

i

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

藉由繞過驅動程式域改善Xen虛擬機器之網路吞

吐量

Improving Xen Network Throughput by Bypassing Driver

Domain

研究生：戴函昱

指導教授：張瑞川 教授

中 華 民 國 九 十 六 年 六 月

ii

藉由繞過驅動程式域改善Xen虛擬機器之網路吞

吐量

學生：戴函昱 指導教授：張瑞川教授

國立交通大學資訊科學與工程研究所

論論論論 文文文文 摘摘摘摘 要要要要

 在原本的 Xen 網路架構中，一個客虛擬機器要必須要透過主虛擬機器才能夠

存取網路。這個架構的好處是可以重用主虛擬機器中的作業系統的驅動程式，而

不需要另外開發。但是這個架構也造成了額外的負擔，因為主虛擬機器和客虛擬

機器之間必須互相配合溝通來完成網路的存取，因此使得客虛擬機器的網路吞吐

量降低。

 在這篇論文中，我們提出一個 driver-domain-bypassing network (DBNet)

架構，藉此降低主客虛擬機器之間溝通所造成的額外負擔，並且提高客虛擬機器

的網路吞吐量。我們將網路卡驅動程式從主虛擬機器中搬移到 virtual machine

monitor (VMM)中，但是為了避免複雜化 VMM，我們只搬移驅動程式中和效能最

相關的部分，其餘的部分保留在主虛擬機器中。另外，為了讓 VMM 可以正確地將

封包發送到遠端機器或是客虛擬機器，並且避免複雜化 VMM，我們在 VMM 中實做

了一個簡化過的 bridge。最後，為了保護 VMM 不會受到驅動程式錯誤的影響而

造成當機，我們將網路卡驅動程式放在一個獨立的 segment 中，並且降低網路卡

驅動程式的執行權限，藉此保護 VMM。

 在測量效能的實驗中顯示，DBNet 架構可以有效的提升客虛擬機器的網路效

能。在只有一個客虛擬機器的環境下，且在傳輸封包的測試中幾乎可以達到和

Linux 相同的效能，而在接收封包的測試中則可以用較少的 CPU utilization 達

到更多的網路吞吐量。在多個客虛擬機器的環境下，不論是傳送或是接收封包的

測試中，DBNet 都可以有效的達到比原本 Xen 網路架構更好的效能。

iii

Improving Xen network throughput by

bypassing driver domain

Student: Han-Yu Tai Advisor: Prof. Ruei-Chuan Chang

Computer Science and Engineering College of Computer

Science

National Chiao Tung University

Abstract

 In the original Xen network architecture, each guest virtual machine has to

access the network through a host virtual machine. The most advantage of this

architecture is to reuse device drivers within the operating system running within the

host virtual machine. However, this architecture causes lots of additional overhead to

perform communication between the guest virtual machine and the host machine

while reduces the network throughput.

In this thesis, we propose a driver-domain-bypassing network (DBNet)

architecture to reduce the communication overhead and increase the network

throughput of a guest virtual machine by bypassing the host virtual machine. We

migrate a NIC driver from the host virtual machine into the virtual machine monitor

(VMM). In order to avoid complicating the VMM, we only move the

performance-critical part of the NIC driver into the VMM and keep other parts in the

iv

host virtual machine. Moreover, for allowing the VMM can dispatch a packet to a

target guest domain or a remote machine correctly, and avoiding complicating the

VMM, we implement a simplified bridge in the VMM. Finally, to protect the VMM

from crashing by driver faults, we put the NIC driver into an independent driver

segment and lower its privilege level.

Our performance measure shows that in the one-guest-domain environment, the

DBNet architecture can achieve nearly the same performance with Linux in TCP

transmission test, and achieve higher network throughput while use less CPU

utilization in TCP reception test. Beside, DBNet architecture can also achieve better

performance for each guest virtual machine than the original Xen network

architecture in the multi-guest-domain environment.

v

致謝致謝致謝致謝

首先感謝我的指導老師 張瑞川教授以及學長 張大緯教授。這兩年在兩位老

師費心的教導下，學生方能順利完成此篇論文。於受業期間，老師們耐心的指導

我正確的研究態度與研究方法，讓我受益良多。在撰寫論文期間，感謝大緯學長

給予的建議。感謝在實驗室一起努力的同學們，宗恆，旻儒，子榮，彥百，和你

們一起互相討論才能夠順利地解決許多問題。感謝博士班學長國政以及亭彰在找

題目時給我的建議，也非常感謝明絜學長給我許多 Xen network 和 assembly

language 方面的觀念，並給於許多方面的幫助。還要謝謝智文和昱雄兩位學弟

的幫忙，讓我們可以專心的完成論文。

 感謝我的父母和妹妹，在我念研究所的日子裡不斷的關心和鼓勵我。最後要

特別感謝我的女朋友瓊儀，尤其是在碩二撰寫論文時能體諒我的壓力，陪伴我度

過這些日子，讓我覺得很窩心、感動。最後僅以此論文獻給我最親的家人、女朋

友以及所有關心我的人，由衷地謝謝他們。

vi

目錄目錄目錄目錄

論 文 摘 要... ii

Abstract .. iii

致謝 .. v

目錄 ... vi

圖目錄 ... viii

Chapter 1. Introduction .. 1

1.1. Motivation ... 1

1.2. Organization .. 3

Chapter 2. Related Works .. 4

2.1. Kernel and VMM Protection .. 4

2.2. Virtual Machine Network Improvement ... 6

Chapter 3. Design and Implementation .. 7

3.1. Driver-Domain-Bypass Network Architecture .. 7

3.2. Driver Migration .. 10

3.2.1 Data Structures Definition and API Implementation 11

3.2.2 Driver Code Migration ... 12

3.2.3 The Simplified Bridge .. 15

3.3. VMM Protection .. 17

3.3.1. Segmentation and Privilege Level Protection 17

3.3.2. Memory Layout of The Driver Segment 19

3.3.3. x86 Protection Rule Avoidance ... 20

3.4. The packet flow of DBNet architecture .. 22

3.4.1. The packet transmission flow of DBNet architecture 22

3.4.2. The packet reception flow of DBNet architecture 24

vii

Chapter 4. Evaluation .. 26

4.1. One-domain evaluation .. 27

4.2. Multi-domain Evaluation ... 30

4.3. Rx Batch Evaluation .. 34

Chapter 5. Conclusion ... 38

Reference .. 39

viii

圖目錄圖目錄圖目錄圖目錄

Figure 1. Network Architecture of Xen .. 8

Figure 2. Driver-domain-bypass Network Architecture .. 9

Figure 3. Cooperation between D0 Drivers and VMM Drivers 15

Figure 4. The Bridge in Xen .. 16

Figure 5: Memory layout of the driver segment ... 20

Figure 6: the high-privilege stack and the fake stack .. 21

Figure 7. Throughput comparison between Linux, Xen, DBNet, and DBNet-i 27

Figure 8. CPU utilization comparison between Linux, Xen, DBNet, and DBNet-i ... 28

Figure 9. Interrupt comparison between Linux, DBNet and DBNet-i 30

Figure 10. TCP_Tx throughput comparison between Xen and DBNet-i 32

Figure 11. CPU utilization Comparison of TCP_Tx test between Xen and DBNet-i . 32

Figure 12. TCP_Rx throughput comparison between Xen and DBNet-i 33

Figure 13. CPU utilization Comparison of TCP_Rx test between Xen and DBNet-i 34

Figure 14. The impact of rx batch on TCP_Tx test ... 36

Figure 15. The impact of rx batch on TCP_Rx test .. 37

1

Chapter 1. Introduction

1.1. Motivation

Due to IT industry grows up dramatically; enterprises demand to enhance not only the

system performance, but also the system availability. Event a transient fault may crash the

whole system and lead to a great financial loss for some e-commerce web site, for example,

ebay and Amazon etc. Beside, enterprises use a large number of servers internally for

different purpose. The mass of servers will increase the administration and maintenance cost.

Virtualization technology provides enterprises with a great solution. Enterprises can

reduce the system administration cost by consolidating multiple physical machines to

administrate them with a single console. Dynamically transfer a virtual server between

different physical machines according to the workload can increase the hardware utilization.

Dynamic transferring technology can also repair hardware without losing the service, and thus

enhances the system availability.

There are some common virtual machine productions on the market. For example,

Workstation, ESX server and Virtual Center [29] are developed by VMware Corporation;

Virtual PC [28] is developed by Microsoft Corporation. In terms of open-source, Xen is an

virtual machine software with fine performance which is developed by Cambridge University.

Many researches in virtual machine base on this platform [1], [9], [16], [18], [19].

Xen uses split driver model [9]. Only driver domain (dom0) can access hardware device

directly through the device driver residing in it. All guest virtual machines (guest domain;

domU) which need to perform device I/O have to send I/O requests to the backend driver

residing in dom0 through its own frontend driver. The backend driver will then forward the

I/O requests to the device driver. The advantages of this model are that all domUs can reuse

the device drivers residing in dom0 and all devices are centralized and managed by dom0.

2

However, the disadvantage of the split driver is that it results in lots of inter-domain

communication which causes context switch because every domain executes in an individual

address space (like different processes in OS). The additional context switch will increase the

TLB miss rate which is caused by TLB flush. Inter-domain communication also complicates

device I/O. Thus it increases the working set size and L2 cache miss rate. In the Xen network

subsystem, both dom0 and domU need to access the packets. Xen performs page grant

operation between dom0 and domU to avoid copying whole packets. Although page grant

operation can avoid the overhead of coping packet, however, it still increases the working set

size and L2 cache miss rate [19].

In order to improve the network throughput in Xen, previous researches propose OS

bypass [22] and VMM bypass [16]. They allow a process or a guest domain accessing

physical NIC directly to reduce the context switch and mode switch. However, both OS

bypass and VMM bypass need hardware support. A. Menon [18] proposes Xen network

optimization which uses TSO to reduce the page grant operation. However, TSO can only

reduce the page grant operation, but cannot eliminate it. P. Willmann [30] allows NIC

transferring incoming packets into domU without any page grant operation. However it needs

hardware support too.

In this paper, we propose a new network architecture on virtual machine to improve the

network throughput of Xen and overcome the drawbacks which we described in the above.

We divide our works into three parts. Firstly, we do not need any inter-domain

communication to transmit/receive a packet. We execute the backend driver and NIC driver in

VMM safely. When a guest domain needs to transmit/receive a packet, it will request the

backend driver residing in the VMM, instead of that residing in the dom0. Thus we avoid the

TLB flush. Secondly, we eliminate the page grant operation in packet transmission and reduce

the page allocation overhead of dom0 in packet reception. By executing the backend driver

3

and NIC driver in VMM, they can access the address space of domU directly without page

grant operation. Thirdly, in order to avoid complicating VMM, we only move the

performance-critical part of driver into VMM. The remainder parts of driver are kept in dom0.

Although executing the backend driver and the NIC driver in VMM can improve the

network throughput, however, the NIC driver will result in security problem. In order to avoid

VMM be crashed by the NIC driver residing in it, we use x86 hardware protection mechanism

to limit the privilege and the memory range of the NIC driver.

We implement our architecture on Xen version 3.0.4 and xenoLinux version 2.6.16.33.

According to the result of evaluation, we can improve at least 40% throughput in TCP packet

transmission/reception.

1.2. Organization

The rest of the thesis is organized as follows. We describe the related works in chapter 2.

In chapter 3, we explain the design and implementation of driver-domain-bypass architecture

and then evaluate this architecture in chapter 4. Finally, the thesis is concluded in chapter 5.

4

Chapter 2. Related Works

In this chapter, we classify related works as two categories. The first one focuses in kernel

protection or VMM protection and the other one focuses in the network throughput of virtual

machine environment. We describe these researches as following.

2.1. Kernel and VMM Protection

A. Chou’s [6] proposed that device drivers have higher probability to make a system crash

than other components of the operating system. This is because that most device drivers are

provided by manufactures and written by programmers with less experience in kernel

development. They have higher probability to write unstable code. Besides, according to the

R. Short’s research [23], 85% crash of Windows XP is result from defective device drivers.

Therefore, we have to protect kernel and VMM from drivers faults.

Most device drivers are written by C language which can transfer a variable type

arbitrarily, for example, from pointer type to unsigned long type. However, C language has no

type-safe property and transfer between different types may cause a program to access a

wrong memory address. Singularity [12], [24] is an operating system developed by Microsoft

corporation and is written by C# language which has type-safe property. With this property, a

compiler can restrict the transfer between different types strictly and prevent a device driver

from accessing incorrect memory addresses. However, the most disadvantage of using

type-safe language is that all device drivers have to be rewritten.

Micro-kernel [8], [17] executes the most functionalities of an operating system in user

mode. Since a device driver is a process in a system, it will not influence the kernel when it

faults. However, micro-kernel architecture results in low performance in early machine

because it causes lots of IPC and context switch. P. Chubb [7], [14] migrate Linux device

drivers to user mode and emphasize that the performance of user-mode drivers can approach

5

to the performance of kernel-mode drivers. Besides, Microsoft Corporation proposed

User-Mode Driver Framework (UMDF) [11], [20] which also executes device drivers in user

mode to improve the system stability. However, migrating device drivers into user mode will

also need to rewrite them.

Nooks [25], [26] proposed that puts device drivers and a kernel in the same address space

but different protection domains. Each device driver uses a unique page table which has the

same address mapping with the kernel’s page table, but the entries which correspond to the

kernel’s address space are set read-only. Before calling into a device driver, the kernel

changes the original page table into the device driver’s page table. Therefore, the device

driver can read the whole address space of the kernel but cannot write it. However, Nooks still

executes device drivers with the highest privilege while cannot prevent device drivers from

executing privilege instructions.

Xen [9] and J. LeVasseur [15] execute the operating system which has completed device

drivers in an independent logical fault domain (i.e. driver domain). This method can prevent

device drivers from accessing the address space of VMM and other domains directly when

they fail. Besides, because the driver domain does not execute with the highest privilege, all

device drivers residing in it cannot execute privilege instruction or access I/O port directly.

However, this method can only protect VMM and other domains, but cannot protect the driver

domain itself. Device drivers may make the driver domain crash when they fail.

T. C. Chiueh [5] isolates the address space of a kernel and its kernel modules by using x86

hardware mechanism. Every kernel module is executed in protection ring 1 to prevent it from

executing privilege instructions directly, and it is executed in an independent segment to

prevent it from accessing the address space of the kernel directly. They also proposed a

method that evades the x86 protection rule to allow a kernel calling into a lower-privilege

kernel module. However, they do not consider that every device driver module needs to use

6

different I/O port ranges, and they do not prevent a device driver from accessing an I/O port

range which does not belong it.

2.2. Virtual Machine Network Improvement

OS-bypass architecture [22]allows an application accessing a NIC which supports

TCP-offload, for example, Myrinet [3] and iWarp Ethernet [10] directly without going

through the kernel. This architecture reduces the context switch overhead between application

and kernel. J. Liu [16] proposed a VMM-bypass architecture base on Xen, which allows a

guest domain performing time-critical I/O operations to access an Infiniband NIC directly

without involving of the driver domain and VMM. This architecture reduces the inter-domain

communication and eliminates page grant operations between a guest domain and the driver

domain. CDNA architecture [30] proposed a new Gigabit Ethernet NIC which supports

multiplexing and demultiplexing. CDNA allows multiple guest domains transmitting or

receiving packets concurrently without going through the driver domain, and thus eliminates

the inter-domain communication and page grant operations. However, these architectures all

need specific hardware support.

A. Menon [18] optimizes the Xen network architecture. They allow a virtual NIC

supporting TCP segment offload (TSO), which increases the MTU of a packet, and thus allow

transmitting data with fewer packets. This method reduces the overhead of inter-domain

communication and page grant operation. However, it cannot eliminate these overhead.

7

Chapter 3. Design and Implementation

In this chapter, we describe the design and implementation of the driver-domain-bypass

network (DBNet) architecture. In Section 3.1, we give an overview of the proposed DBNet

architecture, and present its major differences from the original Xen network architecture. In

Section 3.2 and 3.3, we describe the issues of migrating driver code into VMM and protecting

VMM from driver faults. Finally, we explain the details of the packet transmission/reception

flow on the DBNet architecture in Section 3.4.

3.1. Driver-Domain-Bypass Network Architecture

Before describing the driver-domain-bypass network architecture, we first present the

packet transmission and reception flows in the original Xen network architecture in order to

show the differences between the two architectures.

Figure 1(a) shows the packet transmission flow. As mentioned before, packet transmission is

done by sending a request from the frontend driver residing in the user domain to the backend

driver residing in dom0. Before sending the request, the frontend driver performs a page grant

operation
1
, granting dom0 read-only access to the domU’s page that contains the packet. The

page grant operation is needed for the backend driver and the physical NIC driver to process

the packet. On receiving the request, the backend driver maps the packet page with read-only

permission into the address space of dom0 and asks the bridge to identify the target physical

NIC. Then, the driver corresponding to the target physical NIC is responsible for transmitting

the packet. After the packet has been transmitted successfully, the backend driver unmaps the

packet page from the address space of dom0 and informs the frontend driver about the

transmission completion.

Figure 1(b) shows the packet reception flow. With a NIC card that supports DMA, an

1
 Page grant operation allows a domain to obtain access permission of pages that belong to another

domain. It also allows transferring ownership of pages between two domains.

8

incoming packet will be transferred into dom0 directly by using DMA. Then, the bridge

residing in dom0 finds out the virtual NIC of the target domain, and asks the backend driver

to transfer the packet to that domain. To avoid page copying, the backend driver performs

another kind of page grant operation that transfers the ownership of the packet page to the

target domain. The frontend driver residing in the target domain can then remap the page into

its address space, and notify the kernel about the packet reception. Note that such page

ownership transfers increase the memory size of the target domain and decrease that of dom0.

For balancing the memory sizes, a domain has to transfer some free pages to the VMM before

it can receive any packets, and dom0 can claim free pages from the VMM when the number

of its free pages is lower than a threshold.

Figure 1. Network Architecture of Xen

frontend

driver

backend

driver

NIC

driver

dom0 domU

packet

page

packet

page

1. The frontend driver grant dom0 read-only

access to the packet page

2. The frontend driver sends a request to the

backend driver

3. The backend driver maps the packet page

4. The NIC driver transmits the packet

5. The backend driver unmaps the packet page

6. The backend driver notifies the frontend driver

(4)

frontend

driver

backend

driver

NIC

driver

dom0 domU

packet

page

packet

page

(3)

(1)

1. The NIC driver processes a incoming packet

2. The backend driver transfer the page

ownership to domU

3. The backend driver notifies the frontend driver

4. The frontend driver maps the packet page

(a) (b)

(1)

(2)

(3) (5)

(6)

(2)

(4)

9

Figure 2. Driver-domain-bypass Network Architecture

The driver-domain-bypass network architecture is described as follows. As shown in

Figure 2, we move backend driver and NIC driver from dom0 into VMM, which are called

VMMBE driver and VMMNIC driver respectively in the rest of the thesis. When domU

demands to transmit/receive a packet, it asks VMM instead of dom0 to handle the packet

transmission/reception. Note that handling packet transmission/reception in VMM avoids

flushing TLB because switches between a domain and VMM do not need context switches.

Thus driver-domain-bypass network architecture does not increase the TLB miss rate.

Figure 2(a) shows the flow of packet transmission under the DBNet architecture. In order

to transmit a packet, the frontend driver sends a request to VMMBE driver, which retrieves

the memory address of the packet from the request and finds out the target physical NIC.

Then VMMBE asks VMMNIC driver to transmit the packet. After the packet is transmitted

successfully, VMMBE driver notifies the frontend driver about the transmission completion.

Note that packet transmission does not involve dom0. Thus, no extra domain switches are

required. Furthermore, no page grant operation is needed because the drivers residing in

frontend

driver

domU

VMM

VMMBE

driver

VMMNIC

driver

(1)

1. The frontend driver sends a request to the

backend driver

2. The VMMBE driver finds out the physical NIC

which the packet will pass through

3. The VMMNIC driver transmits the packet

4. The VMMBE driver notifies the frontend driver

about transmission completion

packet

page

(3)(4)

(2)

frontend

driver

domU

VMM

VMMBE

driver

VMMNIC

driver

1. The VMMNIC driver processes the incoming

packet

2. The VMMBE driver gives the packet page to

domU

3. The VMMBE driver notifies the frontend driver

4. The frontend driver maps the packet page

(3)

(1)

(4)

(2)

packet

page

packet

page

(a) (b)

10

VMM can access the address space of domU directly.

Figure 2(b) shows the flow of packet reception. An incoming packet is transferred into

VMM directly by using DMA. In order to find out the target domain, VMMBE driver looks

up the destination MAC address of the packet in its look-up table. Then, VMMBE driver

performs a page grant operation to transfer the ownership of the packet page to the target

domain and notifies the frontend driver, which remaps the packet page into its address space

and notifies its kernel of about the packet reception. As mentioned above, the page ownership

transfer increases the memory size of the target domain. To balance the memory sizes, the

target domain should transfer some free pages to VMM before it can receive any packet. Note

that the memory balance logic in DBNet is simpler than that in the original Xen network

architecture since the former only involves the target domain and the VMM. This helps to

reduce the CPU load and the working set size. Moreover, packet reception does not involve

dom0, and thus no extra domain switches are required.

3.2. Driver Migration

In this section we describe the issues and details of migrating the backend driver and the

NIC driver into VMM. Xen was designed with a micro-kernel concept that keeps only the

most critical functionality such as domain scheduling and memory management in VMM.

Other management functions such as device drivers are kept in dom0. This helps to reduce the

complexity of the VMM and thus makes it easier to guarantee the reliability of the VMM.

To maintain the design concept, we do not migrate all of the driver code into the VMM.

Instead, only the performance critical driver code is migrated. Specifically, we migrate the

packet transmission/reception and interrupt service routines into VMM. Therefore, the

original backend driver is split into two parts: VMMBE driver running in the VMM and the

D0BE driver running in the dom0. Similarly, the original physical NIC driver is also split into

two parts: VMMNIC driver running in the VMM and the D0NIC driver running in the dom0.

11

In addition to code splitting, we also have to consider the following issues during driver

migration. First, the VMM part of the drivers may use some data structures and functions that

are not implemented in VMM originally. Second, the split drivers should be cooperate with

each other to maintain the functional correctness. In Section 3.2.1, we describe the data

structures and functions that need to be implemented for network driver migration. In Section

3.2.2, we describe how to split original drivers into the D0 drivers and the VMM drivers, and

the cooperation between them.

As mentioned above, packet bridging that maps a virtual NIC to a physical NIC and vice

versa is needed when transmitting or receiving a packet. However, VMM does not have the

bridging capability, and migrating the original bridge from dom0 to VMM requires too much

effort. Therefore, we implemented a simplified bridge in VMM, which performs the mapping

by using a look-up table. We will describe the simplified bridge in Section 3.2.3.

3.2.1 Data Structures Definition and API Implementation

In the original Xen network architecture, the NIC driver records the information about a

physical NIC and a packet by using the net_device and sk_buff data structures, respectively.

In addition, the backend driver uses the netif_t data structure to describe a virtual NIC.

However, such data structures are not defined in VMM because VMM does not need to

process packets or access NICs. Since the performance critical driver code, which involves

handling both packets and NICs, is migrated into VMM, we have to define the

aforementioned data structures in VMM. We did this simply by copying the definition of the

data structures from dom0.

Besides defining the data structures, we have to implement the functions needed by

VMMBE/VMMNIC drivers. The functions include socket buffer API and DMA API. The

former is used by VMMBE/VMMNIC drivers to access a packet (a socket buffer records all

information about a packet), and the latter is used by VMMNIC driver to perform DMA

12

operation between physical NIC and main memory. Note that, instead of implementing the

APIs from scratch, we copied the implementation from the dom0 and performed some

modifications. Some socket buffer API needs to call memory management functions (e.g.,

kmalloc()/kfree()), which is provided by the dom0 kernel. We replaced these function calls

with the memory management functions provided by VMM (e.g., xmalloc()/xfree()). Similar

to the socket buffer API, some DMA API needs to invoke functions to translate virtual

addresses to physical addresses, and vice versa, which are provided by dom0 kernel. We

replaced the invocations of these functions with those of the functionally-equivalent functions

in VMM.

3.2.2 Driver Code Migration

In this section, we firstly define the performance-critical code of the NIC driver and the

backend driver and then describe how to split them into D0/VMM drivers. D0 drivers are

responsible for copying initialized data structures into VMM and then notifying VMM drivers

to allocate I/O resources. In the remainder of this section we firstly define the completion time

point which D0 drivers can copy the data structures safely and then describe the cooperation

between D0/VMM drivers.

We divide the functions of a NIC driver into five parts: packet transmission, packet

reception, interrupt handling, initialization, and utility functions. The former three parts are

performance-critical since they are highly related to network throughput, while the other parts

are used occasionally or even only once during the runtime of the driver. Thus, we migrate the

former three parts into VMM to be VMMNIC driver and keep the other parts in dom0 to be

the D0NIC driver. Taking the D-Link DL2000 Gigabit Ethernet driver (i.e., dl2k.c in the

Linux 2.6.16.33 source tree) as an example, we migrate the start_xmit(), receive_packet(),

rio_interrupt() functions and their helper functions into VMM to be VMMNIC driver. Other

functions in the dl2k.c file such as rio_probel(), rio_open(), rio_close() and rio_ioctl()

13

functions are kept in dom0 as the D0NIC driver.

Similarly, the performance critical part of a backend driver resides in the netback.c file,

which implements the communication mechanism with the frontend driver. Therefore, we

moved the whole netback.c file into VMM to be VMMBE driver. Other parts of the backend

driver such as the initialization and utility functions are kept in dom0 to be the D0BE driver.

As mentioned before, net_device and net_if structures are used to represent physical and

virtual NIC devices, respectively. According to the aforementioned split rule, these data

structures have to be initialized by the D0 drivers and then managed by the VMM drivers.

This is done by copying the content of the data structures after they are completely initialized.

To achieve this, we have to identify the initialization completion time of the data structures.

We identify the initialization completion time of the data structures by tracking the

initialization process of the corresponding drivers. For the net_device data structure, the

D0NIC driver extracts hardware information (e.g. MAC address, I/O port, range IRQ number,

and etc) from the physical NIC, saves the information into the net_device data structure, and

registers it to dom0’s kernel. Finally, the D0NIC driver activates the physical NIC. Since the

net_device data structure should have been initialized completely before the activation of the

physical NIC, we define the initialization completion time of the data structure as the point

that D0NIC driver activates the physical NIC, and we copy the content of the structure into

VMM at that time. The initialization of the net_if data structure follows a similar way except

that the set up of that data structure and the activation of the virtual NIC are all done by the

frontend driver. Therefore, we define its completion time as the point that the frontend driver

activates the virtual NIC and copy its content into VMM at that time.

In addition to copying the data structures, we have to update all pointer fields in those data

structures since the pointers reference data in dom0. Thus, the pointer fields should be

14

updated to point to the equivalent data in VMM. For example, the net_device data structure

includes some function pointers which point to the utility functions of the NIC driver. We

have to update these pointers to the equivalent utility functions of VMMNIC driver after

copying the net_device data structure from dom0.

The initialization of net_device/netif_t data structures are presented in Figure 3. Although

we keep the code for initializing and opening the device in the D0NIC driver, we take out the

code for allocating I/O resources, such as IRQ numbers, I/O ports and DMA ring buffers,

from that driver. Since the performance critical code in VMM uses those IO resources, we

should allocate them in VMM. To achieve this, the D0NIC driver issues a hypercall to

VMMNIC driver to perform the IO resource allocation. Note that, under this situation, the

D0NIC driver can not access I/O resources directly. Instead, it has to use a hypercall to send

IO request to VMMNIC driver. When the net_device data structure is completely initialized,

VMMNIC driver copies it from dom0 and updates its pointer fields. For the netif_t data

structure, we modify the function which activates the virtual NIC in the frontend driver to

send a copy message to the D0BE driver, which asks VMMBE driver (through a hypercall) to

copy the netif_t data structure to VMM and update its pointer fields.

15

Figure 3. Cooperation between D0 Drivers and VMM Drivers

3.2.3 The Simplified Bridge

Before the presentation of the in-VMM simplified bridge, we firstly introduce the

architecture of the bridge used in Xen. The purpose of the bridge is to find out the destination

NIC, either physical or virtual, according to the destination MAC address of a packet. Figure

4(a) shows the abstract architecture of the bridge in Xen. On transmitting a packet, the

backend driver hands the packet to the bridge, which finds out the target physical NIC and

then asks the driver of that NIC to send the packet. Similarly, the physical NIC driver hands

the packet to the bridge when a packet is received. The bridge then finds out the target virtual

NIC and asks the backend driver to forward the packet to the domain corresponding to the

virtual NIC.

frontend

driver

dom0 domU

D0NIC

driver

D0BE

driver

netif_tnet_device

VMM

net_device

copy

netif_t

copy

VMMBE

driver

VMMNIC

driver

initialize

hypercall

send copy

message

16

Figure 4. The Bridge in Xen

Figure 4(b) shows the internal architecture of a bridge under the virtual machine system

configuration. When the bridge receives a packet from either a physical NIC driver or a

virtual NIC driver (i.e., the backend driver), it uses the destination MAC address of the packet

to consult its internal database so as to find out the target net_device data structure through

which the bridge can forward the packet to the target driver by calling hard_start_xmit()

function pointer. Note that in the original Xen, either a physical NIC or a virtual NIC has to

register its net_device data structure to dom0 kernel. For example, if the destination MAC

address of the packet belongs to the a virtual NIC, the bridge will find out its net_device data

structure through which the bridge can ask the backend driver to transmit the packet by

calling hard_start_xmit() function pointer. If the MAC address of the packet belongs to a

remote machine, the bridge will also find out its net_device data structure through which the

bridge can asks the NIC driver to transmit the packet by calling hard_start_xmit() function

pointer.

We can replace the original bridge with a simple mapping between virtual and physical

NICs. Note that a virtual NIC will only send packets through a specific physical NIC because

network stack

NIC

driver

backend

driver

bridge

dom0

database

destination

MAC address

net_device{

…

hard_start_xmit()

…

}

bridge

(a) (b)

17

a bridge only includes a physical NIC. In the original Xen, a user can assign a physical NIC to

a specific bridge when starting the Xen daemon program and assign each virtual NIC to a

specific bridge when starting a guest domain. We add a field which is the pointer of

net_device data structure in the netif_t data structure to record the mapping. When domU

wants to send a packet to a remote machine, VMMBE driver can find out the net_device data

structure of the target physical NIC by using this field and call into VMMNIC driver. For the

packet reception, we implement a look-up table in VMMBE driver. When VMMNIC driver

forwards an incoming packet to VMMBE driver, it retrieves the destination MAC address of

the packet and queries the look-up table to find out the netif_t data structure of the target

virtual NIC. Then VMMBE driver can find out the event channel number from the netif_t

data structure and notify the target guest domain.

3.3. VMM Protection

In this chapter, we describe VMM protection. To avoid VMM being crashed by device

driver, we have to prevent device driver from arbitrarily accessing VMM resources which

include privilege instructions, I/O port and VMM memory. In section 3.3.1, we describe our

design by using x86 hardware protection mechanism. We execute VMMNIC driver in an

independent driver segment which is in the address space of VMM with lower privilege.

Section 3.3.2 describes the memory layout of the driver segment. However, executing

VMMNIC driver in the driver segment will result in additional problem that VMM cannot

call into VMMNIC driver directly. Therefore, we use a tricky method to solve this problem

and describe it in section 3.3.3.

3.3.1. Segmentation and Privilege Level Protection

In this section, before describing the protection mechanism, we firstly describe three goals

which we want to achieve to protect VMM. First, VMMNIC driver cannot use privilege

instructions directly. Privilege instructions are the most important instructions in a system, for

18

example, enable/disable interrupts and change page table. Only the program with the highest

privilege can use privilege instructions. However, many operating systems like Linux execute

kernel and device drivers with the highest privilege. Kernel may crash because device drivers

use privilege instructions inappropriately. For example, a device driver may disable interrupts

without enabling them again and thus kernel will never receive interrupts. Second, VMMNIC

driver can only access the I/O port which belongs to it. I/O port is used by a device driver to

access the registers of a device. If a NIC driver can access the I/O port which belongs to a

disk driver arbitrarily, it may write wrong data into the disk. Third, VMMNIC driver cannot

write data into VMM directly. Since many operating systems like Linux execute kernel and

device drivers in the same address space. When a device driver fails, it may write data into

wrong memory address of kernel and makes kernel crash.

We use x86 hardware mechanism to protect VMM from the faults of VMMNIC driver.

We execute VMMNIC driver in an independent driver segment with lower privilege. By

lowering the privilege of VMMNIC driver, we can achieve the first two goals. X86

architecture defines four privilege levels in a system from ring 0 which has the highest

privilege to ring 3 which has the lowest privilege. Xen executes VMM in ring 0 and executes

all domains in ring 1. Since we execute VMMNIC driver in ring 1, if it uses any privilege

instruction, it will violate the x86 protection rule. The system will raise an exception to notify

VMM. Therefore, we can achieve the first goal. In x86 architecture, a system uses an I/O port

bitmap to describe the permission of each I/O port. When a program which does not have the

highest privilege wants to access an I/O port, the system will check the access permission of

the program by using the I/O port bitmap. If the program has no permission to access the I/O

port, the system will raise an exception to notify VMM too. We can set the I/O port bitmap

properly to allow VMMNIC driver only access the I/O port of the NICs. Therefore, we can

achieve the second goal. Finally, executing VMMNIC driver in an independent driver

19

segment allows us achieving the third goal. VMMNIC driver can only access the memory in

the driver segment or else the system will also raise an exception to notify VMM.

3.3.2. Memory Layout of The Driver Segment

In this section, we describe the memory layout of VMM and the driver segment and

present it in Figure 5. Besides, we also describe memory copy avoidance between the VMM

segment and the driver segment. Xen assigns the last 64 MB of linear address space to VMM

and assigns the remainder of linear address space to domains. We add the driver segment

which has 16 pages in VMM. In order to add a new segment, we add a new segment

descriptor in GDT and set its DPL as 1 to represent that the driver segment is executed in ring

1. Because the address space of the driver segment is a subset of that of VMM, VMM can

access the driver segment arbitrarily while VMMNIC driver can only access those 16 pages in

the driver segment.

We divide the driver segment into several partitions. The driver code partition is used to

store VMMNIC driver code. The DMA ring partition is used by VMMNIC driver to perform

DMA operation. The stack partition is used as the stack of VMMNIC driver. We use the

parameter area partition to avoid memory copy between VMM segment and the driver

segment. Because VMMNIC driver can access only the memory inside the driver segment,

before calling into VMMNIC driver, VMM has to copy all outside data which is needed by

VMMNIC driver into the driver segment However, it will cause too much overhead if we

copy a large data structure. Therefore, we allocate all data structures needed by VMMNIC

driver in the parameter area partition. For example, we allocate all net_device data structures

in the parameter area partition. VMMBE driver can pass the offset of net_device data

structure related to the start address of the driver segment as a parameter to VMMNIC driver,

and then VMMNIC driver can access net_device data structure directly. Note that VMMNIC

driver can transmit a packet in domU while does not need to access the memory outside the

20

driver segment. It is because that VMMNIC driver only needs the physical address of the

packet which is passed by VMMBE driver as a parameter to perform DMA operation.

Figure 5: Memory layout of the driver segment

3.3.3. x86 Protection Rule Avoidance

In this section, we describe the method which is used to avoid x86 protection rule. In x86

architecture, a high-privilege program cannot call into a low-privilege program directly.

Normal program flow is that a low-privilege program can request a high-privilege program

through a system call to perform some specific tasks and the high-privilege program can only

“return” to the low-privilege program. Therefore, VMM cannot call into VMMNIC driver

directly.

In order to allow VMM calling into VMMNIC driver directly, we prepare a fake stack and

pretend that VMM returns to VMMNIC driver. In x86 architecture, when a high-privilege

program returns to a low-privilege program, lret instruction will retrieve the return address

and the point of the low-privilege stack from current (high-privilege) stack. The content of the

high-privilege stack is presented in Figure 6(a) and the content of the fake stack is presented

domain

VMM segment

descriptor, DPL=0

NIC driver segment

descriptor, DPL=1

NIC driver

driver code

stack

parameter

area

DMA ring

GDT

0

4G

4G-64MBNIC driver callgate

descriptor, DPL=1
unused

21

in Figure 6(b). We imitate the high-privilege stack to fill the fake stack. We push the address

of the stack partition residing in the driver segment and the address of the entry point of

VMMNIC driver into the fake stack orderly. After preparing the fake stack completely, VMM

uses lret instruction to enter in VMMNIC driver.

In order to allow VMMNIC driver returning back to VMM, we add a new callgate and

pretend that VMMNIC driver calls into VMM through the new callgate. We add a new

callgate descriptor which is presented in Figure 5 in GDT and set its DPL as 1. VMMNIC

driver can use lcall instruction to return back to the VMM through the callgate and the system

will switch the stack of driver segment back to the stack of VMM automatically.

 Generally, ISR has to be executed with the highest privilege. When VMM receives an

interrupt, it will call into the corresponding ISR. Because VMM is executed in ring 0, if the

ISR is executed in ring 1, VMM will call into a lower-privilege program directly and violate

the x86 protection rule. However, the ISR of VMMNIC driver is executed in ring 1. In order

to overcome the problem, we allow VMM calling into the ISR indirectly. We register a fake

ISR to VMM which is only responsible for raising a softirq and also register a corresponding

handler of the softirq to VMM which is responsible for “returning” into real ISR in the driver

segment. When VMM receives an interrupt, it will call into the fake ISR and then the fake

ISR will raise a softirq. The handler of the softirq then “returns” into the real ISR directly.

Figure 6: the high-privilege stack and the fake stack

driver SS

driver ESP

driver CS (ring 1)

driver EIP

empty

empty

empty

lower SS

lower ESP

lower CS

lower EIP

empty

empty

empty

(a) (b)

22

3.4. The packet flow of DBNet architecture

In this chapter, before we describe the packet transmission/reception flow in detail, we

describe the scheduling problem in DBNet architecture. We describe an address space

problem in packet transmission firstly and then describe an address space problem in packet

reception. In Xen architecture, dom0 is responsible for transmitting every packet which comes

from any domU. In order to transmit packets fairly, dom0 divides the bandwidth of NIC

between every VNIC and schedules every VNIC by round-robin. However, we cannot use

round-robin to schedule every VNIC in VMM. In DBNet architecture, VMM transmits a

packet directly without page grant operation. However, without page grant operation, VMM

can only access the address space of the current domain (i.e. the guest domain which owns

CPU currently). A domU can transmit packets only when it becomes the current domain. So

we transmit only the packets of current domain and schedule only the VNICs of the current

domain by round-robin.

We describe the address space problem in packet reception as following. In DBNet

architecture, an incoming packet will be transferred into VMM firstly and then be dispatched

to a domU. However, VMM can dispatch only packets which belong to the current domain

because VMM can access only the address space of the current domain. Thus every incoming

packet has to be stored in VMM temporarily. When the destination domU becomes the

current domain, we dispatch the packet. We will explain the flow in detail in the following

section.

3.4.1. The packet transmission flow of DBNet architecture

In this section, we describe the packet transmission flow in detail which includes the

communication between the frontend driver and VMMBE driver, bridging and the segment

switch operation between the VMM segment and the driver segment. The frontend driver is

responsible for providing the meta-data of the packet for VMMBE driver. In order to transmit

23

a packet, the frontend driver puts a request which includes the virtual address and the physical

address of the packet into a descriptor ring which is a shared memory between dom0 and

domU. Then the frontend driver calls into VMMBE driver through a hypercall with the VNIC

id as a parameter.

VMMBE driver is responsible for demanding VMMNIC driver to transmit the packet.

First, VMM driver has to retrieve the request. By the VNIC id which passed which hypercall,

VMMBE driver can know which VNIC want to transmit packets and find out the netif_t data

structure which includes the address of the descriptor ring of VNIC. Then VMMBE driver can

retrieves the request from the descriptor ring. Second, VMMBE driver has to find out the

PNIC through which it will send the packet. As we mentioned in section 3.2.3, VMMBE

driver can find out the corresponding net_device data structure of PNIC by the pointer which

recorded in the netif_t data structure.

Third, VMMBE driver performs segment switch operation to enter in/return from the

VMMNIC driver. We describe segment switch operation as following. Firstly, VMMBE

driver prepares a fake stack which we have mentioned in section 3.3.1. Then VMMBE driver

write the physical address of the packet and the offset of the net_device data structure as

parameters into the parameter area partition. Besides, VMMBE driver opens the I/O port for

VMMNIC driver by setting the I/O port bitmap. Finally, VMMBE driver uses lret instruction

to enter in VMMNIC driver and switch the stack of VMM to the stack of VMMNIC driver.

After VMMNIC driver completes, it uses lcall instruction to return back to VMMBE driver.

The system will also switch the stack of VMMNIC driver back to the stack of VMM

automatically.

In order to perform DMA operation, VMMNIC driver retrieves the physical address of the

packet and write it into the DMA descriptor ring. Then VMMNIC driver returns to VMMBE

driver. VMMBE driver keeps transmitting packets until complete all requests in the descriptor

24

ring. After the packet has been transmitted, NIC will raise an interrupt. A fake ISR in the

VMM will forward the interrupt by raising a softirq. The handler of the softirq then perform

segment switch operation to enter in the real ISR of VMMNIC driver. After the interrupt is

handled completely, VMMNIC driver cleans the corresponding entry in the DMA descriptor

ring and then return. Finally, VMMBE driver is responsible for demanding the frontend driver

to clean the packet and the corresponding entry in the descriptor ring.

3.4.2. The packet reception flow of DBNet architecture

The frontend driver is responsible for providing the grant page operation for VMMBE

driver. Before receives any incoming packet, the frontend driver has to release some free

pages to VMM and put some requests into the descriptor ring in advance. Similar to the

frontend driver, before receives any incoming packet, VMMBE driver has to allocate DMA

pages in advance in which all incoming packets will be transferred by DMA operation and

then write the physical address of DMA pages into DMA descriptor ring.

When the NIC receives an incoming packet, the NIC will transfer the packet into a DMA

page by using DMA operation and then raises an interrupt. Note that a DMA page can only

store a incoming packet. The real ISR of VMMNIC driver will handle the interrupt as we

have mentioned in the section 3.4.1. Then VMMNIC driver cleans the corresponding entry in

the DMA descriptor ring and notifies the VMMBE driver.

VMMBE driver is responsible for dispatching the packet to domU. VMMBE driver

retrieves the destination mac address of the packet and queries the database to find out the

destination domU. Then VMMBE driver inserts the packet into the receive queue which we

create for every VNIC in VMM and notifies the frontend driver of the destination domU.

When the destination domU becomes the current domain, the frontend driver enters in the

VMMBE driver through a hypercall with the VNIC id as a parameter. VMMBE driver then

finds the netif_t data structure of VNIC and retrieves the information about page grant

25

operation from the request in the descriptor ring. Finally, VMMBE driver clear the receive

queue of VNIC and performs page grant operation which grant the ownership of all DMA

pages to the current domain. The frontend driver is responsible for remapping DMA pages

into the address space of domU.

26

Chapter 4. Evaluation

In this section, we evaluate the performance of the proposed DBNet architecture. We first

measure the performance of DBNet architecture in one-guest-domain environment and

compare them with original Xen architecture and native Linux. We also measure that in

multi-guest-domain environment and compare it with original Xen architecture. Then we

adjust two parameters which include rx delay time and rx batch number to describe the

relation between throughput, CPU utilization and these parameters. Finally, we measure the

overhead of the protection mechanism on DBNet architecture.

The experimental environment consists of a client and a server machine, which are

connected through a D-Link DL2000-based Gigabit Ethernet. The server machine run Xen

version 3.0.4 with an Intel Pentium 4 2.8GHz CPU and 512MB DDR RAM. The client

machine run Linux version 2.6.20 with an Intel Pentium 4 3.2GHz CPU and 512MB DDR

RAM. The performance is measured by using Netperf [] benchmark version 2.4. We run

Netperf program on the server machine to measure the transmission performance of original

Xen architecture, DBNet architecture and native Linux and also measure their reception

performance by running Netperf program on the client machine.

27

4.1. One-domain evaluation

Figure 7. Throughput comparison between Linux, Xen, DBNet, and DBNet-i

Figure 1 shows the throughput comparison between native Linux, Xen and DBNet

architecture. The x-axis represents the test type which include TCP transmission, TCP

reception, UDP transmission, TCP round-robin and UDP round-robin. The y-axis indicates

the throughput number reported by Netperf. From the figure we can see that DBNet

architecture can improve 40% and 24% throughput in TCP_Tx and TCP_Rx test respectively

and 28% ~ 40% throughput improvement in other tests.

0

100

200

300

400

500

600

700

800

TCP_Tx TCP_Rx UDP

T
h

ro
u

g
h

p
u

t
(M

b
it

/s
e

c)

Test Name

Linux

Xen

DBNet

DBNet-i

0

2000

4000

6000

8000

10000

12000

14000

TCP_RR UDP_RR

T
h

ro
u

g
h

p
u

t
(t

ra
n

sa
ct

io
n

/s
e

c)

Test Name

Linux

Xen

DBNet

DBNet-i

28

Figure 8. CPU utilization comparison between Linux, Xen, DBNet, and DBNet-i

In addition to the throughput evaluation, we also measure the CPU utilization. Figure 2

shows CPU utilization comparison between Linux, Xen, DBNet, and DBNet-i. From the

figure, we can see that DBNet architecture has almost same utilization with Xen architecture

in TCP_Rx, TCP_RR, UDP_RR tests while has 28% ~ 40% throughput improvement.

However, in TCP_Tx and UDP tests, DBNet architecture seems increase too much CPU

overhead. We measure the number of interrupt in Linux, DBNet and DBNet-i architecture and

present the result in Figure 3. In the DBNet architecture, the number of interrupt is twice as

0

10

20

30

40

50

60

TCP_Tx TCP_Rx UDP

C
P

U
 U

ti
li

za
ti

o
n

 (
%

)

Test Name

Linux

Xen

DBNet

DBNet-i

0

2

4

6

8

10

12

TCP_RR UDP_RR

C
P

U
 U

ti
li

za
ti

o
n

 (
%

)

Test Name

Linux

Xen

DBNet

DBNet-i

29

that of Linux in TCP_Tx test. This is because that in our original design, when a physical NIC

raises an interrupt, it will be handled by a fake ISR which only raise an softirq and return

without updating an interrupt-state register of the physical NIC. Instead, we delay the

updating time until entering in the driver segment. Without updating the register, the physical

NIC considers that the interrupt dose not process completely and raise the same interrupt

again. It will cause too much unnecessary interrupt and cause too much overhead.

In order to solve this problem, we move a piece of code which only updates the

interrupt-state register of physical NIC from the VMMNIC driver into the fake ISR. In the

other word, we advance the updating time upon fake ISR while still perform the correspond

operation after enter in the driver segment. We call the new architecture DBNet-i. From

Figure 3, we can see that DBNet-i architecture can reduce unnecessary interrupts dramatically

in TCP_Tx test and reduce 28% interrupts in TCP_Rx test. From Figure 1 and Figure 2,

DBNet-i architecture can approach the throughput of Linux while only have more 5% ~ 6%

CPU overhead than Linux in TCP_Tx and UDP test. In other tests, DBNet-i architecture can

also increase the throughput while reduce the CPU overhead. Therefore, we choose DBNet-i

architecture to measure its performance in the following evaluations.

0

100000

200000

300000

400000

500000

600000

TCP_Tx TCP_Rx

In
te

rr
u

p
ts

Test Name

Linux

DBNet

DBNet-i

30

Figure 9. Interrupt comparison between Linux, DBNet and DBNet-i

4.2. Multi-domain Evaluation

In this section, we create 1 ~ 8 guest domains on Xen and DBNet-i architectures and

measure their performance. Figure 4 shows the TCP_Tx throughput comparison between Xen

and DBNet-i architecture. The x-axis represents the number of concurrent activating domains

in TCP_Tx test and the y-axis represents the throughput. In the last of Figure 4, above two

lines are the total throughput of every domain on DBNet-i and Xen architectures respectively

and the below two are the average throughput of every domain. Since the total throughput

does not change with x-axis, every domain divides it equally and the throughput of each

domain decreases with the x-axis. From the figure we can see that for each domain, DBNet-i

architecture can improve at least 50% throughput than Xen in TCP_Tx test.

We also measure the average CPU utilization of each guest domain in TCP_Tx test and

present the result in Figure 5. Since the throughput of each domain decreases as the increasing

of the number of domains, the average CPU utilization of each domain will decrease as the

decreasing of throughput.

For the TCP_Rx test, we use same method to measure the performance of each domain

and present the result in Figure 6 and Figure 7. Similarly, for each domain, DBNet-i

architecture can improve at least 30% throughput than Xen in TCP_Rx test.

31

0

50

100

150

200

250

300

350

400

450

1dom 2dom 3dom 4dom 5dom 6dom 7dom 8dom

T
h

ro
u

g
h

p
u

t
(M

b
it

/s
e

c)

Number of Domains

The TCP_Tx Throughput of Xen

dom1

dom2

dom3

dom4

dom5

dom6

dom7

dom8

0

100

200

300

400

500

600

700

1dom 2dom 3dom 4dom 5dom 6dom 7dom 8dom

T
h

ro
u

g
h

p
u

t
(M

b
it

/s
e

c)

Number of Domains

The TCP_Tx Throughput of DBNet-i

dom1

dom2

dom3

dom4

dom5

dom6

dom7

dom8

0

100

200

300

400

500

600

700

1dom 2dom 3dom 4dom 5dom 6dom 7dom 8dom

T
h

ro
u

g
h

p
u

t
(M

b
it

/s
e

c)

Number of Domains

TCP_Tx Throughput Comaprison

Xen

DBNet-i

Xen-avg

DBNet-i-avg

32

Figure 10. TCP_Tx throughput comparison between Xen and DBNet-i

Figure 11. CPU utilization Comparison of TCP_Tx test between Xen and DBNet-i

0

5

10

15

20

25

30

35

40

45

1dom 2dom 3dom 4dom 5dom 6dom 7dom 8dom

C
P

U
 U

ti
li

za
ti

o
n

 (
%

)

Number of Domains

Xen

DBNet-i

0

50

100

150

200

250

300

350

400

1dom 2dom 3dom 4dom 5dom 6dom 7dom 8dom

T
h

ro
u

g
h

p
u

t
(M

b
it

/s
e

c)

Number of Domains

The TCP_Rx Throughput of Xen

dom1

dom2

dom3

dom4

dom5

dom6

dom7

dom8

33

Figure 12. TCP_Rx throughput comparison between Xen and DBNet-i

0

50

100

150

200

250

300

350

400

450

500

1dom 2dom 3dom 4dom 5dom 6dom 7dom 8dom

T
h

ro
u

g
h

p
u

t
(M

b
it

/s
e

c)

Number of Domains

TCP_Rx Throughput of DBNet-i

dom1

dom2

dom3

dom4

dom5

dom6

dom7

dom8

0

100

200

300

400

500

600

1dom 2dom 3dom 4dom 5dom 6dom 7dom 8dom

T
h

ro
u

g
h

p
u

t
(M

b
it

/s
e

c)

Number of Domains

TCP_Rx Throughput Comparison

Xen

DBNet-i

Xen-avg

DBNet-i-avg

34

Figure 13. CPU utilization Comparison of TCP_Rx test between Xen and DBNet-i

4.3. Rx Batch Evaluation

In this section we adjust the batch amount of incoming packets to measure the

performance in one-guest-domain environment on DBNet-i architecture. Xen uses the event

channel mechanism which is similar to the signal mechanism to simulate virtual interrupts.

However, event channel will cause lots of overhead and the VMMBE driver has to use it to

notify a guest domain to receive an incoming packet. Therefore we have to avoid sending too

many virtual interrupts through the event channel. Instead of notifying the guest domain per

packet, we batch packets which belong to the same target and then notify the target guest

domain to receive a batch of incoming packets. In order to accumulate the incoming packets,

we set a max batch number. The VMMBE driver will not notify a guest domain unless the

number of incoming packets reaches the max batch number. Besides, we set a max delay time

to prevent incoming packets be batched too long. We adjust the max batch number and the

max delay time to measure the performance in one-guest-domain environment on DBNet-i

architecture. Figure 8 shows the CPU utilization and throughput of TCP_Tx test. The x-axis

represents the max batch number and each line represents the max delay time (microsecond).

From the figure, if we batch more packets and delay for a more long time, the throughput will

0

5

10

15

20

25

30

35

40

1dom 2dom 3dom 4dom 5dom 6dom 7dom 8dom

C
P

U
 U

ti
li

za
ti

o
n

 (
%

)

Number of Domains

Xen

DBNet-i

35

decrease substantially, which reduce the CPU utilization. This is because in TCP_Tx test, the

receiver sends a packet periodically to notify the transmitter that it can continue to transmit

packets. If we batch an incoming packet too long, the transmitter has to wait for receiving a

packet which is sent from the receiver and thus decrease the throughput. However, if we do

not batch any incoming packet, the throughput will reach 600 MBits/sec while use 45% CPU

time. We found that when the pair of parameter (max delay time, max batch number) is (200,

3), we can also reach 600 MBits/sec throughput and only use 39% CPU. Therefore we choose

this pair of parameter as our default value in all TCP_Tx tests to prove that DBNet-i

architecture can reach almost the same throughput with native Linux in packet transmission

while only use a little higher CPU time than native Linux.

Figure 9 shows the CPU utilization and throughput of TCP_Rx test. From the figure, if we

do not batch any incoming packet, the throughput can reach 540 Mbit/sec but use 80% CPU

time which is caused by using event channel too frequently. When the max delay time is 500,

incoming packets can be batched effectively, which decrease 20% CPU time and still

maintain 540 Mbits/sec throughput. When the pair of parameter is (1000, 25), DBNet-i can

reach 450 Mbits/sec throughput and only use 33% CPU time. In original Xen architecture, it

can only reach 340 Mbits/sec throughput while use 36% CPU time. Therefore, we choose this

pair of parameter as our default value in all TCP_Rx tests to prove that DBNet-i architecture

can reach higher throughput in packet reception while use less CPU time than Xen.

36

Figure 14. The impact of rx batch on TCP_Tx test

0

100

200

300

400

500

600

700

0 2 3 4 6 8 10 12 14 16 18 20

T
h

ro
u

g
h

p
u

t
(M

b
it

s/
se

c)

Max Batch Number

Throughput Test

0

200

400

600

800

1000

0

10

20

30

40

50

0 2 3 4 6 8 10 12 14 16 18 20

C
P

U
 U

ti
li

za
ti

o
n

 (
%

)

Max Batch Number

CPU Utilization Test

0

200

400

600

800

1000

37

Figure 15. The impact of rx batch on TCP_Rx test

0

100

200

300

400

500

600

700

0 4 8 12 16 20 24 28 32 36 40

T
h

ro
u

g
h

p
u

t
(M

b
it

/s
e

c)

Max Batch Number

Throughput Test

0

500

1000

2000

4000

0

10

20

30

40

50

60

70

80

90

0 4 8 12 16 20 24 28 32 36 40

C
P

U
 U

ti
li

za
ti

o
n

 (
%

)

Max Batch Number

CPU Utilization Test

0

500

1000

2000

4000

38

Chapter 5. Conclusion

In this thesis, we present a DBNet architecture, which allows a guest domain accessing the

network without going through the driver domain. In order to avoid complicating the VMM,

we only migrate the performance-critical part of the NIC driver from the driver domain into

the VMM. Moreover, we implement a simplified bridge in the VMM to allow the VMM

dispatching a packet correctly to a target guest domain or a remote machine and avoiding

complicating the VMM. Finally, we put the VMMNIC driver into an independent driver

segment and lower its privilege level to protect the VMM form crashing by driver faults.

Our performance measure shows that in the one-guest-domain environment, the DBNet

architecture can achieve nearly the same performance with Linux in TCP transmission test,

and can improve 24% network throughput while use less CPU utilization in TCP reception

test. Beside, DBNet architecture can also achieve better performance for each guest virtual

machine than the original Xen network architecture in the multi-guest-domain environment.

39

Reference

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauery, I. Pratt and

A. Warfeld, "Xen and the Art of Virtualization", Proceedings of the ACM Symposium on

Operating Systems Principles, pp. 164-177 Oct. 2003.

[2] C. Benvenuti, Understanding Linux Network Internals, O'Reilly Media, Dec. 2005

[3] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic and W.

K. Su, "Myrinet: A Gigabit-per-Second Local Area Network", IEEE Micro, pp. 29-36, Feb.

1995

[4] D. Bovet and M. Cesati, Understanding the Linux 核核, 3nd Edition, O'Reilly Media, Nov.

2005

[5] T. C. Chiueh, G. Venkitachalam and P. Pradhan, "Integrating Segmentation and Paging

Protection for Safe, Efficient and Transparent Software Extensions", Proceedings of

the17th ACM Symposium on Operating Systems Principles, pp. 140-153, Dec. 1999.

[6] A. Chou, J. Yang, B. Chelf, S. Hallem and D. Engler, "An Empirical Study of Operating

Systems Errors", Proceedings of the 18th ACM Symposium on Operating Systems

Principles, pp. 73-88, Oct. 2001.

[7] P. Chubb, "Get More Device Drivers out of the 核核!", Ottawa Linux Symposium,

vol.1:149-161, Jul. 2004.

[8] A. Forin, D. Golub and B. Bershad, "An I/O System for Mach 3.0", Proceedings of

theUSENIX Mach Symposium, pp. 163-176, Apr. 1991.

[9] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield and M. Williamson, "Safe

Hardware Access with the Xen Virtual Machine Monitor", Proceedings of the 1th

Workshop on Operating System and Architectural Support for the on Demand IT

Infrastructure, Oct. 2004.

[10] B. Hausauer, "iWARP Ethernet: Eliminating Overhead In Data Center Designs" Apr.

40

2006

[11] G. C. Hunt, "Creating user-mode device drivers with a proxy", Proceedings of the 1st

USENIX Windows NT Workshop, pp. 55-59, Aug. 1997.

[12] G. C. Hunt, J. R. Larus, M. Abadi, M. Aiken, P. Barham, M. Fähndrich, C. Hawblitzel O.

Hodson, S. Levi, N. Murphy, B. Steensgaard, D. Tarditi, T. Wobber and B. Zill. "An

Overview of the Singularity Project", Microsoft Research Technical Report

MSR-TR-2005-135, Microsoft Corporation, Redmond, WA, Oct.2005.

[13] Intel® 64 and IA-32 Architectures Software Developer's Manual Volume 3A: System

Programming Guide

[14] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Gotz, C. Gray, L. Macpherson, D. Potts, Y. Shen,

K. Elphinstone and G. Heiser, "User-level Device Drivers: Achieved Performance",

Journal of Computer Science and Technology, 20(5):654-664, Sep. 2005

[15] J. LeVasseur, V. Uhlig, J. Stoess and S. Gotz, "Unmodified Device Driver Reuse and

Improved System Dependability via Virtual Machines", Proceedings of the 6th

Symposium on Operating Systems Design and Implementation, pp. 17-30, Dec. 2004.

[16] J. Liu, W. Huang, B. Abali and D. K. Panda, "High Performance VMM-Bypass I/O in

Virtual Machines" Proceedings of the USENIX 2006 Annual Technical Conference, pp.

15-28, May. 2006.

[17] K. V. Maren, "The Fluke Device Driver Framework", University of Utah, Master's Thesis,

Dec. 1999.

[18] A. Menon, A. Cox and W. Zwaenepoel "Optimizing Network Virtualization in Xen",

Proceedings of the USENIX 2006 Annual Technical Conference, pp. 15-28, May. 2006.

[19] A. Menon, J. Santos, Y. Turner, G. Janakiraman and W. Zwenepoel, "Diagnosing

Performance Overheads in the Xen Virtual Machine Environment, In Proceedings of the

1st ACM/USENIX international conference on Virtual execution environments, pp.13-23,

Jun. 2005.

41

[20] Microsoft Corporation, "Introduction to the WDF User-Mode Driver Framework", Apr.

2005.

[21] A. Rubini and J. Corbet, "Linux Device Drivers", 3nd Edition, O'reilly Media, Feb. 2005.

[22] P. Shivam, P. Wyckoff and D. Panda, "EMP: Zero-copy OS-bypass NIC-driven Gigabit

Ethernet Message Passing", Supercomputing, ACM/IEEE Conference, pp. 49-49, Nov.

2001

[23] R. Short, “Vice President of Windows Core Technology”, Microsoft Corp. Private

Communication, Apr. 2003

[24] M. F. Spear, T. Roeder, O. Hodson, G. C. Hunt and S. Levi, "Solving the Starting Problem:

Device Drivers as Self-Describing Artifacts", Proceedings of the EuroSys conference, pp.

45-57, April. 2006

[25] M. M. Swift, B. N. Bershad and H. M. Levy, "Improving the Reliability of Commodity

Operating Systems", Proceedings of the 19th ACM Symposium on Operating Systems

Principles, pp. 207-222, Oct. 2003.

[26] M. M. Swift, S. Martin, H. M. Leyand and S.J. Eggers, "Nooks: An Architecture for

Reliable Device Drivers", Proceedings of the 10th ACM SIGOPS European Workshop,

Sep. 2002.

[27] H. Vemuri, D. Gupta and R. Moona, "Userdev: A Framework for User Level Device

Drivers in Linux", Proceedings of the 5th NordU/USENIX Conference, Feb. 2003.

[28] Virtual PC:

http://www.microsoft.com/windows/products/winfamily/virtualpc/default.mspx

[29] VMware: http://www.vmware.com/

[30] P. Willmann, J. Shafer, D. Carr, A. Menon, S. Rixner, A. L. Cox and W. Zwaenepoel,

“Concurrent Direct Network Access for Virtual Machine Monitors”, High Performance

Computer Architecture, HPCA, IEEE 13th International Symposium on, pp. 306-317, Feb.

2007

42

[31] XenSource: http://www.xensource.com/

[32] V. Ganapathy, A. Balakrishnan, M. M. Swift and S. Jha, “Microdrivers: A New

Architecture for Device Drivers”, Proceedings of the 11th Workshop on Hot Topics in

Operating Systems (HotOS XI), May 2007

[33] Windriver: http://www.windriver.com/

