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Event Surrounding Query Processing in Wireless Sensor Networks

Student : Chia-Hsin Chou Advisors : Dr. Wen-Chih Peng

Institute of Computer Science
National Chiao Tung University

ABSTRACT

In many applications of wireless sensor networks, events evolve at anytime and in
any directions. Early detection and providing timely information are especially im-
portant for users to take events under control.“In this:paper, we propose a novel type
of spatial query, Event Surrounding query (abbreviated as ES query), in which sensor
nodes that are near to the boundary of events are selected for monitoring. Those nodes
selected by ES query are referred to as surrounding nodes. We propose two algorithms,
RNN-based algorithm and Greedy algorithm for event surrounding queries.
RNN-based algorithm extends RNN query to select surrounding nodes and then to
identify the gaps. RNN-based algorithm will select proper sensor nodes to enclose the
event. Greedy algorithm selects those are nearest neighbors to the event as surround-
ing nodes every time. Then it avoids redundant sensor nodes to join surrounding
nodes via neighborhood relationship recognition. Experimental results show that
Greedy algorithm outperforms RNN-based algorithm in CPU time and average num-
ber of surrounding nodes selected.
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Chapter 1

Introduction

Technical advances have led to the generation of sensors, tiny devices that can be used to
detect, collect, and disseminate data form the environment situated. With capability of
monitoring, sensor nodes are usually widely deployed in a monitoring region to report data
like temperature, humidity, luminanee, gas density; et¢.. When the readings of sensor nodes
are abnormal or unusual, it means that an_event occurs.”Events such as forest fire, toxic gas,
pollution, disaster, etc, may lead to damage or loss'or need users to notify especially and thus
users can take essential actions to process it. Therefore, it is important to monitor occurrences
of events in wireless sensor networks.

In many applications, events are dynamic and unpredictable. For example in Figure 1.1
(i), the fire may occur somewhere in the forest. Users can know what has happened and where
the event is through event detection. However, the forest fire may suddenly bloom at anytime
and spread in any direction as depicted in Figure 1.1 (ii). It is important for users to realize
when forest fire evolves and the direction it diffuses as soon as possible. Since users can take
actions early and thus it minimizes damage or loss.

In order to support the requirements aforementioned, a naive method is to wake up all
sensor nodes in the monitoring region for surveillance. However, sensor nodes have rigid energy

constraints and die out when they deplete their energies. Due to unattended and untethered



(i)

Figure 1.1: An example of event surrounding queries in WSN

deployment, it is hard to displace sensor nodes in the monitoring region. Therefore, we
introduce concepts of surrounding nodes. S}urrognding nodes of the event are a set of sensor
nodes which are nearest to the event suchrrthat no ga[;s (which are not sensing covered by sensor
nodes) exit between adjacent surrounding nodeé. ' if a‘sét of surrounding nodes of the event
are selected, sensor nodes in the monitoriﬁg‘ fegi()n which are not responsible for surveillance
can enter into sleep modes temporarily. Thus it ¢an save unnecessary energy consumption
and also extend the life time of sensor network. The scenario is demonstrated in Figure 1.2.
Surrounding nodes are represented as the center of dashed circles where dashed circles are
used to depict sensing ranges. Since surrounding nodes are activated for monitoring event
evolution, other sensor nodes can be scheduled to enter into sleep modes to reduce energy
consumption.

In order to retrieve surrounding nodes in wireless sensor networks, we propose a novel type
of spatial query, Event Surrounding Query (ES Query). Basically, surrounding nodes selection
must satisfy two criteria. First, surrounding nodes are sensor nodes which are as close to the
event as possible. There is no other sensor nodes nearer than these surrounding nodes selected

with regard to the region occupied by their sensing ranges. Thus it can detect event evolution
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Figure 1.2: The usage of surrounding nodes

timely. Second, surrounding nodes must be able to enclose the event. That is, the region
between adjacent surrounding nodes must be sensing covered. If there is a gap between two
adjacent surrounding nodes, events may spréad éut.in this direction without notification.
Spatial queries, such as Nearest Neighbor Queries[ 15} (NN Queries), Range Nearest Neigh-
bor Query (RNN Query) [10], and Nearest Surrounder Queries [13] (NS Queries), retrieve data
based on location information in sensor metworks. ‘These type of queries may support us to
find out surrounding nodes needed. For example, KNN query [15], which is to retrieve K
nearest spatial objects to a given query point. However, it is hard to determine the parameter
K for users. If K is too small, sensor nodes in KNN query results cannot enclose the event.
If a specified event blooms, it is possible KNN query nodes are not able to detect it timely.
We may lose the moment to take essential actions for event diffusion. If K is too large, KNN
query results may retrieve nearly all sensor nodes in the monitoring region as surrounding
nodes. Although it provides a thorough surveillance, the energy cost of whole sensor network
is also large. When given a query range, RNN query [10] will retrieve a set of nearest neighbor
nodes to the query range. If we can fit the boundary of the event into a query rectangle, then
it can help us to retrieve surrounding nodes potentially. However, the shape of the boundary

of the event is not necessarily a query rectangle. Furthermore, although RNN query results



scatter uniformly around the event in contrast to KNN queries, it may not be able to enclose
the event, too. In addition, NS queries [13], which retrieve nearest neighbors from a query
point at different angles. Different from KNN query and RNN query, NS query results actu-
ally enclose the event. However, it is hard to specify such a query point for the event region.
Furthermore, NS query is especially suitable for spatial objects of non-zero size. When it is
applied to query sensor nodes, since each unique angles are quite small, it may retrieve a lot
of sensor nodes in the monitoring region. It will be costly to wake up so many sensor nodes
to monitor the event.

In this paper, we study the deficiencies of existent spatial queries and propose two al-
gorithms, RNN-ES algorithm and Greedy-ES algorithm, for ES query processing under the
environment of sensor networks. We try to extend current research, RNN Query [10]. Al-
though RNN query nodes may not enclose the eventieither as mentioned above, we use some
techniques to finish ES query in RNN=ES algorithm: We identify where gaps exit via neighbor-
hood relationships first. Then we pick propet sensot-nodes to enclose the event. In Greedy-ES
algorithm, the position of neighborhood relationships is more important. It not only checks
whether surrounding nodes selected enclosing the event but avoids redundant sensor nodes to
join the set of ES query results. Moreover, we build a simulation model to evaluate perfor-
mances of two proposed algorithms in terms of three parameters, event size, number of query
lines, density. Experimental results show that Greedy-ES algorithm outperforms RNN-ES
algorithm in CPU time and average number of surrounding nodes selected.

The rest of this paper is organized as follows: Related works are presented in Chapter 2.
Chapter 3 is devoted to preliminary. In Chapter 4, two proposed algorithms are described.

The performance studies are conducted in Chapter 5. At last, Chapter 6 concludes this paper.



Chapter 2

Related Works

To describe occurrences of events, locations, shapes, and regions they occupied are especially
important. Existing works in this area are tend to present this information by event bound-
ary. Since the problem of event boundary identification is similar to our surrounding nodes
selection. Therefore, we examine related works:and diseuss differences between surrounding
nodes and event boundary.

Real boundary computation is complexsand accurate boundary estimation requires sensors
to consume a lot of energy to communicate, it is better to retrieve approximation boundary
than accurate boundary estimation. Nowak et al. [14] propose a method to approximate real
boundary and achieve certain accuracy . The authors consider a sensor network are composed
of two distinct homogeneous regions. Boundary is a borderline to separate these two regions.
To estimate boundary is like edge detection in image processing. The scheme is depicted in
Figure 2.1. They use a quadtree-like method to partition the filed to define hierarchy of sensor
nodes and obtain finest resolution along the boundary at last. Also, they try to make balance
between accuracy and energy consumption.

Another way to approximate real event boundary is through boundary nodes selection.
Boundary nodes selection is to select some representative nodes which lie on or near the real

boundary. Therefore, these boundary nodes can be approximate to the real boundary and
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Figure 2.1: An inhomogeneous field in sensor network

give users conceptual views of events. In [4], a sensor node is viewed as a boundary node if
only if a predefined disk center at this sensor contains both sensors in the event and sensors
not in the event. Chintalapudi et al. [3] focus on edge detection and defines edge sensors
accordingly. If we map the phenomenion of 3].into the event, edge detection can be used
to detect boundary. Edge sensors lie in the phenomenon and locate with a specified radius
at a borderline which is intersection- of inferior-and exterior of the event. Jin et al. [11]
define boundary nodes as sensor nodes which lie within real boundary with certain confidence
interval guarantee. According to the definitions introduced, the problem of boundary nodes
selection is a problem of classification. Sensor nodes are recognized as boundary nodes or
non-boundary nodes. Therefore, the methods proposed above all use statistical methods to
differentiate whether sensor nodes are boundary nodes or not.

In sensor networks, sensor nodes may deplete their batteries due to energy constraints and
then die out. If there are large amount of sensors die out in sensor networks, we view this as
occurrence of a special event. A region, commonly called as a hole, which sensor nodes can
not communicate in this region is formulated accordingly. The description of holes estimation
is also represented by boundary nodes. The works in [12], [2], [5], [6], and [17] demonstrate

how to detect holes and select boundary nodes either topologically or graphically.



Generally, a boundary of an event is just a borderline to separate the event and the
remaining monitoring region. Boundary nodes identified may have already involved in the
event. Also, if there is any event diffusion, it may not be able to sense at real time because
boundary nodes do not necessarily enclose the event. It means that, if we view sensing range as
the sensing region which a sensor node can detect variants from the environment. There must
be "gaps" exiting between boundary nodes since boundary nodes are merely representative
nodes of real boundary approximation. Therefore, the meanings of surrounding nodes are

somewhat different from boundary nodes of events.



Chapter 3

Preliminaries

We assume that that each sensor node has a unique id and is aware of their locations via GPS
devices or certain positioning methods. Euclidean distance is used as a metric to measure
near and far. The deployment of sensor nodes is random and dense enough over a two-
dimensional monitoring region. FEach sensor nodes has a fixed communication range and a
fixed sensing range. The communication range of a sensor node follows unit disk graph model.
Therefore, a sensor node s; can communicate with'a sensor node s; if they are in each others’
communication range. Otherwise, the sensing range of a sensor node is also a disk and smaller
than its communication range generally.

The goal of Event Surrounding Query (ES query) is to retrieve a set of nearest surrounding
nodes of a specific event. We formally define ES query as follows:

Definition: When given a set of boundary nodes which lie on or near to a real event
boundary, an approximate boundary BN of the event can be obtained to bound the event
region (generally, BN is a polygon). ES query is to retrieve a set S of nearest sensor nodes to
BN such that sensing ranges of adjacent nodes in S must be overlapping to enclose the event.
In other words, adjacent sensor nodes s;, s; in S, with their sensing ranges r;, r; individually,
must satisfy the condition: d(s;,s;)< r;+1;, where d(s;,s,) is the Euclidean distance between

adjacent nodes s; and s;.



——_—

N
/// N root
! q \ Ry R2
1 ()\l
\ I
\ L ]
z N / A * * B
\\ /// R
S~ 5 R R4 Re Rs
C
g
Rs R1 R4 R, ﬁl \ﬁ
\ \ A
q h
e Rs T a b c d e h f g
[ 4
D c D E F

(@) (b)

Figure 3.1: Query processing in R-tree

A spatial index structure called R-tree [9] is especially proposed for spatial queries to
facilitate query processing. It is a B-tree like index structure. Each leaf nodes has pointers to
corresponding spatial objects. Besides;a minimal bounding rectangle (MBR) is a rectangle
for a internal node to enlarge least tojinclude all its child nodes. There is an upper bound
M and a lower bound m to limit capabilities-for-a-R-tree node to save according objects or
child nodes. Basically, R-tree has the following properties: (a) The root node has at least two
children unless it is a leaf; (b) A R-tree node contains at least m objects and m satisfy the
condition: m < %; (c) All leaf nodes appear on the same level. If locations of objects are
already known, it is efficient to use R-tree to retrieve spatial objects. Therefore, we also use
R-tree to construct a corresponding hierarchy of sensor network topology.

There are two most common search ways of NN: Depth First Search (DFS) [15] and Best
First Search (BFS) [8]. Assume a query point q is imposed. DF'S starts visiting nodes from the
root of R-tree first. It will access R-tree in order of MINDIST which is the minimum distance
between the query point and R-tree rectangle. The search process will be repeated until a
leaf nodes is visited and the first candidate of nearest neighbor is retrieved. An example is
illustrated in Figure 3.1. From the root, MINDIST of R; is smaller than MINDIST of Rs.

Therefore, node A is visited and MINDIST of R3 and Ry is compared likewise. Since MINDIST



of R4 is smaller than Rg, the leaf node D of Ry is visited and the first nearest neighbor candidate
c is retrieved. MINDIST of current nearest neighbor candidate c is served as local minimum.
Then, it will backtrack to upper level parents to check if there are any nodes whose MINDIST
are smaller than local minimum of current nearest neighbor candidate. If it does, it may
be possible that R-tree nodes which satisfy this property have nearest neighbor. It needs
to replace current nearest neighbor candidate if necessarily. The procedure will terminate if
there is no MINDIST of r-tree nodes smaller than that of current nearest neighbor candidate
so that nearest neighbor is found. In our example, it will backtrack to node A, then the root,
and discover that MINDIST of Ry is smaller than current nearest neighbor candidate c. It
compares with MINDIST and follows the path node B, leaf node of R; and node F. Finally,
nearest neighbor f is retrieved and the search process terminates. Besides, when it talks to
BF'S, we need to prepare a priority queuein advance. Entries in the priority queue is sorted
by their MINDIST to the query poiut q. 'BES pops‘from-top of the queue and check whether
it is leaf entry of R-tree or not. If what ispopped-is not a leaf entry, it will push back into
the queue according to the priority, MINDIST. If‘a leaf entry is popped, it becomes nearest
neighbor. In previous example, it will traverse r-tree node R; first, then follow the sequence
of Ry, R5 in the priority queue. At last, the leaf entry is popped and nearest neighbor f is

retrieved.
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Chapter 4

Algorithms for Event Surrounding

Queries

In this chapter, we propose two algorithis for ES query processing. The first algorithm we
propose tries to extend an input query rectangle.of RNN query to a polygon. We find out
range nearest neighbor nodes of an approximate-polygonal region of the event first. Then we
try to enclose the event with helps of RNN.’s neighbors. The second algorithm is a Greedy
algorithm. Every time we select from nearest neighbor nodes as our surrounding nodes of the

event.

4.1 RNN-based Algorithm: RNN-ES
4.1.1 Overview

RNN-ES algorithm consists of two phases: initial phase and enclosure phase. Initial phase is
to selects RNNs as our basic components of surrounding nodes. Enclosure phase is to identify
where gaps exit between surrounding nodes and then try to select proper surrounding nodes

for enclosing the event. Besides, there is a running example that demonstrates how to select

11



sensor nodes to enclose the event as described in enclosure phase.

4.1.2 Initial Phase

There have been many methods proposed for event boundary detection till now and sensor
nodes are recognized as boundary nodes by these algorithm. Therefore, we can facilitate from
these methods to obtain boundary nodes of the event. To compute approximate polygonal
boundary of the event boundary is similar to compute a convex hull by GRAHAM’s SCAN
[7].

Furthermore, we observe that range nearest neighbor sensor nodes are parts of surrounding
nodes. If we view an approximate polygonal event boundary as a range, we can solve our
problem with helps of RNN query [10}:" However,, RNN query proposed processes a query
rectangle only. The event region is determined by what has happened in the environment. The
polygonal boundary of approximate event:beundary is not necessarily a rectangle. Therefore,
We want to extend the query range of RNN query to'a polygonal region. Then, the polygon of
approximate event boundary can be divided into several lines that each line is corresponding
to a polygonal edge. We look for LNNs for each lines. A line can be partitioned into several
subsegments further and each subsegment corresponds to a LNN. Because a line can be divided
into finite and minimal sets of subsegments, adjacent subsegments must have different NN as
described in [10].

Tao et al. [16] propose a method to process LNN Search. It can apply either BFS or
DFS search paradigms of R-tree. Take BFS for example, a priority queue is prepared to
store the entries in order of MINDIST. When a leaf entry is popped, corresponding sensor
nodes are push back to the priority queue. Thereafter, we can pop the priority queue and
access sensor nodes that are possible NNs. In order to differentiate different segments of

corresponding LNNs, endpoints of subsegments of a specified query line L. are obtained by

12



Algorithm 1 RNN-ES(BN,root)

Input: An approximate polygonal event boundary (BN), and A R-tree root index node(root).
Output: A set of surrounding nodes of the event S.

Let Q be a priority queue and be initialized with root;

Let S be results of ESN Query and be initialized ¢;

Let d(e;,e;.NN) be the distance between an endpoint e; and its LNN and initialized as oo;
Let EXMAX be the maximum distance, d(e;,e;.NN), of EL and initialized as oo;

Let start be the start endpoint of a query line L; and its LNN, start.NN, initialized as
null;

: Let end be the end endpoint of a query line L; and its LNN, end.NN; initialized as null;

Let EL be the endpoint set of a query line L; that it can divide L; into several subsegments
through these endpoints. Initial EL:(start, end);
Let E.oer be a set of the endpoints covered by the spatial object n and be initialized ¢;

. for each query line L; of BN do
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:

while (Q is not empty) do
Dequeue node n from Q;
if (n is a spatial object) then
if (MINDIST(n,L;;) < ELMAX) then
//all LNNs of endpoints of EL are null
if (start.NN and end.NNs are both null) then
Update start.NN and end.NN as n;
Update d(start,start.NN);
Update d(end, end.NN);
Update ELMAX;
end if
else
if (Ecover is not empty ) then
Remove endpoints covered by n from EL;
end if
// Ecover:{eiaei—I—l;- .- 7ej}
Let uzei_l.NN;
Let u=e;.NN;
Add an endpoint €} into EL by doing perpendicular bisector of n,u with L;;
Update d(e}, ¢;.NN);
Add an endpoint €, into EL by doing perpendicular bisector of n,v with L;;
Update d(e}, ;, €/,.NN) ;
Update ELMAX;
Clear E per set;
end if
else
if (MINDIST(n,L;;) < ELMAX) then
if (An endpoint e, in EL exits such that d(eg,ex.NN) > MINDIST(ej,n)) then
for each child entry c of n do
Enqueue node c;
end for
end if
end if
end if
end while
Dump all LNNs of endpoints of EL into S;
end for
RNNEnclosure(S);
return S; 13




Figure 4.1: RNN example

doing the intersection between a perpendicular bisector of current scanned nodes, neighboring
LNN nodes and L. Thus, for each endpointse; shich belong to the query line L, all points
of L in [e;,e;11] has the same NN defined as ¢ NN; Tt is possible that sensor nodes scanned
later are much closer than sensor nédes for certain subségments in the LNN list. Therefore,
it needs to check whether this sensor node covers seme endpoints which are obtained by
nodes previously scanned. If there is a currently scanned sensor s; whose distance dist(s;,e;)
is smaller than dist(e;,e;.NN) for some e;, it means the endpoint e; is covered by s;. Since
there are endpoints of subsegments obtained from intersection of the perpendicular bisector
and the specified query line, the currently scanned sensor s; is LNN. The algorithm proposed
removes the endpoint e;, adds new endpoints €] by s; and updates €;.NN accordingly. Also, a
threshold ELMAX which determines the number of surrounding node candidates visited needs
to be updated as maximum d(eg,e;.NN) of current LNN list. Finally, we prepare a queue S to
gather the results of LNN lists and sort them counterclockwise (or clockwise) with reference
to the center of the approximate polygonal boundary of the event. These will be parts of
selection of our surrounding nodes of the event (Figure 4.1). Next phase we will introduce

how we select nodes to enclose the event with helps of RNNs obtained from this phase.
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4.1.3 Enclosure Phase

Algorithm 2 RNNEnclosure(S)

Input: A queue S which contains RNN results.
Output: A set of surrounding nodes of the event S.

1: for all s; in S do

2:if (I(dist(s;,s;.left) < Ts +Ts. et )) then

3: choose s, from s;’s and s; left’s adjacency list with Min(dist(s;,sx)+dist( s,s;.left))
4: si.left=s; left;

5: Sk.right=s;;

6: (s;.left).right=sy;

7 s;.left=s;;

8: Insert s;, at the end of S;

9:  else if (!(dist(s;,s;.right) < v 47 .ign: )) then
10: choose sy, from s;’s and s;.right’s adjacency list with Min(dist(s;,s;)+dist( sg,s;.right))
11: si.left=s;;

12: si.right=s;.right;

13: (s;.right).left=sy;

14: s;.right=sy;

15: Insert s, at the end of S;

16: else

17: ;

18: end if

19: end for

In prior phase, we have already retrieved partial results of nearest surrounding nodes of the
event and push them in a queue S either clockwise or counterclockwise. Then, we construct
neighborhood relationships for each sensor node in S first. If we sort nodes in the queue S
counterclockwise with reference to the center point of the approximate polygonal boundary
of the event, a sensor node s; indexed i in the queue S sets its left-hand side neighbor as a
sensor node indexed i+1 and its right-hand side neighbor as a sensor node indexed i-1 in the
queue S. A special case is that a sensor node at the head of the queue S will set its right-hand
side neighbor as a sensor node at the end of the queue S and the sensor node at the end of
the queue S will set its left-hand side neighbor as the sensor node at the head of the queue S
accordingly. If we sort nodes in the queue S clockwise, neighborhood relationship construction
will be in a similar manner. Because we only have partial results of nearest surrounding nodes

of the event in prior phase and these sensors are too few to enclose the event, there may be
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gaps between adjacent nodes with respect to their sensing ranges. The goal of this phase is to
select proper sensors to enclose the event. The requirement for this phase is that each sensor
node needs to keep information of their one-hop neighbors. Therefore, each sensor node has
to store its neighbors within communication range in its adjacency list. Then, the algorithm
proposed starts to access the queue S and checks whether gaps exit between this node and its
adjacent neighbors in S. When a sensor node s; in S is accessed, it first checks the distance
between this sensor and its left-hand side neighbor s;.left. If the distance, d(s;,s;.left), is greater
than summation of sensing radius of s; (r,,) and its left-hand side neighbor s; left (v left), it
means that there is a gap between them. We select from the set of neighbors in adjacency
lists of s; and s;.left. A neighbor node s;, in adjacency lists selected as surrounding nodes must
satisfy the condition that: it has minimum distance which is summation of distances from s
to s; and s to its s;.left. If there is a tie, it will ehoose one of s, arbitrarily as surrounding
nodes. We also construct neighborhood relationship for s, as to two neighbors, s; and s;.left.
Accordingly, s; will replace original positien of s;.left and become new left-hand side neighbor
of s;. Original right-hand side neighbor of s;.leftrwill be s,. Then, s, will be insert at the
end of the queue S. Similarly, it will also checks whether there is a gap between s; and s;’s
right-hand side neighbor, s;.right, and select proper s, to enclose it. This process will continue
until all elements in S have been checked. At last, we report all sensor nodes in S as nearest

surrounding nodes of the event.

4.1.4 Running Example of RNN-ES algorithm

An example of surrounding nodes selection for event enclosure is illustrated in Figure 4.2. The
approximate polygonal event boundary is a octagon. For each sensor, it has a communication
range of 6 m and a sensing range of 4 m. A sensing range of a sensor is represented by a

dashed circle and a communication range of a sensor is represented by a solid circle. Initially,
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surrounding nodes selected from the first phase have already sorted counterclockwise and
construct neighborhood relationship with adjacent neighboring nodes such as 21 and 27 in
Table 4.1. Therefore, a node numbered 21 has a left-hand side neighbor node 27 and a right-
hand side neighbor node 30. A node numbered 27 has a left-hand side neighbor node 34
and a right-hand side neighbor node 21. When the node 21 is accessed from the queue S, it
discovers that the distance between the node 21 and its left-hand side neighbor node 27 is
greater than summation of sensing radius of the node 21 and the node 27. To enclose the
event, the algorithm proposed will examine adjacency lists in the node 21 and its left-hand
side neighbor node 27 and select a proper node as a surrounding node. In the adjacency
list of the node 21, it has six neighbor nodes: 12, 13, 14, 20, 22, and 29. In the adjacency
list of the node 27, it also has six neighbor nodes: 18, 19, 26, 28, 34, and 35. Among these
neighbors, the node 20 has minimal summation distance to the node 21 and the node 27.
We construct neighborhood relationship 'for the ' node 20 with the node 21 and the node 27
individually. Besides, we modify the-neighborhood relationship for the node 21 and the node
27 accordingly (As Table 4.2 depicted). Then, thenode 20 is inserted at the end of the queue
S. We go on to check whether there is a gap between the node 21 and its right-hand side
neighbor, the node 30. Because the distance between the node 21 and its right-hand side
neighbor, the node 30, is smaller than summation of sensing radius of the node 21 and node
30, there is no gap between the node 21 and the node 30. The algorithm continues to check
next sensor in the queue S until it retrieves a set of nearest surrounding nodes enclosing the

event.

Node s; [s;.left | s;.right
21 27 30
27 34 21

Table 4.1: Original neighborhood relationships
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Figure 4.2: Surrounding nodes selection for enclosure

4.2 Greedy Algorithm: Greedy-ES

4.2.1 Design Concepts

Although it is intuitive to select surtounding nodes of-the event by RNN-ES algorithm, there
are some deficiencies in RNN-ES algorithm: "It may be costly to search RNNs edges by
edges. Also, RNN-ES algorithm requires’ that each sensor node caches neighbor nodes in its
communication range in case of RNNs selected not enclosing the event. Therefore we propose
a greedy algorithm for ES query processing and it is abbreviated as Greedy -ES.

In our Greedy-ES algorithm, we need to calculate minimum distance between sensor nodes
to the approximate polygonal boundary of the event boundary. Then we select from near-
est neighbor nodes of the approximate polygonal boundary of the event every time as our
surrounding node candidates. The search process will stop until we find a set of nearest

surrounding nodes of the event that enclose the event.

Node s; | s;.left | s;.right
20 27 21
21 20 30
27 34 20

Table 4.2: Neighborhood relationships after modification
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When we takes two search schemes mentioned of R-tree index structure, BFS and DFS,
into consideration, we choose BFS search paradigm according to the essence of our Greedy
algorithm. The definition of minimum distance of a sensor node to the approximate polyg-
onal event boundary is similar to MINDIST defined in [15]. If the approximate polygonal
event boundary is inside MBR of R-tree fully, minimum distance is zero. If the approximate
polygonal event boundary covers partial region of MBR, minimum distance is also zero. If
the approximate polygonal event boundary is outside MBR fully, minimum distance is the
minimal Euclidean distance between the node to nearest edge of the approximate polygonal
event boundary. We use minimum distance defined to sort nodes in our priority queue for
BF'S search paradigm. Conceptually, we retrieve NN of current processing as our surrounding
nodes by popping the priority queue. However, not all K NNs searched accessed till now are
surrounding nodes of the event. It may.be redundant.for current NN retrieved to join the set
of surrounding nodes of the event. Therefore, we introduce how to construct neighborhood
relationships for each surrounding nede candidates- NN and current ES results.

In our assumption, nearest surrounding nodes that enclose the event must satisfy the
criteria, sensing ranges of adjacent surrounding nodes are overlapping. Distances between
every two adjacent surrounding nodes is small than the summation of their radius of sensing
ranges. Therefore, we check the distance between each surrounding nodes candidates NN and
current ES results. If a surrounding nodes candidate NN retrieved satisfy the criteria, NN has
neighborhood relationship with current ES results. Next, we define left-hand side neighbor
and right-hand side neighbor for a surrounding node candidate NN advancedly.

Neighborhood relationships construction of a surrounding node candidate is depicted in
Figure 4.3. We mark current surrounding node candidate processed as s;. Sensor nodes s;,
st are surrounding nodes and have been recognized as neighborhood of s; by the criteria
aforementioned. We set center point of the approximate polygonal event boundary as a

reference point. If there is a polar angle formed by the reference point, the surrounding node
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Algorithm 3 Greedy-ES(BN,root)

Input: An approximate polygonal event boundary (BN), and A R-tree root index node(root).
Output: A set of surrounding nodes of the event S.
1: Let Q be a priority queue and be initialized with root;
2: Let S be results of ESN Query and be initialized ¢;
3: Let Mark be a redundant surrounding nodes mark if n is added to S and be initialized 0;
4: while (Surrounding nodes in S are not enclosed or S==¢) do

5. Dequeue node n from Q;
6: if (nis a spatial object) then
7: n.left = null;
8: n.right = null;
9: if (S != ¢) then
10: for each nodes s; in S do
11: if (dist(n,s;) < r,+rg,) then
12: Build neighborhood relationships for n such as n.left = s; or n.right = s;;
13: end if
14: end for
15: end if
16: if ((n.left==s;) and (s;.right==null)) then
17: s;.right = n;
18: else if ((n.right==s;) and (;.left==null)) then
19: s;.left = n;
20: else if ((n.left==s;) and (s;.right '= null) and"(s;.right != n)) then
21: Mark = 1;
22: break;
23: else if ((n.right==s;) and (s;.left != null) and (s;.left |= n) then
24: Mark = 1;
25: break;
26: end if
27 if (Mark == 0) then
28: S=SUn;
29: else
30: Mark = 0; //reinitialize Mark as 0
31: end if
32:  else
33: for each child node ¢; of n do
34: Enqueue(c;);
35: end for
36: end if
37: end while
38: return S;
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Figure 4.3: The neighborhood relationships among surrounding nodes

candidate s;, a neighbor of s; in current ES result s;, s; is a left-hand side neighbor of the
surrounding node candidate s;. This means that if the surrounding node candidate in Figure
4.3 is s;, s; to s;’s neighbor, s;, makes counterclockwise turn relative to the reference point, s; is
s;’s left-hand side neighbor. Similarly, if there is‘asolar altitude angle formed by the reference
point, the surrounding node candidate. s;;»a neighbor.of s; in current ES result s, s; is a
right-hand side neighbor of the surrounding node candidate s;. In Figure 4.3, the surrounding
node candidate s; to s;’s neighbor, s, makes clockwise turn relative to the reference point.
Thus, s; is s;’s right-hand side neighbor.

We construct such neighborhood relationship for each surrounding node candidate and
initialize their left-hand side and right-hand side neighbor as null first in our Greedy-ES
algorithm. Then , it will go on to check whether there any surrounding nodes in current
ES result set are its neighbors. If there is none, it will join current ES result set directly
and continue the procedure. If it has neighbors in current ES result set, it will examine this
neighbor belongs to left-hand side or right-hand side neighbor advancedly. In order to avoid
redundant surrounding nodes to join ES result set, we will check neighborhood relationships

of each surrounding node candidate and its corresponding neighbors in ES result set. There
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(i) (i)

Figure 4.4: (i) Case 1. and (ii) Case 2.

are two cases that surrounding node candidates are redundant (See Figure 4.4):

Casel. The sensing range of a surrounding node candidate s; is overlapping with an
element s; in ES result set, and s; is s;’s right(left)-hand side neighbor. But s;’s according
left(right )-hand side neighbor is s;. This means the.role.of current surrounding node candidate
is already played by s; and s; is farther than si.We avoid s; to join the ES result set.

Case 2. The sensing range of a“surrounding.node.candidate s; is overlapping with two
elements s; and s; in ES result set. s; is s;’s'left(right)-hand side neighbor and s is s;’s
right(left)-hand side neighbor. But s;’s right(left)-hand side neighbor and s;’s left(right)-
hand side neighbor are s. not s;. This can just use case 1 to check whether neighborhood
relationships of a surrounding node candidate exits or not. There is no need to check twice.

Therefore, if surrounding node candidate s;’s left(right)-hand side neighbor is s; in ES result
set and s,’s according right(left)-hand side neighbor is null. This means that surrounding node
is not redundant to enclose the event. We construct corresponding neighborhood relationship
of s; and s; and add s; into our ES result set. Thereafter, we avoid redundant surrounding

nodes to join ES result set by neighborhood relationship examination likewise.
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Figure 4.7: Processing a surrounding node candidate 27
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Figure 4.9: Processing surrounding node candidate 34
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4.2.2 Running Example of Greedy-ES algorithm

The search process of our greedy algorithm is shown from Figure 4.5 to Figure 4.10. The
center point of the approximate polygonal event boundary is represented as a white point in
these figures and serves as a reference point. The root of R-tree has already been enqueued
in our greedy algorithm. By BFS search paradigm, we has a priority queue @ to sort nodes
by their minimum distance to the approximate polygonal event boundary. We dequeue the
root node of R-Tree first and discover that it is not a spatial object (i.e. a sensor node here).
Therefore, we push its children R;, Ry, R3 back to the priority queue Q. Since the MINDIST
to the approximate polygonal event boundary BN of Ry = R3 < Ry, they are located in
Q in this order. We go on the push and pop procedure until we retrieve the first NN, the
sensor node numbered 27 in Figure 4.7. We initialize left-hand side neighbor and right-hand
side neighbor of the sensor node 27 aginull individually. Then, we check whether it has any
neighbor nodes in current surrounding node set: Since the sensor node 27 is the first NN |
there is no surrounding nodes selected in current-surrounding node set yet. Therefore, the
sensor node 27 has no adjacent surrounding node neighbors now and join current surrounding
node set S directly. Similarly, sensor nodes numbered as 60, 47, 30 in Figure 4.8 perform the
same procedure sequentially. They all have no left-hand side neighbor and right-hand neighbor
yet and join surrounding node set S directly. The next NN, a spatial object popped from the
queue Q, is a sensor node numbered as 34. We also initialize its left-hand side neighbor and
right-hand side neighbor as null. Then, we find that the sensor node 34 is neighboring to a
surrounding node, the sensor node numbered as 27, and makes right turn to it according to the
reference point (Figure 4.9). Therefore, the surrounding node candidate 34 has a right-hand
side neighbor 27. We check whether the surrounding node 27 has a left-hand side neighbor.
Since the left-hand side neighbor of the surrounding node 27 is null, the surrounding node

candidate 34 is not redundant to enclose the event. We modify neighborhood relationships
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Figure 4.10: Nearest surrounding nodes

of the surrounding node 27 and the surrounding node candidate 34 accordingly. Then, we
recognize the sensor node 34 as a surrounding node and add it to our surrounding node set
S. The procedure will repeat until we find out a set of nearest surrounding nodes to enclose
the event so that there are no surrounding nodes.whose left-hand side neighbor or right-hand

side neighbor are null. Finally, the resultsarershown in Figure 4.10.
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Chapter 5

Performance Study

In this chapter, we evaluate the performance of two proposed surrounding nodes selection

algorithms, Greedy-ES algorithm and RNN-ES algorithm.

5.1 Simulation Model

Experiments are implemented in Java.programming language and run on a computer with 64
X2 Dual Core Processor 3800+ and 2 G memory. There are 2500 sensor nodes deployed in our
monitoring region. For each sensor node, its sensing range is fixed at 4 m and communication
range is fixed at 8 m. A variant of R-tree index structure, R*-tree [1], is used to index
sensor nodes and speeds up sensor nodes retrieval. The pagesize of one R*-tree node is set
to 4096 bytes and maximum node capacity is 50. We assume that an event occurs in the
monitoring region. The shape of the event is a circle. The boundary nodes of the event have
already collected. The approximate polygonal boundary of the event can be obtained via
the boundary nodes of the event. We use synthetic datasets to simulate the deployment of
sensor nodes. The deployment of sensor nodes must be dense enough so that we can find out
surrounding nodes of the event. Two kinds of deployment, grid distribution and grid with

random perturbation distribution, are applied individually for comparison. There are two
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metrics used to compare the performance of proposed methods which are described as follows:

(1) CPU time for surrounding nodes selection (2) Numbers of surrounding nodes of the event.

5.2 The Impact of Event Size

We vary the size of the event through varying its radius from 4m to 28 m without changing its
center. The monitoring region is assumed to be 200 m x 200 m. We deploy 2500 sensor nodes
so that each sensor node can be put in a 4 m x 4 m grid. Because it is a grid distribution of
sensor nodes, the environment is simple. The edges of the approximate polygonal boundary
of the event in this case are always 4. Figure 5.1 shows the simulation result of varying the
size of the event. As our expectation, when we increase the size of the event, the cost to find
out surrounding nodes of the event will raise accordingly. Since RNN-ES algorithm needs to
search RNNs edges by edges according to the-approximate polygonal boundary of the event,
the cost of RNN-ES algorithm is essentially higher-than Greedy-ES algorithm. Furthermore,
Figure 5.2 demonstrate numbers of surrounding nedes of the event. In this case, the numbers

of surrounding nodes retrieved by both methods are the same.

In order to be contrast to the grid deployment of sensor nodes, a group of control is shown
in Figure 5.3 and Figure 5.4. We deploy sensors randomly instead. Sensor nodes are put in a
grid and then perturbed with a random shift. Therefore, the distribution of sensor nodes by
manual will be close to uniform distribution. The event size also increases by adjusting the
radius of the event from 4 m to 28 m. Therefore, the numbers of edges of the approximate
polygonal boundary which vary with the size of the event accordingly are as follows: 6, 9, 16,
14, 21, 21, 23. Generally, the cost of RNN-ES algorithm is higher than Greedy-ES algorithm
in Figure 5.3 . This is similar to the scheme of the grid deployment of sensor nodes. However,
there is somewhat a little oscillation of the RNN-ES algorithm curve in Figure 5.3. When the
radius of the event is 16 m, its number of edges of the approximate polygonal boundary is less
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than its previous one and the next one of event size. Therefore, it costs less overhead to search
RNNs in the first phase of RNN-ES algorithm. Since the first phase of RNN-ES algorithm
incurs major cost of RNN-ES algorithm, it costs less totally at last. Otherwise, although the
number of edges of the approximate polygonal boundary when the radius of the event is 20
m is the same as that when the radius of the event is 24 m, the cost to retrieve surrounding
nodes is less in RNN-ES algorithm when the radius of the event is 24 m. Because it visits
more surrounding candidates when the radius of the event is 24 m. And this is due to the
distribution of surrounding node candidates around the approximate polygonal boundary. It
will discuss further latter in next section. Figure 5.4 presents the scheme of ES query in the
random deployment environment. We observe that RNN-ES algorithm most often retrieves
more sensor nodes than Greedy-ES algorithm. Since RNN-ES algorithm searches RNNs by
dividing the approximate polygonal boundary into several query lines in the first phase, a
query line L must be divided into segments further until that no NN candidates can cover
current set of LNNs. This property' causes-the number of surrounding nodes selected by
RNN-ES algorithm to be less than or moré than or equal to Greedy-ES algorithm. Moreover,
Greedy-ES algorithm is tend to select representative nearest surrounding nodes as long as

nodes selected can enclose the event.

5.3 The Impact of Number of Query Lines

As aforementioned in the first phase of RNN-ES algorithm, it breaks the approximate polygo-
nal boundary into several query lines for RNN search. It is probably that the number of query
lines will influence the query cost of RNN-ES algorithm. To show the impact of the number
of query lines, we simulate and present the result in Figure 5.5. Sensor nodes are deployed
in a4 m x 4 m gird and perturbed with a random shift. The radius of the circular event

is fixed at 8 m and we assume that it occurs arbitrarily in the monitoring region so that we
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obtain different number of edges of the approximate pélygonal boundary. Naturally, it has no
much effect for Greedy-ES algorithny if the eventoccurs anywhere in the monitoring region in
Figure 5.5. However, RNN-ES algorithm-is tend-to increase its CPU time as the number of
the query line of the approximate polygonal boundary increases. We also observe that CPU
time descends when the number of query lines of the approximate polygonal boundary is 10.
Due to the distribution of sensor nodes around the approximate polygonal boundary, it will
determine the number of surrounding node candidate to traverse in the search process. That
is, for a query line L, nodes in current LNN set will determine the threshold ELMAX which
chooses to visit more surrounding nodes candidates or not. Therefore, the threshold is more
powerful to decide the number of surrounding node candidates visited than the number of
query lines of the approximate polygonal boundary.

The corresponding number of surrounding nodes selected is depicted in Figure 5.6. RNN-
ES algorithm often selects more surrounding nodes than Greedy-ES algorithm as above-

mentioned. The difference of number of surrounding nodes selected is not too much in this

32



22 T T T T

T T
RNN-ES memazsz
o 21 i
[}
°©
o
4 20 R Row b
o 2SS
()] 0559 S
22 %
= 555 S
5 s
°© S2% <2
s 19 o S R o7 .
3 3
N 2085 255 N
(@] %S S S %S
S - 5 5 -
5 355 s S 7S
X - 2] 2] RS
- SN el e ] 5098 1
05 59 e e 522
— RS ngﬁ B3 <O [R5,
R 95 o 6% S22
o 25, [ O O K
R 505, o) s A
= 2255 5 <505 S RS
@ 1 7 r 532 b3S 255 2% S8 B
Re) R OK 508 62 L5
5% KO s s S50
E 5% s S22 G2 25
S S5 10 22 % 5%
L RS 22 W22 5%
Z S e3¢ % % W22
1 6 - 2o 3% S ] G T
<2 e % % S22
225 & %K % 2255
O 12255, & & 55
S 08 220 225 <
RS % 2558 522 1207
522 5 & % 522
2 522 o 2] S5
15 8¢ 522 522 5

Number of Query Lines

Figure 5.6: Random deployment: no. of query lines vs. no. of surrounding nodes

case since the radius of the event is theé same:

In order to show the impact of the distribution of surrounding node candidates around the
approximate polygonal boundary movre precisely;-we collect and simulate the same number of
query lines of the approximate polygonal boundary to evaluate the query cost. The radius
of a event is also fixed at 8 m and the deployment of sensor nodes is the same as the envi-
ronment depicted in Figure 5.5 and Figure 5.6. Although events may occurs anywhere in the
monitoring region, we only focus on the events which have the same number of query lines of
the approximate polygonal boundary that we collect the events whose number of query lines
is 11. Figure 5.7 demonstrates the result. The curve of RNN-ES algorithm is almost smooth.
However, there is still some rise and fall at the end of the curve. The distribution of sur-
rounding node candidates around the approximate polygonal boundary leads to the variation
apparently. Greedy-ES algorithm also displays a slightly fluctuation due to the distribution
of surrounding node candidates around the approximate polygonal boundary but the range of

variation is small. We also present the corresponding number of surrounding nodes selected
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Figure 5.8: Random deployment: no. of query lines is fixed as 11 vs. no. of surrounding
nodes
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in Figure 5.8. Since the radius of the event is the same and we select the events of the same
number of query lines, the difference of the number of surrounding nodes is not too much
in both methods. Otherwise, RNN-ES algorithm also selects more surrounding nodes than

Greedy-ES algorithm at most of times.

5.4 The Impact of Density

The Number of Sensor Nodes Deployed
Monitoring region size

Generally, density in sensor networks is defined as: . In order
to show the impact of density, we fix the number of sensor nodes deployed as 2500 and vary
the size of monitoring region as 200 m x 200 m, 100 m x 100 m, 50 m x 50m , 25 m x 25
m instead. Sensor nodes deployed follow grid distribution. A circular event whose radius is 8
m occurs in the center of the monitoring region: .In Figure 5.9, the cost to select surrounding
nodes increases along with density raising ingboth'metheds. However, RNN-ES algorithm not
only consumes more CPU time but its direction of curve increases more rapidly than Greedy-
ES algorithm. This is because surrounding“candidates which satisfy the threshold in RNN-ES
algorithm will increase relatively when density grows. Therefore, RNN-ES algorithm needs to
examine more surrounding candidates than Greedy-ES algorithm.

Figure 5.10 shows the number of surrounding nodes selected by proposed methods if we
vary density under the environment mentioned above in Figure 5.10. It is observed that
RNN-ES algorithm most often is tend to retrieve more sensor nodes with density increasing.
Moreover, the difference of the number of surrounding nodes selected is larger and larger be-
tween RNN-ES algorithm and Greedy-ES algorithm when density increases. This is probably
due to that Greedy-ES algorithm is tend to select representative nearest surrounding nodes
as aforementioned. In contrast to Greedy-ES algorithm, RNN-ES algorithm takes a different

viewpoint. Most of surrounding nodes selected by RNN-ES algorithm is done in the first

phase. Therefore, RNN-ES algorithm select RNNs by definition of LNNs and the RNN set is
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composed of several different LNN sets. Since the search must continue until the query line of
the approximate polygonal boundary can not be divided into segments by surrounding node
candidates, surrounding nodes retrieved by RNN-ES algorithm are like a second boundary of
the event. Therefore, when density of the monitoring region increases, it is tend to be more
surrounding nodes candidates involved and covers current surrounding nodes selected in the
search process. Thus, the difference of the number of surrounding nodes between RNN-ES al-
gorithm and Greedy-ES algorithm enlarges accordingly. Especially the number of surrounding

nodes selected by Greedy-ES algorithm does not vary too much.
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Chapter 6

Conclusion

In this paper, we presented a novel type of spatial query, ES Query, for application require-
ment in sensor networks. Through ES Query, We can select a set of surrounding nodes of
the event instead of all sensor nodes inthe monitoting region to check if there is any event
evolution. Therefore, sensor nodes“which are not surrounding nodes can enter into sleep
modes temporarily to save their battery energies and thuis extend the lifetime of sensor net-
works.Furthermore, to reply ES query, we proposed two algorithm, RNN-ES algorithm and
Greedy-ES algorithm. RNN-ES algorithm derives from the concept of RNN and makes an
extension to enclose the event. However, RNN-ES algorithm takes a microscopic view and
breaks the approximate polygonal event boundary into several query lines for LNN search.
Although surrounding nodes selected around the event may follow a homogenized distribution,
it is costly to search LNNs line by lines. Besides, experimental result showed that the number
of surrounding nodes selected is tend to be more and it will increase rapidly especially when
the density of sensor deployment increases. Therefore, Greedy-ES algorithm was proposed to
reply ES Query efficiently. Greedy-ES algorithm takes a macroscopic view and regards the
approximate polygonal event boundary as a whole query input. It greedily visits NN candi-
dates until surrounding nodes selected encloses the event. The core of Greedy-ES algorithm

is that we develop so-called neighborhood relationships to check whether NN candidates are
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redundant to join the set of surrounding nodes of the event or surrounding nodes selected so

far enclosing the event or not.
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