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摘 要       

在無線感測網路領域，事件的發生與偵測一直是很重要的ㄧ環。然而，事件

有可能在任何時間點演化，並且往任意方向蔓延，及早偵測並且提供即時的資訊

給使用者是非常重要的，使用者透過資訊的回報可以採取適當的動作，對事件發

展的情況取得控制。因此，在本篇論文我們提出ㄧ種新型態的空間查詢，簡稱為

『事件周圍查詢』，透過此查詢可以選出最靠近事件邊界的感測器節點來監控事

件，而被選出來的節點就稱之周圍節點。另外，我們為此提出兩個演算法，一個

是以 RNN 為基礎的演算法以及另一個 Greedy 演算法來處理事件周圍查詢。以

RNN 為基礎的演算法延伸現有的 RNN 查詢來選取周圍節點，然後找出它們之間

不能被感測到的漏洞，再選取適當的感測器節點去彌補此漏洞。Greedy 演算法每

次都去選取最靠近事件的感測器節點作為周圍節點，然後藉由鄰居關係的檢驗避

免選取多餘的感測器節點作為周圍節點。實驗結果顯示，Greedy 演算法在選取周

圍節點的數量跟所花的成本優於以 RNN 為基礎的演算法。 
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ABSTRACT 

In many applications of wireless sensor networks, events evolve at anytime and in 
any directions. Early detection and providing timely information are especially im-
portant for users to take events under control. In this paper, we propose a novel type 
of spatial query, Event Surrounding query (abbreviated as ES query), in which sensor 
nodes that are near to the boundary of events are selected for monitoring. Those nodes 
selected by ES query are referred to as surrounding nodes. We propose two algorithms, 
RNN-based algorithm and Greedy algorithm for event surrounding queries. 
RNN-based algorithm extends RNN query to select surrounding nodes and then to 
identify the gaps. RNN-based algorithm will select proper sensor nodes to enclose the 
event. Greedy algorithm selects those are nearest neighbors to the event as surround-
ing nodes every time. Then it avoids redundant sensor nodes to join surrounding 
nodes via neighborhood relationship recognition. Experimental results show that 
Greedy algorithm outperforms RNN-based algorithm in CPU time and average num-
ber of surrounding nodes selected. 
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Chapter 1

Introduction

Technical advances have led to the generation of sensors, tiny devices that can be used to

detect, collect, and disseminate data form the environment situated. With capability of

monitoring, sensor nodes are usually widely deployed in a monitoring region to report data

like temperature, humidity, luminance, gas density, etc. When the readings of sensor nodes

are abnormal or unusual, it means that an event occurs. Events such as forest fire, toxic gas,

pollution, disaster, etc, may lead to damage or loss or need users to notify especially and thus

users can take essential actions to process it. Therefore, it is important to monitor occurrences

of events in wireless sensor networks.

In many applications, events are dynamic and unpredictable. For example in Figure 1.1

(i), the fire may occur somewhere in the forest. Users can know what has happened and where

the event is through event detection. However, the forest fire may suddenly bloom at anytime

and spread in any direction as depicted in Figure 1.1 (ii). It is important for users to realize

when forest fire evolves and the direction it diffuses as soon as possible. Since users can take

actions early and thus it minimizes damage or loss.

In order to support the requirements aforementioned, a naive method is to wake up all

sensor nodes in the monitoring region for surveillance. However, sensor nodes have rigid energy

constraints and die out when they deplete their energies. Due to unattended and untethered

1



(i) (ii)

Figure 1.1: An example of event surrounding queries in WSN

deployment, it is hard to displace sensor nodes in the monitoring region. Therefore, we

introduce concepts of surrounding nodes. Surrounding nodes of the event are a set of sensor

nodes which are nearest to the event such that no gaps (which are not sensing covered by sensor

nodes) exit between adjacent surrounding nodes. If a set of surrounding nodes of the event

are selected, sensor nodes in the monitoring region which are not responsible for surveillance

can enter into sleep modes temporarily. Thus it can save unnecessary energy consumption

and also extend the life time of sensor network. The scenario is demonstrated in Figure 1.2.

Surrounding nodes are represented as the center of dashed circles where dashed circles are

used to depict sensing ranges. Since surrounding nodes are activated for monitoring event

evolution, other sensor nodes can be scheduled to enter into sleep modes to reduce energy

consumption.

In order to retrieve surrounding nodes in wireless sensor networks, we propose a novel type

of spatial query, Event Surrounding Query (ES Query). Basically, surrounding nodes selection

must satisfy two criteria. First, surrounding nodes are sensor nodes which are as close to the

event as possible. There is no other sensor nodes nearer than these surrounding nodes selected

with regard to the region occupied by their sensing ranges. Thus it can detect event evolution

2



Active Mode
Sleep Mode

Figure 1.2: The usage of surrounding nodes

timely. Second, surrounding nodes must be able to enclose the event. That is, the region

between adjacent surrounding nodes must be sensing covered. If there is a gap between two

adjacent surrounding nodes, events may spread out in this direction without notification.

Spatial queries, such as Nearest Neighbor Queries [15] (NN Queries), Range Nearest Neigh-

bor Query (RNN Query) [10], and Nearest Surrounder Queries [13] (NS Queries), retrieve data

based on location information in sensor networks. These type of queries may support us to

find out surrounding nodes needed. For example, KNN query [15], which is to retrieve K

nearest spatial objects to a given query point. However, it is hard to determine the parameter

K for users. If K is too small, sensor nodes in KNN query results cannot enclose the event.

If a specified event blooms, it is possible KNN query nodes are not able to detect it timely.

We may lose the moment to take essential actions for event diffusion. If K is too large, KNN

query results may retrieve nearly all sensor nodes in the monitoring region as surrounding

nodes. Although it provides a thorough surveillance, the energy cost of whole sensor network

is also large. When given a query range, RNN query [10] will retrieve a set of nearest neighbor

nodes to the query range. If we can fit the boundary of the event into a query rectangle, then

it can help us to retrieve surrounding nodes potentially. However, the shape of the boundary

of the event is not necessarily a query rectangle. Furthermore, although RNN query results

3



scatter uniformly around the event in contrast to KNN queries, it may not be able to enclose

the event, too. In addition, NS queries [13], which retrieve nearest neighbors from a query

point at different angles. Different from KNN query and RNN query, NS query results actu-

ally enclose the event. However, it is hard to specify such a query point for the event region.

Furthermore, NS query is especially suitable for spatial objects of non-zero size. When it is

applied to query sensor nodes, since each unique angles are quite small, it may retrieve a lot

of sensor nodes in the monitoring region. It will be costly to wake up so many sensor nodes

to monitor the event.

In this paper, we study the deficiencies of existent spatial queries and propose two al-

gorithms, RNN-ES algorithm and Greedy-ES algorithm, for ES query processing under the

environment of sensor networks. We try to extend current research, RNN Query [10]. Al-

though RNN query nodes may not enclose the event either as mentioned above, we use some

techniques to finish ES query in RNN-ES algorithm. We identify where gaps exit via neighbor-

hood relationships first. Then we pick proper sensor nodes to enclose the event. In Greedy-ES

algorithm, the position of neighborhood relationships is more important. It not only checks

whether surrounding nodes selected enclosing the event but avoids redundant sensor nodes to

join the set of ES query results. Moreover, we build a simulation model to evaluate perfor-

mances of two proposed algorithms in terms of three parameters, event size, number of query

lines, density. Experimental results show that Greedy-ES algorithm outperforms RNN-ES

algorithm in CPU time and average number of surrounding nodes selected.

The rest of this paper is organized as follows: Related works are presented in Chapter 2.

Chapter 3 is devoted to preliminary. In Chapter 4, two proposed algorithms are described.

The performance studies are conducted in Chapter 5. At last, Chapter 6 concludes this paper.
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Chapter 2

Related Works

To describe occurrences of events, locations, shapes, and regions they occupied are especially

important. Existing works in this area are tend to present this information by event bound-

ary. Since the problem of event boundary identification is similar to our surrounding nodes

selection. Therefore, we examine related works and discuss differences between surrounding

nodes and event boundary.

Real boundary computation is complex and accurate boundary estimation requires sensors

to consume a lot of energy to communicate, it is better to retrieve approximation boundary

than accurate boundary estimation. Nowak et al. [14] propose a method to approximate real

boundary and achieve certain accuracy . The authors consider a sensor network are composed

of two distinct homogeneous regions. Boundary is a borderline to separate these two regions.

To estimate boundary is like edge detection in image processing. The scheme is depicted in

Figure 2.1. They use a quadtree-like method to partition the filed to define hierarchy of sensor

nodes and obtain finest resolution along the boundary at last. Also, they try to make balance

between accuracy and energy consumption.

Another way to approximate real event boundary is through boundary nodes selection.

Boundary nodes selection is to select some representative nodes which lie on or near the real

boundary. Therefore, these boundary nodes can be approximate to the real boundary and

5



Figure 2.1: An inhomogeneous field in sensor network

give users conceptual views of events. In [4], a sensor node is viewed as a boundary node if

only if a predefined disk center at this sensor contains both sensors in the event and sensors

not in the event. Chintalapudi et al. [3] focus on edge detection and defines edge sensors

accordingly. If we map the phenomenon of [3] into the event, edge detection can be used

to detect boundary. Edge sensors lie in the phenomenon and locate with a specified radius

at a borderline which is intersection of interior and exterior of the event. Jin et al. [11]

define boundary nodes as sensor nodes which lie within real boundary with certain confidence

interval guarantee. According to the definitions introduced, the problem of boundary nodes

selection is a problem of classification. Sensor nodes are recognized as boundary nodes or

non-boundary nodes. Therefore, the methods proposed above all use statistical methods to

differentiate whether sensor nodes are boundary nodes or not.

In sensor networks, sensor nodes may deplete their batteries due to energy constraints and

then die out. If there are large amount of sensors die out in sensor networks, we view this as

occurrence of a special event. A region, commonly called as a hole, which sensor nodes can

not communicate in this region is formulated accordingly. The description of holes estimation

is also represented by boundary nodes. The works in [12], [2], [5], [6], and [17] demonstrate

how to detect holes and select boundary nodes either topologically or graphically.

6



Generally, a boundary of an event is just a borderline to separate the event and the

remaining monitoring region. Boundary nodes identified may have already involved in the

event. Also, if there is any event diffusion, it may not be able to sense at real time because

boundary nodes do not necessarily enclose the event. It means that, if we view sensing range as

the sensing region which a sensor node can detect variants from the environment. There must

be "gaps" exiting between boundary nodes since boundary nodes are merely representative

nodes of real boundary approximation. Therefore, the meanings of surrounding nodes are

somewhat different from boundary nodes of events.
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Chapter 3

Preliminaries

We assume that that each sensor node has a unique id and is aware of their locations via GPS

devices or certain positioning methods. Euclidean distance is used as a metric to measure

near and far. The deployment of sensor nodes is random and dense enough over a two-

dimensional monitoring region. Each sensor nodes has a fixed communication range and a

fixed sensing range. The communication range of a sensor node follows unit disk graph model.

Therefore, a sensor node si can communicate with a sensor node sj if they are in each others’

communication range. Otherwise, the sensing range of a sensor node is also a disk and smaller

than its communication range generally.

The goal of Event Surrounding Query (ES query) is to retrieve a set of nearest surrounding

nodes of a specific event. We formally define ES query as follows:

Definition: When given a set of boundary nodes which lie on or near to a real event

boundary, an approximate boundary BN of the event can be obtained to bound the event

region (generally, BN is a polygon). ES query is to retrieve a set S of nearest sensor nodes to

BN such that sensing ranges of adjacent nodes in S must be overlapping to enclose the event.

In other words, adjacent sensor nodes si, sj in S, with their sensing ranges ri, rj individually,

must satisfy the condition: d(si,sj)< ri+rj, where d(si,sj) is the Euclidean distance between

adjacent nodes si and sj.

8
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Figure 3.1: Query processing in R-tree

A spatial index structure called R-tree [9] is especially proposed for spatial queries to

facilitate query processing. It is a B-tree like index structure. Each leaf nodes has pointers to

corresponding spatial objects. Besides, a minimal bounding rectangle (MBR) is a rectangle

for a internal node to enlarge least to include all its child nodes. There is an upper bound

M and a lower bound m to limit capabilities for a R-tree node to save according objects or

child nodes. Basically, R-tree has the following properties: (a) The root node has at least two

children unless it is a leaf; (b) A R-tree node contains at least m objects and m satisfy the

condition: m ≤ M
2
; (c) All leaf nodes appear on the same level. If locations of objects are

already known, it is efficient to use R-tree to retrieve spatial objects. Therefore, we also use

R-tree to construct a corresponding hierarchy of sensor network topology.

There are two most common search ways of NN: Depth First Search (DFS) [15] and Best

First Search (BFS) [8]. Assume a query point q is imposed. DFS starts visiting nodes from the

root of R-tree first. It will access R-tree in order of MINDIST which is the minimum distance

between the query point and R-tree rectangle. The search process will be repeated until a

leaf nodes is visited and the first candidate of nearest neighbor is retrieved. An example is

illustrated in Figure 3.1. From the root, MINDIST of R1 is smaller than MINDIST of R2.

Therefore, node A is visited andMINDIST of R3 and R4 is compared likewise. Since MINDIST
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of R4 is smaller than R3, the leaf node D of R4 is visited and the first nearest neighbor candidate

c is retrieved. MINDIST of current nearest neighbor candidate c is served as local minimum.

Then, it will backtrack to upper level parents to check if there are any nodes whose MINDIST

are smaller than local minimum of current nearest neighbor candidate. If it does, it may

be possible that R-tree nodes which satisfy this property have nearest neighbor. It needs

to replace current nearest neighbor candidate if necessarily. The procedure will terminate if

there is no MINDIST of r-tree nodes smaller than that of current nearest neighbor candidate

so that nearest neighbor is found. In our example, it will backtrack to node A, then the root,

and discover that MINDIST of R2 is smaller than current nearest neighbor candidate c. It

compares with MINDIST and follows the path node B, leaf node of R5 and node F. Finally,

nearest neighbor f is retrieved and the search process terminates. Besides, when it talks to

BFS, we need to prepare a priority queue in advance. Entries in the priority queue is sorted

by their MINDIST to the query point q. BFS pops from top of the queue and check whether

it is leaf entry of R-tree or not. If what is popped is not a leaf entry, it will push back into

the queue according to the priority, MINDIST. If a leaf entry is popped, it becomes nearest

neighbor. In previous example, it will traverse r-tree node R1 first, then follow the sequence

of R2, R5 in the priority queue. At last, the leaf entry is popped and nearest neighbor f is

retrieved.
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Chapter 4

Algorithms for Event Surrounding

Queries

In this chapter, we propose two algorithms for ES query processing. The first algorithm we

propose tries to extend an input query rectangle of RNN query to a polygon. We find out

range nearest neighbor nodes of an approximate polygonal region of the event first. Then we

try to enclose the event with helps of RNN ’s neighbors. The second algorithm is a Greedy

algorithm. Every time we select from nearest neighbor nodes as our surrounding nodes of the

event.

4.1 RNN-based Algorithm: RNN-ES

4.1.1 Overview

RNN-ES algorithm consists of two phases: initial phase and enclosure phase. Initial phase is

to selects RNNs as our basic components of surrounding nodes. Enclosure phase is to identify

where gaps exit between surrounding nodes and then try to select proper surrounding nodes

for enclosing the event. Besides, there is a running example that demonstrates how to select
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sensor nodes to enclose the event as described in enclosure phase.

4.1.2 Initial Phase

There have been many methods proposed for event boundary detection till now and sensor

nodes are recognized as boundary nodes by these algorithm. Therefore, we can facilitate from

these methods to obtain boundary nodes of the event. To compute approximate polygonal

boundary of the event boundary is similar to compute a convex hull by GRAHAM’s SCAN

[7].

Furthermore, we observe that range nearest neighbor sensor nodes are parts of surrounding

nodes. If we view an approximate polygonal event boundary as a range, we can solve our

problem with helps of RNN query [10]. However, RNN query proposed processes a query

rectangle only. The event region is determined by what has happened in the environment. The

polygonal boundary of approximate event boundary is not necessarily a rectangle. Therefore,

We want to extend the query range of RNN query to a polygonal region. Then, the polygon of

approximate event boundary can be divided into several lines that each line is corresponding

to a polygonal edge. We look for LNNs for each lines. A line can be partitioned into several

subsegments further and each subsegment corresponds to a LNN. Because a line can be divided

into finite and minimal sets of subsegments, adjacent subsegments must have different NN as

described in [10].

Tao et al. [16] propose a method to process LNN Search. It can apply either BFS or

DFS search paradigms of R-tree. Take BFS for example, a priority queue is prepared to

store the entries in order of MINDIST. When a leaf entry is popped, corresponding sensor

nodes are push back to the priority queue. Thereafter, we can pop the priority queue and

access sensor nodes that are possible NNs. In order to differentiate different segments of

corresponding LNNs, endpoints of subsegments of a specified query line L are obtained by

12



Algorithm 1 RNN-ES(BN,root)
Input: An approximate polygonal event boundary (BN), and A R-tree root index node(root).
Output: A set of surrounding nodes of the event S.
1: Let Q be a priority queue and be initialized with root;
2: Let S be results of ESN Query and be initialized φ;
3: Let d(ei,ei.NN) be the distance between an endpoint ei and its LNN and initialized as∞;
4: Let EXMAX be the maximum distance, d(ei,ei.NN), of EL and initialized as ∞;
5: Let start be the start endpoint of a query line Li and its LNN, start.NN, initialized as
null;

6: Let end be the end endpoint of a query line Li and its LNN, end.NN, initialized as null;
7: Let EL be the endpoint set of a query line Li that it can divide Li into several subsegments
through these endpoints. Initial EL:(start, end);

8: Let Ecover be a set of the endpoints covered by the spatial object n and be initialized φ;
9: for each query line Li of BN do
10: while (Q is not empty) do
11: Dequeue node n from Q;
12: if (n is a spatial object) then
13: if (MINDIST(n,Li) < ELMAX) then
14: //all LNNs of endpoints of EL are null
15: if (start.NN and end.NNs are both null) then
16: Update start.NN and end.NN as n;
17: Update d(start,start.NN);
18: Update d(end, end.NN);
19: Update ELMAX;
20: end if
21: else
22: if (Ecover is not empty) then
23: Remove endpoints covered by n from EL;
24: end if
25: // Ecover:{ei,ei+1,. . . ,ej}
26: Let u=ei−1.NN;
27: Let u=ej.NN;
28: Add an endpoint e0i into EL by doing perpendicular bisector of n,u with Li;
29: Update d(e0i, e

0
i.NN);

30: Add an endpoint e0i+1 into EL by doing perpendicular bisector of n,v with Li;
31: Update d(e0i+1, e

0
i+1.NN) ;

32: Update ELMAX;
33: Clear Ecover set;
34: end if
35: else
36: if (MINDIST(n,Li) < ELMAX) then
37: if (An endpoint ek in EL exits such that d(ek,ek.NN) > MINDIST(ek,n)) then
38: for each child entry c of n do
39: Enqueue node c;
40: end for
41: end if
42: end if
43: end if
44: end while
45: Dump all LNNs of endpoints of EL into S;
46: end for
47: RNNEnclosure(S);
48: return S; 13
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Figure 4.1: RNN example

doing the intersection between a perpendicular bisector of current scanned nodes, neighboring

LNN nodes and L. Thus, for each endpoints ei which belong to the query line L, all points

of L in [ei,ei+1] has the same NN defined as ei.NN. It is possible that sensor nodes scanned

later are much closer than sensor nodes for certain subsegments in the LNN list. Therefore,

it needs to check whether this sensor node covers some endpoints which are obtained by

nodes previously scanned. If there is a currently scanned sensor sj whose distance dist(sj,ei)

is smaller than dist(ei,ei.NN) for some ei, it means the endpoint ei is covered by sj. Since

there are endpoints of subsegments obtained from intersection of the perpendicular bisector

and the specified query line, the currently scanned sensor sj is LNN. The algorithm proposed

removes the endpoint ei, adds new endpoints e0i by sj and updates e
0
i.NN accordingly. Also, a

threshold ELMAX which determines the number of surrounding node candidates visited needs

to be updated as maximum d(ek,ek.NN) of current LNN list. Finally, we prepare a queue S to

gather the results of LNN lists and sort them counterclockwise (or clockwise) with reference

to the center of the approximate polygonal boundary of the event. These will be parts of

selection of our surrounding nodes of the event (Figure 4.1). Next phase we will introduce

how we select nodes to enclose the event with helps of RNNs obtained from this phase.
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4.1.3 Enclosure Phase

Algorithm 2 RNNEnclosure(S)
Input: A queue S which contains RNN results.
Output: A set of surrounding nodes of the event S.
1: for all si in S do
2: if (!(dist(si,si.left) < rsi+rsi .left )) then
3: choose sk from si’s and si.left’s adjacency list with Min(dist(si,sk)+dist( sk,si.left))
4: sk.left=si.left;
5: sk.right=si;
6: (si.left).right=sk;
7: si.left=sk;
8: Insert sk at the end of S;
9: else if (!(dist(si,si.right) < rsi+rsi .right )) then
10: choose sk from si’s and si.right’s adjacency list with Min(dist(si,sk)+dist( sk,si.right))
11: sk.left=si;
12: sk.right=si.right;
13: (si.right).left=sk;
14: si.right=sk;
15: Insert sk at the end of S;
16: else
17: ;
18: end if
19: end for

In prior phase, we have already retrieved partial results of nearest surrounding nodes of the

event and push them in a queue S either clockwise or counterclockwise. Then, we construct

neighborhood relationships for each sensor node in S first. If we sort nodes in the queue S

counterclockwise with reference to the center point of the approximate polygonal boundary

of the event, a sensor node si indexed i in the queue S sets its left-hand side neighbor as a

sensor node indexed i+1 and its right-hand side neighbor as a sensor node indexed i-1 in the

queue S. A special case is that a sensor node at the head of the queue S will set its right-hand

side neighbor as a sensor node at the end of the queue S and the sensor node at the end of

the queue S will set its left-hand side neighbor as the sensor node at the head of the queue S

accordingly. If we sort nodes in the queue S clockwise, neighborhood relationship construction

will be in a similar manner. Because we only have partial results of nearest surrounding nodes

of the event in prior phase and these sensors are too few to enclose the event, there may be
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gaps between adjacent nodes with respect to their sensing ranges. The goal of this phase is to

select proper sensors to enclose the event. The requirement for this phase is that each sensor

node needs to keep information of their one-hop neighbors. Therefore, each sensor node has

to store its neighbors within communication range in its adjacency list. Then, the algorithm

proposed starts to access the queue S and checks whether gaps exit between this node and its

adjacent neighbors in S. When a sensor node si in S is accessed, it first checks the distance

between this sensor and its left-hand side neighbor si.left. If the distance, d(si,si.left), is greater

than summation of sensing radius of si (rsi ) and its left-hand side neighbor si.left (rsi .left), it

means that there is a gap between them. We select from the set of neighbors in adjacency

lists of si and si.left. A neighbor node sk in adjacency lists selected as surrounding nodes must

satisfy the condition that: it has minimum distance which is summation of distances from sk

to si and sk to its si.left. If there is a tie, it will choose one of sk arbitrarily as surrounding

nodes. We also construct neighborhood relationship for sk as to two neighbors, si and si.left.

Accordingly, sk will replace original position of si.left and become new left-hand side neighbor

of si. Original right-hand side neighbor of si.left will be sk. Then, sk will be insert at the

end of the queue S. Similarly, it will also checks whether there is a gap between si and si’s

right-hand side neighbor, si.right, and select proper sk to enclose it. This process will continue

until all elements in S have been checked. At last, we report all sensor nodes in S as nearest

surrounding nodes of the event.

4.1.4 Running Example of RNN-ES algorithm

An example of surrounding nodes selection for event enclosure is illustrated in Figure 4.2. The

approximate polygonal event boundary is a octagon. For each sensor, it has a communication

range of 6 m and a sensing range of 4 m. A sensing range of a sensor is represented by a

dashed circle and a communication range of a sensor is represented by a solid circle. Initially,
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surrounding nodes selected from the first phase have already sorted counterclockwise and

construct neighborhood relationship with adjacent neighboring nodes such as 21 and 27 in

Table 4.1. Therefore, a node numbered 21 has a left-hand side neighbor node 27 and a right-

hand side neighbor node 30. A node numbered 27 has a left-hand side neighbor node 34

and a right-hand side neighbor node 21. When the node 21 is accessed from the queue S, it

discovers that the distance between the node 21 and its left-hand side neighbor node 27 is

greater than summation of sensing radius of the node 21 and the node 27. To enclose the

event, the algorithm proposed will examine adjacency lists in the node 21 and its left-hand

side neighbor node 27 and select a proper node as a surrounding node. In the adjacency

list of the node 21, it has six neighbor nodes: 12, 13, 14, 20, 22, and 29. In the adjacency

list of the node 27, it also has six neighbor nodes: 18, 19, 26, 28, 34, and 35. Among these

neighbors, the node 20 has minimal summation distance to the node 21 and the node 27.

We construct neighborhood relationship for the node 20 with the node 21 and the node 27

individually. Besides, we modify the neighborhood relationship for the node 21 and the node

27 accordingly (As Table 4.2 depicted). Then, the node 20 is inserted at the end of the queue

S. We go on to check whether there is a gap between the node 21 and its right-hand side

neighbor, the node 30. Because the distance between the node 21 and its right-hand side

neighbor, the node 30, is smaller than summation of sensing radius of the node 21 and node

30, there is no gap between the node 21 and the node 30. The algorithm continues to check

next sensor in the queue S until it retrieves a set of nearest surrounding nodes enclosing the

event.

Node si si.left si.right
21 27 30
27 34 21

Table 4.1: Original neighborhood relationships
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Figure 4.2: Surrounding nodes selection for enclosure

4.2 Greedy Algorithm: Greedy-ES

4.2.1 Design Concepts

Although it is intuitive to select surrounding nodes of the event by RNN-ES algorithm, there

are some deficiencies in RNN-ES algorithm. It may be costly to search RNNs edges by

edges. Also, RNN-ES algorithm requires that each sensor node caches neighbor nodes in its

communication range in case of RNNs selected not enclosing the event. Therefore we propose

a greedy algorithm for ES query processing and it is abbreviated as Greedy -ES.

In our Greedy-ES algorithm, we need to calculate minimum distance between sensor nodes

to the approximate polygonal boundary of the event boundary. Then we select from near-

est neighbor nodes of the approximate polygonal boundary of the event every time as our

surrounding node candidates. The search process will stop until we find a set of nearest

surrounding nodes of the event that enclose the event.

Node si si.left si.right
20 27 21
21 20 30
27 34 20

Table 4.2: Neighborhood relationships after modification
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When we takes two search schemes mentioned of R-tree index structure, BFS and DFS,

into consideration, we choose BFS search paradigm according to the essence of our Greedy

algorithm. The definition of minimum distance of a sensor node to the approximate polyg-

onal event boundary is similar to MINDIST defined in [15]. If the approximate polygonal

event boundary is inside MBR of R-tree fully, minimum distance is zero. If the approximate

polygonal event boundary covers partial region of MBR, minimum distance is also zero. If

the approximate polygonal event boundary is outside MBR fully, minimum distance is the

minimal Euclidean distance between the node to nearest edge of the approximate polygonal

event boundary. We use minimum distance defined to sort nodes in our priority queue for

BFS search paradigm. Conceptually, we retrieve NN of current processing as our surrounding

nodes by popping the priority queue. However, not all K NNs searched accessed till now are

surrounding nodes of the event. It may be redundant for current NN retrieved to join the set

of surrounding nodes of the event. Therefore, we introduce how to construct neighborhood

relationships for each surrounding node candidates NN and current ES results.

In our assumption, nearest surrounding nodes that enclose the event must satisfy the

criteria, sensing ranges of adjacent surrounding nodes are overlapping. Distances between

every two adjacent surrounding nodes is small than the summation of their radius of sensing

ranges. Therefore, we check the distance between each surrounding nodes candidates NN and

current ES results. If a surrounding nodes candidate NN retrieved satisfy the criteria, NN has

neighborhood relationship with current ES results. Next, we define left-hand side neighbor

and right-hand side neighbor for a surrounding node candidate NN advancedly.

Neighborhood relationships construction of a surrounding node candidate is depicted in

Figure 4.3. We mark current surrounding node candidate processed as si. Sensor nodes sj,

sk are surrounding nodes and have been recognized as neighborhood of si by the criteria

aforementioned. We set center point of the approximate polygonal event boundary as a

reference point. If there is a polar angle formed by the reference point, the surrounding node
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Algorithm 3 Greedy-ES(BN,root)
Input: An approximate polygonal event boundary (BN), and A R-tree root index node(root).
Output: A set of surrounding nodes of the event S.
1: Let Q be a priority queue and be initialized with root;
2: Let S be results of ESN Query and be initialized φ;
3: Let Mark be a redundant surrounding nodes mark if n is added to S and be initialized 0;
4: while (Surrounding nodes in S are not enclosed or S==φ) do
5: Dequeue node n from Q;
6: if (n is a spatial object) then
7: n.left = null;
8: n.right = null;
9: if (S != φ) then
10: for each nodes si in S do
11: if (dist(n,si) ≤ rn+rsi) then
12: Build neighborhood relationships for n such as n.left = si or n.right = si;
13: end if
14: end for
15: end if
16: if ((n.left==si) and (si.right==null)) then
17: si.right = n;
18: else if ((n.right==si) and (si.left==null)) then
19: si.left = n;
20: else if ((n.left==si) and (si.right != null) and (si.right != n)) then
21: Mark = 1;
22: break;
23: else if ((n.right==si) and (si.left != null) and (si.left != n) then
24: Mark = 1;
25: break;
26: end if
27: if (Mark == 0) then
28: S = S ∪ n;
29: else
30: Mark = 0; //reinitialize Mark as 0
31: end if
32: else
33: for each child node ci of n do
34: Enqueue(ci);
35: end for
36: end if
37: end while
38: return S;
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Figure 4.3: The neighborhood relationships among surrounding nodes

candidate si, a neighbor of si in current ES result sj, sj is a left-hand side neighbor of the

surrounding node candidate si. This means that if the surrounding node candidate in Figure

4.3 is si, si to si’s neighbor, sj, makes counterclockwise turn relative to the reference point, sj is

si’s left-hand side neighbor. Similarly, if there is a solar altitude angle formed by the reference

point, the surrounding node candidate si, a neighbor of si in current ES result sk, sk is a

right-hand side neighbor of the surrounding node candidate si. In Figure 4.3, the surrounding

node candidate si to si’s neighbor, sk, makes clockwise turn relative to the reference point.

Thus, sk is si’s right-hand side neighbor.

We construct such neighborhood relationship for each surrounding node candidate and

initialize their left-hand side and right-hand side neighbor as null first in our Greedy-ES

algorithm. Then , it will go on to check whether there any surrounding nodes in current

ES result set are its neighbors. If there is none, it will join current ES result set directly

and continue the procedure. If it has neighbors in current ES result set, it will examine this

neighbor belongs to left-hand side or right-hand side neighbor advancedly. In order to avoid

redundant surrounding nodes to join ES result set, we will check neighborhood relationships

of each surrounding node candidate and its corresponding neighbors in ES result set. There
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Figure 4.4: (i) Case 1. and (ii) Case 2.

are two cases that surrounding node candidates are redundant (See Figure 4.4):

Case1. The sensing range of a surrounding node candidate si is overlapping with an

element sj in ES result set, and sj is si’s right(left)-hand side neighbor. But sj’s according

left(right)-hand side neighbor is sk. This means the role of current surrounding node candidate

is already played by sk and si is farther than sk. We avoid si to join the ES result set.

Case 2. The sensing range of a surrounding node candidate si is overlapping with two

elements sj and sk in ES result set. sj is si’s left(right)-hand side neighbor and sk is si’s

right(left)-hand side neighbor. But sj’s right(left)-hand side neighbor and sk’s left(right)-

hand side neighbor are sc not si. This can just use case 1 to check whether neighborhood

relationships of a surrounding node candidate exits or not. There is no need to check twice.

Therefore, if surrounding node candidate si’s left(right)-hand side neighbor is sj in ES result

set and sj’s according right(left)-hand side neighbor is null. This means that surrounding node

is not redundant to enclose the event. We construct corresponding neighborhood relationship

of si and sj and add si into our ES result set. Thereafter, we avoid redundant surrounding

nodes to join ES result set by neighborhood relationship examination likewise.
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4.2.2 Running Example of Greedy-ES algorithm

The search process of our greedy algorithm is shown from Figure 4.5 to Figure 4.10. The

center point of the approximate polygonal event boundary is represented as a white point in

these figures and serves as a reference point. The root of R-tree has already been enqueued

in our greedy algorithm. By BFS search paradigm, we has a priority queue Q to sort nodes

by their minimum distance to the approximate polygonal event boundary. We dequeue the

root node of R-Tree first and discover that it is not a spatial object (i.e. a sensor node here).

Therefore, we push its children R1, R2, R3 back to the priority queue Q. Since the MINDIST

to the approximate polygonal event boundary BN of R2 = R3 < R1, they are located in

Q in this order. We go on the push and pop procedure until we retrieve the first NN, the

sensor node numbered 27 in Figure 4.7. We initialize left-hand side neighbor and right-hand

side neighbor of the sensor node 27 as null individually. Then, we check whether it has any

neighbor nodes in current surrounding node set. Since the sensor node 27 is the first NN ,

there is no surrounding nodes selected in current surrounding node set yet. Therefore, the

sensor node 27 has no adjacent surrounding node neighbors now and join current surrounding

node set S directly. Similarly, sensor nodes numbered as 60, 47, 30 in Figure 4.8 perform the

same procedure sequentially. They all have no left-hand side neighbor and right-hand neighbor

yet and join surrounding node set S directly. The next NN, a spatial object popped from the

queue Q, is a sensor node numbered as 34. We also initialize its left-hand side neighbor and

right-hand side neighbor as null. Then, we find that the sensor node 34 is neighboring to a

surrounding node, the sensor node numbered as 27, and makes right turn to it according to the

reference point (Figure 4.9). Therefore, the surrounding node candidate 34 has a right-hand

side neighbor 27. We check whether the surrounding node 27 has a left-hand side neighbor.

Since the left-hand side neighbor of the surrounding node 27 is null, the surrounding node

candidate 34 is not redundant to enclose the event. We modify neighborhood relationships
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Figure 4.10: Nearest surrounding nodes

of the surrounding node 27 and the surrounding node candidate 34 accordingly. Then, we

recognize the sensor node 34 as a surrounding node and add it to our surrounding node set

S. The procedure will repeat until we find out a set of nearest surrounding nodes to enclose

the event so that there are no surrounding nodes whose left-hand side neighbor or right-hand

side neighbor are null. Finally, the results are shown in Figure 4.10.
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Chapter 5

Performance Study

In this chapter, we evaluate the performance of two proposed surrounding nodes selection

algorithms, Greedy-ES algorithm and RNN-ES algorithm.

5.1 Simulation Model

Experiments are implemented in Java programming language and run on a computer with 64

X2 Dual Core Processor 3800+ and 2 G memory. There are 2500 sensor nodes deployed in our

monitoring region. For each sensor node, its sensing range is fixed at 4 m and communication

range is fixed at 8 m. A variant of R-tree index structure, R∗-tree [1], is used to index

sensor nodes and speeds up sensor nodes retrieval. The pagesize of one R∗-tree node is set

to 4096 bytes and maximum node capacity is 50. We assume that an event occurs in the

monitoring region. The shape of the event is a circle. The boundary nodes of the event have

already collected. The approximate polygonal boundary of the event can be obtained via

the boundary nodes of the event. We use synthetic datasets to simulate the deployment of

sensor nodes. The deployment of sensor nodes must be dense enough so that we can find out

surrounding nodes of the event. Two kinds of deployment, grid distribution and grid with

random perturbation distribution, are applied individually for comparison. There are two
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metrics used to compare the performance of proposed methods which are described as follows:

(1)CPU time for surrounding nodes selection (2)Numbers of surrounding nodes of the event.

5.2 The Impact of Event Size

We vary the size of the event through varying its radius from 4m to 28 m without changing its

center. The monitoring region is assumed to be 200 m × 200 m. We deploy 2500 sensor nodes

so that each sensor node can be put in a 4 m × 4 m grid. Because it is a grid distribution of

sensor nodes, the environment is simple. The edges of the approximate polygonal boundary

of the event in this case are always 4. Figure 5.1 shows the simulation result of varying the

size of the event. As our expectation, when we increase the size of the event, the cost to find

out surrounding nodes of the event will raise accordingly. Since RNN-ES algorithm needs to

search RNNs edges by edges according to the approximate polygonal boundary of the event,

the cost of RNN-ES algorithm is essentially higher than Greedy-ES algorithm. Furthermore,

Figure 5.2 demonstrate numbers of surrounding nodes of the event. In this case, the numbers

of surrounding nodes retrieved by both methods are the same.

In order to be contrast to the grid deployment of sensor nodes, a group of control is shown

in Figure 5.3 and Figure 5.4. We deploy sensors randomly instead. Sensor nodes are put in a

grid and then perturbed with a random shift. Therefore, the distribution of sensor nodes by

manual will be close to uniform distribution. The event size also increases by adjusting the

radius of the event from 4 m to 28 m. Therefore, the numbers of edges of the approximate

polygonal boundary which vary with the size of the event accordingly are as follows: 6, 9, 16,

14, 21, 21, 23. Generally, the cost of RNN-ES algorithm is higher than Greedy-ES algorithm

in Figure 5.3 . This is similar to the scheme of the grid deployment of sensor nodes. However,

there is somewhat a little oscillation of the RNN-ES algorithm curve in Figure 5.3. When the

radius of the event is 16 m, its number of edges of the approximate polygonal boundary is less
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Figure 5.1: Grid deployment: event size vs. CPU time
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Figure 5.2: Grid deployment: event size vs. no. of surrounding nodes
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Figure 5.3: Random deployment: event size vs. CPU time
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Figure 5.4: Random deployment: event size vs. no. of surrounding nodes
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than its previous one and the next one of event size. Therefore, it costs less overhead to search

RNNs in the first phase of RNN-ES algorithm. Since the first phase of RNN-ES algorithm

incurs major cost of RNN-ES algorithm, it costs less totally at last. Otherwise, although the

number of edges of the approximate polygonal boundary when the radius of the event is 20

m is the same as that when the radius of the event is 24 m, the cost to retrieve surrounding

nodes is less in RNN-ES algorithm when the radius of the event is 24 m. Because it visits

more surrounding candidates when the radius of the event is 24 m. And this is due to the

distribution of surrounding node candidates around the approximate polygonal boundary. It

will discuss further latter in next section. Figure 5.4 presents the scheme of ES query in the

random deployment environment. We observe that RNN-ES algorithm most often retrieves

more sensor nodes than Greedy-ES algorithm. Since RNN-ES algorithm searches RNNs by

dividing the approximate polygonal boundary into several query lines in the first phase, a

query line L must be divided into segments further until that no NN candidates can cover

current set of LNNs. This property causes the number of surrounding nodes selected by

RNN-ES algorithm to be less than or more than or equal to Greedy-ES algorithm. Moreover,

Greedy-ES algorithm is tend to select representative nearest surrounding nodes as long as

nodes selected can enclose the event.

5.3 The Impact of Number of Query Lines

As aforementioned in the first phase of RNN-ES algorithm, it breaks the approximate polygo-

nal boundary into several query lines for RNN search. It is probably that the number of query

lines will influence the query cost of RNN-ES algorithm. To show the impact of the number

of query lines, we simulate and present the result in Figure 5.5. Sensor nodes are deployed

in a 4 m × 4 m gird and perturbed with a random shift. The radius of the circular event

is fixed at 8 m and we assume that it occurs arbitrarily in the monitoring region so that we
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Figure 5.5: Random deployment: no. of query lines vs. CPU time

obtain different number of edges of the approximate polygonal boundary. Naturally, it has no

much effect for Greedy-ES algorithm if the event occurs anywhere in the monitoring region in

Figure 5.5. However, RNN-ES algorithm is tend to increase its CPU time as the number of

the query line of the approximate polygonal boundary increases. We also observe that CPU

time descends when the number of query lines of the approximate polygonal boundary is 10.

Due to the distribution of sensor nodes around the approximate polygonal boundary, it will

determine the number of surrounding node candidate to traverse in the search process. That

is, for a query line L, nodes in current LNN set will determine the threshold ELMAX which

chooses to visit more surrounding nodes candidates or not. Therefore, the threshold is more

powerful to decide the number of surrounding node candidates visited than the number of

query lines of the approximate polygonal boundary.

The corresponding number of surrounding nodes selected is depicted in Figure 5.6. RNN-

ES algorithm often selects more surrounding nodes than Greedy-ES algorithm as above-

mentioned. The difference of number of surrounding nodes selected is not too much in this
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Figure 5.6: Random deployment: no. of query lines vs. no. of surrounding nodes

case since the radius of the event is the same.

In order to show the impact of the distribution of surrounding node candidates around the

approximate polygonal boundary more precisely, we collect and simulate the same number of

query lines of the approximate polygonal boundary to evaluate the query cost. The radius

of a event is also fixed at 8 m and the deployment of sensor nodes is the same as the envi-

ronment depicted in Figure 5.5 and Figure 5.6. Although events may occurs anywhere in the

monitoring region, we only focus on the events which have the same number of query lines of

the approximate polygonal boundary that we collect the events whose number of query lines

is 11. Figure 5.7 demonstrates the result. The curve of RNN-ES algorithm is almost smooth.

However, there is still some rise and fall at the end of the curve. The distribution of sur-

rounding node candidates around the approximate polygonal boundary leads to the variation

apparently. Greedy-ES algorithm also displays a slightly fluctuation due to the distribution

of surrounding node candidates around the approximate polygonal boundary but the range of

variation is small. We also present the corresponding number of surrounding nodes selected
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Figure 5.7: Random deployment: no. of query lines is fixed as 11 vs. CPU time
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Figure 5.8: Random deployment: no. of query lines is fixed as 11 vs. no. of surrounding
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in Figure 5.8. Since the radius of the event is the same and we select the events of the same

number of query lines, the difference of the number of surrounding nodes is not too much

in both methods. Otherwise, RNN-ES algorithm also selects more surrounding nodes than

Greedy-ES algorithm at most of times.

5.4 The Impact of Density

Generally, density in sensor networks is defined as: The Number of Sensor Nodes Deployed
Monitoring region size

. In order

to show the impact of density, we fix the number of sensor nodes deployed as 2500 and vary

the size of monitoring region as 200 m × 200 m, 100 m × 100 m, 50 m × 50m , 25 m × 25

m instead. Sensor nodes deployed follow grid distribution. A circular event whose radius is 8

m occurs in the center of the monitoring region. In Figure 5.9, the cost to select surrounding

nodes increases along with density raising in both methods. However, RNN-ES algorithm not

only consumes more CPU time but its direction of curve increases more rapidly than Greedy-

ES algorithm. This is because surrounding candidates which satisfy the threshold in RNN-ES

algorithm will increase relatively when density grows. Therefore, RNN-ES algorithm needs to

examine more surrounding candidates than Greedy-ES algorithm.

Figure 5.10 shows the number of surrounding nodes selected by proposed methods if we

vary density under the environment mentioned above in Figure 5.10. It is observed that

RNN-ES algorithm most often is tend to retrieve more sensor nodes with density increasing.

Moreover, the difference of the number of surrounding nodes selected is larger and larger be-

tween RNN-ES algorithm and Greedy-ES algorithm when density increases. This is probably

due to that Greedy-ES algorithm is tend to select representative nearest surrounding nodes

as aforementioned. In contrast to Greedy-ES algorithm, RNN-ES algorithm takes a different

viewpoint. Most of surrounding nodes selected by RNN-ES algorithm is done in the first

phase. Therefore, RNN-ES algorithm select RNNs by definition of LNNs and the RNN set is
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Figure 5.9: Grid deployment: density vs. CPU time
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Figure 5.10: Grid deployment: density vs. no. of surrounding nodes
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composed of several different LNN sets. Since the search must continue until the query line of

the approximate polygonal boundary can not be divided into segments by surrounding node

candidates, surrounding nodes retrieved by RNN-ES algorithm are like a second boundary of

the event. Therefore, when density of the monitoring region increases, it is tend to be more

surrounding nodes candidates involved and covers current surrounding nodes selected in the

search process. Thus, the difference of the number of surrounding nodes between RNN-ES al-

gorithm and Greedy-ES algorithm enlarges accordingly. Especially the number of surrounding

nodes selected by Greedy-ES algorithm does not vary too much.
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Chapter 6

Conclusion

In this paper, we presented a novel type of spatial query, ES Query, for application require-

ment in sensor networks. Through ES Query, We can select a set of surrounding nodes of

the event instead of all sensor nodes in the monitoring region to check if there is any event

evolution. Therefore, sensor nodes which are not surrounding nodes can enter into sleep

modes temporarily to save their battery energies and thus extend the lifetime of sensor net-

works.Furthermore, to reply ES query, we proposed two algorithm, RNN-ES algorithm and

Greedy-ES algorithm. RNN-ES algorithm derives from the concept of RNN and makes an

extension to enclose the event. However, RNN-ES algorithm takes a microscopic view and

breaks the approximate polygonal event boundary into several query lines for LNN search.

Although surrounding nodes selected around the event may follow a homogenized distribution,

it is costly to search LNNs line by lines. Besides, experimental result showed that the number

of surrounding nodes selected is tend to be more and it will increase rapidly especially when

the density of sensor deployment increases. Therefore, Greedy-ES algorithm was proposed to

reply ES Query efficiently. Greedy-ES algorithm takes a macroscopic view and regards the

approximate polygonal event boundary as a whole query input. It greedily visits NN candi-

dates until surrounding nodes selected encloses the event. The core of Greedy-ES algorithm

is that we develop so-called neighborhood relationships to check whether NN candidates are
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redundant to join the set of surrounding nodes of the event or surrounding nodes selected so

far enclosing the event or not.
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