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摘  要 

 

如何利用最少的硬體資源來支援同步多執行緒是一個很重要的研究議題，暫存

器檔案(Register file)在微處理器晶片面積中佔有顯著的比例。而且為了支援同步多

執行緒，每一個執行緒享有自己的一份暫存器檔案，這樣的設計會增加晶片的面積。 

 在本篇論文中，我們提出了一份可彈性切割與可延展的暫存器檔案設計，在這

個設計裡：1.我們可以在需要的時候彈性切割一份暫存器檔案給兩個執行緒來同時

使用，2.適當的延伸暫存器檔案的大小來增加兩個執行緒共用的機會。 

  藉由我們設計可以得到的益處有：1.增加硬體資源的使用率，2. 減少對於記憶

體的存取以及 3.提升系統的效能。此外我們設計概念可以任意的滿足不同的應用程

式的需求。 
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Abstract 
 

How to support simultaneous multithreading (SMT) with minimum resource hence 

becomes a critical research issue. The register file in a microprocessor typically occupies 

a significant portion of the chip area, and in order to support SMT, each thread will have 

a copy of register file. That will increase the area overhead. 

In this thesis, we propose a register file design techniques that can 1. Split a copy of 

physical register file flexibly into two independent register sets when required, 

simultaneously operable for two independent threads. 2. Stretch the size of the physical 

register file arbitrarily, to increase probability of sharing by two threads.  

Benefits of these designs are: 1. Increased hardware resource utilization. 2. Reduced 

memory traffic amount. 3. Increased system performance. Moreover, these proposed 

designs can be arbitrarily mixed as per application need. 
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Chapter 1.  Introduction 

 

1.1. Overviews of Processor Register and Register File 

Design in Modern Microarchitecture 
 

1.1.1. Processor register 

In computer architecture, a processor register is a small amount of very fast computer 

memory used to speed the execution of computer programs by providing quick access to 

commonly used values—typically, the values being calculated at a given point in time. 

Most, but not all, modern computer architectures operate on the principle of moving data 

from main memory into registers, operating on them, then moving the result back into 

main memory—a so-called load-store architecture. 

Processor registers are the top of the memory hierarchy, and provide the fastest way 

for the system to access data. The term is often used to refer only to the group of registers 

that can be directly indexed for input or output of an instruction, as defined by the 

instruction set. More properly, these are called the "architectural registers". For instance, 

the x86 instruction set defines a set of eight 32-bit registers, but a CPU that implements 

the x86 instruction set will contain many more registers than just these eight. 

Registers are normally measured by the number of bits they can hold, for example, 

an "8-bit register" or a "32-bit register". Registers are now usually implemented as a 

register file, but they have also been implemented using individual flip-flops, high speed 

core memory, thin film memory, and other ways in various machines 
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1.1.2. Register file 

 A register file is an array of processor registers in a central processing unit (CPU). 

Modern integrated circuit-based register files are usually implemented by way of fast 

static RAMs with multiple ports. Such RAMs are distinguished by having dedicated read 

and write ports, whereas ordinary multiported SRAMs will usually read and write 

through the same ports. 

The instruction set architecture of a CPU will almost always define a set of registers 

which are used to stage data between memory and the functional units on the chip. In 

simpler CPUs, these architectural registers correspond one-for-one to the entries in a 

physical register file within the CPU. More complicated CPUs use register renaming, so 

that the mapping of which physical entry stores a particular architectural register changes 

dynamically during execution. 

 

1.1.3. Register File Design in Modern Microarchitecture 

Most register files make no special provision to prevent multiple write ports from 

writing the same entry simultaneously. Instead, the instruction scheduling hardware 

ensures that only one instruction in any particular cycle writes a particular entry. If 

multiple instructions targeting the same register are issued, all but one have their write 

enables turned off. 

The crossed inverters take some finite time to settle after a write operation, during 

which a read operation will either take longer or return garbage. It is common to have 

bypass multiplexors that bypass written data to the read ports when a simultaneous read 
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and write to the same entry is commanded. These bypass multiplexors are often just part 

of a larger bypass network that forwards results that have not yet been committed 

between functional units. 

The register file is usually pitch matched to the datapath that it serves. Pitch 

matching avoids having the many busses passing over the datapath turn corners, which 

would use a lot of area. But since every unit must have the same bit pitch, every unit in 

the datapath ends up with the bit pitch forced by the widest unit, which can waste area in 

the other units. Register files, because they have two wires per bit per write port, and 

because all the bit lines must contact the silicon at every bit cell, can often set the pitch of 

a datapath. 

Area can sometimes be saved, on machines with multiple units in a datapath, by 

having two datapaths side-by-side, each of which has smaller bit pitch than a single 

datapath would have. This case usually forces multiple copies of a register file, one for 

each datapath. 

The DEC Alpha EV-6, for instance, had two copies of the integer register file, and 

took an extra cycle to propagate data between the two. The issue logic tried to reduce the 

number of operations forwarding data between the two. The R8000 floating-point unit 

had two copies of the floating-point register file, each with four write and four read ports, 

and wrote both copies at the same time. 

Processors that do register renaming can arrange for each functional unit to write to 

a subset of the physical register file. This arrangement can eliminate the need for multiple 

write ports per bit cell, for a large savings in area. The resulting register file, effectively a 

stack of register files with single write ports, then benefits from replication and subsetting 

the read ports. At the limit, this technique would place a stack of 1-write, 2-read register 
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files at the inputs to each functional unit. Since register files with a small number of ports 

are often dominated by transistor area, it is best not to push this technique to this limit, 

but it is useful all the same. 

The SPARC ISA defines register windows, in which the 5-bit architectural names of 

the registers actually point into a window on a much larger register file, with hundreds of 

entries. Implementing multiported register files with hundreds of entries requires a lot of 

area. The register window slides by 16 registers when moved, so that each architectural 

register name can refer to only a small number of registers in the larger array, e.g. 

architectural register r20 can only refer to physical registers #20, #36, #52, #68, #84, 

#100, #116, if there are just seven windows in the physical file. 

To save area, some SPARC implementations implement a 32-entry register file, in 

which each cell has seven "bits". Only one is read and writeable through the external 

ports, but the contents of the bits can be rotated. A rotation accomplishes in a single cycle 

a movement of the register window. Because most of the wires accomplishing the state 

movement are local, tremendous bandwidth is possible with little power. 

This same technique is used in the R10000 register renaming mapping file, which 

stores a 6-bit virtual register number for each of the physical registers. In the renaming 

file, the renaming state is checkpointed whenever a branch is taken, so that when a branch 

is detected to be mispredicted, the old renaming state can be recovered in a single cycle.  

 

1.2. Overviews of Multithreading 
 

Before we explain our register file design, we introduce threads first. Although 
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instruction is minimal unit to use CPU resources, thread is the base unit to be allocated 

resources in today’s computer system. Understand how computer system allocate 

resources to threads help us design register file more suitable for execution. 

 

1.2.1. Thread 

Thread in computer science is short for a thread of execution. Threads are a way for 

a program to fork (or split) itself into two or more simultaneously (or 

pseudo-simultaneously) running tasks. Threads and processes differ from one operating 

system to another, but in general, the way that a thread is created and shares its resources 

is different from the way a process does. 

Threads are distinguished from traditional multitasking operating system processes 

in that processes are typically independent, carry considerable state information, have 

separate address spaces, and interact only through system-provided inter-process 

communication mechanisms. Multiple threads, on the other hand, typically share the state 

information of a single process, and share memory and other resources directly. Context 

switching between threads in the same process is typically faster than context switching 

between processes. Systems like Windows NT and OS/2 are said to have "cheap" threads 

and "expensive" processes; in other operating systems there is not so great a difference. 

 

1.2.2. Multithreading 

Multithreading allows multiple threads to share the functional units of a single 

processor in an overlapping fashion. To permit this sharing, the processor must duplicate 

the independent state of each thread. For example, a separate copy of the register file, a 



 

 6

separate PC, and a separate page table are required for each thread. The memory itself 

can be shared through the virtual memory mechanisms, which already support 

multiprogramming. In addition, the hardware must support the ability to change to a 

different thread relatively quickly; in particular, a thread switch should be much more 

efficient than a process switch, which typically requires hundreds to thousands of 

processor cycles.  

There are two main approaches to multithreading. Fine-grained multithreading 

switches between threads on each instruction, causing the execution of multiples threads 

to be interleaved. This interleaving is often done in a round-robin fashion, skipping any 

threads that are stalled at that time. To make fine-grained multithreading practical, the 

CPU must be able to switch threads on every clock cycle. One key advantage of 

fine-grained multithreading is that it can hide the throughput losses that arise from both 

short and long stalls, since instructions from other threads can be executed when one 

thread stalls. The primary disadvantage of fine-grained multithreading is that it slows 

down the execution of the individual threads, since a thread that is ready to execute 

without stalls will be delayed by instructions from other threads. 

Coarse-grained multithreading was invented as an alternative to fine-grained 

multithreading. Coarse-grained multithreading switches threads only on costly stalls, such 

as level two cache misses. This change relieves the need to have thread-switching be 

essentially free and is much less likely to slow the processor down, since instructions 

from other threads will only be issued, when a thread encounters a costly stall. 

Coarse-grained multithreading suffers, however, from a major drawback: it is limited in 

its ability to overcome throughput losses, especially from shorter stalls. This limitation 

arises from the pipeline start-up costs of coarse-grain multithreading. Because a CPU 
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with coarse-grained multithreading issues instructions from a single thread, when a stall 

occurs, the pipeline must be emptied or frozen. The new thread that begins executing 

after the stall must fill the pipeline before instructions will be able to complete. Because 

of this start-up overhead, coarse-grained multithreading is much more useful for reducing 

the penalty of high cost stalls, where pipeline refill is negligible compared to the stall 

time. 

 

1.2.3. Simultaneous Multithreading 

Simultaneous multithreading (SMT) is a variation on multithreading that uses the 

resources of a multiple-issue, dynamically-scheduled processor to exploit TLP at the 

same time it exploits ILP. The key insight that motivates SMT is that modern 

multiple-issue processors often have more functional unit parallelism available than a 

single thread can effectively use. Furthermore, with register renaming and dynamic 

scheduling, multiple instructions from independent threads can be issued without regard 

to the dependences among them; the resolution of the dependences can be handled by the 

dynamic scheduling capability. 

Figure 1-1 conceptually illustrates the differences in a processor’s ability to exploit 

the resources of a superscalar for the following processor configurations:  

 a superscalar with no multithreading support,  

 a superscalar with coarse-grained multithreading, 

 a superscalar with fine-grained multithreading, and 

 a superscalar with simultaneous multithreading. 

In the superscalar without multithreading support, the use of issue slots is limited by 
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a lack of ILP. In addition, a major stall, such as an instruction cache miss, can leave the 

entire processor idle. 

 

 

 

Figure 1-1 This illustration shows how these four different approaches use the issue slots of a superscalar 

processor. 

In the coarse-grained multithreaded superscalar, the long stalls are partially hidden 

by switching to another thread that uses the resources of the processor. Although this 

reduces the number of completely idle clock cycles, within each clock cycle, the ILP 

limitations still lead to idle cycles. Furthermore, in a coarse-grained multithreaded 

processor, since thread switching only occurs when there is a stall and the new thread has 

a start-up period, there are likely to be some fully idle cycles remaining. 

In the fine-grained case, the interleaving of threads eliminates fully empty slots. 

Because only one thread issues instructions in a given clock cycle, however, ILP 

limitations still lead to a significant number of idle slots within individual clock cycles. 

In the SMT case, thread-level parallelism (TLP) and instruction-level parallelism 
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(ILP) are exploited simultaneously; with multiple threads using the issue slots in a single 

clock cycle. Ideally, the issue slot usage is limited by imbalances in the resource needs 

and resource availability over multiple threads. In practice, other factors–including how 

many active threads are considered, finite limitations on buffers, the ability to fetch 

enough instructions from multiple threads, and practical limitations of what instruction 

combinations can issue from one thread and from multiple threads–can also restrict how 

many slots are used. Although Figure 1-1 greatly simplifies the real operation of these 

processors it does illustrate the potential performance advantages of multithreading in 

general and SMT in particular. 

As mentioned above, simultaneous multithreading uses the insight that a 

dynamically scheduled processor already has many of the hardware mechanisms needed 

to support the integrated exploitation of TLP through multithreading. In particular, 

dynamically scheduled superscalars have a large set of virtual registers that can be used to 

hold the register sets of independent threads (assuming separate renaming tables are kept 

for each thread). Because register renaming provides unique register identifiers, 

instructions from multiple threads can be mixed in the datapath without confusing 

sources and destinations across the threads. This observation leads to the insight that 

multithreading can be built on top of an out-of-order processor by adding a per thread 

renaming table, keeping separate PCs, and providing the capability for instructions from 

multiple threads to commit. There are complications in handling instruction commit, 

since we would like instructions from independent threads to be able to commit 

independently. The independent commitment of instructions from separate threads can be 

supported by logically keeping a separate reorder buffer for each thread. 
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1.2.4. Design Challenges in SMT Processors 

Because a dynamically scheduled superscalar processor is likely to have a deep 

pipeline, SMT will be unlikely to gain much in performance if it were coarse-grained. 

Since SMT will likely make sense only in a fine-grained implementation, we must worry 

about the impact of fine-grained scheduling on single thread performance. This effect can 

be minimized by having a preferred thread, which still permits multithreading to preserve 

some of its performance advantage with a smaller compromise in single thread 

performance. At first glance, it might appear that a preferred thread approach sacrifices 

neither throughput nor single-thread performance. Unfortunately, with a preferred thread, 

the processor is likely to sacrifice some throughput, when the preferred thread encounters 

a stall. The reason is that the pipeline is less likely to have a mix of instructions from 

several threads, resulting in greater probability that either empty slots or a stall will occur. 

Throughput is maximized by having a sufficient number of independent threads to hide 

all stalls in any combination of threads. 

Unfortunately, mixing many threads will inevitably compromise the execution time 

of individual threads. Similar problems exist in instruction fetch. To maximize single 

thread performance, we should fetch as far ahead as possible in that single thread and 

always have the fetch unit free when a branch is mispredicted and a miss occurs in the 

prefetch buffer. Unfortunately, this limits the number of instructions available for 

scheduling from other threads, reducing throughput. All multithreaded processor must 

seek to balance this tradeoff.  

In practice, the problems of dividing resources and balancing single-thread and 

multiple-thread performance turn out not to be as challenging as they sound, at least for 
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current superscalar back-ends. In particular, for current machines that issue four to eight 

instructions per cycle, it probably suffices to have a small number of active threads, and 

an even smaller number of “preferred” threads. Whenever possible, the processor acts on 

behalf of a preferred thread. This starts with prefetching instructions: whenever the 

prefetch buffers for the preferred threads are not full, instructions are fetched for those 

threads. Only when the preferred thread buffers are full is the instruction unit directed to 

prefetch for other threads. Note that having two preferred threads means that we are 

simultaneously prefetching for two instruction streams and this adds complexity to the 

instruction fetch unit and the instruction cache. Similarly, the instruction issue unit can 

direct its attention to the preferred threads, considering other threads only if the preferred 

threads are stalled and cannot issue. In practice, having four to eight threads and two to 

four preferred threads is likely to completely utilize the capability of a superscalar 

back-end that is roughly double the capability of those available in 2001. 

There are a variety of other design challenges for an SMT processor, including: 

 dealing with a larger register file needed to hold multiple contexts, 

 maintaining low overhead on the clock cycle, particularly in critical steps such as 

instruction issue, where more candidate instructions need to be considered, and in 

instruction completion, where choosing what instructions to commit may be 

challenging, and 

 ensuring that the cache conflicts generated by the simultaneous execution of 

multiple threads do not cause significant performance degradation. 

In viewing these problems, two observation are important. In many cases, the 

potential performance overhead due to multithreading is small, and simple choices work 

well enough. Second, the efficiency of current superscalars is low enough that there is 
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room for significant improvement, even at the cost of some overhead. SMT appears to be 

the most promising way to achieve that improvement in throughput. 

Because SMT exploits thread-level parallelism on a multiple-issue superscalar, it is 

most likely to be included in high-end processors targeted at server markets. In addition, 

it is likely that there will be some mode to restrict the multithreading, so as to maximize 

the performance of a single thread. 

Prior to deciding to abandon the Alpha architecture in mid 2001, Compaq had 

announced that the Alpha 21364 would have SMT capability when it became available in 

2002 In July 2001, Intel announced that a future processor based on the Pentium 4 

microarchitecture and targeted at the server market, most likely Pentium 4 Xenon, would 

support SMT, initially with two-thread implementation. Intel claims a 30% improvement 

in throughput for server applications with this new support. 

 

1.3. Observation  
 

As the upon mention, modern processor architecture design tends to support SMT 

because human thirst for performance improving. But SMT also bring lots of problem, 

one problem we try to solve is the demand for register file. A register file usually occupy 

a significant portion of area in a processor (In Intel Pentium® 4 Processor Integer 

Execution Core is about 31.5% and in alpha 21464 processor is about 6%). As we know, 

most general-purpose processors and embedded processors have 32 architected registers 

as a register file or more and have two kinds of registers (float-point registers and integer 

registers). However, a lot of programs just use integer registers or float point registers 
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rarely need the full register file. With appropriate partitioning, those parts of register file 

could be used by another program. Thus our design try to increase the utilization of 

register file and solve the area of register file increasing because of supporting SMT by 

flexibly splitting a register file; moreover, we would try to find the suitable size of our 

purposed register file to gain the maximal performance. Our purposed register file can be 

support by single-thread or simultaneous multithread. 

 

1.3.1. Utilization of Register File 

We perform some profiling on register usage. Figure 1-2 shows statistics in register 

utilization of each application. The raw data is retrieved from our simulation environment 

which is mentioned in chapter 4. We observe the two kinds of register file. One is integer 

register file usage and the other is float point register file usage. We can see that although 

programs use lots of integer registers, but they use less of float point registers. This 

simulation result gives us a good opportunity to accomplish our proposed design in the 

float point register file. 
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Figure 1-2 Statistics in register utilization of each application 

 

1.4. Motivation and Objective 
 

1.4.1. Motivation 

We can see that a register file occupies a significant portion of area in a processor 

and the portion will be increased because the trend is to increase demand on number of 

registers in a register file. 

Many previous designs use minimal number of ports to reduce the area of register 

file. But it brings lots of problems, for example, Reduce a multi-port register file may 

cause conflicts and need to stall the pipeline. It also has to design a complex control logic 
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because of access conflict and it possibly cause performance down.  

From the simulation result, we observe the opportunity of sharing the register file. 

When one thread does not require the full size of the register file, parts of the register file 

may be used by another thread and if we can split the register file into two parts flexibly 

to be shared for two threads, then we may get high utilization in this splittable register file. 

Also, we can try to add few registers in the splittable register file, and we may have 

higher opportunity to share the register file or relax the high pressure of register file usage 

because of high requirement from threads. 

 

1.4.2. Objective 

Design a flexibly splittable and stretchable register file (RF) which may be divided 

into two parts shared by two threads (programs, tasks) to get high utilization of the 

register file in SMT processor without increasing read/write ports by sharing ports and 

decoder in a register file. We also can reduce context switch thickly and hide memory 

latency in single-processor. 

 

1.5. Organization of This Thesis 
 

In Chapter 2, we described a related work about register file design and background 

for simultaneous multi-thread and flexible sharing of register file. Our motivation and 

objective are. In Chapter 3, designs about sharing the register file are proposed. Chapter 4 

shows the experiments and simulation results. A final proposal about designing the 

register file is suggested. In Chapter 5, we summarized our conclusions.
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Chapter 2.  Background and Related Work 

2.1. Register File Structure 
 

The Structure of a register file contains decoder design, register array and data bus 

(word line) design. The Register file organization is shown below 

 

Figure 2-1 Register File Organization 

In the decoder design, the decoder has two kinds of address decoders, one is read 

decoder and the other is write decoder. The decoder is a series of AND gates that drive 

word lines, and there is one decoder per read or write port. If the array has two read and 

one write ports, for example, it has three word lines per bit cell in the array, and three 

AND gates per row in the decoder. Figure 2-2 shows the decoder design. 
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Figure 2-2 Decoder Design 

In the register array and bus design, a register array is composed of many bit cells. A 

bit cell is composed a pair of inverters to store state, a bit line to control mos transister to 

enable data be read out to word line, and a bit line to control mos transister to enable data 

be write from word line. A basic 2 read / 1 write port register cell diagram is shown below 

 

Figure 2-3 Bit cell i of Register j 

 

2.2. Mini-thread: Increasing TLP on Small-Scale SMT 
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Processors 
 

Before we start to propose possible designs, we first show some researches about the 

opportunity of sharing the register file on SMT architecture when one task (program, 

thread, context, etc…) use few registers and also increasing the performance. We also 

show other design to reduce area by banking register file and complex control logic to 

solve the conflict problem. 

As we knows, SMT is a latency-tolerant CPU architecture that adds multiple 

hardware contexts to an out-of-order superscalar to dramatically improve machine 

throughput. While these SMTs increase performance, they still leave modern wide-issue 

CPUs with underutilized resources. 

A primary obstacle to the construction of larger-scale SMTs is the register file. The 

large register file either inflates cycle time or demands additional stages on today’s 

aggressive pipelines; for example, the Alpha 21464 architecture would have required 

three cycles to access the register file. 

The idea to get performance without increasing the register file size on SMT 

architecture is proposed in [ ]. The truth is that a significant impediment to the 

construction of SMT architecture is the register file size required by a large number of 

tasks. So they propose a idea, called mini-threads, a simple extension to SMT that 

increases thread level parallelism without the commensurate increase in register file size. 

Mini-threads, alters the basic notion of a hardware context. On the hardware level, 

mini-threads add additional per-thread state (aside from general purpose registers) to each 

SMT hardware context. Using this hardware, an application can exploit more thread-level 
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parallelism within a context, by creating multiple mini-threads that will share the 

context’s architectural register set. 

Figure 2-4 show the main idea of mini-threads, This mechanism focuses on statically 

partitioning each architectural register set in half between two mini-threads. They suggest 

two ways of register allocation to accomplish mini-threads, but they don’t realize the 

ways that they suggest. The design we purpose help mini-threads to accomplish. 

 

Figure 2-4 Register sharing among mini-threads on an SMT (There are two hardware contexts, each 

supporting two mini-threads that share architectural registers within the context.) 

Figure 2-5 shows the improving performance when the SMT using mini-threads idea. 

The resulting performance depends on the benefits of additional TLP compared to the 

costs of executing mini-threads with fewer registers. They demonstrate that mini-threads 

can improve performance significantly, particularly on small-scale, space-sensitive CPU 

designs.  
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Figure 2-5 The Speedup of each context SMT using mini-threads method 

Mini-threads improve on traditional SMT processors in three ways. First, 

mini-threads conserve registers, because each executing mini-thread does not require a 

full architectural register set. Second, mt_SMT allows each application the freedom to 

trade-off ILP for TLP within its hardware contexts. Applications can choose to use 

mini-threads to increase TLP, or to ignore them to maximize the performance of an 

individual thread. Third, in addition to the savings in registers, mini-threads open up new 

possibilities for fine-grained thread programming. Each application can choose how to 

manage the architectural registers among the mini-threads that share them. 
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Chapter 3.  Design 

3.1. Overview of Our Deign 
 

We propose a register file design for a digital computing system. This register file is 

capable of the following:  

1) Splitting the Register File When two independent tasks (processes, threads, etc.) 

are to be run in the computing system simultaneously, with such a register file, these tasks 

can share a flexible fraction of the register file in an independent fashion, if the total 

number of required registers does not exceed the amount of registers available.  

2) Flexibly splitting the Register File can make the splittable register file to be used 

more flexible, not just divide the register file into two parts   

3) Stretching the Register File Although an ISA typically defines logical registers, 

many applications use only a few of these registers. Furthermore, register files typically 

occupy a large percentage of chip area. For two processes using only a little more 

than registers, sharing of the register file for simultaneous executions is still possible 

with the stretchable register file design technique. 

r2

r2

 

3.2. The Main Design  
 

We propose a number of design techniques for the register file. With these design 

techniques, the register file can be very versatile for those purposes above. Note that 
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combinations of these design techniques are possible if so required. 

 

3.2.1. Splittable Register File 

The objective to split a *W register file into two independent partitions of sizes 

X*W and ( -X )*W, both accessible as R0 and up in the split register file. Figure 3-1 

illustrates the concept of splittable register file design. 

r2

r2

 

Figure 3-1 Split Register file Design 

 

 There are two design issues about how to split the register file: 

 

3.2.1.1. Splittable Decoder Design 

Decoders occupy significant silicon area in a register file design. Hence it is 

desirable if two threads sharing the register can share decoders. Intuitively, one may 

choose to use two separate sets of Read Decoder A, Read Decoder B, Write Decoder for 

the two independent register file partitions, wasting much area. We will show that using 

only one set of decoders is possible. 
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Registers are numbered as R0~R( -1), or 00…0~11…1, suppose that we want to 

index both register file partitions as R0~Rmax. Hence if we want to use two sets of 

decoders, then one set of decoders must be positioned up side down. Or if we want to 

share only one set of decoders for both register file partitions, then we must first split the 

decoders at the right point for both small-index portion and large-index portion decoding. 

Then for the large-index partition, we note that since Not(111…1) = (000…0), if we send 

in inverted register indices for decoding, then the register uses of this portion will be from 

R( -1) and down, which matches our need perfectly. 

r2

r2

Given registers in an instruction set architecture, the compiler/assembly program 

writer always can decide to use only any number of registers ≦ , at the cast of 

possible extra register spills/refills. An x-to- decoder is shown below (see Figure 3-2). 

To make such a decoder sharable by two threads, the register file splitting scheme can be 

applied here.  

r2

r2

r2
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Figure 3-2 Register Decoder Design 

 

Next we discuss the splitting and sharing of only one decoder group. Figure 3-3 

shows such a design and the split point selection should be in coincidence with the 

register split points, and the split control lines for both designs are the same. Since the 

two tasks sharing the register file both desire to index registers starting from R0, so 

design change may be needed. Notice that the index 0, if inverted, becomes [ -1], or to 

generalize it, for any x+y=[ -1], x,y∈N, 

r2

r2 x =y and y =x. Hence if we  

 Invert the ReadA, ReadB, and Write register indices of one of the tasks, 

 Split the decoders using pass transistors (transmission gates) as done in data storage 

part of the register file, and  

 Send the inverted registers to the high-index half of the decoders,  

Then the sharing of register index decoders becomes very feasible. 
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Figure 3-3 Splitting Register Decoder Design in Read/Write Bus,  

showing only one read bus line 

 

3.2.1.2. Splittable Bus Design 

Operand bus design is discussed here. Two designs are possible. The first design is 

straightforward and expensive: we simply double the number of read/write buses, and 

read/write ports of a bit cell. This requires much area, and may induce much power and 

latency penalties. The second design is recommended, since it is cheap and efficient, and 

also brings a number of additional advantages: The size of register file can then be 

stretched, the use of register file as two separate sets of register files is hardware enforced 

and protected, etc. This design sets a number of split points along each read/write bus line, 

and the read/write data ports can be accessed only at one end of the register file, the R0 



 

 26

end, by the two tasks. Place of the split points are to be determined by register pressures 

of tasks statistics. Note that the more split points we set, the better sharing flexibility we 

get, but the worse bus delay will be; and vice versa. 

 Figure 3-4 shows the design overview of traditional register file with a read decoder. 

We take a bit line as a example (framed by a red-dotted line) and one bit-line is shown in 

Figure 3-5. 
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Figure 3-4 Design overview of traditional register file 

 

R0 cell R1 cell R(n-2) cell R(n-1) cell

WL 0 WL 1 WL n-2 WL n-1

Bit Line 0

data direction

R0 cell R1 cell R(n-2) cell R(n-1) cell

WL 0 WL 1 WL n-2 WL n-1

Bit Line 0

R0 cell R1 cell R(n-2) cell R(n-1) cell

WL 0 WL 1 WL n-2 WL n-1

Bit Line 0

data direction

…

 

Figure 3-5 Overview of one bit line 

Figure 3-6 illustrates our split point read/write bus design. This design implements a 

number of pass transistors or transmission gates along the bus and since we have two data 

output, we have to add a extra sense amplifier (SA) and some pre-charge circuits, as 
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illustrated in the figure and the whole design is shown in Figure 3-7. 

…R0 cell R1 cell R(n-2) cell R(n-1) cell

WL 0 WL 1 WL n-2 WL n-1

Bit Line 0

Task 0 data direction Task 0 data direction

TG

Split signal

R0 cell R1 cell R(n-2) cell R(n-1) cell

WL 0 WL 1 WL n-2 WL n-1

Bit Line 0

Task 0 data direction Task 0 data direction
Split signal

TG

…

 

Figure 3-6 One bit-line with split point read/write bus design 

 

 
Figure 3-7 A splittable Register File design 

 

3.2.2. Flexible Splittable Register File 

Figure 3-8 illustrates a example of our flexible split point read/write bus design. This 

design implements many groups of pass transistors or transmission gates along the bus. 

The arrangement of these split points is flexible. For instance, we can implement these 

points for every pair, or every four registers. We may also reserve at least 2r-1 registers for 

the top set of registers, and/or 2r-1 registers for the bottom set of registers. Note that the 
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split points need to exist at most in half of the register spans. 

 
Figure 3-8 Example of a flexible split point Read/Write Bus Design with two groups of transmission gate 

 

 S0 and S1 in Figure 3-8 are control signals of split points. Table 3-1 shows the 

operation when we control the signals. As we know, when signal equals to 0, the split 

point (transmission gate) on the bus disconnects and connects when signal equals to 1. So 

we use different signals to make bus operate flexibly and the same way is suitable for 

flexibly splittable decoder design. 

S0 S1 One or two tasks 

0 1 two 

1 0 two 

1 1 one 

0 0 No operation 

Table 3-1 The operation when we control the signals  
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3.2.3. Stretchable Splittable Register File 

Based on the flexibly splittable register file design, if two threads try to share this 

register file need an aggregated size of > registers, we can provide more spare registers 

in register file, making total # of registers +s, where s is a small positive integer, to 

make this sharing more possible. 

r2

r2

 The design issues of flexibly splittable and stretchable register file are : 

 This flexibly splittable register file needs to preserve one register file property. 

When added s registers, the one-register file feature must be preserved. 

 How to design the decoder to map +s registers without complex circuit.  r2

The main problem is the decoder design. Decoder must support when increasing the 

registers. If thread 1 access register from stretched registers, splittable decoder design 

may not be used. We need to duplicate the decoder to map the register index from thread 

1 to decoder or use offset mechanism. If we put stretched registers at the end of registers 

that thread 1 can access, the mapping from new decoder to a stretched registers is easy 

and saving area. 

There are two design issues of the decoder design when adding extra registers. The 

design is shown in Figure 3-9. Figure 3-9(a) shows a dedicated decoder for thread 1 and 

thus thread 1 can start from the stretched registers. The idea of the design 1 is two 

decoders for two threads and it may increase area. Figure 3-9(b) shows an extra decoding 

circuit for stretched registers and it can be implemented in the splittable decoder. 

Desirable features of this design over other alternatives are first, both threads can share 

the same set of register index decoders, and secondly, it greatly increases the probability 

of two tasks sharing this stretched register file, since the sharing increases much register 
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pressure. 

 

      (a). Design 1 (Two decoder mapping)            (b). Design 2 (Extra decoding circuit mapping) 

Figure 3-9 Schemes of adding extra registers in register file 

Design 1 of the decoder is simple and straightforward and design 2 is much complex. 

The main idea of design 2 is shown in Figure 3-10. Figure 3-10 shows main idea of 

thread 1 using the extended registers flexibly, Figure 3-10(a) and (b) show different 

condition of flexibly splittable and stretchable register file. 

 

   (a) Condition 1                     (b) Condition 2 

Figure 3-10 The main idea of thread 1 using the extended registers flexibly. 
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Let’s use a flexibly splittable register file with 2 split points as a example to realize 

design 2. We can see that when S0=0, S1=1 in Table 3-2, the register split into two equal 

parts, as shown in Figure 3-11(a), and if thread 1 want to enable the extra register, it has 

to send the signal No.17 (R16) of register index because the start register index is R0. 

When S0=1, S1=0 in Table 3-2, the register split into two different size parts, as shown in 

Figure 3-11(b), and if thread 1 want to enable the extra register, it has to send the signal 

No.9 (R8) of register index. 

We also observe that the extended register has the same register address of thread 1 

at the back and the length is equal to the interval of Flexibility. See Table 3-2, we use a 

red frame to show. 

 

Table 3-2 The enable signal of Flexibly splittable RF (2 split points) to a extra register 
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(a) Condition 1                                            (b) Condition 2 

Figure 3-11 a example of flexibly splittable register file design with 2 split points when adding one extra 

register. 

Thus we cut down the fixed variable and use these remaining variables to derive the 

Boolean function. For example, the original Boolean function of extra register of Figure 

3-11 is: 

 

Figure 3-12 shows an example of flexibly splittable decoder design with one extra 

register. 

 

 
Figure 3-12 An example of flexibly splittable decoder design with one extra register. 
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3.3. Compiler and OS support 
 The new register file design implemented in processor has several compiler and 

operating system support issues. First, when programs are compiled to be object codes, 

registers have to be allocated successively. If a program use three registers and compiler 

allocate R0, R1 and R18, it is hard to use our purposed design of splittable register file. 

Second, When OS schedule the compiled threads (or programs, tasks, etc.), OS has to 

know register usage of each thread and need to solve the problem when two threads don’t 

finish the use of CPU simultaneous. We will discuss later. 

To solve the first problem, we propose an idea about register gathering [] when 

compiler executes register allocation. Register gathering is a method to gather registers 

when register allocation in compile time to name successive register and thus make 

splittable register design available. For example, if a program use three registers and 

compiler allocate R0, R1 and R18, we use register gathering to be reallocated to R0, R1 

and R2. Figure 3-13 shows the diagram of operation of a compiler. 

Programs

Middle-end Analysis
And Optimization

Scheduling and 
Resource Allocation

Code Generation

Object
Code

Register allocation Register gathering

Register usage record in ELF header (In TOC table)

+

 

Figure 3-13 The diagram of operation of a compiler 
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About the second issue, we discuss here. How dose OS know the register usage when 

a thread want to be executed. Register usage already be recorded in file header. For 

example, the register usage of each thread has been recorded in TOC Table of Executable 

and Linking Format (ELF, a common standard file format) header. [] When OS get the 

information of register usage of each thread, it can set the information as a priority factor 

to schedule these threads and OS can signal the processor to split register or not 

according to the register utilization of each thread. Figure 3-14 shows the diagram of OS 

signals the processor. 

 

Figure 3-14 A diagram of OS signals the processor 

 How to solve the problem when two threads don’t finish the use of CPU 

simultaneous? Figure 3-15 shows an example of OS choose the next suitable thread. We 

can use a table or special registers to solve this problem. We use a table or special 

registers to save the register usage when the thread is execution. When two threads 

execute simultaneous, one thread finish first, OS choose the next thread in the ready 

queue. OS will decide if the thread in execution plus the next thread which want to 
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execute is smaller than the entries of register file that can support. If yes, then the next 

thread can be a candidate to be execution. If no, then OS choose another suitable thread 

to execute. Thus the second issue can be solved. 

 

Figure 3-15 An example of OS choose the next suitable thread. 
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Chapter 4.  Experiments 

 

4.1. Goals of Our Experiments 
 

In the experiments, we’ll compare different entries of register file using our 

splittable design and other mechanisms, from area and circuit delay. 

 We also wish to choose parameters for designing the Register File. We’ll find the 

suitable number of split points by considering both delay and the utilization of register 

file. Simulation for execution-time reduction with different register file designs is also 

performed. 

Another register file design issue is how many extra registers the register file should 

be? Since increasing the extra registers could improve the opportunity of joining two 

tasks together, we observe the effects on adding number of registers to make the 

conclusion. 

 

4.2. Simulation Environment 
 

Synthesis Environment and Constraints 

Tool: Synopsis Design Compiler 

Technology:.18um 
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Register file Implementation: 

Provides AND / Tri-state buffer / Flip-flop / XOR / NOT Gates. 

The cell of each register is implemented as 2-read / 1-write and 4-read / 2-write. 

 

Software Simulation Environment 

Simulator: M-Sim []  

  

M-Sim is a multi-threaded microarchitectural simulation environment with a 

detailed cycle-accurate model for the key pipeline structures. M-Sim extends the 

SimpleScalar 3.0d toolset with accurate models of the pipeline structures, M-Sim 

supports for the concurrent execution of multiple threads according to the Simultaneous 

Multithreading (SMT) model and gives each thread a copy of integer and float point 

register file. 

 

Benchmark: SPEC CPU 2000 Suite [] 

 

SPEC CPU 2000 is the industry-standardized CPU-intensive benchmark suite. SPEC 

designed CPU 2000 to provide a comparative measure of compute intensive performance 

across the widest practical range of hardware. The implementation resulted in source 

code benchmarks developed from real user applications. These benchmarks measure the 

performance of the processor, memory and compiler on the tested system. 

 A survey of the benchmarks that we use comprising each SPEC CPU2000 

component suite:  

 CINT2000 - The Integer Benchmarks. See Table 4-1 
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Table 4-1 CINT2000 

 CFP2000 - The Floating Point Benchmarks. See Table 4-2 

 

Table 4-2 CFP2000 

 

Simulation Methodology: 

 

We first observe the register file utilization of each application, as show in Figure 

1-2 (This figure is shown in observation of Chapter 2). We divide these applications into 

2 parts, one is higher float point registers utilization (>16) and the other is lower float 

point registers utilization (<16). Then we compare the performance of higher-higher 

applications, higher-lower applications and lower-lower applications running in 

traditional SMT architecture and my design in SMT architecture. Table 4-3 shows the 

classification of Register file utilization in each benchmark. 
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Table 4-3 The classification of Register file utilization in each benchmark 

We simulate the IPC of 1-thread and all kinds of 2-thread workloads in traditional 

SMT architecture and our design. Table 4-4 shows a example of simulated 1-thread and 

2-thread workloads.  

 
Table 4-4 Simulate 1-thread and 2-thread workloads 

Then we calculate the average IPC by using the formula is shown below : 

 

 

4.3. Area Simulation of Different Designs vs. Splittable 

Register File Design 
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 Based on our idea, we implement the splittable design in different size of register 

file and compare with a copy of traditional register file (2r/1w, n entries), two copies of 

traditional register file (2r/1w, 2n entries) and a multi-port register file (4r/2w, n entries).  

Figure 4-1 shows the area comparison of these designs and splittable RF design.  

According to the simulation result, we could know the overhead of the splittable RF 

design doesn’t get a heavy proportion compared with a copy of traditional register file 

(Adding avg. 3.4 % overhead in splittable RF design).Because the overhead we increase 

is regular, the proportion of overhead decrease when the size of RF increase, as show in 

Figure 4-2.  
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Figure 4-1 The area comparison of other RF designs and splittable RF design 
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Figure 4-2 The ratio of increasing overhead of splittable RF design 

However, we use tri-state buffer to implement the transmission gate, it brings lots of 

delay. Figure 4-3 shows the access time of a traditional register file and splittable RF 

design. How to solve the delay problem that the splittable design brings? Since we try to 

use a splittable n-entry register file to replace a traditional 2n-entry register file, the delay 

problem can be relaxed. We also can add an extra pipeline for register reading or writing. 

In the superscalar, it costs two pipeline stage times for register reading. 
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Figure 4-3 The access time of each size of a traditional register file and splittable RF design 
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We then compare the multi-port register file with our design in equal entries. Since 

we can use multi-port register file to reach the same purpose of our design. But we get 

less overhead compared with multi-port register file design. Figure 4-4 shows saving area 

(Avg. 41.2%) if we replace multi-port register file (4-read/2-write ports, n entries) by 

splittable RF (n entries). We also see that as the size of RF increase, the proportion of 

save area increases. 
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Figure 4-4 The saving area of multi-port register file (4-read/2-write ports, n entries) vs.  

splittable RF (n entries) design 

We also compare the traditional SMT architecture using register file with our design. 

Traditional SMT architecture use duplicated register file design (ex: Alpha 21464). It 

gives each ALU a copy of traditional register file and is easy to implement without 

complex control logic. Figure 4-5 shows the saving area if we replace two copies of 

traditional register file (2-read/1-write ports, 2n entries) by splittable RF (n entries). We 

can see that the splittable RF saves lots of area (Avg. 48.3 %) of two copies of traditional 

RF and as the size of RF increase, the proportion of save area increase. 
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Saving Area of splttable RF
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Figure 4-5 The saving area of two copies of traditional RF( n entries ) vs.  

splittable RF( n entries ) design 

 

4.4. Simulation of Different Flexibility Designs 
 

 In section 3.2.2., we proposed the flexibility mechanism which could increase more 

opportunity to execute two tasks simultaneous. We add more transmission gates as 

split-point to make our design more flexible. Figure shows area and delay overhead of 

32-entry register file with different split-points.  
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The overhead of different types of Flexible RF
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Figure 4-6 Area and delay overhead of 32-entry register file with different split-points 

 

 From the Figure 4-6 above, we can see under all flexibility configures, the area for 

flexibility approach is increased slowly. But it requires quite large delay time to access 

this design. 

 

4.5. Simulation of Different Stretchability Designs 
 

Performance could be increased if we increase the entries of register file since the 

opportunities of joining two tasks together would be increased. But how many entries 

should be extended is most economic? We could refer to the overhead and the ratio of 

increased performance over increased entries of register file. 
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The overhead of different entries of RF
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Figure 4-7 Ratio of overhead over increased Register-entry 

 

In Figure 4-7 we show the ratio with power of 2 entries step in 32-entry splittable 

register file. Increasing the entries don’t increase much delay (access) time, but increase 

the area dramatically. Overhead of splittable register file is contrary to the overhead of 

flexible register file design. We will simulate the performance in next section to choose 

the most suitable design that we purpose. 

 

4.6. Performance Simulation on All Kinds of Our Deign 
 

 Figure 4-8 shows the performance of a copy of traditional register file (Trad. 1-T), 

different flexibilities of register file under three kinds of benchmark sets and two copies 

of traditional register file (Trad. 2-T). Since multi-port register file has the same ability 

with our purposed design in the same entries, we consider them get the same 

performance.  
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Then we can see that the different flexibilities impact on the higher-lower 

benchmark set. The flexible register file doesn’t impact on Higher-Higher benchmark 

because the Higher-Higher benchmark needs more register but not flexibility and we 

always can execute two tasks simultaneously in Lower-Lower benchmark set. 
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Figure 4-8 The performance of different flexibilities of register file under three kinds benchmark sets 

 We calculate the average IPC of Figure 4-8 above and show it in the Figure 4-9 

below. We can observe that if we give two copies of traditional register file (Traditional 

SMT), it can improve the performance 23.3% over one copy of traditional register file. 

When we use the splittable register file, it can improve the performance 14.1% over one 

copy of traditional register file. Thus we save almost a copy of register file (about 49.1%) 

but just lose a little performance (about 9.1%) compared with two copies of traditional 

register file. 

 Figure 4-9 also shows that the performance gets slightly increasing with the 

flexibility increasing. It gets 1% performance increasing in flexible register file with 8 

split-points compared with the splittable register file. 



 

 47

 

The increasing IPC of each design
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Figure 4-9 Avg. IPC of different flexibilities of register file 

 In Figure 4-10 we show the ratio of performance improvement over all of our design 

in 32-entry register file. We can know that with more entries we can get more 

performance improvement. When we add extra 16 entries in our purposed design, we get 

slightly performance lose (about 2%) and we still can save over 21.6% area compared 

with two copies of traditional register file. 
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The increasing IPC of each design
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Figure 4-10 Ratio of performance improvement over increased register entry with different flexibility of 

splittable design 

 

4.7. Hardware Design Issue 
 

 When we design a splittable register file, we may have a problem that how many 

pass transistors (transmission gates) should we put on our design. 

 In splittable decoder design, if a decoder is n-to-2n, we set 2*n pass transistors in the 

decoder. Because an n-to-2n decoder has 2n control lines in PLA design. In splittable bus 

design, if a bus is 32-bit, we set 32 pass transistors in the bus. 

 We take a register file with 32 registers and the bus width is 32-bit an example. We 

set (10 + 32) pass transistors in the splittable register file. Figure 4-11 shows the number 

of extra pass transistors setting in different sizes of the splittable register file. 



 

 49

Extra Pass Transistors in Different Size of RF
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Figure 4-11 The number of extra pass transistors setting in different size of the splittable register file. 

 

In flexibly splittable register file, if the design has N split points then we set N times 

of pass transistors compared with splittable register file design. If we have two split 

points, we set 2*(10+32) pass transistors in this register file. Figure 4-12 shows the 

number of extra pass transistors setting in different split-points of the flexibly splittable 

register file with 32 registers. 
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Figure 4-12 The number of extra pass transistors setting in different split-points of the flexibly splittable 
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register file with 32 registers. 

 

Our purposed design use lots of pass transistors, while the area overhead of these 

extra circuits does not occupy a significant portion of the area of register file. Even we 

use the tri-state buffers as pass transistors the area overhead increase 1.7% on traditional 

register file with 32 registers, 2read/1 write ports.  

 The main idea of our purposed design try to save the registers of register file, thus 

we can save area. Traditionally, if we want to execute two threads simultaneously, we will 

design two times number of registers than one thread executing. We will show our design 

can use less registers but get performance improving comparing with the same number of 

registers and even use two times number of registers, we would not lose too much 

performance. Figure 4-13 shows the overhead and performance of different register file 

designs. We use a traditional register file (2r/1w) with 32 registers as the standard. We 

can see that our purposed design does not increasing the much overhead of the traditional 

register file but increase the performance up to 14.1% and while we stretch 16 registers to 

our purposed design, we almost attain the performance (lose 2%) of two copies 

traditional register file. 
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Figure 4-13 The overhead and performance of different register file designs. 

 

 Another register file design is the multi-port register file. We double the read/write 

ports to execute two threads simultaneously with complex control logic, but it also 

increases the area of the register file. Since our design shares the read/write ports, we do 

not increase the ports and we still can execute two threads simultaneously without 

complex control logic. Table 4-5 shows the number of ports with different register file 

designs. Flexibly splittable and stretchable register file (FSS-RF) is our purposed design, 

2T-RF is two copies of traditional register file, it means a thread has its own register file 

and MP-RF is multi-ports register file.  

 
Table 4-5 The number of ports with different register file designs. 

 

 

4.8. Final Proposal of the Register File Design 
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From the experiment results, we have several conclusions on the proposed design. 

 

 1. The overhead of our purposed design 

The ratio of area overhead of our purposed design is reduced when the register file 

size increase. In 128-entry register file, the ratio of area overhead is about 1.1%. But the 

ratio of delay overhead is increasing while register file size increase. Since we purpose 

our design to replace two copies of the traditional register file or twice entries of register 

file, the delay problem can be relax. 

 2. The flexibility of splittable register file 

 According to our hardware and performance simulation, we can see that the area 

overhead is slightly, but the more flexibility we get the more access time we have. We 

also observe that the performance increasing in Higher-Lower benchmark set while we 

have more flexibility. Although it doesn’t improve much performance, the flexible design 

is still useful if the register usage is more equally. 

 3. The stretchability of splittable register file 

 Considering the increase performance over linearly increased, to extend 16 entries in 

32-entry register file is a good choice. If the we consider the area overhead of the 

stretchable register file, the splittable register file without stretchability is a choice. 
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Chapter 5.  Conclusion and Future Work 

 

In this work, a splittable register file design is presented for supporting current SMT 

architecture. The previous chapters have discussed our designs and experimental results. 

This chapter briefly outlines the conclusion of the work, and provides some directions for 

future work. 

 

5.1. Conclusion 
 

 We show that the splittable register file design provides high performance with little 

hardware overhead compared with one copy of traditional register file design and the 

proportion of hardware overhead decreases when the size of RF increases. We assess that 

the number of allocated split points will be very limited, hence the circuit overhead is low 

and fixed. To provide high flexibility, we also provide different flexibility of splittable 

register file design by increasing the number of the split points. We then show the show 

the relationship between different flexibility and performance improving. Although 

different flexibility of splittable register file design get little performance improving 

compared with splittable register file, but according to the simulation result, we can 

observe that the high flexibility of splittable register file design performs better on high 

and low register utilization applications running simultaneous. 

In the stretchable part, since the invested extra hardware turns into useful registers, 
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this design is entirely cost-effective. We observed that extend extra half size of 32-enrty 

register file almost get the same performance compared with two copies of traditional 

register file, Thus we can save almost 21.6% area in two copies of traditional register file. 

And with the stretching, the discussion about split points remains valid.  

These designs are very effective and low-cost. With the multi-threading trends, these 

designs will find themselves very useful. The same ideas can be extended to other register 

file designs which can utilize the register file more efficient or save more area without 

performance down. 

 

5.2. Future work 
 

A Research in our laboratory is purposed to share the ALU, and the shared ALU 

needs double register read/write ports, our design can resolve the problem. We can try to 

integrate splittable register file design with shared ALU 

We also need an efficient partitioning mechanism for split the register file to make 

more types of threads joinable and a efficient scheduling mechanism for threads to share 

splittable register file to increase performance. The scheduling mechanism has to consider 

profiling-based compiler techniques to register usage of each thread and dynamic 

scheduling mechanisms to the real register utilization of each thread. 

To extend this work, we suggest that related instruction set extension work, 

application profiling, and layout/timing/area analyses, be undertaken. Particularly, 

processor architecture supports and interactions need to be investigated. 
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