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Abstract

How to support simultaneous multithreading’ (SMT) with minimum resource hence
becomes a critical research issue.The register file in a microprocessor typically occupies
a significant portion of the chip area,and.in order to'support SMT, each thread will have
a copy of register file. That will increase the area overhead.

In this thesis, we propose a register file design techniques that can 1. Split a copy of
physical register file flexibly into two independent register sets when required,
simultaneously operable for two independent threads. 2. Stretch the size of the physical
register file arbitrarily, to increase probability of sharing by two threads.

Benefits of these designs are: 1. Increased hardware resource utilization. 2. Reduced
memory traffic amount. 3. Increased system performance. Moreover, these proposed

designs can be arbitrarily mixed as per application need.
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Chapter 1. Introduction

1.1. Overviews of Processor Register and Register File

Design in Modern Microarchitecture

1.1.1. Processor register

In computer architecture, a processor register is a small amount of very fast computer
memory used to speed the execution of computer programs by providing quick access to
commonly used values—typically, the values being-calculated at a given point in time.
Most, but not all, modern computer architectures operate on the principle of moving data
from main memory into registers,.operating.on them, then moving the result back into
main memory—a so-called load-store architecture.

Processor registers are the top of the memory hierarchy, and provide the fastest way
for the system to access data. The term is often used to refer only to the group of registers
that can be directly indexed for input or output of an instruction, as defined by the
instruction set. More properly, these are called the "architectural registers”. For instance,
the x86 instruction set defines a set of eight 32-bit registers, but a CPU that implements
the x86 instruction set will contain many more registers than just these eight.

Registers are normally measured by the number of bits they can hold, for example,
an "8-bit register"” or a "32-bit register”. Registers are now usually implemented as a
register file, but they have also been implemented using individual flip-flops, high speed

core memory, thin film memory, and other ways in various machines



1.1.2. Register file

Aregister file is an array of processor registers in a central processing unit (CPU).
Modern integrated circuit-based register files are usually implemented by way of fast
static RAMSs with multiple ports. Such RAMs are distinguished by having dedicated read
and write ports, whereas ordinary multiported SRAMs will usually read and write
through the same ports.

The instruction set architecture of a CPU will almost always define a set of registers
which are used to stage data between memory and the functional units on the chip. In
simpler CPUs, these architectural registers correspond one-for-one to the entries in a
physical register file within the CPWY. More;complicated CPUs use register renaming, so
that the mapping of which physical entry stores a particular architectural register changes

dynamically during execution.

1.1.3. Register File Design in Modern Microarchitecture

Most register files make no special provision to prevent multiple write ports from
writing the same entry simultaneously. Instead, the instruction scheduling hardware
ensures that only one instruction in any particular cycle writes a particular entry. If
multiple instructions targeting the same register are issued, all but one have their write
enables turned off.

The crossed inverters take some finite time to settle after a write operation, during
which a read operation will either take longer or return garbage. It is common to have

bypass multiplexors that bypass written data to the read ports when a simultaneous read



and write to the same entry is commanded. These bypass multiplexors are often just part
of a larger bypass network that forwards results that have not yet been committed
between functional units.

The register file is usually pitch matched to the datapath that it serves. Pitch
matching avoids having the many busses passing over the datapath turn corners, which
would use a lot of area. But since every unit must have the same bit pitch, every unit in
the datapath ends up with the bit pitch forced by the widest unit, which can waste area in
the other units. Register files, because they have two wires per bit per write port, and
because all the bit lines must contact the silicon at every bit cell, can often set the pitch of
a datapath.

Area can sometimes be saved, on'machines with multiple units in a datapath, by
having two datapaths side-by-side, each of which has'smaller bit pitch than a single
datapath would have. This case usually.forces multiple-copies of a register file, one for
each datapath.

The DEC Alpha EV-6, for instance, had two copies of the integer register file, and
took an extra cycle to propagate data between the two. The issue logic tried to reduce the
number of operations forwarding data between the two. The R8000 floating-point unit
had two copies of the floating-point register file, each with four write and four read ports,
and wrote both copies at the same time.

Processors that do register renaming can arrange for each functional unit to write to
a subset of the physical register file. This arrangement can eliminate the need for multiple
write ports per bit cell, for a large savings in area. The resulting register file, effectively a
stack of register files with single write ports, then benefits from replication and subsetting

the read ports. At the limit, this technique would place a stack of 1-write, 2-read register



files at the inputs to each functional unit. Since register files with a small number of ports
are often dominated by transistor area, it is best not to push this technique to this limit,
but it is useful all the same.

The SPARC ISA defines register windows, in which the 5-bit architectural names of
the registers actually point into a window on a much larger register file, with hundreds of
entries. Implementing multiported register files with hundreds of entries requires a lot of
area. The register window slides by 16 registers when moved, so that each architectural
register name can refer to only a small number of registers in the larger array, e.g.
architectural register r20 can only refer to physical registers #20, #36, #52, #68, #384,
#100, #116, if there are just seven windows in the physical file.

To save area, some SPARC implementations implement a 32-entry register file, in
which each cell has seven "bits". Only 'one is read and writeable through the external
ports, but the contents of the bits can be rotated. A rotation accomplishes in a single cycle
a movement of the register window. Because most of the wires accomplishing the state
movement are local, tremendous bandwidth is possible with little power.

This same technique is used in the R10000 register renaming mapping file, which
stores a 6-bit virtual register number for each of the physical registers. In the renaming
file, the renaming state is checkpointed whenever a branch is taken, so that when a branch

is detected to be mispredicted, the old renaming state can be recovered in a single cycle.

1.2. Overviews of Multithreading

Before we explain our register file design, we introduce threads first. Although



instruction is minimal unit to use CPU resources, thread is the base unit to be allocated
resources in today’s computer system. Understand how computer system allocate

resources to threads help us design register file more suitable for execution.

1.2.1. Thread

Thread in computer science is short for a thread of execution. Threads are a way for
a program to fork (or split) itself into two or more simultaneously (or
pseudo-simultaneously) running tasks. Threads and processes differ from one operating
system to another, but in general, the way that a thread is created and shares its resources
is different from the way a process does.

Threads are distinguished from traditional. multitasking operating system processes
in that processes are typically independent, carry considerable state information, have
separate address spaces, and interact only. through system-provided inter-process
communication mechanisms. Multiple threads, on the other hand, typically share the state
information of a single process, and share memory and other resources directly. Context
switching between threads in the same process is typically faster than context switching
between processes. Systems like Windows NT and OS/2 are said to have "cheap" threads

and "expensive" processes; in other operating systems there is not so great a difference.

1.2.2. Multithreading

Multithreading allows multiple threads to share the functional units of a single
processor in an overlapping fashion. To permit this sharing, the processor must duplicate

the independent state of each thread. For example, a separate copy of the register file, a



separate PC, and a separate page table are required for each thread. The memory itself
can be shared through the virtual memory mechanisms, which already support
multiprogramming. In addition, the hardware must support the ability to change to a
different thread relatively quickly; in particular, a thread switch should be much more
efficient than a process switch, which typically requires hundreds to thousands of
processor cycles.

There are two main approaches to multithreading. Fine-grained multithreading
switches between threads on each instruction, causing the execution of multiples threads
to be interleaved. This interleaving is often done in a round-robin fashion, skipping any
threads that are stalled at that time. To make fine-grained multithreading practical, the
CPU must be able to switch threads en‘every clock eycle. One key advantage of
fine-grained multithreading is that it can hide the throughput losses that arise from both
short and long stalls, since instructions:fram other threads can be executed when one
thread stalls. The primary disadvantage ef fine-grained multithreading is that it slows
down the execution of the individual threads, since a thread that is ready to execute
without stalls will be delayed by instructions from other threads.

Coarse-grained multithreading was invented as an alternative to fine-grained
multithreading. Coarse-grained multithreading switches threads only on costly stalls, such
as level two cache misses. This change relieves the need to have thread-switching be
essentially free and is much less likely to slow the processor down, since instructions
from other threads will only be issued, when a thread encounters a costly stall.
Coarse-grained multithreading suffers, however, from a major drawback: it is limited in
its ability to overcome throughput losses, especially from shorter stalls. This limitation

arises from the pipeline start-up costs of coarse-grain multithreading. Because a CPU



with coarse-grained multithreading issues instructions from a single thread, when a stall
occurs, the pipeline must be emptied or frozen. The new thread that begins executing
after the stall must fill the pipeline before instructions will be able to complete. Because
of this start-up overhead, coarse-grained multithreading is much more useful for reducing
the penalty of high cost stalls, where pipeline refill is negligible compared to the stall

time.

1.2.3. Simultaneous Multithreading

Simultaneous multithreading (SMT) is a variation on multithreading that uses the
resources of a multiple-issue, dynamically-scheduled processor to exploit TLP at the
same time it exploits ILP. The key insight that:motivates SMT is that modern
multiple-issue processors often have'more functional unit parallelism available than a
single thread can effectively use. Furthermore, with register renaming and dynamic
scheduling, multiple instructions from independent threads can be issued without regard
to the dependences among them; the resolution of the dependences can be handled by the
dynamic scheduling capability.

Figure 1-1 conceptually illustrates the differences in a processor’s ability to exploit
the resources of a superscalar for the following processor configurations:
® asuperscalar with no multithreading support,
® asuperscalar with coarse-grained multithreading,
® asuperscalar with fine-grained multithreading, and
® asuperscalar with simultaneous multithreading.

In the superscalar without multithreading support, the use of issue slots is limited by



a lack of ILP. In addition, a major stall, such as an instruction cache miss, can leave the

entire processor idle.

Issue Slots =

Superscalar Coarse MT Fine MT

Figure 1-1 This illustration shows how:these four different approaches use the issue slots of a superscalar
processor.

In the coarse-grained multithreaded supersealar, the long stalls are partially hidden
by switching to another thread that uses the resources of the processor. Although this
reduces the number of completely idle clock cycles, within each clock cycle, the ILP
limitations still lead to idle cycles. Furthermore, in a coarse-grained multithreaded
processor, since thread switching only occurs when there is a stall and the new thread has
a start-up period, there are likely to be some fully idle cycles remaining.

In the fine-grained case, the interleaving of threads eliminates fully empty slots.
Because only one thread issues instructions in a given clock cycle, however, ILP
limitations still lead to a significant number of idle slots within individual clock cycles.

In the SMT case, thread-level parallelism (TLP) and instruction-level parallelism



(ILP) are exploited simultaneously; with multiple threads using the issue slots in a single
clock cycle. Ideally, the issue slot usage is limited by imbalances in the resource needs
and resource availability over multiple threads. In practice, other factors—including how
many active threads are considered, finite limitations on buffers, the ability to fetch
enough instructions from multiple threads, and practical limitations of what instruction
combinations can issue from one thread and from multiple threads—can also restrict how
many slots are used. Although Figure 1-1 greatly simplifies the real operation of these
processors it does illustrate the potential performance advantages of multithreading in
general and SMT in particular.

As mentioned above, simultaneous multithreading uses the insight that a
dynamically scheduled processor already has many of the hardware mechanisms needed
to support the integrated exploitation of TLP through multithreading. In particular,
dynamically scheduled superscalars have-a-large set of virtual registers that can be used to
hold the register sets of independent threads (assuming separate renaming tables are kept
for each thread). Because register renaming provides unique register identifiers,
instructions from multiple threads can be mixed in the datapath without confusing
sources and destinations across the threads. This observation leads to the insight that
multithreading can be built on top of an out-of-order processor by adding a per thread
renaming table, keeping separate PCs, and providing the capability for instructions from
multiple threads to commit. There are complications in handling instruction commit,
since we would like instructions from independent threads to be able to commit
independently. The independent commitment of instructions from separate threads can be

supported by logically keeping a separate reorder buffer for each thread.



1.2.4. Design Challenges in SMT Processors

Because a dynamically scheduled superscalar processor is likely to have a deep
pipeline, SMT will be unlikely to gain much in performance if it were coarse-grained.
Since SMT will likely make sense only in a fine-grained implementation, we must worry
about the impact of fine-grained scheduling on single thread performance. This effect can
be minimized by having a preferred thread, which still permits multithreading to preserve
some of its performance advantage with a smaller compromise in single thread
performance. At first glance, it might appear that a preferred thread approach sacrifices
neither throughput nor single-thread performance. Unfortunately, with a preferred thread,
the processor is likely to sacrifice some throughput, when the preferred thread encounters
a stall. The reason is that the pipeline is lessiikely to-have a mix of instructions from
several threads, resulting in greater probability that either empty slots or a stall will occur.
Throughput is maximized by having a sufficient. number of independent threads to hide
all stalls in any combination of threads.

Unfortunately, mixing many threads will inevitably compromise the execution time
of individual threads. Similar problems exist in instruction fetch. To maximize single
thread performance, we should fetch as far ahead as possible in that single thread and
always have the fetch unit free when a branch is mispredicted and a miss occurs in the
prefetch buffer. Unfortunately, this limits the number of instructions available for
scheduling from other threads, reducing throughput. All multithreaded processor must
seek to balance this tradeoff.

In practice, the problems of dividing resources and balancing single-thread and

multiple-thread performance turn out not to be as challenging as they sound, at least for
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current superscalar back-ends. In particular, for current machines that issue four to eight
instructions per cycle, it probably suffices to have a small number of active threads, and
an even smaller number of “preferred” threads. Whenever possible, the processor acts on
behalf of a preferred thread. This starts with prefetching instructions: whenever the
prefetch buffers for the preferred threads are not full, instructions are fetched for those
threads. Only when the preferred thread buffers are full is the instruction unit directed to
prefetch for other threads. Note that having two preferred threads means that we are
simultaneously prefetching for two instruction streams and this adds complexity to the
instruction fetch unit and the instruction cache. Similarly, the instruction issue unit can
direct its attention to the preferred threads, considering other threads only if the preferred
threads are stalled and cannot issue. In-practice, having four to eight threads and two to
four preferred threads is likely to completely utilize the capability of a superscalar
back-end that is roughly double the capability of those available in 2001.
There are a variety of other design ehallenges for an SMT processor, including:
® dealing with a larger register file needed to hold multiple contexts,
® maintaining low overhead on the clock cycle, particularly in critical steps such as
instruction issue, where more candidate instructions need to be considered, and in
instruction completion, where choosing what instructions to commit may be
challenging, and
® ensuring that the cache conflicts generated by the simultaneous execution of
multiple threads do not cause significant performance degradation.
In viewing these problems, two observation are important. In many cases, the
potential performance overhead due to multithreading is small, and simple choices work

well enough. Second, the efficiency of current superscalars is low enough that there is
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room for significant improvement, even at the cost of some overhead. SMT appears to be
the most promising way to achieve that improvement in throughput.

Because SMT exploits thread-level parallelism on a multiple-issue superscalar, it is
most likely to be included in high-end processors targeted at server markets. In addition,
it is likely that there will be some mode to restrict the multithreading, so as to maximize
the performance of a single thread.

Prior to deciding to abandon the Alpha architecture in mid 2001, Compag had
announced that the Alpha 21364 would have SMT capability when it became available in
2002 In July 2001, Intel announced that a future processor based on the Pentium 4
microarchitecture and targeted at the server market, most likely Pentium 4 Xenon, would
support SMT, initially with two-thread implementation. Intel claims a 30% improvement

in throughput for server applications with this-new support.

1.3. Observation

As the upon mention, modern processor architecture design tends to support SMT
because human thirst for performance improving. But SMT also bring lots of problem,
one problem we try to solve is the demand for register file. A register file usually occupy
a significant portion of area in a processor (In Intel Pentium® 4 Processor Integer
Execution Core is about 31.5% and in alpha 21464 processor is about 6%). As we know,
most general-purpose processors and embedded processors have 32 architected registers
as a register file or more and have two kinds of registers (float-point registers and integer

registers). However, a lot of programs just use integer registers or float point registers
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rarely need the full register file. With appropriate partitioning, those parts of register file
could be used by another program. Thus our design try to increase the utilization of
register file and solve the area of register file increasing because of supporting SMT by
flexibly splitting a register file; moreover, we would try to find the suitable size of our
purposed register file to gain the maximal performance. Our purposed register file can be

support by single-thread or simultaneous multithread.

1.3.1. Utilization of Register File

We perform some profiling on register usage. Figure 1-2 shows statistics in register
utilization of each application. The raw data is retrieved from our simulation environment
which is mentioned in chapter 4. We observe thetwo kinds of register file. One is integer
register file usage and the other is:float point register file usage. We can see that although
programs use lots of integer registers, butthey use less of float point registers. This
simulation result gives us a good opportunity to accomplish our proposed design in the

float point register file.
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Figure 1-2 Statistics in register utilization of each application

1.4. Motivation and Objective

1.4.1. Motivation

We can see that a register file occupies a significant portion of area in a processor
and the portion will be increased because the trend is to increase demand on number of
registers in a register file.

Many previous designs use minimal number of ports to reduce the area of register
file. But it brings lots of problems, for example, Reduce a multi-port register file may

cause conflicts and need to stall the pipeline. It also has to design a complex control logic
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because of access conflict and it possibly cause performance down.

From the simulation result, we observe the opportunity of sharing the register file.
When one thread does not require the full size of the register file, parts of the register file
may be used by another thread and if we can split the register file into two parts flexibly
to be shared for two threads, then we may get high utilization in this splittable register file.
Also, we can try to add few registers in the splittable register file, and we may have
higher opportunity to share the register file or relax the high pressure of register file usage

because of high requirement from threads.

1.4.2. Objective

Design a flexibly splittable and:stretchable register file (RF) which may be divided
into two parts shared by two threads'(programs, tasks) to get high utilization of the
register file in SMT processor without increasing read/write ports by sharing ports and
decoder in a register file. We also can reduce context switch thickly and hide memory

latency in single-processor.

1.5. Organization of This Thesis

In Chapter 2, we described a related work about register file design and background
for simultaneous multi-thread and flexible sharing of register file. Our motivation and
objective are. In Chapter 3, designs about sharing the register file are proposed. Chapter 4
shows the experiments and simulation results. A final proposal about designing the

register file is suggested. In Chapter 5, we summarized our conclusions.
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Chapter 2. Background and Related Work

2.1. Register File Structure

The Structure of a register file contains decoder design, register array and data bus

(word line) design. The Register file organization is shown below

Register Indices
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ol
TN =3 - N
N El
v|2|®

o | o

g183

=g R(2-1)

@
Decoders ,
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Figure 2-1 Register File Organization
In the decoder design, the decoder has two kinds of address decoders, one is read
decoder and the other is write decoder. The decoder is a series of AND gates that drive
word lines, and there is one decoder per read or write port. If the array has two read and
one write ports, for example, it has three word lines per bit cell in the array, and three

AND gates per row in the decoder. Figure 2-2 shows the decoder design.
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Figure 2-2 Decoder Design
In the register array and bus design, aregister array is composed of many bit cells. A
bit cell is composed a pair of inverters to store state, a bit line to control mos transister to
enable data be read out to word ling, and-a bit line to.control mos transister to enable data

be write from word line. A basic 2 read / L write port register cell diagram is shown below
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Figure 2-3 Bit cell i of Register j

2.2. Mini-thread: Increasing TLP on Small-Scale SMT
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Processors

Before we start to propose possible designs, we first show some researches about the
opportunity of sharing the register file on SMT architecture when one task (program,
thread, context, etc...) use few registers and also increasing the performance. We also
show other design to reduce area by banking register file and complex control logic to
solve the conflict problem.

As we knows, SMT is a latency-tolerant CPU architecture that adds multiple
hardware contexts to an out-of-order superscalar to dramatically improve machine
throughput. While these SMTs increase performance, they still leave modern wide-issue
CPUs with underutilized resources,

A primary obstacle to the construction of farger-scale SMTs is the register file. The
large register file either inflates cycle time or demands additional stages on today’s
aggressive pipelines; for example, the Alpha 21464 architecture would have required
three cycles to access the register file.

The idea to get performance without increasing the register file size on SMT
architecture is proposed in [ ]. The truth is that a significant impediment to the
construction of SMT architecture is the register file size required by a large number of
tasks. So they propose a idea, called mini-threads, a simple extension to SMT that
increases thread level parallelism without the commensurate increase in register file size.
Mini-threads, alters the basic notion of a hardware context. On the hardware level,
mini-threads add additional per-thread state (aside from general purpose registers) to each

SMT hardware context. Using this hardware, an application can exploit more thread-level
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parallelism within a context, by creating multiple mini-threads that will share the
context’s architectural register set.

Figure 2-4 show the main idea of mini-threads, This mechanism focuses on statically
partitioning each architectural register set in half between two mini-threads. They suggest
two ways of register allocation to accomplish mini-threads, but they don’t realize the

ways that they suggest. The design we purpose help mini-threads to accomplish.
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Figure 2-4 Register sharing among mini-threads on an SMT.(There are two hardware contexts, each
supporting two mini-threads that share architectural registers within the context.)
Figure 2-5 shows the improving performance when the SMT using mini-threads idea.
The resulting performance depends on the benefits of additional TLP compared to the
costs of executing mini-threads with fewer registers. They demonstrate that mini-threads
can improve performance significantly, particularly on small-scale, space-sensitive CPU

designs.
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Figure 2-5 The Speedup of each context SMT using mini-threads method

Mini-threads improve on traditional SMT processors in three ways. First,

mini-threads conserve registers, because each executing mini-thread does not require a
full architectural register set. Second;mt_SMT allows each application the freedom to
trade-off ILP for TLP within its hardware contexts. Applications can choose to use
mini-threads to increase TLP, or to ignerethem to maximize the performance of an
individual thread. Third, in addition to the savings in registers, mini-threads open up new

possibilities for fine-grained thread programming. Each application can choose how to

manage the architectural registers among the mini-threads that share them.
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Chapter 3. Design

3.1. Overview of Our Deign

We propose a register file design for a digital computing system. This register file is
capable of the following:

1) Splitting the Register File When two independent tasks (processes, threads, etc.)
are to be run in the computing system simultaneously, with such a register file, these tasks
can share a flexible fraction of the register file in an independent fashion, if the total
number of required registers does not exceedjthe;amount of registers available.

2) Flexibly splitting the Register File can make the splittable register file to be used
more flexible, not just divide the register file into two parts

3) Stretching the Register File Although an‘ISA typically defines 2" logical registers,
many applications use only a few of these registers. Furthermore, register files typically
occupy a large percentage of chip area. For two processes using only a little more
than 2" registers, sharing of the register file for simultaneous executions is still possible

with the stretchable register file design technique.

3.2. The Main Design

We propose a number of design techniques for the register file. With these design

techniques, the register file can be very versatile for those purposes above. Note that
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combinations of these design techniques are possible if so required.

3.2.1. Splittable Register File

The objective to splita 2" *W register file into two independent partitions of sizes
X*W and (2" -X )*W, both accessible as RO and up in the split register file. Figure 3-1

illustrates the concept of splittable register file design.
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Figure 3-1 Split Register file Design

There are two design issues about how to split the register file:

3.2.1.1. Splittable Decoder Design

Decoders occupy significant silicon area in a register file design. Hence it is
desirable if two threads sharing the register can share decoders. Intuitively, one may
choose to use two separate sets of Read Decoder A, Read Decoder B, Write Decoder for

the two independent register file partitions, wasting much area. We will show that using

only one set of decoders is possible.
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Registers are numbered as RO~R(2" -1), or 00...0~11...1, suppose that we want to

index both register file partitions as RO~Rmax. Hence if we want to use two sets of
decoders, then one set of decoders must be positioned up side down. Or if we want to
share only one set of decoders for both register file partitions, then we must first split the
decoders at the right point for both small-index portion and large-index portion decoding.
Then for the large-index partition, we note that since Not(111...1) = (000...0), if we send
in inverted register indices for decoding, then the register uses of this portion will be from
R(2"-1) and down, which matches our need perfectly.

Given 2' registers in an instruction set architecture, the compiler/assembly program
writer always can decide to use only.any number-ofregisters = 2", at the cast of
possible extra register spills/refills. An'x-to-2" decoder-is shown below (see Figure 3-2).
To make such a decoder sharable by two threads, the register file splitting scheme can be

applied here.
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Figure 3-2 Register Decoder Design

Next we discuss the splitting and sharing of only one decoder group. Figure 3-3
shows such a design and the split point selection should be in coincidence with the
register split points, and the split control lines for both designs are the same. Since the
two tasks sharing the register file both desire to index registers starting from RO, so

design change may be needed. Notice that the index 0, if inverted, becomes [ 2" -1], or to
generalize it, for any x+y=[2"-1], x,yEN, x=yand y=x. Hence if we

® Invert the ReadA, ReadB, and Write register indices of one of the tasks,

® Split the decoders using pass transistors (transmission gates) as done in data storage
part of the register file, and

® Send the inverted registers to the high-index half of the decoders,

Then the sharing of register index decoders becomes very feasible.
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3.2.1.2. Splittable Bus Design

Operand bus design is discussed here. Two designs are possible. The first design is
straightforward and expensive: we simply double the number of read/write buses, and
read/write ports of a bit cell. This requires much area, and may induce much power and
latency penalties. The second design is recommended, since it is cheap and efficient, and
also brings a number of additional advantages: The size of register file can then be
stretched, the use of register file as two separate sets of register files is hardware enforced
and protected, etc. This design sets a number of split points along each read/write bus line,

and the read/write data ports can be accessed only at one end of the register file, the RO
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end, by the two tasks. Place of the split points are to be determined by register pressures
of tasks statistics. Note that the more split points we set, the better sharing flexibility we
get, but the worse bus delay will be; and vice versa.

Figure 3-4 shows the design overview of traditional register file with a read decoder.
We take a bit line as a example (framed by a red-dotted line) and one bit-line is shown in

Figure 3-5.
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Figure 3-4 Design overview of traditional register file
data direction
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Figure 3-5 Overview of one bit line
Figure 3-6 illustrates our split point read/write bus design. This design implements a
number of pass transistors or transmission gates along the bus and since we have two data

output, we have to add a extra sense amplifier (SA) and some pre-charge circuits, as
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illustrated in the figure and the whole design is shown in Figure 3-7.
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Figure 3-6 One bit-line with split point read/write bus design
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Figure 3-7 A splittable Register File design

3.2.2. Flexible Splittable Register File

Figure 3-8 illustrates a example of our flexible split point read/write bus design. This
design implements many groups of pass transistors or transmission gates along the bus.
The arrangement of these split points is flexible. For instance, we can implement these
points for every pair, or every four registers. We may also reserve at least 2" registers for

the top set of registers, and/or 2"* registers for the bottom set of registers. Note that the
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split points need to exist at most in half of the register spans.
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Figure 3-8 Example of a flexible split point Read/AWrite Bus Design with two groups of transmission gate

S0 and S1 in Figure 3-8 are control signals of splitpoints. Table 3-1 shows the
operation when we control the signals. As we know, when signal equals to 0, the split
point (transmission gate) on the bus disconnects-and connects when signal equals to 1. So
we use different signals to make bus operate flexibly and the same way is suitable for

flexibly splittable decoder design.

SO S1 One or two tasks
0 1 two

1 0 two

1 1 one

0 0 No operation

Table 3-1 The operation when we control the signals
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3.2.3. Stretchable Splittable Register File

Based on the flexibly splittable register file design, if two threads try to share this
register file need an aggregated size of > 2" registers, we can provide more spare registers
in register file, making total # of registers2" +s, where s is a small positive integer, to
make this sharing more possible.

The design issues of flexibly splittable and stretchable register file are :
® This flexibly splittable register file needs to preserve one register file property.

When added s registers, the one-register file feature must be preserved.
® How to design the decoder to map 2" +s registers without complex circuit.

The main problem is the decoder design, Decoder must support when increasing the
registers. If thread 1 access register{from stretched registers, splittable decoder design
may not be used. We need to duplhicate the decoder to map the register index from thread
1 to decoder or use offset mechanism. If we put stretched registers at the end of registers
that thread 1 can access, the mapping from new decoder to a stretched registers is easy
and saving area.

There are two design issues of the decoder design when adding extra registers. The
design is shown in Figure 3-9. Figure 3-9(a) shows a dedicated decoder for thread 1 and
thus thread 1 can start from the stretched registers. The idea of the design 1 is two
decoders for two threads and it may increase area. Figure 3-9(b) shows an extra decoding
circuit for stretched registers and it can be implemented in the splittable decoder.
Desirable features of this design over other alternatives are first, both threads can share
the same set of register index decoders, and secondly, it greatly increases the probability

of two tasks sharing this stretched register file, since the sharing increases much register
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Figure 3-9 Schemes:of adding extra registers in register file

Design 1 of the decoder is simple and straightforward and design 2 is much complex.

The main idea of design 2 is shown:in Figure 3-10. Figure 3-10 shows main idea of

thread 1 using the extended registers flexibly, Figure 3-10(a) and (b) show different

condition of flexibly splittable and stretchable register file.
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Let’s use a flexibly splittable register file with 2 split points as a example to realize
design 2. We can see that when S0=0, S1=1 in Table 3-2, the register split into two equal
parts, as shown in Figure 3-11(a), and if thread 1 want to enable the extra register, it has
to send the signal No.17 (R16) of register index because the start register index is RO.
When S0=1, S1=0 in Table 3-2, the register split into two different size parts, as shown in
Figure 3-11(b), and if thread 1 want to enable the extra register, it has to send the signal
No.9 (R8) of register index.

We also observe that the extended register has the same register address of thread 1
at the back and the length is equal to the interval of Flexibility. See Table 3-2, we use a

red frame to show.

Flexible 2 RF
S0 s1 ExtralR# | Inv.R#
0 1 R16 315(01
1 0 ROB R23(10[1TT)
1 1 X X

Table 3-2 The enable signal of Flexibly splittable RF (2 split points) to a extra register
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(a) Condition 1 (b) Condition 2
Figure 3-11 a example of flexibly splittable register file design with 2 split points when adding one extra
register.
Thus we cut down the fixed variable and use these remaining variables to derive the
Boolean function. For example, the original Boolean function of extra register of Figure
3-11is:

Extra 1 =(50" - S1 - addr4’ - addr3+50 - 51" - addr4 - addr3') - addr2 - addrl - addr{

Figure 3-12 shows an example of flexibly splittable decoder design with one extra

register.

RegAddr 0 [
RegAddr 1 T
RegAddr2 |

I L e —

RegAddr 4 ‘I

En 16

UIUMLLL

En24

81 e g

[

En 31

o e i TG
RepAddr 4 ] — ]
s %: :
RegAddr 3 I~

RegAddr2 T
RegAddr | ' T
RegAddr 0 i

Figure 3-12 An example of flexibly splittable decoder design with one extra register.
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3.3. Compiler and OS support

The new register file design implemented in processor has several compiler and
operating system support issues. First, when programs are compiled to be object codes,
registers have to be allocated successively. If a program use three registers and compiler
allocate RO, R1 and R18, it is hard to use our purposed design of splittable register file.
Second, When OS schedule the compiled threads (or programs, tasks, etc.), OS has to
know register usage of each thread and need to solve the problem when two threads don’t
finish the use of CPU simultaneous. We will discuss later.

To solve the first problem, we propose an idea about register gathering [] when
compiler executes register allocation. Register gathering is a method to gather registers
when register allocation in compile-time tosname sucecessive register and thus make
splittable register design available. For example, if a program use three registers and
compiler allocate RO, R1 and R18;.:we use register gathering to be reallocated to RO, R1

and R2. Figure 3-13 shows the diagramof operation of a compiler.

Programs

]

Middle-end Analysis
And Optimization

Register allocation + Register gathering 1
Scheduling and

Resource Allocation

}

Code Generation

Register usage record in ELF header (In TOC table)

Object
Code

Figure 3-13 The diagram of operation of a compiler
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About the second issue, we discuss here. How dose OS know the register usage when
a thread want to be executed. Register usage already be recorded in file header. For
example, the register usage of each thread has been recorded in TOC Table of Executable
and Linking Format (ELF, a common standard file format) header. [] When OS get the
information of register usage of each thread, it can set the information as a priority factor
to schedule these threads and OS can signal the processor to split register or not
according to the register utilization of each thread. Figure 3-14 shows the diagram of OS

signals the processor.

Header 1
Code 1

_ — = =% Header 2
EET N g =
1

Processor <—

Mem

Figure 3-14 A diagram of OS signals the processor
How to solve the problem when two threads don’t finish the use of CPU
simultaneous? Figure 3-15 shows an example of OS choose the next suitable thread. We
can use a table or special registers to solve this problem. We use a table or special
registers to save the register usage when the thread is execution. When two threads
execute simultaneous, one thread finish first, OS choose the next thread in the ready

queue. OS will decide if the thread in execution plus the next thread which want to

34



execute is smaller than the entries of register file that can support. If yes, then the next
thread can be a candidate to be execution. If no, then OS choose another suitable thread

to execute. Thus the second issue can be solved.

Thread 1
Reg. count= 10 Special Register

— | - * |Reg. count 1

Reg. count 1 + Thread 2 Reg. count < Reg.#

QS scheduler Execution
« YES

Ready Queue No
a N e e Y — #* |Reg. count 2
Thread 2 Special Register
Reg. count=4

Figure 3-15 An example.of'OS choose the next suitable thread.
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Chapter 4. Experiments

4.1. Goals of Our Experiments

In the experiments, we’ll compare different entries of register file using our
splittable design and other mechanisms, from area and circuit delay.

We also wish to choose parameters for designing the Register File. We’ll find the
suitable number of split points by considering both delay and the utilization of register
file. Simulation for execution-time reductionwith different register file designs is also
performed.

Another register file design issue is how-many extra registers the register file should
be? Since increasing the extra registers could improve the opportunity of joining two
tasks together, we observe the effects on adding number of registers to make the

conclusion.

4.2. Simulation Environment

Synthesis Environment and Constraints
Tool: Synopsis Design Compiler

Technology:.18um
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Register file Implementation:
Provides AND / Tri-state buffer / Flip-flop / XOR / NOT Gates.

The cell of each register is implemented as 2-read / 1-write and 4-read / 2-write.

Software Simulation Environment

Simulator: M-Sim []

M-Sim is a multi-threaded microarchitectural simulation environment with a
detailed cycle-accurate model for the key pipeline structures. M-Sim extends the
SimpleScalar 3.0d toolset with accurate models of the pipeline structures, M-Sim
supports for the concurrent execution of multiplethreads according to the Simultaneous
Multithreading (SMT) model and-gives eachl thread-a copy of integer and float point

register file.

Benchmark: SPEC CPU 2000 Suite []

SPEC CPU 2000 is the industry-standardized CPU-intensive benchmark suite. SPEC
designed CPU 2000 to provide a comparative measure of compute intensive performance
across the widest practical range of hardware. The implementation resulted in source
code benchmarks developed from real user applications. These benchmarks measure the
performance of the processor, memory and compiler on the tested system.

A survey of the benchmarks that we use comprising each SPEC CPU2000
component suite:

® CINT2000 - The Integer Benchmarks. See Table 4-1
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Benchmark Language Category

164 ozip C Compression

176.zcc C C Programming Language Compiler
181.mcf C Combinatorial Optimization
186.crafty C Fame Flaying: Chess

256, bzipZ C Compression

300 twrolf C Flace and Route Simulator

Table 4-1 CINT2000

® CFP2000 - The Floating Point Benchmarks. See Table 4-2

Benchmark Language Category

171 .swim Fortran 77 Shallow Water Modeling

172 merid Fortran 77 hulti-grid Solver: 3D Potential Field

173 applu Fortran 77 Parab-?lic ! Elliptic Partial Differential
Equations

178 galgel Fortran 90 Computational Fluid Dynamics

183.equake C Setemic Wave Propagation Simulation

189 lucas Fortran 90 Number Theory / Primality Testing

200 siztrack Foirtran 77 High Energy Nulclear Physics
acecelerator Design

301 apsi Foiatran 77 heteorology: Pollutant Distribution

Simulation Methodology:

We first observe the register file utilization of each application, as show in Figure
1-2 (This figure is shown in observation of Chapter 2). We divide these applications into
2 parts, one is higher float point registers utilization (>16) and the other is lower float
point registers utilization (<16). Then we compare the performance of higher-higher
applications, higher-lower applications and lower-lower applications running in

traditional SMT architecture and my design in SMT architecture. Table 4-3 shows the

Table 4-2 CEP2000

classification of Register file utilization in each benchmark.
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The classification of RF benchmarks

utilization

Higher FP registers Swim, mgrid, applu, galgel, lucas
utilization

utilization

Lower FP registers

Bzip, crafty, gee, gzip, mcf, twolf, equake, sixtrack, apsi

Table 4-3 The classification of Register file utilization in each benchmark

We simulate the IPC of 1-thread and all kinds of 2-thread workloads in traditional

SMT architecture and our design. Table 4-4 shows a example of simulated 1-thread and

2-thread workloads.

1 thread Swim, mgrid, applu, galgel, lucas, bzip, crafty, gec, gzip, mcf, twolf, equake,
sixtrack, apsi

2 threads higher — higher { H-H ) higher — lower { H-L ) lower — lower { L-L )
Swim + Swim Swim + apsi bzip + crafty
Merid + mgrid mgrid + crafty crafty + gec
applu + apphu applu + gec gee + gzip
salgel + galgel galgel + bzip gzip + mcf
lucas + lucas lucas + twolf mcf + twolf
Swim + lucas Swim + mcf twolf + equake
mgrid + Swim mgrid + equake equake + sixtrack
applu + mgrid applu + sixtrack sixtrack + apsi
galgel + applu galgel + apsi apsi +bzip
lucas + galgel lucas + gzip bzip + crafty

Table 4-4 Simulate 1-thread and 2-thread workloads

Then we calculate the average IPC by using the formula is shown below :

Avg. IPC =

4.3. Area Simulation of Different Designs vs. Splittable

(Avg. H- HIPC)*15+ (Avg. H - L IPC) ™5+ (Avg. L - L IPC)*45

Register File Design

105
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Based on our idea, we implement the splittable design in different size of register
file and compare with a copy of traditional register file (2r/1w, n entries), two copies of
traditional register file (2r/1w, 2n entries) and a multi-port register file (4r/2w, n entries).
Figure 4-1 shows the area comparison of these designs and splittable RF design.

According to the simulation result, we could know the overhead of the splittable RF
design doesn’t get a heavy proportion compared with a copy of traditional register file
(Adding avg. 3.4 % overhead in splittable RF design).Because the overhead we increase

is regular, the proportion of overhead decrease when the size of RF increase, as show in

Figure 4-2.
The Area of Different RF Designs
1200000
1000000
~ 800000 - |0 Trad. 1-RF (N)
g B Spittable (N
2600000 (| Splttable (D)
g O Multi-port (N)
= 400000 L |0 Trad. 2-RF QN)
200000 —
0
8-entry 16-entry 32-entry 64-entry 128-entry
Different Sizes of RF

Figure 4-1 The area comparison of other RF designs and splittable RF design
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Increasing Overhead of Splttable RF

10.0%
~ 90% Q935%
>
bt 8.0%
2 70% f \
g 6.0%
2 50% —— Overhead
S 4.0% .88%
= 3.0% |
o 20% T g
& 1.0% % 0.76%

0.0% ‘ ‘ ‘ ‘

8-entry 16-entry 32-entry 64-entry 128-entry
Different sizes of RF

Figure 4-2 The ratio of increasing overhead of splittable RF design
However, we use tri-state buffer to implement the transmission gate, it brings lots of
delay. Figure 4-3 shows the access time of a traditional register file and splittable RF
design. How to solve the delay problem that the splittable design brings? Since we try to
use a splittable n-entry register file to replace a traditional 2n-entry register file, the delay
problem can be relaxed. We also can‘add.an extra pipeline for register reading or writing.

In the superscalar, it costs two pipeline stage times for register reading.

The delay of Trad. RF and Slpttable RF
2
1.8 /' 1.75
1.6
% 14
& 1.33
- 12 / —
g gt e 104/ | ~* Traditional
=1 0.99 .
@ ; —=— Splittable
g 08 [T w076 73
206 W56
0.4 :
0.2
0
8-entry 16-entry 32-entry 64-entry  128-entry
Register file type

Figure 4-3 The access time of each size of a traditional register file and splittable RF design
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We then compare the multi-port register file with our design in equal entries. Since
we can use multi-port register file to reach the same purpose of our design. But we get
less overhead compared with multi-port register file design. Figure 4-4 shows saving area
(Avg. 41.2%) if we replace multi-port register file (4-read/2-write ports, n entries) by
splittable RF (n entries). We also see that as the size of RF increase, the proportion of

save area increases.

Saving Area of Splittable RF

44%

43% 42.78%
0% + /M

41% / 41+02%
ig;/z / ‘ —&— Saving Area
38% 045400
37%

36% |
35%

Percentage of Increasing Overhead (%)

8-entry 16-entry 32-entry 64-entry 128-entry
Different sizes of RF

Figure 4-4 The saving area of multi-port register file (4-read/2-write ports, n entries) vs.
splittable RF (n entries) design
We also compare the traditional SMT architecture using register file with our design.
Traditional SMT architecture use duplicated register file design (ex: Alpha 21464). It
gives each ALU a copy of traditional register file and is easy to implement without
complex control logic. Figure 4-5 shows the saving area if we replace two copies of
traditional register file (2-read/1-write ports, 2n entries) by splittable RF (n entries). We
can see that the splittable RF saves lots of area (Avg. 48.3 %) of two copies of traditional

RF and as the size of RF increase, the proportion of save area increase.
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Saving Area of splttable RF

< 50%

g . ety 49620
;5149% /M“/I/”n -
S 48% / 73.06%

on

£ 47%

S 46%

S 5o | 45.32%

&

S 4%

2

(5}

A 43%

8-entry 16-entry 32-entry 64-entry 128-entry
Different sizes of RF

Figure 4-5 The saving area of two copies of traditional RF( n entries ) vs.

splittable RF( n entries ) design

4.4. Simulation of Different Flexibility Designs

In section 3.2.2., we proposed the flexibility'mechanism which could increase more
opportunity to execute two tasks simultaneous. We add more transmission gates as
split-point to make our design more flexible. Figure shows area and delay overhead of

32-entry register file with different split-points.
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The overhead of different types of Flexible RF

180%
160% | 164.4%
140% r
120%
100% —*— Area
80% F 89.0% —=— Delay
60%
40%
20% r

0%

32.8%

Percentage of increasing overhead (%)

Trad. 32 RF  Split. 32 RF Flex. 32 Flex. 32 Flex. 32
(Ip) RF 2p RF_4p RF_8p

Different types of flexibility

Figure 4-6 Area and delay overhead of 32-entry register file with different split-points

From the Figure 4-6 above, we ean see underall flexibility configures, the area for
flexibility approach is increased slowly. But it requires quite large delay time to access

this design.

4.5. Simulation of Different Stretchability Designs

Performance could be increased if we increase the entries of register file since the
opportunities of joining two tasks together would be increased. But how many entries
should be extended is most economic? We could refer to the overhead and the ratio of

increased performance over increased entries of register file.
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Percentage of increasing overhead (%)

The overhead of different entries of RF

60% 56.6%
0% f WW.C%
40% = 3g-70—2A1-1% g 22
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30% 29.0%
20% —=— Delay
15.5%
10% | - 5%
0% “5:0% e — : :
< < ) % W Q@ &
O A A AR AR
& K Y K X K .
& & & X
¥ & & & )
S < < S

Different types of stretchability

performance.

Figure 4-7 Ratio of overhead over increased Register-entry

In Figure 4-7 we show the ratiowith power of 2 entries step in 32-entry splittable
register file. Increasing the entries-don’t increase much-delay (access) time, but increase
the area dramatically. Overhead of splittable register file is contrary to the overhead of
flexible register file design. We will simulate the-performance in next section to choose

the most suitable design that we purpose.

4.6. Performance Simulation on All Kinds of Our Deign

Figure 4-8 shows the performance of a copy of traditional register file (Trad. 1-T),
different flexibilities of register file under three kinds of benchmark sets and two copies
of traditional register file (Trad. 2-T). Since multi-port register file has the same ability

with our purposed design in the same entries, we consider them get the same
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Then we can see that the different flexibilities impact on the higher-lower
benchmark set. The flexible register file doesn’t impact on Higher-Higher benchmark
because the Higher-Higher benchmark needs more register but not flexibility and we

always can execute two tasks simultaneously in Lower-Lower benchmark set.

The performance of each design

3.5
3
5 H [ — | |8 Trad. 1-T
’ B Split RF
L 5t
o_j O Flex 2 RF
j?n L5 F O Flex 4 RF
L H || || | | B Flex 8 RF
O Trad. 2-T
0.5 — ]
O | L |

H-H H-L L-L Avg.

Benchmark sets

Figure 4-8 The performance of different flexibilities of register file under three kinds benchmark sets

We calculate the average IPC of Figure 4-8 above and show it in the Figure 4-9
below. We can observe that if we give two copies of traditional register file (Traditional
SMT), it can improve the performance 23.3% over one copy of traditional register file.
When we use the splittable register file, it can improve the performance 14.1% over one
copy of traditional register file. Thus we save almost a copy of register file (about 49.1%)
but just lose a little performance (about 9.1%) compared with two copies of traditional
register file.

Figure 4-9 also shows that the performance gets slightly increasing with the
flexibility increasing. It gets 1% performance increasing in flexible register file with 8

split-points compared with the splittable register file.
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The increasing IPC of each design

~ 25%
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Trad. 1- SplitRF Flex2 Flex4 Flex8 Trad. 2-

T RF RF RF T

The register file design

Figure 4-9 Avg. IPC of different flexibilities of register file
In Figure 4-10 we show the ratio of performance improvement over all of our design
in 32-entry register file. We can know that with more entries we can get more
performance improvement. When we add extra 16 entries in our purposed design, we get
slightly performance lose (about 2%) and we still can save over 21.6% area compared

with two copies of traditional register file.
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The increasing IPC of each design
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Different extended registers

Figure 4-10 Ratio of performance improvement over increased register entry with different flexibility of

splittable design

4.7. Hardware Design Issue

When we design a splittable register file, we may have a problem that how many
pass transistors (transmission gates) should we put on our design.

In splittable decoder design, if a decoder is n-to-2", we set 2*n pass transistors in the
decoder. Because an n-to-2" decoder has 2n control lines in PLA design. In splittable bus
design, if a bus is 32-bit, we set 32 pass transistors in the bus.

We take a register file with 32 registers and the bus width is 32-bit an example. We
set (10 + 32) pass transistors in the splittable register file. Figure 4-11 shows the number

of extra pass transistors setting in different sizes of the splittable register file.
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Extra Pass Transistors in Different Size of RF

Number of extra pass
transistors
[\®}
(@]

| O O O ]
—— Decoder
/
" —*—Bus
8 16 32 64 128

Different Size of Register file

Figure 4-11 The number of extra pass transistors setting in different size of the splittable register file.

In flexibly splittable register file, 1f the design has N split points then we set N times

of pass transistors compared with:splittable registerfile-design. If we have two split

points, we set 2*(10+32) pass transistors-in this register file. Figure 4-12 shows the

number of extra pass transistors setting:in different split-points of the flexibly splittable

register file with 32 registers.
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= g 200
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- "

W —— Bus

Different Number of Split Points

Figure 4-12 The number of extra pass transistors setting in different split-points of the flexibly splittable
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register file with 32 registers.

Our purposed design use lots of pass transistors, while the area overhead of these
extra circuits does not occupy a significant portion of the area of register file. Even we
use the tri-state buffers as pass transistors the area overhead increase 1.7% on traditional
register file with 32 registers, 2read/1 write ports.

The main idea of our purposed design try to save the registers of register file, thus
we can save area. Traditionally, if we want to execute two threads simultaneously, we will
design two times number of registers than one thread executing. We will show our design
can use less registers but get performance improving comparing with the same number of
registers and even use two times number of registers, we would not lose too much
performance. Figure 4-13 shows the overheadand performance of different register file
designs. We use a traditional register file (2r/1w) with 32 registers as the standard. We
can see that our purposed design does.net increasing the much overhead of the traditional
register file but increase the performance up to 14.1% and while we stretch 16 registers to
our purposed design, we almost attain the performance (lose 2%) of two copies

traditional register file.
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Figure 4-13 The overhead and performance of different register file designs.

Another register file design is the multi-port register file. We double the read/write
ports to execute two threads simultaneously-with:complex control logic, but it also
increases the area of the register file."Since our design shares the read/write ports, we do
not increase the ports and we still can execute two threads simultaneously without
complex control logic. Table 4-5 shows the number of ports with different register file
designs. Flexibly splittable and stretchable register file (FSS-RF) is our purposed design,
2T-RF is two copies of traditional register file, it means a thread has its own register file

and MP-RF is multi-ports register file.

Eegister File Desion FS5-RF 2T-EF MP-RF
EeadWrite Ports 2rilw 2rilw drf2w

Table 4-5 The number of ports with different register file designs.

4.8. Final Proposal of the Register File Design
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From the experiment results, we have several conclusions on the proposed design.

1. The overhead of our purposed design

The ratio of area overhead of our purposed design is reduced when the register file
size increase. In 128-entry register file, the ratio of area overhead is about 1.1%. But the
ratio of delay overhead is increasing while register file size increase. Since we purpose
our design to replace two copies of the traditional register file or twice entries of register
file, the delay problem can be relax.

2. The flexibility of splittable register file

According to our hardware and performance simulation, we can see that the area
overhead is slightly, but the more flexibility we get the more access time we have. We
also observe that the performanceiincreasing tn Higher-Lower benchmark set while we
have more flexibility. Although it'doesn’t-improve much performance, the flexible design
is still useful if the register usage is more equally:

3. The stretchability of splittable register file

Considering the increase performance over linearly increased, to extend 16 entries in
32-entry register file is a good choice. If the we consider the area overhead of the

stretchable register file, the splittable register file without stretchability is a choice.
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Chapter 5. Conclusion and Future Work

In this work, a splittable register file design is presented for supporting current SMT
architecture. The previous chapters have discussed our designs and experimental results.
This chapter briefly outlines the conclusion of the work, and provides some directions for

future work.

5.1. Conclusion

We show that the splittable register file design provides high performance with little
hardware overhead compared with:one-copy.of traditional register file design and the
proportion of hardware overhead decreases when'the size of RF increases. We assess that
the number of allocated split points will be very limited, hence the circuit overhead is low
and fixed. To provide high flexibility, we also provide different flexibility of splittable
register file design by increasing the number of the split points. We then show the show
the relationship between different flexibility and performance improving. Although
different flexibility of splittable register file design get little performance improving
compared with splittable register file, but according to the simulation result, we can
observe that the high flexibility of splittable register file design performs better on high
and low register utilization applications running simultaneous.

In the stretchable part, since the invested extra hardware turns into useful registers,
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this design is entirely cost-effective. We observed that extend extra half size of 32-enrty
register file almost get the same performance compared with two copies of traditional
register file, Thus we can save almost 21.6% area in two copies of traditional register file.
And with the stretching, the discussion about split points remains valid.

These designs are very effective and low-cost. With the multi-threading trends, these
designs will find themselves very useful. The same ideas can be extended to other register
file designs which can utilize the register file more efficient or save more area without

performance down.

5.2. Future work

A Research in our laboratory:is‘purposed-to share the ALU, and the shared ALU
needs double register read/write ports, our design can resolve the problem. We can try to
integrate splittable register file design with shared ALU

We also need an efficient partitioning mechanism for split the register file to make
more types of threads joinable and a efficient scheduling mechanism for threads to share
splittable register file to increase performance. The scheduling mechanism has to consider
profiling-based compiler techniques to register usage of each thread and dynamic
scheduling mechanisms to the real register utilization of each thread.

To extend this work, we suggest that related instruction set extension work,
application profiling, and layout/timing/area analyses, be undertaken. Particularly,

processor architecture supports and interactions need to be investigated.

54



References

[1] Keith 1. Farkas, Norman P. Jouppi, Paul Chow, “Register File Design

Considerations in Dynamically Scheduled Processors”, HPCA, 1996

[2] SJ Eggers, JS Emer, HM Leby, JL Lo, RL Stamm, DM, “Simultaneous multithreading: a platform
for next-generation processors”, Micro, IEEE, 1997

[3] J. Tseng, “Energy-efficient register file design”, Massachusetts Institute of Technology, 1999

[4] Nam Sung Kim, Trevor Mudge, “The microarchitecture of a low power register file”, ISLPED,
2003

[5] J. A. Redstone, S. J. Eggers, H. M. Levy, “Mini-Threads: Increasing TLP on Small-Scale SMT
Processors.”, HPCA-9, 2003

[6] J. H. Tseng, Krste Asanovi¢, “ Banked multiported register files for high-frequency superscalar
microprocessors”, ISCA, 2003

[7] J. H. Tseng, Krste Asanovié, “ Banked Register File for SMT Processors”, BARC, 2004

[8] C Zang, S Imail, S Kimurat, “Duplicated Register File Design for Embedded Simultaneous
Multithreading Microprocessor”, ASIC, 2005

[9] J. Sharke. M-Sim: A Flexible, Multithreaded Architectural Simulation Environment. Tech Report
CS-TR-05-DP01, Dept. of C.S., State Univ of New York at Binghamton, Oct 2005.
http://www.cs.binghamton.edu/~jsharke/m-sim

[10] John L. Hennessy, David A. Patterson, “Computer Architecture: A Quantitative Approach 3rd
Edition”, Reading MA: Morgan Kaufmann, 2002

[11] John P. Shen, Mikko H. Lipasti, “Modern Processor Design: Fundamentals of Superscalar

Processors”, Reading MA: McGraw-Hill, 2004

55



