssssssnsesssssssssesssssssssensnsns -40-

FIGURE 3-3-3-1-3-2 OPERATION OF OFFSET GENERATORcicttttiiieieiiiiititiietessissibssesssesssesssssssssesssesssssssssessssssnns -41 -

FIGURE 3-3-3-1-3-3 BOOLEAN EQUATION OF OFFSETZ...ccciiiiitttiiieieiiiiiitiieeiesssssibssesssesssessssbssssesssessssssssssssssssnnes -41 -
FIGURE 3-3-3-1-3-4 BOOLEAN EQUATION OF ENABLE SIGNAL .vvviiiiiiiiitiiiiieie e s siibtiiee s e s s sesistbssesssssesssssssssesssssannns -42 -
FIGURE 4-2-1-1 ADDRESS TRANSLATION TIME OF DIFFERENT PLACEMENTSiciviiiiiiiesiiesiireesinessineessnessineessenssens -45 -
FIGURE 4-2-2-1 MISS RATE IN BASELINE TEXTURE CACHEuceiitiiiitiis it esieeestreesteesstaeessaesstseassaesstsesssaesstnssssensssns -46 -
FIGURE 4-2-2-2 CONFLICT MISS UNDER DIRECT MAPPING WITH 4D PLACEMENTcvteiiisiiiiesiiessiveesine e sineesiee e -47 -

FIGURE 4-2-2-3 AVERAGE TEXELS ACCESS TIME OF BILINEAR FILTERING IN BASELINE TEXTURE CACHE SUPPORT - 47

FIGURE 4-2-3-1 AVERAGE CACHE ACCESS COUNTS IN TEXTURE CACHE SUPPORT L....ccoiuiiiiiiiniiesiiie e sive e -48 -
FIGURE 4-2-3-2 MISS RATE IN TEXTURE CACHE SUPPORT L...uviiiiiiiiiiisiiiiesiie st esite e stae sttt et e nnne s -49 -
FIGURE 4-2-3-3 AVERAGE TEXELS ACCESS TIME OF BILINEAR FILTERING IN TEXTURE CACHE SUPPORT 1 -49 -
FIGURE 4-2-4-1 AVERAGE CACHE ACCESS COUNTS IN TEXTURE CACHE SUPPORT 2....ccciueiiiiiesiiessireesinessineesseesnens -50-
FIGURE 4-2-4-2 MISS RATE UNDER TEXTURE CACHE SUPPORT 2 ...cuviiiiiesiieesireesieessineessaesstneessnesstnesssnesssnesssnnssens -51-
FIGURE 4-2-4-3 AVERAGE TEXELS ACCESS TIME OF BILINEAR FILTERING IN TEXTURE CACHE SUPPORTZ............ -51-

Vi

List of Tables

TABLE 2-2-2-2-1 SUMMARY OF TEXTURE FILTERING ALGORITHMS .. .uttiiiiiiiiiiiiiiiee e e siiiiirieesseessssisaresssesssssssssenes
TABLE 2-3-1 SUMMARY OF THREE PLACEMENT ALGORITHMScciiiiitttiiiiieeiiiiiiieessessseiissbesssesssesassresssesssesssssenes
TABLE 3-2-4-1 SUMMARY OF LEAST SIGNIFICANT FOUR BITS OF ADDRESS AMONG PLACEMENTS....cccceciiiinnienne.

TABLE 3-3-3-1-3-1BOOLEAN EQUATION OF OFFSET FIELD .uvvvvitieeiiiiiirtieeeiesiiiisnsseessesssasssssesssessssssssesseessssssnsseses

Vil

Chapter 1 Introduction

In Three-Dimensional (3-D) computer graphics, texture mapping is a common and one
of the successful techniques in high quality image synthesis. It is responsible for rendering the
3-D scene by adding detail, surface texture, pattern, surface normal or color to a 3-D object
and become more and more complex due to the requirement of 3-D scene realism and special
effect [1][2].

Basically, in order to have quality of synthesized image, more texels data will be
referenced, and more computation will be invoked. We found that the complex texture
mapping technique may take a significant part of scene total execution time on the
preliminary operations. The operations are accessing the required referenced texels data in the
texture memory system for texture filtering. They centain address calculations, coordinate
generations and texel look ups for those required-texels in the texture memory system. Thus,
whether the texture memory system:is well.design-or not may affect the average texels access
time of texture filtering.

In this thesis, we are going to improve the average texels access time of texture filtering
under three possible and common texture cache supports. In order to achieve the objective,
We are going to improve texture cache hit rate, average cache access counts and address
translation time by proposing the new placement for saving the average texels access time of

texture filtering.

1.1 Motivations

Texture placement, placing the texture in the texture memory, is what we consider the
most important and fundamental solution, as the following reasons.

1. Texture placement will affect the texture cache hit rate.

2. Texture placement will affect average cache access counts.

3. Texture placement will affect the address translation complexity.

In first reason, since the texture placement is the decision of how to place the texture in
the texture memory, if the placement is well design, the cache hit rate could be improve and
average texels access time will also be improve. If not, it may introduce cache hit rate loss
and increase average texels access time of texture filtering.

The third reason, due to some complex texture mapping techniques, i.e. bilinear filtering,
need more than one texel data, the requiredstexels maybe scatter over many texture cache
lines, i.e. 2, 4, cache lines, according to the placement algorithm. Moreover, it will also affect
the continuousness of required texels-within'a cache line.

The second reason, if the placement has regular property, it can be translated through
some fast bit-wise logic circuit. If not, the address translation time will increase due to the
abnormality of placement and also increase average texels access time of texture filtering.

If we have the hardware support to help us to retrieve the required texels in the same
cache line, we may retrieve them in one cache access. If not, we may have to access them in
another cache access. However, if we do not have such hardware support, the continuousness
factor could be an important cause. If the required texels are within a cache line and
continuousness, we can retrieve them by using wider bus or a common technology, burst

mode. If they are not continuous, we may retrieve them in another time of cache access.

1.2 Objectives

We are going to propose the new texture placement that is how to place the texture in the
texture memory. And the placement is aim to save the average texels access time of texture
filtering under three possible texture cache supports by improving the three aspects:

1. The placement could improve the texture cache hit rate.

2. The placement could be easy to translate through some easy ideas.

3. The placement could improve the average cache access counts.

1.3 Organization about this thesis

In Chapter 2, we explain the graphic processing flow and texture mapping techniques. In
Chapter 3, proposed the new placement concept, the.address translation idea, possible fast
address translation logic circuit and we will list the threepossible and common texture cache
supports. In Chapter 4, we will describe our experiment goal, environment and methodology;
evaluate average texels access time of texture filtering under three kinds of possible texture

cache support. In Chapter 5, there are discussion, future work and conclusion.

Chapter 2 Background and Related

research

In section 2.1, we will give a brief concept of rendering pipeline in Graphic Processing
Unit (GPU). And we’ll find that our research is focus on pixel processing, the third pipeline
stage. In section 2.2, we are going to explain the texture mapping techniques which include
the topic of the texture data structure, and the responsible function unit, called texture unit and

processing flow of texture mapping. Finally, some related research will be study.

2.1 GPU rendering flow

The rendering flow in current GPU can be roughly divided into four parts which are
vertex processing, rasterization, pixel processing, depth processing based on its pipeline stage,

as shown in figure 2-1-1.

[
vertices Geometry processing
[]
{
P 8 B
‘/ ﬁ‘ triangle
T Triangle setup and Rasterization
rasterize
0« @ color Pixel processing Texture
texture mapping memory
1 system
z
(Xiyifg/ Depth processing
view point .

To frame buffer for display

Figure 2-1-1 rendering pipeline of GPU

In figure 2-1-1, the vertex processing is done in vertex shaders. The majority works in

them is performing vertex’s coordinate translations. These translations actually is a serial of

-4-

coordinate translations from vertex’s local coordinate to global environment coordinate and
finally translate to view point coordinate.

After vertex processing, the following stage is triangle setup and rasterization. Triangle
setup is responsible for assembling primitive according to their view point coordinate. That is
finding three vertices which are valid to be assembled into a triangle (primitive). Based on the
primitive, rasterization is responsible for interpolating this primitive. In another word,
rasterization interpolate each primitive into some fragments. Thus, we obtain the fragments,
pixels before output to frame buffer are called fragments.

The pixel processing is done in pixel shaders. Its majority work is coloring each
fragment with the texture which is usually stored in the texture memory system, i.e. memory,
cache, through the dedicate function units, texture units.

The final processing is depth processing. Since'the are many fragments have the same x,
y coordinate in the screen but are different in z coordinate, we are target to find out which
fragment will not be covered (closest to.the-view: point) and will be final displayed on the
screen. Thus, the works in depth processing.is simply-comparison the depth value (Z value) of
each fragment which has the same X, y and pass these fragments to frame buffer for display

on the screen.

2.2 The Texture mapping techniques

Texture mapping technique usually invokes multiple textures or MIP maps as samples
and also invokes the other techniques, such as bilinear interpolations or trilinear interpolations
to produce different amounts of realism. Moreover, the major process of the whole texture
mapping is done in special function units in the stage of pixel processing, called texture unit.
We will introduce them respectively as following organization:

In section 2.2.1, we will first give an overview of texture data structure.

In section 2.2.2, we will introduce the processing flow of texture mapping within the

texture unit which is responsible for coloring the fragment. And it contains coordinate

generation, address translation, texels look up and texture filtering.

2.2.1 The textures

Texture is simply a data structure which is used as color reference in pixel shader and
can be viewed as a picture or bitmap image. Its dimensions are usually restricted to power of
2 for hardware implementation. Moreover, the width and the height of the texture can be
different [4].

A pixel of a texture, call a texel, is a basic cell of a texture and is usually made up of four
components, which is R (Red), G (Green), B (Blue), A (Alpha) respectively. And each
component is usually one byte width. However, with the High Dynamic Range (HDR)
introduced in DirectX 10, a texels can.be up to 16 bytes, which each component is up to 4
bytes for more precision

Textures are usually stored in the off-chip-large texture memory and on-chip fast texture
cache for quickly retrieval in GPU. When. the pixel shader needs to paint the fragment, it
needs the color information in the textures, thus goes to the texture storage to get the required

texels for that fragment.

2.2.2 Texture mapping process flow within Texture Unit
Texture mapping is done within the texture unit. The texture unit is usually in the Pixel
shader, since it is responsible for color the fragment according to the filtering type. The
processing flow can be roughly classified into four operations, as shown in figure 2-2-2-1.
From Sampler State FIFO [14], we know the required information of how to color the
fragment. The information may contain texture filtering type, texture coordinates, base texture

address of the required texture, etc.

texture mapping
information form
Sampler state FIFO Generate the texture coordinates
for the filtering

filtering type,
texture information

A 4

translate the coordinate
to texture address

Coordinate generation

texture coordinatp

Address translation

Texture storages \‘Ldress

the retrieved texel | Texture filter «

\\ final color / Final color of the fragment

Texture unit . .
xture unt v is filtered by texture filter

Base on the address
look up required texel

Address Generation fractions,

filtering type

Back to pixel shader

processing flow

Figure 2-2-2-1 the texture unit and texture mapping processing flow

After we have the information, the coordinate generator will generate the required
texture coordinates based on the filtering type. These texture coordinates may be further
translated into texture addresses by the following address translation unit. These translated
addresses will be used to look up the.required texel in the texture cache next to the texture
unit. The texture cache is a fast SRAM storage-space, it-store the texels information, and can
be any traditional cache configuration.-After we have retrieved the required texels, we can
perform the texture filtering algorithm based on the filtering type, texels, and other
information in the texture filter. The final color will be sent back to the pixel shader.

In current high-end graphic card, there are multiple texture units in the pixel shader for
performance issue [11]. Moreover, most of the texture units also have multiple texture address
units and texture filters which allow processing more filtering algorithms or more complicated
filtering algorithm in parallelism [11]. Texture units are allowed to generate the final color of
filtering algorithm per cycle.

As mentioned in chapter one, we are target to save average texels access time of filtering.
The average texels access time may contain the time spending on coordinate generation,

address translation and cache look up.

2.2.2.1 Address translation

In GPU processor, the texel is indexed through texture coordinates, i.e. u, v, coordinates,
But in texture memory system, texture is indexed through texture memory address. Since the
indexing methods are different between GPU processor and memory system;, thus we need a

special function unit which is target to perform the address translation, as shown in figure

2-2-2-1-1.
Base
u
w=2"
v —
Address Texture
translation address
he2 o
(u,v)
Indexing in pixel'shader Indexing in texture memory

Figure 2-2-2-1-1 the concept of address translation.

The address translation could be viewed as a translation function with texture
coordinates (i.e. u, v), texture dimensions, base address of texture as input and generate the
translated address as output [4].

Thus, the complexity of address translation may relate to the texture placement algorithm.
If the placement is well design, the address translation could be easy to translate. If not, the

address translation complexity could be complicated.

2.2.2.2 Texture filtering

Texture filtering is the method used to obtain the color for a fragment by using the colors
of nearby texels in some texture. In another words, it is an attempt to find a value at some
point by giving a set of discrete samples at nearby points. Thus, texture filtering is a kind of
process that for any given fragment, it goes to loop up some required texels, and calculated
the final color for that fragment.

Since one fragment may not usually correspond exactly to one texel, there can be
different types of correspondence between a fragment and the texel/texels depend on the
position of the textured surface relative to the viewer.

For example, one fragment is exactly the same as one texel of the texture, that is one to
one mapping. Closer than that, the texels are larger than fragments. Texels are needed to be
scaled up appropriately, known as texture magnification. Farther away, each texel is smaller
than a fragment, that is one to many. In.this case.an appropriate color has to be picked based
on the covered texels, via texture minification.

Because the different correspondence. between fragments and texels mentioned before,
that may necessitate reading all of entire texels and combining their values to correctly
determine the fragment color. This process would be a potentially expensive operation.
Mipmapping technique is introduced in [12]. It can avoid this by pre-calculating, recursively
sampling the texture and storing it in a quarter down to a single texels. As the textured surface
moves farther away, the texture being applied switches to the pre-sampled size. Different sizes
of the mipmap are referred to as 'levels', with Level 0 being the largest size (used closest to
the viewer), and increasing levels used at increasing distances. As shown in figure 2-2-2-2-1,
we have an example of how the mipmaps looks like.

The filtering method can be roughly classified according to the image quality and
computation complexity.

The first one is nearest neighbor interpolation. It is the fastest and crudest filtering
-9-

method - it is only look up the closest texels’ color for the mapped fragment. While fast, this
results in a large number of artifacts, thus image quality is the worst.

The second one is nearest neighbor with mipmapping. According to the fragment’s Z
value, we select the two closest mipmaps first. For each mipmap, by applying Nearest
neighbor interpolation, we got two selected texels. Finally, the final color for that fragment is
the result of weighted average of those two texels. This reduces the aliasing and shimmering

significantly, but does not help with blockiness.

4 bytes
L R [G [B [A]
w=2"
W= 2w71
h=2"
h=gt W=2""
h=2"2 1
...... D 1
the original texture, LODO LOD1 LOD2 LODN

Figure 2-2-2-2-1 the mipmaps and data structure of a texel
The third on is bilinear filtering. In this method the four closest texels on a nearest
mipmap level to the fragment center are chosen, and final color for that fragment is the color
of weighted average among them. Figure 2-2-2-2-2 shows the concept of bilinear filtering
algorithm. Bilinear filtering is almost invariably used with mipmapping; though it can be used
without, it would suffer the same aliasing problems as nearest neighbor. Moreover, bilinear
filtering is the basic component of the following filtering method. And they can be viewed as

several pieces of bilinear filtering

-10 -

f,T4 T3 f,T2 T

b4 b

fl Weighted Weighted
P PPy average average
_ |_w the mapped \ |
fzf fragment f,
™ | T4 i
y A 4

the 4 required texels of a bilinear filtering Weishted

average

l final filtered color

Figure 2-2-2-2-2 the concept of bilinear filtering

The fourth one is trilinear filtering. It can be treated as a weighted average of two pieces
of bilinear filtering. For each of two closest mipmap levels, perform the bilinear filtering. And
the final color for that mapped fragment is the color which is the weighted average of the two
bilinear filtering results. Of course, closer than Level 0 there is only one mipmap level
available, and the algorithm reverts to bilinear filtering.

The final one is anisotropic filtering. It is the-highest quality filtering available in current
consumer 3D graphics cards. If we-need:.to-colora.plane which is at an oblique angle to the
camera, bilinear or trilinear filtering ‘would give us insufficient horizontal resolution and
extraneous vertical resolution. Anisotropic is a method of enhancing the image quality of
textures on surfaces that are far away and steeply angled with respect to the camera. The final
color of that mapped fragment is the color which is the “trilinearly” average of the n pieces of
trilinear filtering results. The value n called anisotropic ratio, horizontal direction to vertical
direction, is defined by application.

Finally, we summarize a table of texture filtering methods as shown below.

-11-

of # of
o # of o)
Filtering Type) Texel / Texels Filtering Algorithm
MipMap))
MipMap | (# of Bi)
nearest neighbor) . 10) Apply color of the closest texel respect to that
interpolation fragment center
nearest neighbor .)
) Weighted average of two nearest neighbor
with 2 1 2(0)])
)) interpolation.
mipmapping
- Weighted average among nearest four texels on the
Bilinear 1 4 4(1)]
closest mipmap.
- Weighted average of two bilinear filtering which are
Trilinear 2 4 8(2)]]
on two closest mipmaps respectively.
n:1 Anisotropic Weighted average of n trilinear filtering which are on
n=2,4,8,16 2 4n 8n (2n) two closest mipmaps respectively.

Table 2-2-2-2-1 summary of texture filtering algorithms

-12 -

2.3 Related Research

2.3.1 Nonblock placement
Traditionally, texture is placed in the texture memory by using row-major concept, as

shown in figure in 2-3-1-1. This is also known as Nonblock placement.

base
A
w=2" \ J
A >
B >
-
¢ B
Address translation equation :
y A=base+u+[v<<log,w]
where A is the translated address
h=2" c base is the base address of the texture
u,V is texture coordinate
 / W is texture width
Address transltion equation
traditional non-blocked (row-majored) placement; texture memory layout

Figure 2-3-1-1 Nonblock placement and address translation equation

The concept of placement is straightforward-and intuitional. Address translation is also
straightforward. However, since texture filtering have spatial locality, that is the required
texels of a bilinear filtering is in a 2 by 2 region, and the required texels of next bilinear
filtering is usually closed to the current one, Nonblock placement could be considered as a
non-efficiency placement due to the long texture’s width and always row-major.

Among these four required texels, the upper and lower two will in two adjacent rows
respectively, as shown in figure 2-3-1-2. However, if the row of texture is very long, the
required texels will be separated far away in the texture memory.

Moreover; when the cache line size is smaller or equal to the size of a single row data
structure, the required texels which are in two adjacent rows will be placed in two different
cache lines. Thus the upper/lower two required texels will be in different cache lines and for

those texels in the same cache line, they are continuous.
-13-

row-major

vy

The required texels
of a bilinear filtering

are in two adjacent

rows

A texture

Figure 2-3-1-2 access condition of Nonblock placements

2.3.2 4D placement

W= 2W1+W2

T
= 00 — >0 0

\ 4

\ 4

h — 2h1+h2

[

One level tile based (4D) placement ~

W:2w2

% Atexel

A 4

;

2 e he

A 2" *2" tile

iy

texture memory layout

A

Base

0,0y

(1,0

Q0

T T

Address translation equation :
Tile address = base +[bv << log, (w*bw)] +
[bu << log, (bw * bw)]
where base, the base address of the texture
w is texture width
h is texture height
u,Vv is texture coordinate
bu,bv is tile coordinate
bu =u >>log, bw
bv =v >>log, bw
su=ué&(bw-1)
sV =v&(bw-1)
A = Tile address + su +[sv << log, (bw)]
where A is translated address
su, sv is sub coordinate within a tile
bw is tile width

Address translation equation

Figure 2-3-2-1 4D placement and address translation equation

4D placement [4] is also known as tile-based placement, as shown in figure 2-3-2-1. The

concept of 4D placement is row-majored and one level tile-based: original texture is divided

into some squared tiles and inter/intra-tile is row-major.

Since texture filtering has spatial locality, the placement which place the texels in a form

of group could get better cache performance. This is because the required texels of a filtering

may be fall into a 4D tile and they are placed in the texture memory nearby according to the

tile size.

However, since inter-tile is also the row-major, the required four texels of bilinear

filtering will have strongly chances to cross two adjacent tiles in the column or four different

-14 -

tiles, shown in figure 2-3-2-2. Thus these required texels may be placed separately in texture
memory and may introduced conflict miss in direct mapping cache. In [4], they say when the
size which is texture width multiplies tile width is multiple of cache size and cache line size is
multiple of tile size, conflict misses will occur due to the upper and lower tile will have the
same cache index number. By padding the unused tile to form another new column, the

problem can be solved. However, texture memory spaces will waste.

The required texels The required texels
cross two vertical tiles cross four different tiles

Tile A /TlIeB >

i row-major

Tile C Tile D >

Figure 2-3-2-2 access condition-of 4D placement

Moreover, if cache line size is equal to.the tile size, for those four requited texels in the
same cache line, they are two and two continuous or all continuous due to 4*4 tile size. If two
texels are in the same cache line, they are continuous like Nonblock placement or
discontinuous due to the two texels are placed on different rows in the tile.

The address translation of 4D placement proposed in [4] invokes many arithmetic
operations, such as ADD operation. Due to texture address is 32-bits or 64-bits [4] in current
GPU architecture, the ADD operation may have long carry propagation according to the
hardware implementation. Thus, the propagation could be the critical path of the address

translation.

-15 -

2.3.3 6D placement

W= 2w1+w2+w3 [\7
L 00 — ™0 [eX0)

> \ W= 2w2+w3

A texel

h _ 2h1+h2+h3

[
h
\b\\ W=2V{V3
\
>

>
h = ph2+h ‘J—h —oh
\:Tt [\j,t A 29823 tila
A 22 %21 tijg |

[
Two level tile based (6D) placement \

Figure 2-3-3-1 the related work of 6D placement

6D placement [4] is known as two-level tile-based placement, as shown in figure 2-3-3-1.
The original texture is divided into some squared larger tiles and inter-larger tile is row
majored. Within a larger tile, 4D placement is-applied to it.

The placement is proposed to improve. the conflict miss which occurs in 4D placement.
Unlike the padding unused tiles to form a new column, 6D placement will not waste the
memory space. However, the address translation idea proposed in [4] is still following the
concept of 4D placement. It invokes arithmetic operations, such as ADD operation.

Finally, we have a table 2-1 to summarize the three placement algorithms in term of
address translation time, cache hit rate, average cache access counts based on cache lines and
average cache access counts based on cache lines and continuousness. We expect the address
translation time of Nonblock is better than 6D placement. The cache hit rate of 6D is better
than Nonblock placement. Average cache access counts based on cache lines of 6D/4D
placement is better than Nonblock placement. Finally, average time of cache access based on

cache lines and continuousness of 6D/4D placement is better than Nonblock placement.

-16 -

Nonblock 4D 6D
i One level tile based + | Two level tile based +
Placement concept | Row/column-major))
row/column major row/column major
) Base + level 2 tile
Address Base + levell tile i
. s offset + levell tile
translation Base + offset offset + offset within o
) offset + offset within
concept alltile (*) i
alltile (*)
Address .
L better medium worse
translation time
Cache
performance, hit 08.893/99.018 (%) | 99.3139/98.7078 (%) | 99.558/99.728 (%)
rate (**)
Average cache
access counts
2.194/2.099 2.078/1.909 2.078/1.909
based on cache
lines (**)
Average cache
access counts
based on cache
_ 2.194/2.107 2.408/2.408 2.408/2.408
lines and
continuousness
(***)
*) Waste memory space when texture height is smaller than tile width.
(**) Direct mapping, 8K, cache line size is 32/64 bytes.
(***) Direct, 8K, line size is 32/64 bytes, burst mode support with max data length is 16

bytes

Table 2-3-1 summary of three placement algorithms

-17 -

Chapter 3 Design

3.1 Design Overview

Our design can be roughly divided into two topics: the first one is focus on the new
placement algorithm that is how to place the texture in the texture memory. The second one is
focus on the possible texture cache supports in the GPU.

In the placement topic, motivated by the related work proposed in [4], we will propose
the new texture placement algorithm by using the recursive concept. The new placement is
called Recursive Z placement, and can be viewed as multi-level row-major placement which
is extended from 4D/6D placement. Later on, we will try to further improve the RZ placement
in term of the continuousness of required texels with in a cache line. We have two main ideas.
The first one is motivated from shape. We can,try another shape instead of Z shape. The other
is motivated from tile size. We can try larger base tile size instead of 2*2 to gain more
continuousness.

After we have the placement, we should-develop the address translation idea of these
placements. The idea should be easy. And the logic should also easy to implement. It may use
bit-wise logic operations to accomplish the translation.

In the possible texture cache support topic, we list three possible texture cache supports
in current GPU architecture which are baseline texture cache support, texture cache supportl
and texture cache support2. The baseline texture cache support and texture cache support 1
are common in current texture cache. And our design is focus on texture cache support 2

which can retrieve the required texels of bilinear filtering in the same cache line.

-18 -

3.2 Texture placement

In the section, we will design the new placement algorithm. That is how to place the
texture in the texture memory. The new placement algorithm will be design in three aspects
which are cache hit rate, average cache access counts and address translation time. Finally, we

will propose a possible logic implementation for the address translation idea.

3.2.1 Recursive Z placement (RZ)

Our new placement is called Recursive Z placement. The placement strategy is placing
the texel in the recursive z scan line, as shown in figure 3-2-1-1. In the term of iteration, we
have the base case (1*1) which only invokes one texel. The next case (2*2) is iteratively
integrated with the four previous cases by using Z shape placement Recursive Z can also be
viewed as multi-level row-major placementpwhich ‘is extended from 4D/6D placement

proposed in [4].

= 4 15116(17]20]21
=3 7 118119(22 |23
8 1213124 28129
1011|1415 2713031
32133136 4814952 |53
34135 39150 |51 (54155
40 | 41 144 | 45156 |57 |60 |61
42 | 43|46 | 47|58 |59 |62 |63

Figure 3-2-1-1 recursive z placement
Since the required texels of bilinear filtering has spatial locality, that is bilinear filtering
itself is a form of 2*2 region and the required texels of current bilinear filtering is close to the
next one, tile-based placement can avoid placing texels continuously along one u/v direction,
i.e. row-major/column-major, like Nonblock placement. Thus, the required texels of filtering
may not be separated far away.

RZ placement can also avoid row-major of inter-tile like 4D/6D placement. In figure

-19 -

3-2-1-2, the required texels of filtering can be cross two/four tiles/Z in RZ/4D/6D. If we have
four required texels, say A, RZ can place them more closely than inter-tile is row-major
(4D/6D). B, C is the same, too. However, if we have D/E/F, RZ may be worse than 4D/6D
placement. But, as mention before, filtering have spatial locality. We expect RZ placement

have better cache performance in average.

peARa & =

Figure 3-2-1-2.¢eross tile condition in RZ and 4D/6D
RZ placement can also improve.average cache. access counts compare to the 4D/6D
placement. For a given cache line size, RZ placement can fit those texels which are in that
cache line size into the square-liked region. But, row-major of inter-tile may fit them into the
rectangular-liked region. In figure 3-2-1-3, if we have cache line size is cable of 4 tiles/Z, we
will not cross another cache line when access A or B texels in RZ placement. But, it may will

in 4D/6D placement.

Figure 3-2-1-3 multiple cache lines condition in RZ and 4D/6D

-20 -

3.2.2 Different placement policies

Under some texture cache system with burst mode technology support, texture cache
supportl, it may retrieve the required texels of bilinear filtering in one cache access if they are
all continuous. It can be done by sending the start address of the required texels and the data
offset for the required texels in continuousness. If they are discontinuous, the cache may not
retrieve them in one cache access. Thus, the consideration of continuousness is also

important.

3.2.2.1 Recursive Z with U (RZU)

Although the required four texels within a base 2*2 Z-shape and 2*2 u-shape are all
continuousness, if the required texels are crossing two z or two u in horizontal/vertical,
U-shape could be potentially have more benefits than z-shape. This is because the U shape
has three directions of continuousness.benefits. But the z-shape only has two. Thus, we may

change the z-shape to the u-shape.

RiRzndi A
2 A
5 e | 1|
. 015 5

Figure 3-2-2-1-1 Recursive Z with U placement

RZU placement is obtained by changing the 2*2 Z-shape to 2*2 u-shape as shown in
figure 3-2-2-1-1. And the placement policy between 2*2 tile is the same as RZ placement. It is
also the multi-level tile-based like RZ placement. Thus, we expect the cache hit rate is equal
to RZ placement under three kinds of cache support.

By changing z-shape to u-shape, we may have the required four texels of bilinear

filtering as shown the red circle in figure 3-2-2-1-1 continuous, but may texels 1/2/8/11
-21-

discontinuous. But, in average, we may improve the average cache access counts under
texture cache support 1. However, the average cache access counts may equal to RZ in texture

cache support 2.

3.2.2.2 Recursive Z with Flipped-U (RZFU)

We can further improve the RZU by flipping the lower U over in order to have the
bottom of the upper and lower U edge to edge, as shown as red circle in figure 3-2-2-2-1.
However, we may have texels covered by blue circle discontinuous as shown in figure
3-2-2-2-1. And we can also try to flip the upper two U over as shown in figure 3-2-2-2-2.

However, by doing this, we may have some required texels discontinuous.

0| 3417

Vanl) dans
ANEyEINP

pu

ANAEAK:
N N\ i

Figure 3-2-2-2-1"Recursive Z with Flipped-U v1

L6
K b
12| 15
o-Ho [bhk

Figure 3-2-2-2-2 Recursive Z with Flipped-U v2
RZFU1/2 placement can also be viewed as the multi-level tile-based like RZ placement.
Thus, we expect the cache hit rate is equal to RZ placement under three kinds of cache
support. Whether the average cache access counts under texture cache support 1 of RZFU1 is

better than RZFU2 may dependent on the probability. If the required four texels are always

-22 -

happen to red circle in figure 3-2-2-2-1, the RZFU1 could be better. If the required four texels
are always happen to blue circle in figure 3-2-2-2-2, the RZFU2 could be better. The average

cache access counts may equal to RZ in texture cache support 2.

3.2.2.3 Recursive Z with Snake (RZS)

In section of 3-2-2-1 and 3-2-2-2, we improve the RZ placement by changing z-shape to
u-shape. In this section, we improve the RZ placement by changing base 2*2 tile size to larger
n*n tile size. We found that the larger tile size we choose, the probability of required four
texels of bilinear filtering crossing two/four tiles is lower. If the required four texels of
bilinear filtering cross two/four tiles, the discontinuous may occur. Another reason for larger
tile size is that we have more placement policy within the larger tile size.

We propose a new placement, called Recursive Z with snake. The snaked-tile can be
viewed as row-major instead the direction of odd row -and we take 4*4 snaked tile size as
example shown in figure 3-2-2-3-12And the placement policy between 4*4 snaked-tile is also

the same as RZ placement.

eS)
—_
(@)

17118119
2221120
26| 27
2 30129 |28
32 (33|34 48 149 | 50 | 51
39138 36 (5554|5352
40 | 4142|4356 |57 | 58|59
471464544163 1626160

PD

Un [\

RN
an

\D
N R
(<»)

=1+
NN [\
NG OS]

ob

F_A
I~
N R
)

Figure 3-2-2-3-1 Recursive Z with Snake placement

However, we can not increase our base tile size unlimited. The larger snaked tile size we
have, the placement within that tile is more like Nonblock placement. The spatial locality of

required four texels of bilinear filtering may decrease. Thus, it may affect cache hit rate.

-23-

3.2.3 Address translation idea of RZ

The address translation can be viewed as a translation function with inputs,
m,n,U,V,B and generates the output, A, which are dimension of texture’s width and
texture’s height, u coordinate, v coordinate, base address of the texture and the translated

address as defined in figure 3-2-2-1. So, we are going to find a RZ function which is

A=RzZ(m,n,UV,B)

Texture's width isWn=2"<2% m,d e N
Texture's heightis Hn=2"<2% ne N
The u-coordinate is U, 0<U <Wn

The v-coordinate isV, 0<V <Hn

The translated address is A < 2°
The base address of texture is B < 2°

Figure 3-2=2-1 definition of terms
There are three cases in RZ, which are m equal.to n, m smaller than n, and m larger than
n, respectively. However, the main concept of these cases is the same, that is recursive
translation.
The first case is m equal to n, that is texture’s width is equal to texture’s height. As

shown in Figure 3-2-2-2, the base case only invokes one texel, and the translated address

AisO.
uluo uO ul
ViV 00 01 10 11 Vo 0 1 0 1 vy 0 0 1 1
00| 0000 | 0001 | 0100 | 0101 0l foo | ol | o0 | o 0| 00 | o0 | o1 | o1
u 01| 0010 | 0011 | 0110 | 0111 11110 11 10 11 0| 00 00 01 01
Wwoe o 1 -
0| o0 01 10/ 1000 | 1001 | 1100 | 1101 0| oo 01 00 01 11 10 10 11 11
0 1 10 11 11| 1010 1011 1110 1111 1 10 11 10 11 1 10 10 11 11
A=0 A=2a;3, =V, A=248,8,8, = VUVl 8, = Vol a8, = Vil
Base case iteration | iteration |1 Least significant 2 bits Most significant 2 bits

Figure 3-2-2-2 the case | of address translation

In iteration I, the translated address, a,a,, could be found by using Karnaugh Map. Thus

=24 -

a,a, could be v,u,, which u,and v, are the least significant bit of U and V, respectively.

In iteration I, we first focus on the least significant 2 bits of each translated address. And
we found that each of the bit pattern in dotted rectangle is corresponding to the bit patterns

found in the iteration I. Thus, we can suggest that the least significant 2 bits of translated
address in iteration 11 may equal the bit pattern in iteration I, that is v,u,.
We now look at the most significant 2 bits of each translated address. And we can also

use Karnaugh Map to translate aj;a,. The result shows that aja, =v,u;. So the translated

address of iteration I, aja,a,a, is v,u,v,U,.The bit pattern can be view as the form which is

iteratively cross interleaving each u and v coordinate bit, respectively. In the term of recursive
concept, the translated address bit pattern of base case is the subset in iteration I. And the
translated address bit pattern of iteration | isralso-the subset in the iteration 11, iteration Il is

the subset in iteration 11, etc.

Now, we can suppose that when the texture is'8 by 8, the translated address a.a,a,a,a,3,

IS V,U,V,U;,VoU, by cross interleaving each least significant 3 bits of u and v coordinate.

Example: Rz(3,3,4,7,B)
m=n=3
U =4=100,
VvV =7=111,

Figure 3-2-2-3 example of address translation case 1.

For example, since we are going to translate the pair of (4, 7), all we need to do is cross
interleaving each least significant 3 bits of u and v coordinate, respectively. In figure 3-2-2-3,
the result of cross interleaving is 58.

However, texture filtering may sample the texture with n by m dimension which is not

equal , but is power of 2, respectively. The translation idea mentioned before may need to

-25-

modify slightly. In figure 3-2-2-4, the texture’s width is larger than texture’s height. This is
m>n. In the case, since texture’s height is shorter than texture’s width, for any texel, we do
not have enough v-coordinate bits to cross interleave with u-coordinate bits. On the other
words, after perform cross interleaving, some u-coordinate bits are left. These left bits should
be followed by the cross interleaved result, in order to obtain the correct translated address.

wz\ulu0
Vo 000 001 010 011 100 101 110 111

0| 0000 | 0001 | 0100 | 0101 | 1000 | 1001 | 1100 | 1101

1| 0010 | 0011 | 0110 | 0111 | 1010 | 1011 | 1110 | 1111

A=2a,8,8,8, = U,U;Vol,

iteration 11
uO
wh o 1 VN0 1 0 1 0 1 0 1
0 00 01 0 00 01 00 01 00 01 00 01
0 1 10 11 1 10 11 10 11 10 11 10 11
A=0 A:a1agzvou0 a,8, = Vol
)) Least significant 2 bits
Base case iteration-|
u2u1
00 00 01 01 10 10 11 12
00 00 01 01 10 10 11 11
0 | o | o | o1 10 10 11 11
3,3, =U,U,

Most significant 2 bits

Figure 3-2-2-4 the case Il of address translation

In figure 3-2-2-4, we have 3 u-coordinate bits and 1 v-coordinate bit to cross interleave

for translated address. After cross interleaving, we have a part of translated address a,a,
equal to v,u,. However, the translated address should have four bits to index the required

texel. The part of address, a,a,, we do not assign them yet. So, we focus on the most

significant 2 bits of the translated address. The bit pattern of each texel is exactly the same as

the unused 2 u-coordinate bits, u,u; .

- 26 -

Example: Rz(4,2,9,3,B)
m>n
U =9=1001,
V =3=0011,

Figure 3-2-2-5 example of address translation case 1l

For example, since we are going to translate the pair of (9, 3) and m is larger than n, we

should need to cross interleave 2 bits of u and v, respectively. And the left 2 bits, u,u, , should

be followed by the cross interleaved result. In figure 3-2-2-5, the result of cross interleaving is
43.

The conclusion is that, when the texture’s dimension is not equal, the cross interleaving
is still work, but the remaining coordinate bits should be followed by the cross interleaved
result. In this case, the two bits should be followed by the cross interleaved result in order to
obtain the correct translated address.

Moreover, in terms of recursive concept; the /nequality of two dimensions means
incompletely recursive texture. The iteration of placement will break when the short side is
met. So, the recursive bit pattern will be limited when the coordinate bits of shorter side is
exhausted.

The final case is shown in figure 3-2-2-6. That is texture’s width is smaller than texture’s

height. After we cross interleave them, the left v-coordinate bits, v,v,, should be followed by

the cross interleaved result, say V,U,, in order to obtain the correct translated address.

-27 -

Uy Uy

ViV 0 1 Vo 0 1 LAAD
000/ 0000 | 0001 0| o | o1 00| oo 00
001| 0010 | 0011 1] 10 11 00| oo 00
010/ o100 | o101 0/ o | o 01| o 01
011| o110 | o111 1 10 11 01| o1 01
100| 1000 | 1001 0| o | o 10| 10 10
101 1010 | 1011 1] 10 11 10| 10 10
whoo 1
0 |io0 01 110] 1100 | 1101 0| o0 01 11| 11 11
0 1] 10 11 111/ 1110 | 1111 1] 10 11 11| 1 11
A=0 A=aa, =V, A=a;3,8,8, =V,V,VoU, a,a, = VyU, a8, =,V
Base case iteration | iteration Il Least significant 2 bits Most significant 2 bits

Figure 3-2-2-6 the case 11l of address translation

Example: Rz(2,4,3,9,B)
m<n
U=3=11,
V =9=1001,

Figure 3-2-2-7 example of-address translation case 11l

For example, since we are going to translate the pair of (3, 9) and m is larger than n, we

should need to cross interleave 2 bits of u and v, respectively. And the left 2 bits, v,v,, should

be followed by the cross interleaved result. In figure 3-2-2-7, the result of cross interleaving is
39.

So far as here, the translated address mentioned before is not the final address we are
going to use. This is because we did not take base address of the texture as a consideration. So
the translated address will be added with base address and be left shifted 2 bits for 4 bytes a
texel. Final address is(A'<< 2)+B

Finally, we have a figure 3-2-2-8 to summarize the address translation idea under three

-28 -

cases.

Address translation of Recursive Z :
case | (Wn=Hn,m=n=r)
A'= Vgl gV oy o+ Vily Vol

case Il (Wn>Hn,m>n)
A= U Uy U gUn ViU ==+ ViUy VU

case Il (Wn < Hn,m<n)
A=V Vg ViV Vi gl - Valy Vol

Final address A= (A'<< 2) + B, for one texel is 4 bytes
Thus we have address translation function A= Rz(m,n,U,V,B)

Figure 3-2-2-8 summary of RZ address translation function

3.2.4 Address translation of other placements

Since the inter-tile placement policy of RZU, RZFU1/2 and RZS is identical to the

Recursive Z placement, the difference of-address-translation among these placements could be

the least significant bits. We summarize a table to list the difference of translated address bit

pattern among these placements.

Recursive Z | Recursive Z with U | Recursive Z with Snake |Recursive Z with Flipped U 1/2
a, A v, v, v,
a, u, u, v, u,
aQ Vo u, v, ®u, U,
a, Uy v, ®U, v, ®U, U, ®V, @V, /Uy, BV, B,

Table 3-2-4-1 Summary of least significant four bits of address among placements

3.2.5 Address translation logic implementation

Since texture mapping is a time consuming operation in current graphic processing unit,

the new address placement’s algorithm should not take too much time to obtain the required

-29-

address. In [4], the address translation time of Nonblock and 4D and 6D may take long time
to translate, since they may invoke arithmetic operations, such add operation, and the
propagation path in add operation may up to 32 bits or 64 bits, due to texture address is 32
bits of 64 bits and hardware implementation of Adder. We are going to use bit-wise logic
operations to translate the address, Since there is the regularity in the Recursive Z. And we
expect that the address translation time is short.

In the pervious section, no matter what translation case it is, the translated address can be
viewed as combination of common address field and differential address field, as shown in
figure 3-2-5-1. The common field only invokes the bit pattern which is cross interleaved form
some bit toggles of U and V coordinate. And the Differential field invokes only U or V

coordinates or simply zero. The combination invokes bit-wise OR operations.

Casel (m=n=r)
differential field-: 0
Bit-wise OR =common field= v, U, ;--- Vv U,
Vbl 4 2 1VIU, VU

Case Il (m>n)

differential field : u,_u,_,---U,,.u 0

n+1%n

Bit-wise OR common field : 0 /A VRPRERTATATATS

U aUm—2 " Up U Vi U g - ViU VU

Case Ill (m<n)

differential field : u, ,u, ,---u, U, 0

Bit-wise OR common field : 0 A VPR VATATATA
u

n-aUn_2 " UnaUnVin_aUp_g -+ - ViU Vol

Figure 3-2-5-1 concept of address translation unit
The address translation unit can be roughly divided into three parts based on the concept
of combination mentioned in figure 3-2-5-1, which are common field generator, differential

field generator and additional operations as shown in figure 3-2-5-2.

-30 -

Common
: > field >
coordinate and cenerator the translated
other information Bit-wise | a' | Additional operations address
OR > >
Differential operations <<2, add base
> field >
generator

Figure 3-2-5-2 global view of address translation logic

Common field generator is responsible for the generation of the bit pattern by cross
interleaving some bit toggles of each coordinate. Differential field generator is responsible for
the generation of the bit pattern by concatenating the bit toggles which are not cross
interleaved. The obtained two filed are then combined by bit-wise OR operations. Finally, the
additional operations are responsible for left shift and add the base address.

In common field generator, what we concern- about is how many least significant bit
toggles of each U, V coordinate should we cross interleave? Intuitively, by comparing m with
n and choosing the smaller one, we have the number of bit toggles that should be cross
interleaved of each coordinate. For example, if m=7.and n=3, there are three least significant
bit toggles of each coordinate we should cross interleave. As a result, the common field
generator could have a compare and select logic as shown in figure 3-2-5-3 and a flexible
cross interleaving logic which can perform cross interleaving operation under any number of

least significant bit toggles.

m—~<4» Comparator

. 4
> mux | L4
n —<45 m>n?L0

Figure 3-2-5-3 compare and select logic
The compare and select logic is the comparator combined with a 2 to 1 mux. The logic
can tell us the smaller one, say m or n. Thus, we know how many bit toggles we should cross

interleave. And the result is passed to the flexible cross interleaving logic. It could be
-31-

implemented in a form of mux. However, the mux can be the critical path in common field
generator. How about use the concept of integration by smaller and unique cell to implement
the common field generator? If we can design a cell which can cross interleave the two inputs,
one bit toggle from U and the other from V, by a control signal, we can concatenate many of
them of form our the common field generator.

The control signal for each cell is generated through an encoder which can encode the
output from compare and select logic, i.e. if we have the output form compare and select logic,

say 3, that is we should cross interleave least significant three bits form U and V, thus the

encoder will generate the enable bit pattern, 111,. Based on the enable bit pattern, we should

cross interleave from each significant three bit toggles of U and V, i.e. u, ~u,and v, ~V,.

mv, mu, VS EEIE
| Ifci=1

4_(3 < I Cn+1Cn = Vnun
Ci t else
J c...c. =00

n+1*n

Figure 3-2-5-3 one cell of common field generator
Figure 3-2-5-3 represents the one cell of common field generator. The control signal, Ei,
is from the corresponding bit position in enable bit pattern. Figure 3-2-3-4 shows the common

field generator which is obtained by integrating n cells.

EO
L \4 \4 L \4 \4 L \4 \4 L \4 \4
celln celln-1 | cell 1 cell 0

\ 2 4 v'VY cross interleave v'VvY v'VY

C2n—4 C3 C2 Cl CO

CZn—l CZn—Z CZn—B
Figure 3-2-5-4 common field generator with n cells

-32-

The differential field generator is responsible for generation the differential field of the

translated address under any given m and n. For example, if we have m=7 and n=3, the

differential field can be obtained by setting bit toggles u,u,u, to zero and left shifting 3 bits,

like ---Ugu,u,000000.

So what we concern about is the differential field is from most significant bit toggles of
U or V and How many bit toggles will be used and their bit position? Since we have known
who the smaller one is(m or n), by using the result, we can select the desired coordinate
(m>n?U:V). And we also have the enable bit pattern generated from the encoder.

Thus, we can use the information to generate the differential field. In figure 3-2-5-5, the
comparison result is used to select the desired coordinate (U or V) by using another 2 to 1
mux. After that the selected result, say A and:the result from enable encoder, say B, is passed
to the Bit filter. It can set the unnecessary bit field of B to zero. Finally, the left shifter can

left shift any number of bit of B' based on the smaller‘one value of morn.

m n

fe 4

0 1
X

m—~4s Comparator . 4 enable
u > —

n —<45/ m>n?1:0 encoder

v u 4

)fle)(16 7 A X

A
e differential field
0 1 16 | Bit filter | 16 | extenctos2bits 32
mux B’ B&(-A) 76’ and leftshiftx bits |7~

Figure 3-2-5-5 differential field generator

For example, if we still have m=7 and n=3, the input A, B to the bit filter is coordinate U

and bit pattern 111, form enable encoder. The bit filter will filter out the least three
significant bit of coordinate U. the left shift will left shift 3 bits based on the pattern 111,.

The differential field could be like ---u5u,u,000000.

-33-

3.3 Three possible texture cache supports

Although, the average texels access time of bilinear filtering is affected by the texture
placement, it is also affected by the hardware design (texture unit/texture cache). We have
three possible texture cache supports in different hardware cost. And each of them has
different texels retrieval capability.

3.3.1 Baseline texture cache support

The baseline texture cache support is straightforward. The texture cache can retrieve one
required texel data with a address request. In this kind of system, only the address translation
time and texture cache miss rate will affect the average texels access time of bilinear filtering.
This is because every address request can only retrieve one texel data to the texture filter.
Thus, average cache access counts of bilinear filtering-are always four.

3.3.2 Texture cache support 1

The texture cache support 1 is a common.texture cache with burst mode support. The
burst mode technique is done by sending a-start address and the maximum required data offset;
the receiver can get the required data as soon as possible. Since the required texels of bilinear
filtering are four, the maximum data offset length is 16 bytes. In the other words, if the
required texels are adjacent to each other within a cache line, the cache can retrieve all of the
required texels in one cache access. Under the texture cache support, the average cache access
counts may affected by whether the required four texels are adjacent to each other.

3.3.3 Texture cache support 2

Since the required texels of bilinear filtering could be potentially in the same cache line,
for those texels in the same cache line, we can retrieve them in one cache access no matter
whether they are continuous or not. This kind of texture cache support is more flexible than
the previous one. Thus, we can retrieve more required texels in one cache access. However,

for those texels are not in the current been accessed cache line, we still have another cache
-34-

access to get them.
3.3.3.1 Possible design of texture cache support2

Base on the concept mentioned in 3.3.3, we need case identifier, texels router and the
modified coordinate generator to accomplish the task.(Shown in figure 3-3-3-1-1) Each of

them is describe in the following sections.

(A case#,

] Address LSB[u,] LSBIv,]) Texture cache
coordinate (m.nu,.v,,B) A address
(m,n,u,,v,,BY > translation low orcer
generator unit o | cache line buffer |
andcase# case #
2-4 decoder
Tcase # ﬂ-
E1E2E3E4
offset |offset2 %\>¢ B+, E3 Vv E4 ¥
i ifi ffsetd mux1 mux2 mux3 mux4
o] cases identifier generator 22 o e 0% e
texel texel2 texel3 texel4

texture filter

Texture unit

Figure 3-3-3-1-1 Texture cache support 2
3.3.3.1.1 Case identifier =S

Since the required texels of bilinear filtering is a form of 2 by 2 texels, these four texels

can be potentially in one, two, four cache lines. We:can identify the case condition through

coordinate (u,,V,), as shown in figure 3-3-3-1-1. In figure 3-3-3-1-1, w supposes that cache

line size is 64bytes (16 texels) and the condition can be roughly classified into 4 types.

Case | is the required texels are fall into a single cache line. Case Il is two of the required
texels in the row are fall into a cache line, and the other two are fall into another cache line.
Case Il is two of the required texels in the column are fall into a cache line, and the other two
are fall into another cache line. Case 1V is four required texels are in different cache lines.

case | case Il case Il case IV

(V) (u*Lyy)

(u1’V1+1) (u1+l’vl+1)
: N\

the required texels
of bilinear filtering cache line with 16 texels

-35-

Figure 3-3-3-1-1-1 multiple cache lines conditions

Since we know the placement algorithm and cache configuration, i.e. RZ placement,
cache line size, the case condition can be obtained though identification of coordinate (u,,v,).
The identification is easy and straightforward. If we have RZ placement and cache line size is

16 texels, the 16 texels can be shown as the 16 white squares in the figure 3-3-3-1-1-1. We

can partition the 16 texels into 4 regions; say A, B, C and D, as shown in figure 3-3-3-1-1-1.

if (u;%3=0 and v,%3=0)
Op——H—T0) |6 case IV
A B o 0
bl an /(2 e else if (u,%3 =0 and v,%3 = 0)
] case Ill
©2 / Y | 6D else if (u,%3 = 0 and v, %3 = 0)
opCay | P |[63»|D case Il
1 | else
assume cache line size is 64 bytes (16 texels) case |

Figure 3-3-3-1-1-2 operation of case identifier
If the (u,v,) is fall into region A, theother three coordinates will also in the same
cache line. Thus it could be case I, all required-texels are in the same cache lines. If the
(uy,v,) is fall into region B, it is the case I, two texels in the column are in the same cache
line, the other two texels are in the other cache line. The worst case is (u,,v,) fall into region
D; all required texels are in different cache lines.
The identification algorithm is shown in the figure 3-3-3-1-1-2. If both u, and v, mod

3are equal to O, region D. If u, butnot v, mod 3 are equal to 0, region B. If not u, but v,

mod 3 are equal to O, region B. If neither u, nor v, mod 3 are equal to O, region A. The

mod operation can be implemented through Bit-wise logic AND operation of two lower order

bits of coordinate u, and v, i.e. u, mod 3 is equal to O can be implemented through the

-36 -

result of AND u; and ug is equal to 0. Thus all we need is low order two bits of coordinate

u, and v, to identify the case conditions. Since we have total four cases, we can encode the

cases by using 2 bits signal. 00 means case I. 01 means case Il. 10 means case Ill. 11means
case V.

However, the texture dimension can be any magnitude of power of two. That is the
texture height/width can be smaller or equal to 2. In these cases, the 16 texels which are in the
cache line will not be square-like region any more in the texture. It could be the rectangular

with narrow width or wider height dimension. As a result, the identification algorithm in

figure 3-3-3-1-1-2 should be modified. The values A, B which is the magnitude u, mod A

and v; mod B in figure 3-3-3-1-1-2 should be changed based on the texture dimension.

In the original, the 16 texels are’in the 4%4wrectangular, the magnitude of A should be 3,
and B should be 3, as shown in figure 3-3-3-1-1-2. However, if the texels are in a form of
16*1 rectangular, A should be 15, B should be-O:if they are in a form of 1*16 rectangular, A
should be 0, A should be 15. If 8*2, A should be'7, B should be 1. If 2*8, A should be 1, A

should be 7.

Thus we have the prefix operation which can tell the case identifier what the magnitude
of A and B should the identifier use. And there are five cases if cache line size is 64 bytes
(16texels). Which are corresponding to 4*4, 8*2, 2*8, 16*1 and 1*16 rectangular. The
classification can be done through the m, n which is power of width and height, respectively.

By comparing m and n, we know the case and can enable one of the five enable signals. And

the enabled case can perform future case identification based on the coordinate (u,,v;). The

overview of case identifier can be shown in figure 3-3-3-1-1-3.

-37 -

(u3u2u1u0 ’ V3V2V1V0)

—"_»lregion
— ™ ylidentifier

enable of 4*4

»

[CLAAS)

enable of 8*2

enable

, case identifier of 4*4

e
8]
VVVY

(u,u,uy,vy)

enable of 2*8

»

» enable

» case identifier of 8*2

e
8]
VVVY

The coordinate generator is responsible for generate the required coordinates based on

these coordinates.

We modified the original coordinate generator. As a result, the generator can generate the

Uy, v,v,vy)

enable of 16*1

enable

.| case identifier of 2*8

(u3u2u1u0)

»
>

enable of 1*16

»

enable

, case identifier of 16*1

(V3V2V1V0)

enable

5 case identifier of 1*16

OR and encode

Figure 3-3-3-1-1-3 overview of case identifier

3.3.3.1.2 Coordinate generator

- 38 -

So

the filtering types and one of the coordinate, say (u,,V,). Since the required texels of filtering

can be potentially in the same cache line, we can only generate the coordinate of explicit

texels. For those implicit texels, we choose not to generate them, i.e. if we have case I, we

only generate coordinate (u,v,) as explicit texel, for the other three texels, say

(u+1v,),(u,v;+1) and (u,+1v,+1), can be viewed as implicit texels and not to generate

coordinates based on the case condition obtained from the case identifier. Based on these

cases, the generator may generate one, two or four coordinate pairs. The obtained coordinates

are then sending to the queue for further address translation.
The algorithm of coordinate generator is shown in figure 3-3-3-1-2-1. In figure

3-3-3-1-2-1, if we have case I, the generator will do nothing but the original coordinate

(uy,v,). If case Il, the generator will generate the other coordinate (u,,v,+1). If case IlI, it
will generate the other coordinate (u,+1,v,). If case IV, it will generate the other three

coordinates (u, +1,v,), (u,v,+1)and(u, +1v, +1).

if (casel)
need coordinate (u,,v,)
else if (case II)
need coordinate (u,,v,)
(uyv,+1)

(u,v) (u+1v)
Offset 1 | Offset 2

else if (case Il1)
(uv+1) | (u+lv+l) .
Offset 3 | Offset 4 need coordinate (u,,v,)
(u,+1,v,)

else //case IV
need coordinate (u,,v,)
(Upv,+1)
(u1+1‘vl)
(ul+1ivl+1)

Figure 3-3-3-1-2-1 operation of coordinate generator

3.3.3.1.3 Texels router

In order to retrieve those implicit texels, we need to generate extra information to notify
the cache to retrieve them back to the texture filter in one time of cache access. Thus we have
texels selector and offset generator to accomplish the task, as shown in figure 3-3-3-1-3-1. For
those implicit texels, offset generator will generate the corresponding offset field of those
texels in the same cache line. These offsets information will be sent to the texels selector for
further selection.

Texels selector is worked as four independent muxs, i.e. mux1, mux2, mux3, mux4, as
shown in figure 3-3-3-1-3-1. Each of them is responsible for selecting the desired texel from

the cache line buffer based on the offset field and enable signal. The offset fields are
-39-

generated from the offset generator which is based on the case condition and low order bits of
coordinate of the explicit texel. And the enable signal of each mux is from enable generator.
The line buffer size is based on the cache line size and the input of the mux is line buffer size
divided by four for one texel is four bytes. Thus the delay of texels selector is dependent on

the mux. We show the Mux delay in Appendix A.1

\ Texture cache \
address N ‘

low order ‘ ‘

bits of .
o cache line buffer \

coordinate ‘

d case #
and case Texel routerl

E1E2E3E4
offset2 E ¢ E L E ¢ E4 ¢
Offset | offsers > é&iﬂjxl M2,/ S5 muxd, % muxd
generator| offset4 offset offset offset3 offset4
>
texell texel2 texel3 texel4
v v v v

Figure 3-3-3-1-3-1 texels router

The offset generator is responsible for extra information. This information is used to
notify the texels selector to select the imphicCit-texels. The input to the offset generator is case
number, low order bits of coordinate of explicit texels and region case number. For example,
if we have case one with coordinate (1,1) of explicit texel, the offset generator will generate
the other three offsets, 6, 9, 12 which are correspond to coordinates (1,2), (2,1) and (2,2).

As shown in figure 3-3-3-1-3-2, if case I, we will generate the offset2, offset3 and offset4
which is sending to the mux2, mux3 and mux4. And the offsetl is implicit in the texture
address. If case 11, we will generate offset2. if case 111, we will generate offset3. if case 1V, the

output of offset generator are don’t care.

=40 -

(ug,vy)
Offset 1

(U +1v;)
Offset 2

(v, +1)

Offset 3

Wy +D)
Offset 4

if (case I)
generate offset2, offset3, offset4
else if (case 1)
generate offset2
else if (case 1)
generate offset3
else // case IV
do nothing

Figure 3-3-3-1-3-2 operation of offset generator

The Boolean equation of offset2/3/4 can be obtained by using Karnaugh Map. As shown

in figure 3-3-3-1-3-3, offset2 can be obtained through low order bits of coordinate of explicit

texels, say (u,u,,V,V,) under cache line size is 16 texels and fitted in 4*4 square-liked region.

If we have explicit the texel of coordinate (0,0), the offset2 should be the 1, If we have

coordinate (0,1) , the offset2 should be the 3. Ifwe have coordinate (1,1), the offse2 should be

6. After we have enumerated all the cases-from(0,0)to(3,3), a Karnaugh Map can be

obtained like in figure 3-3-3-1-3-3=Thus, we have the Boolean equation of offset2 shown in

the figure.

Uyl

ViV

00

10

11

00

0001

0101

0000

01

0111

wio | offset2=v, u, ®U, Vv, Uy

10

1001

1100

1101

1000

11

1011

1110

1111

offset2

Figure 3-3-3-1-3-3 Boolean equation of offset2

However, the 16 texels which are in the same cache line may be fitted into the

8*2/2*8/16*1/1*16 rectangular-liked region due to the dimension of the texture. We can use

the same methodology to obtain the Boolean equations for them. We summarize a table to

enumerate the Boolean equations in table 3-3-3-1-3-1.

The enable generator is responsible for enable signal of column mux selector. Inputs are

-41 -

case conditions and outputs are enable signals to the corresponding mux. As shown in figure
3-3-3-1-3-4, if case I, enable 1 is set. If it is case Il, enable 2/3 is set. If it is case Ill, enable

1/3 is set. If it is case 1V, enable 1/2/3/4 is set.

4*4 region 8*2 region 2*8 region
offset2 v, U © U Vg Uy U, (U, ®Up) + U, Uy DUy Vy Uy V, Vy Vo Ug
offset3 v, ®V, U, V, U, U, UV, U, Vi (v, ® Vo) + ViV, v BV, Vg Uy
offsetd VOV, U @ Uy Vy Uy | (U, ®Up)+ Uy U @ U, Vg Uy | Vy(V, @) +ViV, v, DV, Vg Uy

16*1 region 1*16 region
Ug (U, + Uy + Ug)+ Uy, UL,
Offsetz uz(;*’ﬂ)*’i(uouﬁ u, ® u, i
Va(Vy 4 V) + V) +VaVaVVg
0ﬁset3 - Vz(i*’ E) + E(VOVI) v, ® v, i
offset4

Table 3-3-3-1-3<1Boolean equation-of offset field

case label |encode s;s, E, = E, E, E_1
| 11 1 1 1 1 '
[00 1 1 0 0 5 =5,
I 01 1 0 1 0 B =5,
WY, 10 1 0 0 0 E, =355,

Figure 3-3-3-1-3-4 Boolean equation of enable signal

-42-

Chapter 4 Experiment and Results

4.1 experiment goal, environment and methodology

We are going to know the average texels access time of bilinear filtering under three
different possible texture cache supports mentioned in section 3.3. That is how many
performance improvements we have under three different kinds of texture cache support.

We trace the texture coordinate pattern form the Alila simulator which is proposed in
[10]. The simulator architecture is based on the design of ATI GPU’s architecture and support
OpenGL based benchmarks, i.e. Doom3[19], Quake4[20], the 3-D based computer games.
The texture coordinate pattern is recorded:in the file when the Atila is rendering frames of the
Doom3/Quake4. The screen resolution we have could be 640*480/1240*1028/1600*1200
pixels.

After we have the trace, we also.implement the L1 texture cache and the pipelined
address translation unit which are referenced from ATl GPU architecture environment [10].
The input to the simulator we implement is the trace we obtain mentioned before. Thus, we
can obtain the cache hit rate, average cache access counts and average texels access time of
bilinear filtering under three different kinds of texture cache support.

The configuration of L1 texture cache is referenced from research [7]. In [7], they say
direct mapping and 8K texture cache is sufficient to cache the required texels of bilinear
filtering. If the cache misses, the system will stall and we use a linear equation to describe the
miss penalty: Miss penalty = constant + (cache line size) / (bus width between texture cache
and texture memory) * (cycle/per byte). And we have the constant is 100 cycles and bus width
between texture cache and memory is 8 bytes which is a common configuration in the current

GPU architecture.

-43-

For the address translation unit design of related work and RZ-based placements, we use
Verilog [17] to describe the equation proposed in [4] and designs in section 3-2. And we use
Max Plus Il [16] to perform functional verification. Currently, most desktop graphic cards’
texture size does not exceeded in 4096 * 4096 texels. Thus, we select 16 bits for texture
dimension and coordinate. And texture address is 32 bits for most GPU architecture.

Moreover; In order to obtain the address translation time, we synthesize the address
translation unit by Design compiler [18] and choose the TSMC 130nm technology as the
parameter, since it is a reliable technology for many years and there are many consumer
products of ATl and Nvidia using the technology. The clock rate using 130nm die processing
technology can up to 400 MHz, as shown in appendix A.2. Thus, the cycle time could be 2.5
ns.

Finally, we assume that we can divide the address translation unit into stages perfectly
according to the address translation time divided by cycle time and the address queue size

between address translation unit and-L1 texture.cache is infinity.

4.2 Experiment results

In section 4.2.1, we obtain the time result of address translation of different placement
algorithms, which include the Nonblock/4D/6D/RZ-based placements. In section 4.3.2, we
show the result of the cache miss rate and average texels access time of bilinear filtering
under baseline texture cache. In section 4.3.3 and 4.3.4, we show the result of the cache miss
rate, average cache access counts and average texels access time of bilinear filtering under

texture cache supportl/2.

-44 -

4.2.1 Results of address translation time

address translation time

25

20

ns

nonblock 4D 6D RZU RZFU RZS

placement

Figure 4-2-1-1 address translation time of different placements

As shown in figure 4-2-1-1, the address translation time of RZ-based placement is better

than address translation concept proposed in| [4]. This is because their address translation

concept is the summation of multi-level offsets instead of bit-wise logic operations, i.e.
Bit-wise ADD, OR or Shifter.

The difference of translated address bit pattern between RZU/RZFU and RZ or RZS and

RZ placement could be only least significant two or three or four bits. Although these

difference could be complicated than RZ placement, the address translation time spend on

them can be hided by the critical path which is the time spend on generation of differential

field address. Thus, the address translation time of RZU, RZFU and RZS is equal to RZ

placement.

4.2.2 Results under baseline texture cache
In [4], they indicates that for a given cache line size, the lowest miss rate is happen to the
placement algorithm which tile size is most fit the line size, i.e. tile size is 4 by 4 texels under

cache line size is 64 bytes, and they also mention that the level one tile size of 6D placement

-45-

should fit the cache size. Thus, we have 4D4 and 6D32_4 placement as the configuration of
related works. 4D4 means the 4D placement with tile size is 4 by 4 texels. 6D32_4 placement
means level one tile size is 32 by 32 texels and level two tile size is 4 by 4 texels for the cache

configuration.

miss rate under baseline texture cache support

08

miss rate, %

06

04

02

nonblock 4D4 6D32.4 RZ RZU RZS4

placement

Figure 4-2:2-1 miss.rate in baseline texture cache

In figure 4-2-2-1, the miss rate of ‘4D4 placement may even worse than Nonblock
placement. This is because when the size which texture width multiply the tile width is
multiple of cache size and cache line size is multiple of tile size and the required four texels of
bilinear filtering are crossing over two adjacent vertical tiles or different four tiles as shown in
figure 4-2-2-2, 4D placement will have serious conflict misses. However, 6D and
Recursive-based placement can eliminate it

Figure 4-2-2-1 shows that the miss rate of RZ-based placement is improved ~0.02%
compare to 6D32_4 placement, ~1.18% compare to 4D4 placement and ~0.57%compare to

Nonblock placement in the baseline texture cache support.

- 46 -

/\
N
r 0 | eeees s/l-1 - 0 | eeee- s/l-1
/RN N
-/ »
0 | e s/l=1 - 0 | eeeees s/l-1
if m#r is multiple/ 5 n
of cache size s and \ .
. . » L, cache index
I is multiple of r tilesizeisr
conflict miss will occur cache line size is |)

Figure 4-2-2-2 conflict miss under direct mapping with 4D placement

average texels access cycles of bilinear filtering under baseline texture cache support
12 2.5
10 |
8 2
% 8
56— =
5 E
=
4 1.5
2 —
0 . . = . . . 1
nonblock 4D4 6D32_4 RZ RZU R7ZS4
placement
‘El average texels access cycles of bilinear filtering under baseline texture cache support M normalize to RZ ‘

Figure 4-2-2-3 average texels access time of bilinear filtering in baseline texture cache
support
Figure 4-2-2-3 shows that the average texels access time of bilinear filtering of RZ-based
placement is improved ~2% compare to 6D32_4 placement, ~101% compare to 4D4

placement and ~49%compare to Nonblock placement under baseline texture cache support.

4.2.3 Results under texture cache support 1
Under texture cache support 1, the placement which places the required texels
continuous in the same cache line can improve the average cache access counts. In figure

4-2-3-1 shows that RZU can improve ~6% of average counts by changing z-shape to u-shape

-47 -

and improve ~22% of average counts compare to RZ placement, ~8% of average counts
compare to 4D/6D placement by using 4*4 snaked-tile size. However, Nonblock placement
could be the best. This is because the required four texels of bilinear filtering are almost

always two and two continuous and rarely discontinuous.

average cache access counts of bilinear filteing under texture cache support 1

2.5

counts
n

05 L

nonblock 4D4 6D32_4. RZ RZU RZS4
placement

Figure 4-2-3-1 average cache access counts in texture cache support 1

However, in figure 4-2-3-1, we‘only know the‘average cache access counts. We don’t
know how many portion of the average counts is cache miss and how many portion of it is
cache hit.

Figure 4-2-3-2 shows the cache miss rate, total cache access counts and hit counts under
the texture cache support 1. The blue bar shows the total cache access counts, red bars shows
the miss counts and yellow bars shows the miss rate under texture cache support 1. Although
the average cache access counts of bilinear filtering of Nonblock is best, the miss rate is
worse than 6D/RZ-based placement. Thus, the average texels access cycle of bilinear filtering
may not be the best. On the contrast, the miss rate of RZ placement is best, but the total cache
access count is worse than the other placement. The average texels access cycle of bilinear

filtering may not be the best, too.

-48 -

Miss rate under texture cache support 1
120000000 25
100000000 - 1,
80000000]
L5 o
a g
5 60000000 F =
S 2
1 g
40000000 [
4 05
20000000 F
0 0
nonblock 4D4 6D32_4 RZ RZU R7ZS4
placement
‘El total cache access counts M hit counts O miss rate ‘

Figure 4-2-3-2 miss rate in texture cache support 1

average texels access cycles of bilinear filtering under texture cache support 1
9 3
3 |
7
425
6 F
P 8
] B
Z 2 %
. 'g
3 — I
L.
) L 5
1
0 1
nonblock 4D4 6D32_4 RZ RZU RZS4
placement
‘D average texels access cycles of bilinear filtering under texture cache support 1 B normalize to RZS4 ‘

Figure 4-2-3-3 average texels access time of bilinear filtering in texture cache support 1
Figure 4-2-3-3 shows the average cache access counts of RZS4 is best and can improve
~9% compare to 6D32_4 placement, ~164% compare to 4D4 placement and ~74%compare to
Nonblock placement under texture cache support 1. And we also notice that by changing
z-shape to u-shape in RZ, we can improve ~5% of average texels access cycles of bilinear
filtering of RZU placement compare to RZ placement. And by changing 2*2 z-tiled size to

4*4 snaked-tile size in RZ, we can improve ~19% of average texels access cycles of bilinear
- 49 -

filtering of RZS4 placement compare to RZ placement

4.2.4 Results under texture cache support 2

Under texture cache support 2, the placement which places the required texels within the
same cache line can improve the average cache access counts. In figure 4-2-4-1 shows that
under cache line size is 64 bytes, the average cache access counts of bilinear filtering of
4D/6D/RZ-based placement could be the same. And improve ~11% compare to Nonblock
placement. The average cache access counts of them are the same due to cache line size 64

bytes can place 4*4, 16 texels like a square-like in the texture.

average cache access counts of bilinear filteing under texture cache support 2

2.15

counts
N=3
S

nonblock 4D4 6D32_4 RZ RZU RZS4

placement

Figure 4-2-4-1 average cache access counts in texture cache support 2
Figure 4-2-4-2 shows the cache miss rate, total cache access counts and hit counts under
the texture cache support 2. And the blue bar shows the total cache access counts, red bars
shows the miss counts and yellow bars shows the miss rate under texture cache support 2.
Although the average cache access counts of bilinear filtering of Nonblock is worse then 4D
placement, but the miss rate is better than 4D placement. Thus, the average texels access cycle
of bilinear filtering could be better than 4D placement.

And the figure also shows that RZ-based placement can improve ~0.05% on miss rate

-50 -

compare to 6D32_4 placement, ~2.47% compare to 4D4 placement and ~1.03% compare to

Nonblock placement under texture cache support 2.

Miss rate under texture cache support 2

76000000 35

74000000

72000000

25
70000000

[N}

68000000

counts

66000000

miss rate, %

—
n

64000000

62000000

0.5
60000000

58000000
nonblock 4D4 6D32_4 RZ RZU RZS4

placement

‘ltotal cache access counts W hit counts O miss rate ‘

cycles

normalize

nonblock 4D4 6D32_4 RZ RZU RZS4

placement

‘ DO average texels access cycles of bilinear filtering under texture cache support 2 B normalize to RZ ‘

Figure 4-2-4-3 average texels access time of bilinear filtering in texture cache support2
Finally, under texture cache support2, figure 4-2-4-3 shows the RZ-based placement can
improve ~3.5% of average texels cycle of bilinear filtering compare to 6D32_4 placement,
~101% compare to 4D4 placement and ~49%compare to Nonblock placement under texture

cache support 2.

-51-

Chapter 5 Conclusion

5.1 Conclusion

In this thesis, we propose the new placements which is target to improve the average
texels access time of bilinear filtering by improving cache hit rate, address translation time,
average cache access counts under three kinds of possible texture cache support.

In the baseline texture cache support, by using recursive concept, we can improve the
spatial locality of the required four texels of bilinear filtering. Thus, the miss rate of RZ-based
placement is improved and the average texels access cycle of bilinear filtering is improve
~2% compare to 6D placement.

In texture cache support 1, by changing shape and tile size and also adapt the recursive
concept, we can not only improve the miss rate:but also the average cache access counts of
bilinear filtering. Thus, the average:texels access cycle of bilinear filtering is improved ~ 9%
compare to 6D placement.

Finally, although the average cacheaccess counts of 4D/6D/RZ-based is the same, 2, we
can still take the advantage of recursive concept to improve the hit rate. The average texels

access cycle of bilinear filtering is improved ~ 3.5% compare to 6D placement.

5.2 Future work

Since the bilinear filtering may have spatial locality, in fully associative cache, LRU
replacement policy may have chance to be improved by using the other strategies. We found
that the locations/addresses of the currently required four texels of bilinear filtering in the
texture maybe far away than previous required four. And the addresses of required four texels
of the next bilinear filtering maybe close to the previous nearby region. Thus, time strategy in
LRU can be changed by using distance strategy in the replacement to gain more cache

performance benefits.

-52 -

Reference

[1] Foley J, van Dam A, Feiner SK, Hughes JF, “Computer graphics: principles and practice”,
2nd ed. Reading MA: Addison-Wesley, 1990

[2] Watt A, “3D computer graphics”, 3rd Edition. Addison-Wesley: Harlow, England. 2000.
[3] Hennessy JL, Patterson DA. “Computer architecture: a quantitative approach”,

3rd edition. Morgan Kaufmann: San Francisco. 2003.

[4] Ziyad S. Hakura and Anoop Gupta, “The design and analysis of a cache architecture for
texture mapping”, 24th International Symposium on Computer Architecture, 1997.

[5] Michael Cox, Narendra Bhandari and Michael Shantz ,“Multi-level texture caching for 3D
graphics hardware”, ACM/IEEE International Symposium on Computer Architecture, 1998.
[6] Homan Igehy, Matthew Eldridge and:Kekoa'Proudfoot, “Prefetching in a texture cache
architecture”, Eurographics/SIGGRAPH Workshop on Graphics Hardware, 1998.

[7] Igehy H, Eldridge M, Hanrahan, P, “parallel texture caching”, SIGGRAPH/Eurographics
Workshop on Graphics Hardware. 1999.

[8] Se-Jeong Park, Jeong-Su Kim, Ramchan Woo, Se-Joong Lee, Kang-Min Lee, Tae-Hum
Yang, Jin-Yong Jung and Hoi-Jun Yoo, “A reconfigurable multilevel parallel texture cache
memory with 75-GB/s parallel cache replacement bandwidth”, journal of solid-state circuits,
vol. 37, no. 5, may 2002.

[9] Chun-Ho Kim and Lee-Sup Kim, “Adaptive selection of an index in a texture cache”, the
IEEE International Conference on Computer Design, 2004.

[10] Victor Moya del Barrio, Carlos Gonzalez, Jordi Roca, Agustin Fernandez, “ATTILA: a
cycle-level execution-driven simulator for modern GPU architectures”, 2006 IEEE
International Symposium on Performance Analysis of Systems and Software.

[11] Chris Y. Chung, RaviA. Managuli and Yongmin Kim, “Design and evaluation of a

multimedia computing architecture based on a 3D graphics pipeline”,

-53-

IEEE ,Application-Specific Systems, Architectures and Processors, 2002.

[12] Williams L, “Pyramidal parametrics” ,Computer graphics and interactive techniques.
1983.

[13] J. Chittamuru, J. Euh, and W. Burleson, "An Adaptive Low Power Texture Mapping
Architecture”, IEEE Mid West Symposium On Circuits and Systems 2002

[14] Microsoft, Microsoft DirectX9 Software Development Kit, Microsoft Corporation.

[15] John Montrym, Henry Moreton, “NVIDIA GeForce 6800, NVIDIA Corporation

[16] MAX+PLUS I Development Tools manuals,
http://www.altera.com/literature/lit-mp2.jsp

[17] Verilog design guide, http://www.doulos.com/knowhow/verilog_designers_guide/

[18] Synopsys, design vision, http://www.synopsys.com/sps/sps.html

[19] Benchmark, Doom3, http://www.dgom3.com/

[20] Benchmark, Quake4,

Appendix

A.1 The time delay of mux

1-1]| 2-1 | 4-1 | 81 |16-1|32-1|64-1|128-1 | 256-1 | 512-1 | 1024-1 | 2048-1

Time

(ns)

0 {0.09]|014/025|035|045|055| 065 | 0.75 | 0.85 | 0.95 1.05

A.2 The spec of current GPU architecture

Die processing i
Clock rate Cycle time
technology

Nvidia GeForce 6800

130nm 400Mhz 2.5ns
Ultra

ATI Radeon 9600 130nm 325Mhz ~3ns
ATI Radeon 9600Pro 130nm 400Mhz 2.5ns

-54-

http://www.doulos.com/knowhow/verilog_designers_guide/
http://www.doom3.com/

	Chapter 4 Experiment and Results
	Chapter 5 Conclusion
	Reference

